
Towards AQFP-Capable Physical Design Automation
Hongjia Li1, Mengshu Sun1, Tianyun Zhang2,

Olivia Chen3, Nobuyuki Yoshikawa3, Bei Yu4, Yanzhi Wang1, Yibo Lin5

1Northeastern University, 2Syracuse University,
3Yokohama National University, 4Chinese University of Hong Kong, 5Peking University

1{li.hongjia, sun.meng, yanz.wang}@northeastern.edu, 2tzhan120@syr.edu,
3{chen-olivia-pg, yoshikawa-nobuyuki-gt}@ynu.ac.jp, 4byu@cse.cuhk.edu.hk, 5yibolin@pku.edu.cn

Abstract—Adiabatic Quantum-Flux-Parametron (AQFP) super-
conducting technology exhibits a high energy efficiency among
superconducting electronics, however lacks effective design au-
tomation tools. In this work, we develop the first, efficient
placement and routing framework for AQFP circuits considering
the unique features and constraints, using MIT-LL technology
as an example. Our proposed placement framework iteratively
executes a fixed-order, row-wise placement algorithm, where the
row-wise algorithm derives optimal solution with polynomial-time
complexity. To address the maximum wirelength constraint issue
in AQFP circuits, a whole row of buffers (or even more rows)
is inserted. A∗ routing algorithm is adopted as the backbone
algorithm, incorporating dynamic step size and net negotiation
process to reduce the computational complexity accounting for
AQFP characteristics, improving overall routability. Extensive
experimental results demonstrate the effectiveness of our proposed
framework.

I. INTRODUCTION

Superconducting computing technology has significantly en-
hanced power efficiency over state-of-the-art CMOS. Adiabatic
quantum-flux-parametron (AQFP) logic achieves a significant
reduction in both static and dynamic power consumption [1] by
adopting adiabatic switching [2], in which the potential energy
profile evolves from a single well to a double-well so that the
logic state can change quasi-statically. By using processes such
as the AIST standard process 2 (STP2) [3] or the MIT-LL
SFQ process [4] of AQFP circuits fabrication, it can potentially
achieve 104 − 105 energy efficiency gain compared with state-
of-the-art CMOS with a clock frequency of several GHz [5].

To deliver the extraordinary promise in energy efficiency,
it is critical to investigate the choice of logic gates, circuits
and architectures and develop effective design automation
techniques for AQFP circuits. The currently mature design
automation tools for CMOS cannot be directly applied to the
design of superconducting electronics, due to different active
components (transistor in CMOS vs. JJ in AQFP), different
passive components, different suites of basic logic gates (AQFP
relies on the efficient realization of majority/minority gates),
different clocking schemes (e.g., 4-phase clocking in AQFP),
and the cost of buffers, splitters, and AC biasing. This work
focuses on the physical design of AQFP and presents the first
systematic, AQFP-specific placement, and routing framework.

AQFP circuits exhibit some unique characteristics with im-
plications on physical design. After logic synthesis for the
AQFP circuit, the following procedure inserts splitters for fan-
outs and buffers for balancing the path delay (clock phase) to

each gate [6]. As a result, each logic cell gets assigned in a
specific, fixed clock phase, which corresponds to a specific row.
Additionally, some specific properties can be advantageous for
the routing procedure. Due to the design requirements, wire
connection only exits from row i to row i + 1 and is 1-to-1
in AQFP circuits. And the distance between two nearby rows
of logic cells can be flexible. At the downside, AQFP circuits
contain some restrictions, including spacing constraint between
adjacent cells (either abut or keeping a minimum spacing),
zigzag spacing constraint due to the minimum wire segment
length, the maximum wirelength constraint WLmax beyond
which an additional row of buffers need to be inserted (in
this case the corresponding placement and routing procedure
needs to be performed again), etc. These various spacing con-
straints result in a larger number of combinatorial constraints
than CMOS-based placement and routing problems, thereby
restricting the direct utilization of CMOS-based placement and
routing techniques to AQFP.

