
Graph Learning-Based Arithmetic Block Identification
Zhuolun He1†, Ziyi Wang1†, Chen Bai1, Haoyu Yang2, Bei Yu1

1The Chinese University of Hong Kong 2 NVIDIA
{zlhe,ziyiwang21,byu}@cse.cuhk.edu.hk

Abstract—Arithmetic block identification in gate-level netlist is an
essential procedure for malicious logic detection, functional verification,
or macro-block optimization. We argue that existing methods suffer
either scalability or performance issues. To address the problem, we
propose a graph learning-based solution that promises to extract desired
logic components from a complete design netlist. We further design
a novel asynchronous bidirectional graph neural network (ABGNN)
dedicated to representation learning on directed acyclic graphs. Exper-
imental results on open-source RISC-V CPU designs demonstrate that
our proposed solution significantly outperforms several state-of-the-art
arithmetic block identification flows.

I. INTRODUCTION

Arithmetic block identification in gate-level netlists has emerged as
the driving force for numerous datapath optimization or functional
verification methodologies. For example, Symbolic Computer Alge-
bra (SCA) based multiplier verification [1], [2] relies heavily on the
detection of Half Adders in the multiplier netlist. It is also desired
to replace a detected arithmetic block with pre-optimized logic or
even new macro blocks built with more advanced technologies [3].
Additionally, the demand for malicious logic detection is widely
pointed out [4]–[6] to ensure circuit security and functionality in
the globalization of VLSI design, manufacturing, and distribution.
Besides the applications mentioned above, a technical reason behind
the need for such a ‘reverse engineering’ approach is that most high-
level components, such as function declaration and modularization,
are flattened into netlists of Boolean gates by logic synthesis and
technology mapping [7]. Therefore, despite sounding like ‘finding a
needle in a haystack’ (or in a sea of bit-level gates [8]), arithmetic
block identification is an essential procedure worthy of exploration.

Classic approaches to identify arithmetic components can be
roughly categorized into either structural methods [5], [8]–[11] or
functional methods [12], [13]. Structural methods concentrate on
circuit topology while paying little attention to the functionality of
the circuit [14]. For instance, shape hashing is introduced in [8] to
group wires with the same local topology together to form candidate
words. Specifically, a k-step-bounded depth-first traversal of the
graph is performed starting from each wire to produce its serializa-
tion using the gate and wire types. Some other works consider the
scenario where a library of reference circuits is given, and the prob-
lem becomes mapping subcircuits with reference circuits. In [10], the
subcircuit matching problem is formulated as a regularized quadratic
assignment problem to minimize both graph distance and vertex
label distance. A nonlinear version of the iterative Kaczmarz Method
(KM) is used to solve the obtained equations. Structural methods
usually promise to identify target blocks with customized algorithms
efficiently. However, they are often mathematically incomplete due
to the heuristic methodology. On the other hand, functional methods
functionally analyze the circuit for potential arithmetic components.
A typical example as in [12] extends the above shape hashing
method by considering the functions implemented by a set of gates
using cut enumeration. They enumerate all 6-feasible cuts and group

† Equal contributors, listed alphabetically by last name.

Netlist GNN Fuzzy Match

Fig. 1 Graph learning enables netlist fuzzy matching.

equivalent cuts using permutation-independent Boolean matching. In
this way, each equivalence class of cuts may match a known library
function. It is further proposed in [12] to use functional verification
tools for module matching: suppose C is a potential arithmetic block
with input word X and side inputs Y , C′ is a reference circuit,
and Φ is an inserted comparator miter between the outputs of C
and C′, the Quantified Boolean Formula (QBF) ∃Y ∀XΦ(X,Y )
exactly models the equivalence checking problem. As can be seen,
functional methods are accurate and solver-ready at the cost of ultra-
long runtime.

The development of machine learning and deep neural networks
has provided alternate solutions to recognition and classification. To
efficiently identify functional units, [15] and [16] recently propose
deep learning-based solution to recognize arithmetic circuits. Silva
et al. [15] develop a flow that converts conjunctive normal form
(CNF) clauses into images, which are later rescaled to the desired
size and fed into deep learning classifiers. Fayyazi et al. [16] present
a compact representation called existence vector (EV) that encodes
a circuit node with its all neighbors. A fixed number of EVs are
selected to satisfy the fixed-input-size requirement of convolutional
neural networks. However, these solutions are dedicated to one given
unknown functional block. When dealing with large-scale netlist
design, these solutions are facing significant challenges.

To address the above concerns, in this paper, we propose a
graph learning-based arithmetic block identification framework, as
briefly illustrated in Fig. 1, that can efficiently conduct fuzzy
matching on arithmetic blocks. The framework takes a large-scale
netlist as input, and outputs fuzzy-matched sub-graphs as target
arithmetic components. Since a netlist is often represented as a
directed acyclic graph (DAG), it is motivated to utilize graph
neural networks (GNNs) as the preferable fuzzy matching solution.
Intuitively, GNNs can aggregate information from neighbourhoods
to generate meaningful low-dimensional embeddings for each vertex
for downstream tasks. However, most existing popular GNN models,
such as GraphSAGE [17] and GIN [18], are designed for general
graphs or undirected graphs. In other words, they are not well-
optimized for DAGs. Therefore, we come up with a variant of GNN,
asynchronous bidirectional graph neural network (ABGNN), which
is customized for DAG embedding with supreme performance and
high efficiency.