Our proposed AQFP placement and routing framework effec-
tively overcome these challenges. In AQFP placement, we have
the key observation: There exists a polynomial-time optimal
solution for the row-wise placement problem with cell order
fixed, or more precisely, the solution is proved to be arbitrarily
close to the optimal one within polynomial time. We formulate
the fixed-order, row-wise placement algorithm as a discrete
optimization problem with a large number of combinatorial
constraints, which is difficult to solve directly. We provide the
optimal solution through (i) performing Lagrangian relaxation
concerning the maximum wirelength constraint, (ii) solving the
Lagrangian subproblem by transforming it to an equivalent
shortest path problem in a graph and solving using dynamic
programming, and (iii) solving the row-wise placement problem
using the subgradient method. The overall AQFP placement
is based on the row-wise algorithm starting from a cell order
determination process, effectively accounting for the possible
violation of the maximum wirelength constraint, in which case
row(s) of buffers will be inserted. Compatible with logic cell
row placement, the placement of buffer row can be solved
using our placement technique. The row of buffers will be co-
placed together with logic cell rows for facilitating routability
and satisfying the wirelength constraint. For AQFP routing, we
adopt the A∗ routing algorithm [7] as the backbone algorithm,
incorporating dynamic step size to reduce the computational
complexity accounting for AQFP characteristics. We further

Data Input

Data Output

Clock in phase 1

Clock in phase 2

Clock in phase 3

Clock in phase 4

Clock in phase 1

Clock in phase 2

Clock in phase 3

Clock in phase 4

AQFP

Logic Cell

Data Input

Phase 1 (clock in)

Phase 1 (data out)

Phase 2 (clock in)

Phase 2 (data out)

Phase 3 (clock in)

Phase 3 (data out)

Phase 4 (clock in)

Phase 4 (data out)

A clock cycle

Fig. 1: Four phase clocking scheme and data propagation for
AQFP circuits.

buffer ‘0’ buffer

a b c

xin xout

d

inv ‘1’ inv

a b c

xin xout

d

buffer buffer buffer

a b c

xin xout

d

buffer

a

xin xout

b c d

AND NOR MAJ SPLITTER

Fig. 2: Examples of AQFP logic gates (AND, NOR, MAJ, and
splitter).

incorporate the net negotiation process [8] to avoid the time-
consuming rip-up and re-route and improve routability, result-
ing in a fast overall routing speed.

Experimental results demonstrate the effectiveness of the
proposed framework. On representative benchmark circuits, the
proposed framework achieves up to 40.2% reduction in total
routed wirelength compared with baselines, with fast speed and
satisfying all constraints. Moreover, the proposed framework
enables the efficient physical design of a full 32-bit ALU for
the RISC-V processor, beyond the prior design capability of
AQFP which cannot satisfy design constraints simultaneously,
illustrating the benefit of design automation.

II. BACKGROUND AND MOTIVATION

A. AQFP Superconducting Logic

The standard AQFP cell library [9] is built via the minimalist
design approach [9], including basic logic gates such as AND,
OR, NOT, MAJORITY, BUFFER, and SPLITTER. An AQFP
logic gate is driven by AC-power, which serves both as the
excitation current and synchronization mechanism [10]. The
AQFP buffer is based on a double-Josephson-Junction SQUID
[11], which is the basic structure in AQFP circuits. The AQFP
inverter and constant cell are designed based on the AQFP
buffer [6]. The AQFP inverter is designed by negating the
coupling coefficient of the output transformer in the AQFP
buffer. And the AQFP constant gate is implemented based
on the asymmetry of excitation flux inductances in the AQFP
buffer. Additionally, the splitter in AQFP is also implemented
from the AQFP buffer. Unlike the direct fan-out in CMOS
gates, in the AQFP circuit, splitters are utilized to fan-out for
all gates (when the number of fan-outs is 2 or more). Fig. 2
shows examples of AQFP logic gates.

In AQFP circuits, both combinational and sequential AQFP
logic cells are driven by AC-power compared with the conven-
tional CMOS technology. Other than the excitation current, the
AC power also serves as the synchronization mechanism, i.e.,

MAJ

BRF BRF

BRF

ANDOR

■ Cell spacing

▲ Zigzag spacing

♦ Wirelength

■■

▲ ♦
▲

Fig. 3: The Illustration of spacing constraints in the AQFP
placement with the detail of interconnect via.

a clock signal to synchronize the outputs of all gates in the
same clock phase. Hence, data propagation in AQFP circuits
requires overlapping of clock signals from nearby phases. An
example of a four-phase clocking scheme of AQFP circuits
and corresponding data flow is shown in Fig. 1. As shown in
Fig. 1, each AQFP logic gate is driven by an AC clock signal
and assigned with one specific clock phase, which makes AQFP
circuits “deep-pipelining” in nature. In this clocking scheme,
all inputs for a logic gate should have the same delay (clock
phases) from the primary inputs, i.e., the strict path balancing
shall be enforced.

B. Uniqueness in the AQFP Placement and Routing Problem

As shown in Fig. 1, after logic synthesis and buffer/splitter
insertion for path balancing, each logic cell is assigned in a
specific, fixed clock phase, which corresponds to a specific row
in the figures. The placement procedure will not change the
specific row index that a logic cell resides in. It will only change
the relative, horizontal locations of logic cells within each row.

There are some desirable properties that the routing proce-
dure could make use of as well. (i).The wire connection is
only from row i to row i+1 in AQFP circuits. No connection
traverses back or skips certain intermediate rows. (ii). Because
of the requirement of splitter and splitter design (of course
there is a requirement to choose the appropriate connection
for each splitter output), each wire connection is 1-to-1. There
is no wire connection with more than one fanouts. (iii). The
distance between two nearby rows of logic cells can be flexible.
These properties enable separate routing between every two
consecutive rows, and the routing process can be potentially
very fast.

C. Challenges in the AQFP Placement and Routing Problem

On the other hand, some characteristics may complicate
the placement and routing procedure. As shown in Fig. 3,
the first category is a large number of spacing constraints,
including cell spacing and zigzag spacing, which lead to a large
number of combinatorial constraints in the AQFP placement
problem. Firstly, two horizontally neighboring cells in a row
can be either abutting or keeping a minimum spacing (i.e., cell
spacing). Secondly, specific vias are adopted to perform the
wire direction shift in AQFP circuits as shown in Fig. 3. Due
to the unique vias structure, these zigzags need to have at least
certain pre-defined spacing (e.g. 10µm for MIT-LL process).
The second category is that the maximum length of a single

connection is also limited to WLmax (e.g., 1mm in the MIT-
LL process), beyond which additional buffer will be required.
Please note that an entire row of buffers needs to be inserted
for path logic balancing in AQFP.

These characteristics need to be accounted for to achieve
functional and efficient placement and routing procedures. Due
to the various spacing constraints, there exists a larger number
of combinatorial constraints than CMOS-based placement prob-
lems, especially row-based placement ones (e.g., [12], [13]).
Also, the maximum wirelength constraint is absent (or as a soft
constraint) in CMOS placement and routing, not to mention the
associated buffer insertions. These distinctions make it difficult
to directly apply CMOS-based placement solutions to AQFP
circuits.

III. PROPOSED AQFP PHYSICAL DESIGN FRAMEWORK

The overall AQFP placement framework starts from a cell or-
der determination process, mainly executes our proposed fixed-
order row-wise placement algorithm, and finally our AQFP
routing solution.

A. Fixed-Order Row-Wise Placement Algorithm

In this section, we refine the locations of AQFP cells within
a placement row by assuming cells in other rows are fixed.
Assume we are given an ordered sequence of cells from left
to right 1, 2, . . . , N . The optimization will keep the order of
cells within the row. Suppose there are N cells in the row
and each cell i has a set of M discrete candidate locations
Li = {x1i , x2i , . . . , xMi } (corresponding to grids in AQFP
fabrication). The location here refers to the lower-left corner
of the cell. Later we will see that the selection of candidate
locations can be utilized for cell legalization (satisfying various
spacing constraints for AQFP).