The paper makes the following contributions:
• For the first time, to the best of our knowledge, we present a

graph learning-based framework that performs efficient fuzzy
matching on arithmetic blocks;

• We design a novel GNN architecture customized for DAG
representation learning;

• We conduct experiments on open-source RISC-V CPU designs
synthesized by industrial tools, which confirms the effectiveness
and efficiency of our proposed framework compared with other
state-of-the-art macro block matching solutions.

The rest of the paper is organized as follows: Section II intro-
duces the problem formulation. Section III overviews our proposed
arithmetic block identification flow. Section IV describes the design
details of our ABGNN model. Section V introduces the network
flow approach for input output matching. Section VI discusses other
implementation details of the proposed framework; Section VII
presents experimental evaluations of our proposed framework and
ablation studies of the proposed techniques. Section VIII concludes
the paper.

II. PROBLEM FORMULATION

We first introduce the problem formulation. The gate-level netlist of
an electric circuit consists of a list of gate-level circuit components
(e.g., AND gates) and their interconnects. Gate-level netlists are
usually generated by logic synthesis tools, which converts an ab-
stract specification of circuit behaviour (typically at register transfer
level (RTL)) into design implementation in terms of logic gates.
Mathematically, a gate-level netlist can be naturally formulated as
a directed acyclic graph, whose vertices are the circuit components
and edges represent wires between them. Sometimes we emphasize a
flattened gate-level netlist, where only primitive gates are instanced,
while the design hierarchy is unknown. Within a netlist, arithmetic
blocks are the building blocks that perform simple arithmetic oper-
ations, such as integer addition or subtraction. In general, our target
is to discover the arithmetic blocks located in a flattened netlist. For
simplicity, in this paper, we focus on identifying adders, which are
one of the major arithmetic components. However, our proposed
graph learning-based framework can be easily extended to other
desired arithmetic blocks.

Problem 1 (Adder Identification). Given the flattened gate-level
netlist of a circuit design, identify adders located in the netlist.

III. FLOW OVERVIEW

Before introducing algorithmic details, we briefly overview our
proposed arithmetic block identification flow. Given a design netlist,
we first transform it into a directed acyclic graph (DAG) repre-
sentation. The DAG is fed to our designed ABGNN (introduced
in Section IV) to generate node embeddings. The node embeddings
are further used to predict arithmetic block boundary (introduced
in Section VI-A). Then, we run a network flow-based algorithm
(introduced in Section V) to match the predicted input wires with
the predicted outputs wires. We illustrate the overall flow in Fig. 2.

IV. DESIGNING GRAPH NEURAL NETWORK FOR DAGS

Graph neural networks enable a powerful representation learning
paradigm for graphs. In general, GNNs follow a neighbor aggre-
gation (or equivalently, message passing) scheme [18]: the repre-
sentation vector of a node is computed by recursively aggregating
and transforming representation vectors of its neighboring nodes.
The above message passing scheme has achieved state-of-the-art
performance on various tasks on graphs, such as node classification,

Design Netlist

DAG

Node Embedding

Boundary Prediction

Input-Output Matching

Identified Blocks
predicted inputs

predicted outputs

Fig. 2 Our arithmetic block identification flow.

link prediction, and graph classification. Nevertheless, it is still
critical to customize graph neural network architecture according to
the actual task to earn the best result. In this section, we discuss how
do we design a novel graph neural network architecture dedicated
to DAG representation learning in our adder IO prediction task.

A. General Graph Neural Network
We start with a formal introduction to general graph neural networks,
partly following the notations in [18]. A graph can be represented
as G = (V,E), where V = {v1, v2, · · · , vn} is the vertex set, and
E ⊆ V×V is the edge set. Vertices are equipped with initial feature
vectors X = {xv|∀v ∈ V}. As introduced, GNNs follow a neighbor
aggregation scheme. The k-th iteration of message passing, or say
the k-th layer of a GNN, can be written as follows:

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N(v)}),
h(k)
v = COMBINE(a(k)

v ,h(k−1)
v ),

where h(k)
v is the representation vector of vertex v after k iterations,

h
(0)
v = xv , and N(v) denotes the neighbouring nodes of v. Many

GNN variants with different choices of the AGGREGATE function
and the COMBINE are proposed, which are crucial to the model
performance. In practice, common selection of the AGGREGATE

function include mean aggregators, max aggregators, and sum
aggregators, usually followed by a multi-layer perceptron (MLP). As
a concrete example, GraphSAGE [17], one of the dominantly used
architectures, aggregates neighborhood information in the following
way:

h(k)
v = σ(W · MEAN({h(k−1)

v } ∪ {hk−1
u : u ∈ N(v)})),

where σ is an activation function (e.g. sigmoid). This is also a
rough, linear approximation of a localized spectral convolution.

B. Bidirectional Graph Neural Network
We now come to the first keyword, ‘Directed’, of ‘Directed Acyclic
Graph’. Directed graphs assign each edge a direction, which nat-
urally captures various real-life relations. In our netlist, the edge
direction indicates the current flow direction, or say the execution
order of the circuit. Therefore, modeling a netlist with a directed
graph is intrinsic and significant.

However, most existing GNN models assume to work for undi-
rected graphs. One historical reason is that, earlier spectral GNN



a

b

v c

hP
v s hS

v

hv = COMBINE(hP
v ,h

S
v )

a(0)

b(0)

c(0)

Fig. 3 Bidirectional information aggregation for the vertex v. We
train two GNNs to aggregate information from the fanin cone (hPv ,
in orange) and the fanout cone (hSv , in blue) respectively. The final
embedding (hv , in purple) is given by the combination of both
representation vectors.

models [19]–[21], built upon the analogy to Convolutional Neural
Networks (CNNs), define the graph convolution as the multiplication
of a signal x ∈ RN with a filter gθ = diag(θ) parameterized by
θ ∈ RN in the Fourier domain, namely:

gθ ? x = UgθU
>x,

where U is the matrix of eigenvectors of the normalized graph
Laplacian L = IN −D−

1
2AD−

1
2 = UΛU>. In this definition,

U>x is considered the graph Fourier transform of x, which relies
on the fact that the (real symmetric) normalized graph Laplacian
L admits an eigendecomposition. Unfortunately, we do not directly
have this property for a directed graph. One straightforward way is
to relax the directed graph to an undirected graph by symmetrizing
its adjacency matrix, but this inevitably results in information loss.

Our designed bidirectional GNN is greatly motivated by the design
of heterogeneous GNNs [22], [23]. As discussed in [22], one of the
challenges in designing heterogeneous GNN is ‘how to aggregate
feature information of heterogeneous neighbors by considering the
impacts of different node types’. In arithmetic block identification,
the role of a gate depends on both its fanin cone and its fanout cone.
It is therefore necessary to combine information from both directions
to generate representative node embeddings. Hereafter, we denote the
transpose graph as G>, which contains a directed edge (u, v) if and
only if G contains the reversed edge (v, u).

To encode the edge directions, each vertex only aggregates
information from its predecessors. In other words, information
flows from x to y if there is an edge (x, y). We train two GNNs, one
for G and one for the transpose graph G>, to generate two embedding
vectors hPv and hSv for each vertex that aggregate information from
the predecessors (i.e., fanin cone) and the successors (i.e., fanout
cone) respectively. Thus, the final embedding of each vertex is given
by the combination of both hPv and hSv :

hv = COMBINE(hPv ,h
S
v ) (1)

The placeholder COMBINE can be any common reduction function
such as mean, max, or sum. In practice, we simply concatenate
the two vectors for the final embedding. Fig. 3 demonstrates the
bidirectional information aggregation scheme for a vertex.

C. Asynchronous Graph Neural Network
We move to the second keyword, ‘Acyclic’, of ‘Directed Acyclic
Graph’. Acyclic graphs contain no cycles. That is, if we start
from any vertex v, walking through the graph following the edge
directions, we will never come back to v. Although this property
may sound irrelevant to GNN design, we show that it is possible to
improve the efficiency of GNN utilizing the acyclic property.

Let’s make an analogy to event-driven logic simulation, taking
the Chandy-Misra-Bryant (CMB) distributed-time algorithm [24] as
an example. To enable parallel logic simulation with the CMB
algorithm, circuit elements communicate with each other using
timestamped messages, and different elements may consume events
at distinct simulation times concurrently. Conceptually, each element
consumes timestamped event messages on its inputs; whenever all
inputs are ready, it advances its local time and possibly sends out
new time stamped event messages on its output. Fig. 4(a) illustrates
the event message scheme assuming a unit delay for each gate.
The original CMB algorithm is regarded as ‘an approach to carry
out asynchronous, distributed simulation on multiprocessor message-
passing architectures’ [24]. On the contrary, general GNNs work in
a synchronous way. In synchronous message passing, all messages
flow on edges simultaneously in each iteration, such that every vertex
receives messages and updates its representation on every iteration,
causing great computational demand, as shown in Fig. 4(b).

Motivated by the CMB algorithm and the acyclic nature of the
netlist, we propose an asynchronous GNN architecture, resembling
the asynchronous message-passing scheme for logic simulation. To
embed a target vertex v, consider its fanin cone rooted at v. The
message passing process starts from the leaf nodes of the cone,
through the cone, and all the way up to v. At each ‘timestamp’,
only the vertices receive messages at the previous timestamp pass
the message to their direct successors. Fig. 4(c) shows an example to
embed node s using such an asynchronous GNN. In iteration 0, only
nodes a and b send out their messages to p, while in iteration 1, node
p and node ci send out their messages to s. The table in Fig. 4(d) lists
are the messages sent out by nodes at each timestamp. We can see
that asynchronous GNN executes as efficiently as logic simulation
while being much more efficient than synchronous message passing.

Formally, for a target vertex v, the aggregation scheme of the k-
th iteration of a depth-∆ asynchronous GNN can be described as
follows:

a
(k)

{i:D(i,v)=∆−k} = AGGREGATE({h(k−1)
u : u ∈ N(i)}),

h
(k)

{i:D(i,v)=∆−k} = COMBINE(a
(k)
i ,h

(0)
i ),

(2)

where D(i, v) is the distance between vertices i and v in the graph,
and h(0)

i is the initial feature of vertex i. The boldface indices
emphasize the difference compared with a general GNN. In other
words, in the k-th iteration of a depth-∆ asynchronous GNN, only
those vertices whose distance to the root v is ∆− k aggregates
information from its predecessors. Then, the aggregated embedding
is combined with their initial features as the representation vector.
In this way, unlike synchronous GNNs, messages are passed through
each edge exactly only once (in the embedding of each node), which
saves lots of computational efforts.

D. Putting It All Together
In previous subsections, we propose two special GNN architectural
structures, namely bidirectional and asynchronous, according to the
directed and acyclic properties of the target graph (DAG), respec-
tively. The two structures are orthogonal, so that we can combine
them in our final GNN architecture, asynchronous bidirectional
graph neural network (ABGNN). We evaluate the performance of
ABGNN in Section VII-E.