Let wi be the width of cell i. Let Pi = {p1i , p2i , . . . , p
Ki
i } be

the set of pins for cell i. Without abuse of symbols, we also
use them to represent offsets of pins w.r.t the lower-left corner
of the cell. Let E be the set of nets that the cells in the row
are incident to. For each net e, we use pki ∈ e to denote the
pin of a cell i incident to the net. Then, we use WL(e), which
is short for WL(e;xi,∀pki ∈ e), to denote the wirelength cost
of net e. For example, if we consider half-perimeter wirelength
(HPWL), WL(e) can be written as,

WL(e) = max
pki ∈e

(xi + pki)− min
pki ∈e

(xi + pki), e ∈ E. (1)

This is a general problem formulation that applies to multi-pin
nets and will work of course for AQFP nets which are restricted
to two pins. For a set of nets Em ⊆ E, there is a maximum
limit of wirelength, WLmax. This is a general framework and
it is possible that Em = E.

The mathematical formulation for the fixed-order row-wise

placement can be written as follows,
min
xi

∑
e∈E

WL(e), (2a)

s.t. WL(e) ≤WLmax, ∀e ∈ Em, (2b)
xi−1 + wi−1 ≥ xi −Bzi, i = 2, . . . , N, (2c)

xi−1 + wi−1 ≤ xi − smini zi, i = 2, . . . , N, (2d)

xi ∈ {x1i , x2i , . . . , xMi }, i = 1, 2, . . . , N (2e)
zi ∈ {0, 1}, i = 1, 2, . . . , N − 1,

(2f)
where we introduce binary variable zi, big positive constant
B, and (2c), (2d) to ensure the placement is legal, as two
horizontally neighboring cells in a row can either be abutting
or keeping a minimum spacing smini . If zi = 0, then the two
equations can be combined to xi−1+wi−1 = xi; if zi = 1, then
only (2d) will be activated as xi−1+wi−1 ≤ xi−smini . Spacing
requirements between pins can also be converted to the spacing
between cell pairs because pin offsets are known given a cell.
Thus, minimum spacing smini varies from cell pair to cell pair,
to generalize the spacing requirement between cells and pins.
Equation (2b) guarantees special nets to satisfy the maximum
wirelength constraint. Or we may incorporate parameter γ < 1
such that WL(e) ≤ γ · WLmax, as WL(e) only accounts
for the horizonal distance, which is a lower bound of the
wirelength estimate. Equation (2e) guarantees to select valid
locations given fixed cells in other rows; this helps to satisfy
the horizontal spacing requirement between pins in the target
row and other fixed rows (i.e., zigzag spacing constraints).

As mentioned above, our target problem is a discrete op-
timization problem containing extensive combinatorial con-
straints, which is difficult to solve directly. On the other hand,
if we relax (2b) into the objective with Lagrangian multiplier
λe, we obtain the Lagrangian problem L(x, λ) as follows,

min
xi

∑
e∈E

WL(e) +
∑
e∈Em

λe(WL(e)−WLmax), (3a)

s.t. λe ≥ 0, (3b)
Equation (2c) ∼ (2f). (3c)

Given a specific λ, the Lagrangian subproblem L(x;λ) tries
to minimize a weighted wirelength. L(x;λ) is still a discrete
optimization problem. However, when we effectively select the
candidate locations of cells for cell legalization (satisfying the
spacing constraints in AQFP), L(x;λ) essentially models a
shortest path problem in a graph [14]–[16]. The cost of an
edge in the graph can be written as,

c(xui−1, x
v
i) = SP (xui−1, x

v
i) +

∑
∃pi−1∈e,
∀e∈E

we ·WL(e),

SP (xui−1, x
v
i) =


0, if xui−1 + wi−1 = xvi or

xui−1 + wi−1 ≤ xvi − smini ,

∞, others,

we =

{
1 + λe, if e ∈ Em,
1, others,

(4)

where the first term SP denotes the spacing cost between
two neighboring cells, and the second term denotes the total
weighted wirelength cost of cell i−1 for all the nets it incidents

to. It needs to be noted that the formulation assumes a pin in
the row will only connect to other pins outside the row, which
is true in the AQFP circuits.

With the analysis so far, we demonstrate that the Lagrangian
subproblem L(x;λ) is equivalent to the shortest path problem,
which can be solved optimally in polynomial time. Then we can
solve the original Lagrangian problem L(x, λ) by iteratively
solving the subproblem and updating the multiplier λe. The
subgradient method is adopted to update the multiplier at the
kth iteration,
λk+1
e = max(0, λke + tk(WL(e)−WLmax)),∀e ∈ Em, (5)

where tk controls the step size of updating. According to the
convergence condition given by [17], i.e., tk → 0,

∑k
i=1 ti →

∞ when k → ∞, we use tk = 1
kα , with constant α < 1 to

control the solution quality and convergence speed.
Complexity analysis. The shortest path problem for the

Lagrangian subproblem L(x;λ) can be solved with topological
traversal or dynamic programming in O(M2N) steps, with M
as the number of discrete locations for each cell and N is the
number of cells in the row [15]. The subgradient method has
a convergence rate of O(1

kα), α < 1. If we set α = 0.5, then
it is O(1√

k
). In other words, to get L(λkbest) − L(λ∗) ≤ ε, it

requires O(1
ε2) iterations [17]. In practice, it converges much

faster than the bound, e.g., it takes 2,247.8s using the bound
on the 8-bit Kogge-Stone adder, while our method takes only
66.38s for convergence.

Algorithm 1: Fixed-Order Row-Wise Placement Algo-
rithm

1 Given an ordered sequence of cells 1, 2, . . . , N ;
2 Determine the optimal and legal locations of cells in

this order;
3 λe ← 1,∀e ∈ E;
4 while Not converged do
5 Solve Lagrangian subproblem L(x;λ) with the

shortest path algorithm;
6 Update λ according to (5);
7 end
8 return cell locations x;

B. Buffer Row(s) Insertion to Satisfy Maximum Wirelength
Constraint

The above algorithm (Algorithm 1) provides a row-wise
placement solution when the maximum wirelength constraint
can be satisfied. On the other hand, through the subgradient
method, it will indicate if WLmax cannot be satisfied simulta-
neously for all rows. In this case, certain row(s) of buffers need
to be inserted, with more details to be described next. For large-
scale AQFP circuits, it is possible that the maximum wirelength
constraint cannot be satisfied in row-wise placement due to very
wide rows. In this case, we need to insert a whole row of buffers
(or even multiple rows) between these two consecutive rows.
Moreover, the row of buffers needs to be co-placed together
with logic cell rows for facilitating routability and satisfying
wirelength constraint.

First, buffers are ordered using a greedy scheme. Next, the
placement of the buffer row can be solved using the fixed-
order row-wise placement algorithm presented in Algorithm
1 since both the top row and bottom row are fixed. Through
the subgradient method, if the maximum wirelength constraint
WLmax cannot be satisfied, more buffer rows need to be
inserted. The procedure will be repeated until there is no
violation of the maximum wirelength constraint.

C. Overall Placement Algorithm

The overall placement algorithm is based on the above
fixed-order, row-wise placement solution. In the first step, we
apply the existing cell order determination placement algorithm
(e.g., the classical GORDIAN [18]) to determine the cell order
in each row. Please note that the 1-D version of such an
algorithm (which applies to our target problem) will be very
sufficient. Next, we calculate the estimated row width as the
summation of cell widths in one row, and this value for each
row will not change after logic synthesis. We fix the cell
location of the row with the largest estimated width, which will
(approximately) determine the width of the whole circuit block.
Then we execute the above row-wise placement algorithm for
neighboring rows starting from the fixed one, thereby finishing
the whole circuit block placement. In cases that violation of
the maximum wirelength constraint WLmax exists, a buffer
row will be inserted.