E. Related Works for DAG Embedding
There exist several works that aim to design graph learning models
for DAGs. DAGNN [25] constructs a multi-layer network to generate
an embedding for the whole DAG. The network is driven by
the partial order induced by the DAG. However, their model is



a

b

ci

p

s

a(0)

b(0)

p(1)

ci(0)

s(2)

(a) Distributed Logic Simulation

a

b

ci

p

s

a(0,1)

b(0,1)

c(0,1)

p(0,1)

s(0,1,2)

(b) Synchronous GNN

a

b

ci

p

s

a(0)

b(0)

p(1)

ci(1)

s(2)

(c) Asynchronous GNN

(a) Logic Simulation (b) Synchronous (c) Asynchronous

a b ci p s a b ci p s a b ci p s

T = 0 X X X X X X X X X X
T = 1 X X X X X X X X
T = 2 X X X

(d) Message passing comparison. A checkmark indicates that the node sends out message at the
timestamp.

Fig. 4 A comparison between (a) distributed logic simulation, (b) synchronous GNN message passing, and (c) asynchronous GNN message
passing. The table in (d) lists messages sent out by nodes at each timestamp. Asynchronous GNNs are more efficient than synchronous
GNNs.

still computationally expensive since they use an iterative message
passing scheme. Moreover, they use Gated Recurrent Units (GRUs)
as the combine operator, further increasing the inference time. D-
VAE [26] proposes an asynchronous message passing scheme to
encode the computations on DAGs, which is the most similar work
to ours. However, ABGNN differs from D-VAE since we focus on
local structures and thus the generation of node-level embeddings,
whereas D-VAE encodes information of the whole (computation)
graph.

V. INPUT-OUTPUT MATCHING

Our proposed graph learning framework identifies the boundary of
arithmetic blocks. In particular, the model predicts the input wires
and the output wires of arithmetic blocks. What if we want further
to match the input bits with the corresponding output bits? In this
section, we propose to use a network-flow-based algorithm to extract
the datapaths within an arithmetic block. The problem of datapath
extraction has gained great attention since it is believed datapath-
aware physical synthesis may achieve higher performance. Readers
are referred to [27] for a survey for datapath extraction approaches
and datapath-driven placement methodologies. For now, we illustrate
the feasibility of the network-flow approach for adder IO matching,
and leave the other possible solutions for future work, since it is
beyond the main scope of this paper.

The datapath extraction problem for an adder is defined as
follows: given an (unordered) adder input set S = A ∪ B where
A = {a0, · · · , an−1}, B = {b0, · · · , bn−1} and an (unordered)
adder output set T = {t0, t1, · · · , tn−1} such that T [n − 1 : 0] =
A[n − 1 : 0] + B[n − 1 : 0], identify 2n datapaths from S and T
such that 1) all wires in S and T are covered, and 2) each datapath
starts from ai or bi ends at ti. Inspired by [28], we formulate the
problem as a maximum flow problem. We add a pseudo source node
S∗ and a pseudo sink node T ∗ in the graph, and edges from S∗ to
every node in S, as well as every node in T to T ∗. The newly added
edges from S∗ to nodes in S are assigned unit capacity, while the
rest edges are assigned capacity of 2. Then we run a maximum-flow
algorithm to find the routes between S and T .

S∗

a0 b0 a1 b1 a2 b2 a3 b3

g0
p0

g1
p1

g2
p2

g3
p3

G0:1 P0:1 G2:3 P2:3

G0:3 P0:3G0:2 P0:2

s0 s1 s2 s3

T ∗

Fig. 5 A Brent-Kung adder example to demonstrate that the unique
maximum flow matches inputs and outputs correctly. We analyze the
flows in the order of orange, blue, yellow, to purple. Solid lines are
charged with flows, and dotted lines are banned due to flow capacity
constraints.

We illustrate the feasibility of the maximum-flow algorithm by
taking the Brent-Kung adder [29] as an example. The maximal flow
network is shown in Fig. 5. We analyze the flows in the order
of orange, blue, yellow, to purple. The solid edges are charged
with flows, while the dotted edges are banned due to flow capacity
constraints. In fact, this is the unique maximum flow solution of
the flow network. To charge the flow from s0 to T ∗ (with flow value
2), the only possible route is to pass from p0 to s0, which occupies
the edges from S∗ to a0, b0 and up to p0. These edges are marked



with solid orange lines, and meanwhile, the edges banned due to
capacity constraints are marked with dotted orange lines, such as
other edges starting from a0 and b0. Immediately, we observe that
there is no route to charge the node g0, which further indicates that
there is no flow from g0 to s1, leaving (p1, s1) the only possible
route to charge the flow from s1 to T ∗. Then we can do the same
analysis for s1 to T ∗ with blue lines, s2 to T ∗ with golden lines,
and s3 to T ∗ with purple lines. Finally we will see the uniqueness
of the maximum flow, and the matching is done.

How to better orchestra the network flow approach with a fuzzy
matching framework deserves more discussions. Although our the-
oretical analysis finds the maximum flow solution unique, there is
no such guarantee if we are given fuzzy, imperfect predictions of
adder boundaries. However, we observe that besides input-output
matching, the network flow approach also acts as a filter to remove
some false alarms. In other words, if the maximum flow does not
flow over some predicted input/output node, then the node is actually
unlikely to be a boundary node of an adder. Inspired by so, we
propose to run the maximum flow algorithm in both directions
(inputs to outputs and outputs to inputs), so that the maximum
forward flow (inputs to outputs) filters out false alarms of predicted
outputs, and vice versa. To retain high sensitivity, we also add the
siblings of predicted input (output) nodes in the forward (backward)
runs, so that we are confident enough in the filter. This strategy
indeed improves prediction precision with almost no sensitivity loss
in our experiments.

VI. OTHER ALGORITHM DETAILS

This section describes other important algorithm details of our
arithmetic block identification flow, including discussions on the
learning problem formulation, and the strategies to deal with the
data imbalance issue.

A. Machine Learning Problem Formulation
As we introduced, we utilize a customized GNN for netlist represen-
tation learning. However, how to learn the parameters in the GNN
model remains to be considered. Essentially, the arithmetic block
identification problem is to ‘detect’ instances of target semantic
objects in the graph, which sounds like a graph version of the object
detection task in computer vision. Despite the intuitive descriptions,
solving such problems is still very challenging for the community
due to 1) the NP-complete nature of the problem and 2) the
requirement to consider graph topology, node features, and/or edge
features at once.

Given that, we propose to formulate a node classification problem
to circumvent the hard-to-solve graph detection problem. Specifi-
cally, the target of our neural model is to predict boundary (input
wires and output wires) of arithmetic blocks. Another possible
problem formulation is to predict the region of arithmetic blocks,
which is abandoned after comparison. Note that a wire can be
both an input to one arithmetic block and an output from another
arithmetic block (consider the two expressions c = a + b and
e = c + d, where c is the output of the first adder and the input
of the second adder). Therefore, we use input prediction and output
prediction to refer to the two independent binary classification tasks
for boundary prediction. We use an MLP with binary cross-entropy
loss to consume the representation vectors generated by GNN and
carry out the prediction.

B. Dealing with Data Imbalance
The data imbalance issue refers to the phenomenon that some
classes (majority) have a significantly higher number of examples

in the training set than other classes (minority). It is a common
problem in real-life applications from various domains, which has
been established to have a significant detrimental effect on training
classifiers in terms of both training convergence and generalization
ability [30]. For example, it is observed that the model would easily
lean towards majority classes [31], making some standard metrics
like accuracy invalid (since they may cause misinterpretation of
data). We refer readers to [32] for a comprehensive review. In our
dataset, the ratio of negative nodes to positive nodes is around
100 : 1, which is indeed highly imbalanced.

Methods to address data imbalance can be divided into two
categories, namely data-level methods and algorithm-level methods.
Data-level methods aim to alter the distribution of the training dataset
so that standard algorithms for balanced data can work well. On
the other hand, algorithm-level methods keep the training dataset
unchanged and adjust the training/inference algorithm. We now
introduce three techniques we adopt in our training.

1) Oversampling
Oversampling is one of the most popular data-level methods

used in machine learning. We adopt the basic version of it, called
random minority oversampling, which simply replicates randomly
selected samples from minority classes [30]. Some more advanced
oversampling methods (e.g., SMOTE [33]) have also been proposed,
which we leave for possible future work.

2) Cost Sensitive Learning
Cost sensitive learning [34] assigns different penalties to different

misclassification errors. Mathematically, if Cij refers to the cost for
predicting class j when the actual class is i, the optimal prediction
for an example x is given by

argmin
i

∑
j

p(j|x)Cij ,

where p(j|x) is the estimated probability of example x being in
class j.

We encode cost sensitive learning into the loss function. Let the
total loss L be decoupled into two parts, namely the loss on the
positive samples (Lpos) and the loss on the negative samples (Lneg).
Since negative samples are the majority, we assign a penalty weight
α (α < 1) to the negative loss, so that the contribution of negative
nodes to the total loss function is reduced, which compensates the
imbalance between sample classes. The weighted loss function can
be formulated explicitly as:

L = (Lpos + αLneg)/N, (3)

where N is total number of samples.

VII. EXPERIMENTS

A. Setup
We develop the graph object detection framework with DGL [35],
a graph learning library, which is based on PyTorch [36] for tensor
manipulations. The network flow algorithm (viz. Edmonds–Karp) is
implemented with networkx [37]. We also refer to the EPFL logic
synthesis libraries [38] when we reimplement the baseline methods.
Graph neural networks are trained on a Linux machine with 48 Intel
Xeon Silver 4212 cores (2.20GHz), 1 GeForce RTX 2080 Ti graphics
card, and 32 GB main memory. Training details are discussed in
subsequent sections.

B. Dataset
The dataset we use comes from open-source RISC-V CPU de-
signs [39], including Rocket [40], a 5-stage in-order scalar core,
and Berkeley Out-of-Order (BOOM) Core [40], an out-of-order



TABLE I Overall performance comparison on the test set (the Rocket core). Best results are emphasized with boldface, and second-best
results are colored in blue. Our proposed arithmetic block identification method greatly improves boundary recognition performance compared
with previous works. It also runs the fastest among all the methods.

Case TETC’13 [11] DATE’15 [3] DATE’19 [16] Ours

Input Ouput Runtime(s) Input Ouput Runtime(s) Input Ouput Runtime(s) Input Ouput Runtime(s)

Brent Kung 0.826 0.672 302.0 0.554 0.493 13.4 0.875±0.022 0.820±0.013 11.6±3.9 0.950±0.000 0.954±0.020 10.2±1.8
Cond-sum 0.825 0.598 380.6 0.770 0.787 14.6 0.808±0.013 0.744±0.020 13.0±3.7 0.949±0.000 0.866±0.014 10.9±0.6

Hybrid 0.815 0.389 597.2 0.179 0.042 15.4 0.820±0.032 0.699±0.026 15.1±5.1 0.947±0.000 0.957±0.018 12.0±0.7
Kogge-Stone 0.823 0.648 525.2 0.755 0.783 15.8 0.763±0.015 0.810±0.011 13.2±3.5 0.944±0.000 0.961±0.010 11.0±0.9

Ling 0.803 0.456 315.6 0.249 0.022 16.5 0.874±0.013 0.653±0.074 16.3±5.5 0.954±0.000 0.944±0.015 13.2±0.9
Sklansky 0.823 0.626 467.4 0.484 0.483 14.7 0.864±0.017 0.845±0.017 14.1±3.7 0.960±0.000 0.938±0.010 11.9±0.5

Average 0.819 0.565 431.3 0.499 0.435 15.1 0.834±0.019 0.761±0.027 13.9±4.2 0.951±0.000 0.937±0.015 11.5±0.9

superscalar RV64G core. Since BOOM is more complicated (around
5x larger than Rocket), we use it as the training set, while leaving
Rocket as the testing set.