The overall AQFP placement algorithm is provided in Algo-
rithm 2. One can observe that the overall placement algorithm
has linear complexity with the total number of cell rows,
including both logic cell rows and buffer rows.

Algorithm 2: Overall AQFP Placement Algorithm

1 Given the path balanced netlist and fixed R clock
phases (rows);

2 Determine the cell order in each row;
3 Fix the cell locations in row Max row with the largest

estimated width;
4 for row = Max row-1 to 0, Max row+1 to R do
5 Solve the row-wise placement using Algorithm 1 ;
6 Update cell locations in row;
7 while WLmax violation exists do
8 Insert one buffer row;
9 Determine the buffer order;

10 Solve the buffer placement problem using
Algorithm 1 (with modification discussed in
Section 3.2);

11 Update buffer locations;
12 end
13 end

D. AQFP Routing based on Placement Results

We develop an efficient AQFP routing algorithm based on the
derived placement results. Thanks to the unique property that
only row-wise routing is needed in AQFP, an integrated routing
(instead of separate global and detailed routing) framework

(a) Initial GORDIAN (b) w/ overlap removal

(c) w/ buffer alignment (d) Proposed placement algorithm

Fig. 4: The example comparison placement diagrams of an 8-bit
Kogge-Stone adder (partial circuit).

is sufficient. We adopt the A∗ routing algorithm [7] as the
backbone algorithm for a single net. This algorithm is based on
a priority queue and a lower bound estimation of the wirelength
and is optimal for a single AQFP net because these nets are
1-to-1. For more compatibility with AQFP, we incorporate
dynamic step size to reduce the computational complexity
accounting for AQFP characteristics, e.g., the zigzag spacing
constraint. The step size becomes the minimum spacing (e.g.,
10µm for MIT-LL process) whenever the wire routing takes
turns. Furthermore, we incorporate the net negotiation process
[8], which allows net overlap in an early phase and then
gradually increases the overlapping cost (both the historical
and current cost terms) to resolve such overlaps. The net order
in the negotiation-based routing process will prioritize those
nets with longer estimated wirelength, to better satisfy the
maximum wirelength constraint. Such negotiation-based A∗

routing framework for AQFP can avoid the time-consuming
rip-up and re-route process and improve routability, with a fast
routing speed as shall be seen in experimental results.

IV. EXPERIMENTAL RESULTS

In this work, we implement our framework using Python and
the procedure runs on an AMD Ryzen Threadripper 2920X Pro-
cessor with 12 high-performance cores and 24 parallel threads.
We validate our proposed placement and routing framework
using representative benchmark circuits for AQFP testing [5],
[19], including 32-bit approximate parallel counter (apc32), 8-
bit Kogge-Stone adder (adder8), decoder, 27-channel interrupt
controller (c432), 32-bit sorter (sorter32), 32-bit approximate
parallel counter (apc128).

A. Placement Results and Comparisons

Because of (i) the lack of previous systematic research
on AQFP physical design, and (ii) the difficulty of directly
applying CMOS-based physical design framework, we develop
our baseline systems. The classic GORDIAN is adopted as our

initialization method for cell order determination. Compared
with the conventional GORDIAN algorithm, we only place
the horizontal location of logic cells, whereas the vertical
location is pre-determined by the rows (clock phases). However,
the result incurs logic cell overlapping issues and constraints
violations for AQFP circuits, which calls for effective cell over-
lap removal operation or a more detailed placement process.
Fig. 4(a) demonstrates the partial result of an 8-bit Kogge-
Stone adder. As a result, we develop two enhanced baselines
as follows:

1) GORDIAN w/ overlap removal: To remove the cells
overlap with minimal wirelength increase, we place the cells in
the order of the obtained horizontal values based on the initial
GORDIAN results, with an example shown in Fig. 4(b).