The netlists are automatically generated from Chisel, which is
further synthesized with Synopsys Design Compiler targeting the
SAED 32/28nm Digital Standard Cell Library. For each design,
we synthesize a set of netlists using various design constraints, so
that different adder designs could be generated by DC. Statistics
of the generated netlists are listed in TABLE II. In fact, there are
other related constraints that could be specified, such as the radix
of the prefix structure in adders or some timing constraints. In our
experiments, we observe very similar outcomes as we adjust this set
of constraints, so we simply omit them for simplicity.

Architecture Rocket BOOM

#gates #wires #gates #wires

Brent-Kung 24340 58124 139526 366280
Cond-sum 24737 57708 138358 360455

Hybrid 25491 60287 141319 369622
Kogge-Stone 24540 57726 139005 361962

Ling 26179 62864 143903 378354
Sklansky 25208 59567 141093 369774

TABLE II Statistics of the dataset. We use BOOM as the training
set as it is more complicated, leaving Rocket as the testing set. We
synthesize a set of netlists for each design by specifying different
adder architectures in Design Compiler.

C. Baselines
We reimplemented several representative literature works [3], [11],
[16] as the baseline methods for comparison. These works have
covered structural methods, functional methods, as well as machine
learning methods in their proposed solutions. [11] first enumerates
all cuts1 and groups them into permutation-independent equivalence
classes, which are then aggregated into candidate words based
on common support or signal propagation. The candidate words
are further propagated in the graph to form new words based on
neighboring gate types. We optimistically estimate the performance
upper bound of the algorithm without running symbolic simulation
and equivalence checking, but simply include all the potential words
instead. [3] builds xor trees, identifies carry-out signals, and con-
structs xor-forests based on the connection hierarchy. [16] proposes
to represent circuit topology using level-dependent decaying sum
(LDDS) existence vector (EV), which basically marks the gate types
that appeared in a local subgraph and assigns distance-based penalty

1The authors [11] suggested enumerating 6-feasible cuts, but our reported
results are based on 5-feasible cut enumeration because it yields almost the
same performance with much shorter (0.01×) runtime.

weights. We follow the LDDS-EV construction, expect that we clip
all large values in the EV to 64, and add a batch normalization
layer in the neural network to stabilize training. We also apply
the oversampling technique by using a weighted random sampler
during training. Since this method was originally evaluated for circuit
classification, we adapt the method to our problem formulation and
our proposed flow.

D. Overall Comparison
We first compare the performance between our proposed method and
all baseline approaches [3], [11], [16] as introduced in Section VII-C.
The results are listed in TABLE I. Our proposed arithmetic block
identification method greatly outperforms prior works on all the
testcases, averaged 95.1% and 93.7% sensitivity in input and output
boundary identification, respectively. It is also the fastest method
even though we run a maximum flow algorithm for input-output
matching. The other machine learning approach [16] achieves the
second-best performance (83.4% and 76.1% sensitivity), but its
precision (around 0.35 on average) is in fact much lower than
ours (over 0.94 on average). Nevertheless, it still confirms the good
adaptability of deep learning methods and the effectiveness of the
oversampling strategy for imbalanced datasets. [11] is able to
cover lots of words composed of replicated functional bitslices, and
therefore achieves acceptable sensitivity (81.9% and 56.5%), at the
cost of much higher runtime (37.5× over ours). [3] is stable for
the more regular architectures (Cond-sum, Kogge-Stone), but does
not perform well given complicated or highly optimized structures
(Hybrid, Ling), resulting in unsatisfactory average sensitivity (49.9%
and 43.5%).

E. Evaluation of ABGNN
We conducted comprehensive experiments to evaluate our proposed
graph neural network architecture and demonstrate its outstanding
capability in DAG representation learning. We set the fanin depth and
fanout depth of ABGNN to 1 and 5 respectively for input boundary
prediction, and (2, 2) for output boundary prediction.

Comparison with State-of-the-Art GNNs. We evaluate our pro-
posed ABGNN with several state-of-the-art Graph Neural Networks,
including GAT [41], GIN [18], and GraphSAGE [17], on the Rocket
dataset. Our model achieves the best performance on all the cases
with much higher recall and F1 scores, showing its superiority on
DAG representation learning. In some complex cases (e.g., input
prediction in the Brent-Kung case), our model outperforms other
models by 5%–9% for the F1 score. On average, our model achieves
2.8%-5.0% recall gain and 3.3%-9.5% F1 score gain in input
identification (TABLE III), as well as 1.9%–6.2% recall gain, and
2.6%–7.0% F1 score gain in output identification (TABLE IV).

Effect of asynchronous message passing. We conducted exper-



TABLE III Performance of different models recognizing input boundaries of adders on the test dataset (the Rocket core). Best results are
emphasized with boldface, and second-best results are colored in blue. Our proposed ABGNN outperforms other models in all the test cases.