2) GORDIAN w/ buffer alignment: It is observed that a
considerable number of consecutive buffers are inserted to
achieve path balancing. Therefore, we implement an enhanced
placement algorithm by performing buffer alignment as shown
in Fig. 4(c), resulting in straightly vertical connections. At the
downside, consecutive buffer alignment can cause irregular (not
in a rectangle shape) placement results.

3) Our proposed placement algorithm: As introduced above,
our proposed algorithm starts from GORDIAN initialization
and leverages the optimal fixed-order, row-wise placement
solution. As shown in Fig. 4(d), our proposed algorithm can
achieve a (near-)evenly distributed placement results with a
(near-)optimal solution within polynomial time.

The detailed comparison results are shown in TABLE I.
Total half-perimeter wirelength (HPWL) and routed wirelength
(WL) are measured as our comparison criteria. The former is
estimated in the placement phase, while the latter is the actual
results derived after routing (negotiation-based A∗ routing
tailored for AQFP circuits, for both proposed placement results
and baselines). Compared with baselines, our proposed AQFP
placement algorithm can reduce the total HPWL estimation
up to 45.9% and the total routed WL up to 40.2% at a fast
speed. Additionally, for the first time, we perform a complete
placement for the AQFP 32-bit ALU circuit, resulting in a total
of 3,536 mm HPWL estimation, finished in 4,238 seconds.
We do not show the comparison with baseline systems on this
ALU, because the baseline systems cannot satisfy the maximum
wirelength constraints for this circuit, thus resulting in invalid
placement/routing results.

B. Routing Results and Comparisons

To demonstrate the effectiveness of our proposed physical
design framework, we compare the final results between the
above two placement baselines using our proposed routing
algorithm with our proposed framework. Due to the feature
of MIT-LL technology, two metal layers can be utilized for
routing, which means there are a certain number of rout-
ing tracks on top of the cells. Therefore, we compare the
total number of additional tracks outside the cells, which has
a direct effect on the total area cost of the AQFP circuits.
Detailed results are shown in TABLE II. It shows that our
proposed physical design framework can efficiently reduce the
number of tracks outside cells with a faster routing speed

TABLE I: Comparison (on total HPWL and routed WL) between baselines and our proposed AQFP placement algorithm.

Circuits Cells # Rows #
GORDIAN

w/ overlap removal
GORDIAN

w/ buffer alignment Proposed Placement Algorithm

HPWL Routed WL HPWL Routed WL HPWL Reduction Routed WL Reduction Time (s)
apc32 914 23 16,401 25,885 16,819 26,883 12,771 24.0% 22,884 14.5% 18.2
adder8 1,050 21 21,076 33,584 18,634 31,900 10,074 45.9% 21,994 31.1% 66.3
decoder 2,240 20 130,724 167,896 128,920 167,690 112,428 12.8% 148,905 11.2% 109.1

c432 2,538 39 71,280 105,610 75,515 116,267 50,989 32.5% 77,459 33.4% 180.2
sorter32 3,840 30 303,204 378,408 302,236 378,408 203,750 32.6% 226,369 40.2% 564.1
apc128 4,650 36 305,635 367,235 328,548 400,000 219,328 33.2% 267,944 33.0% 1,243

Note: *HPWL and Routed WL results are the summation of all nets measured using µm. *Since sorter32 is a perfectly balanced circuit containing no buffer,
the routed WL results of two baselines are the same.

TABLE II: Comparison (on the number of tracks outside cells) between baselines and our proposed Physical Design Framework.

Circuits Nets # Rows #
GORDIAN

w/ overlap removal
GORDIAN

w/ buffer alignment Proposed Physical Design Framework

Tracks # Time (s) Tracks # Time (s) Tracks # Reduction Time (s)
apc32 423 23 0 0.54 0 0.56 0 - 0.56
adder8 494 21 0 0.75 0 0.72 0 - 0.39
decoder 979 20 13 172.7 13 174 12 7.7% 141.7

c432 1,157 39 0 3.45 2 17.4 0 100% 1.84
sorter32 1,474 30 31 457.5 31 453.6 14 54.8% 362.7
apc128 2,163 36 28 534.0 45 1,072 3 93.3% 53.78

TABLE III: Comparison results (on the number of tracks
outside cells) between baseline (LEA-based routing) and our
proposed routing algorithm.