Case GAT [41] GIN [18] GraphSage [17] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Brent Kung 0.906±0.009 0.910±0.015 0.809±0.019 0.873±0.018 0.915±0.021 0.915±0.017 0.950±0.000 0.964±0.000
Cond-sum 0.882±0.022 0.885±0.018 0.875±0.024 0.890±0.021 0.935±0.015 0.931±0.016 0.949±0.000 0.951±0.000

Hybrid 0.903±0.021 0.890±0.022 0.930±0.017 0.937±0.016 0.930±0.008 0.928±0.005 0.947±0.000 0.949±0.000
Kogge-Stone 0.918±0.016 0.887±0.019 0.925±0.015 0.917±0.015 0.940±0.005 0.920±0.008 0.944±0.000 0.954±0.000

Ling 0.915±0.016 0.881±0.019 0.930±0.009 0.925±0.005 0.950±0.004 0.941±0.011 0.954±0.000 0.963±0.000
Sklansky 0.901±0.021 0.895±0.022 0.935±0.009 0.938±0.011 0.928±0.012 0.930±0.006 0.960±0.000 0.955±0.000

Average 0.904±0.017 0.891±0.018 0.901±0.016 0.913±0.013 0.933±0.011 0.923±0.010 0.951±0.000 0.956±0.000

TABLE IV Performance of different models recognizing output boundaries of adders in the test dataset (the Rocket core). Best results are
emphasized with boldface, and second-best results are colored in blue. Our proposed ABGNN outperforms other models in all the test cases.

Case GAT [41] GIN [18] GraphSage [17] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Brent-Kung 0.845±0.019 0.870±0.020 0.906±0.011 0.921±0.012 0.925±0.025 0.923±0.016 0.953±0.019 0.950±0.016
Cond-sum 0.785±0.015 0.798±0.013 0.835±0.017 0.863±0.007 0.863±0.022 0.880±0.011 0.866±0.015 0.905±0.009

Hybrid 0.940±0.024 0.897±0.021 0.911±0.021 0.875±0.008 0.93±0.016 0.912±0.016 0.955±0.019 0.939±0.016
Kogge-Stone 0.878±0.019 0.889±0.021 0.941±0.015 0.915±0.014 0.945±0.014 0.942±0.016 0.965±0.011 0.955±0.015

Ling 0.935±0.009 0.909±0.013 0.916±0.004 0.912±0.011 0.912±0.016 0.911±0.01 0.945±0.015 0.948±0.007
Sklansky 0.865±0.016 0.855±0.016 0.898±0.019 0.894±0.011 0.932±0.013 0.919±0.018 0.938±0.012 0.943±0.008

Average 0.875±0.017 0.870±0.017 0.901±0.016 0.897±0.01 0.918±0.017 0.914±0.015 0.937±0.015 0.940±0.012

TABLE V Comparison between asynchronous and synchronous
GNNs. Asynchronous GNNs reduce inference time without perfor-
mance degradation.

Task Model Recall F1-score Runtime (ms)

Input asynchronous 0.951±0.000 0.956±0.000 122.1
synchronous 0.943±0.003 0.951±0.002 152.2

Output asynchronous 0.937±0.015 0.940±0.012 77.6
synchronous 0.933±0.012 0.937±0.009 94.6

iments to verify the effect of the asynchronous message passing
scheme by comparing it with synchronous GNNs, while leaving
other hyper-parameters the same, including the number of layers,
oversampling rate, etc. TABLE V shows that compared with syn-
chronous GNNs, asynchronous GNNs reduce inference time by
19.8% and 18.0% respectively for input and output boundary iden-
tification, without any performance degradation. Here the runtime
refers to the inference time of GNN, namely the time the model
takes to generate node representations. We want to emphasize that
the efficiency will likely improve as the model depth increases (con-
firmed by our preliminary experiments), and thus the asynchronous
GNN might work even better for more complicated tasks.

Effect of bidirectional information aggregation. We also carry
out experiments to see the effects of bidirectional information
aggregation. We build unidirectional models by reducing fanin depth
to 0 for input boundary identification and fanout depth to 0 for output
identification. As shown in TABLE VI, bidirectional information
aggregation improves 4.6% recall and 11.1% F1-score for the output
model, as well as 1.8% recall and 2.1% F1-score for the input model.
The performance gain indicates that information from a single
direction is not sufficient to identify thhe input/output boundary of
an adder, and therefore combining representations learned from both
directions is indeed necessary.

TABLE VI Comparison between bidirectional and unidirectional
GNNs. Bidirectional GNNs outperform unidirectional GNNs, con-
firming the effectiveness of bidirectional informatrion aggregation.

Task Model Recall F1-score

Input bidirectional 0.951±0.000 0.956±0.000
unidirectional 0.933±0.002 0.935±0.002

Output bidirectional 0.937±0.015 0.940±0.012
unidirectional 0.891±0.001 0.829±0.011

VIII. CONCLUSION

Identifying arithmetic blocks is a vital procedure for various tasks
like malicious logic detection and logic optimization. In this work,
we propose a graph learning-based arithmetic block identification
framework that efficiently recognizes the boundary of arithmetic
blocks. To boost the performance of the whole framework, we
propose a specialized graph neural network architecture for DAG
representation learning, which outperforms existing dominantly used
GNNs. We further come up with a network flow approach to match
input and output wires predicted by the GNN model. Experimental
results have confirmed the excellent performance of our framework:
compared with state-of-the-art functional, structural and machine
learning-based block mapping schemes, our framework achieves the
highest sensitivity with the fastest runtime in adder identification
from an open-source RISC-V CPU design (the Rocket core). We
also carried out a comprehensive ablation study to analyze the
effectiveness of the proposed techniques.

ACKNOWLEDGMENT

This work is partially supported by HiSilicon and The Re-
search Grants Council of Hong Kong SAR CUHK14209420,
CUHK14208021.



REFERENCES

[1] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your
polynomials before backward rewriting to verify million-gate multi-
pliers,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2018, pp. 1–8.

[2] ——, “RevSCA: Using reverse engineering to bring light into back-
ward rewriting for big and dirty multipliers,” in ACM/IEEE Design
Automation Conference (DAC), 2019, pp. 1–6.

[3] X. Wei, Y. Diao, T.-K. Lam, and Y.-L. Wu, “A universal macro block
mapping scheme for arithmetic circuits,” in IEEE/ACM Proceedings
Design, Automation and Test in Eurpoe (DATE), 2015, pp. 1629–1634.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, pp. 10–25, 2010.

[5] T. Meade, S. Zhang, Z. Zhao, D. Pan, and Y. Jin, “Gate-level netlist
reverse engineering tool set for functionality recovery and malicious
logic detection,” in Proc. ISTFA, 2016.

[6] H. Li, S. Patnaik, A. Sengupta, H. Yang, J. Knechtel, B. Yu, E. F.
Young, and O. Sinanoglu, “Attacking split manufacturing from a deep
learning perspective,” in ACM/IEEE Design Automation Conference
(DAC), 2019, pp. 1–6.

[7] C. Yu and M. Ciesielski, “Automatic word-level abstraction of dat-
apath,” in IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, pp. 1718–1721.

[8] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), 2013, pp. 67–74.

[9] T. Doom, J. White, A. Wojcik, and G. Chisholm, “Identifying high-level
components in combinational circuits,” in ACM Great Lakes Symposium
on VLSI (GLSVLSI), 1998, pp. 313–318.

[10] N. Rubanov, “A high-performance subcircuit recognition method based
on the nonlinear graph optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 25,
no. 11, pp. 2353–2363, 2006.

[11] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan, A. Ti-
wari, N. Shankar, S. A. Seshia, and S. Malik, “Reverse engineering
digital circuits using structural and functional analyses,” IEEE Trans-
actions on Emerging Topics in Computing (TETC), vol. 2, no. 1, pp.
63–80, 2013.

[12] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2013, pp. 1277–1280.

[13] A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanović, and
S. Malik, “Template-based circuit understanding,” in Formal Methods
in Computer-Aided Design (FMCAD), 2014, pp. 83–90.

[14] L. Azriel, R. Ginosar, and A. Mendelson, “SoK: An overview of
algorithmic methods in IC reverse engineering,” in ACM Workshop on
Attacks and Solutions in Hardware Security Workshop, 2019, pp. 65–74.

[15] L. M. Silva, F. V. Andrade, A. O. Fernandes, and L. F. M. Vieira,
“Arithmetic circuit classification using convolutional neural networks,”
in International Joint Conference on Neural Networks (IJCNN), 2018,
pp. 1–7.

[16] A. Fayyazi, S. Shababi, P. Nuzzo, S. Nazarian, and M. Pedram,
“Deep learning-based circuit recognition using sparse mapping and
level-dependent decaying sum circuit representations,” in IEEE/ACM
Proceedings Design, Automation and Test in Eurpoe (DATE), 2019,
pp. 638–641.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Annual Conference on Neural Information
Processing Systems (NIPS), 2017, pp. 1024–1034.

[18] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[19] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[20] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” arXiv preprint
arXiv:1606.09375, 2016.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[22] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Hetero-
geneous graph neural network,” in ACM International Conference on
Knowledge Discovery and Data Mining (KDD), 2019, pp. 793–803.

[23] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The Web Conference,
2019, pp. 2022–2032.

[24] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Communications of the ACM,
vol. 24, no. 4, pp. 198–206, 1981.

[25] V. Thost and J. Chen, “Directed acyclic graph neural networks,” arXiv
preprint arXiv:2101.07965, 01 2021.

[26] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A
variational autoencoder for directed acyclic graphs,” arXiv preprint
arXiv:1904.11088, 01 2019.

[27] Z. He, P. Liao, S. Liu, Y. Ma, Y. Lin, and B. Yu, “Physical synthesis
for advanced neural network processors,” in IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), 2021, pp. 833–840.

[28] H. Xiang, M. Cho, H. Ren, M. Ziegler, and R. Puri, “Network
flow based datapath bit slicing,” in ACM International Symposium on
Physical Design (ISPD), 2013, pp. 139–146.

[29] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,”
IEEE Computer Architecture Letters (CAL), vol. 31, no. 03, pp. 260–
264, 1982.

[30] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of
the class imbalance problem in convolutional neural networks,” Neural
Networks, vol. 106, pp. 249–259, 2018.

[31] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” arXiv preprint arXiv:1910.09217, 2019.

[32] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification with class
imbalance problem,” Int. J. Advance Soft Compu. Appl, vol. 5, no. 3,
2013.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of Artificial Intel-
ligence Research, vol. 16, pp. 321–357, 2002.

[34] C. Elkan, “The foundations of cost-sensitive learning,” in International
Joint Conference on Artificial Intelligence (IJCAI), vol. 17, no. 1, 2001,
pp. 973–978.

[35] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[37] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using NetworkX,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[38] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
arXiv preprint arXiv:1805.05121, 2018.

[39] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[40] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[41] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
2017.