Circuits Nets # LEA-based routing Our proposed routing
Tracks # Time (s) Tracks # Time (s)

apc32 423 22 0.18 0 0.56
adder8 494 19 0.17 0 0.39
decoder 979 92 0.86 12 141.7

c432 1,157 64 0.93 0 1.84
sorter32 1,474 119 1.30 14 362.7
apc128 2,163 143 4.58 3 53.78

compared with baselines. When there are no additional tracks
outside cells (between rows) and the maximum wirelength
constraint can be satisfied, the routing result can be considered
to be the best possible.

Additionally, to evaluate our proposed routing algorithm,
we adopt channel routing as our baseline. Different from
the conventional constrained left edge algorithm (LEA), we
implement an enhanced constrained left edge algorithm, which
can handle the cases with constraint cycles. The comparison
results are shown in TABLE III. Our proposed routing can
significantly reduce the number of tracks outside the cells,
resulting in a considerable area saving.

V. CONCLUSION

In this work, we develop the first, efficient placement and
routing framework for AQFP circuits considering the unique
features and constraints. Our proposed fixed-order row-wise
placement algorithm is performed iteratively with a fast con-
verge speed. A∗ routing algorithm is adopted incorporating dy-
namic step size, achieving reduced computational complexity.
The efficiency and effectiveness of our proposed framework are
demonstrated through extensive experimental results.

ACKNOWLEDGMENT

The research is based on work supported by the Office of the
Director of National Intelligence, Intelligence Advanced Re-
search Projects Activity (IARPA), via the U.S. Army Research
Office grant W911NF-17-1-0120, and by the National Science
Foundation CCF-2008514 and OISE-1854213.

REFERENCES

[1] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of
adiabatic superconductor logic,” Superconductor Science and Technology,
2014.

[2] K. K. Likharev and V. K. Semenov, “Rsfq logic/memory family: A new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Transactions on Applied Superconductivity, 1991.

[3] S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5
mw josephson 4-kbit ram operated at a high bit yield,” IEEE Transactions
on Applied Superconductivity, 1995.

[4] S. K. Tolpygo et al., “Advanced fabrication processes for superconduct-
ing very large-scale integrated circuits,” IEEE Transactions on Applied
Superconductivity, 2016.

[5] O. Chen et al., “Adiabatic quantum-flux-parametron: Towards building
extremely energy-efficient circuits and systems,” Scientific reports, 2019.

[6] R. Cai et al., “A majority logic synthesis framework for adiabatic
quantum-flux-parametron superconducting circuits,” in GLSVLSI, 2019.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, 1968.

[8] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for fpgas,” in Reconfigurable Computing, 2008.

[9] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied
Physics, 2015.

[10] Q. Xu et al., “Synthesis flow for cell-based adiabatic quantum-flux-
parametron structural circuit generation with hdl back-end verification,”
IEEE Transactions on Applied Superconductivity, 2017.

[11] J. Clarke and A. Braginski, “The squid handbook: Applications of squids
and squid systems. vol. 2,” 2006.

[12] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based
placements,” in GLSVLSI, 2004.

[13] Y. Du and M. D. Wong, “Optimization of standard cell based detailed
placement for 16 nm finfet process,” in DATE, 2014.

[14] T. Taghavi et al., “New placement prediction and mitigation techniques
for local routing congestion,” in ICCAD, 2010.

[15] B. Yu et al., “Methodology for standard cell compliance and detailed
placement for triple patterning lithography,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2015.

[16] Y. Lin et al., “Stitch aware detailed placement for multiple e-beam
lithography,” Integration, 2017.

[17] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient
optimization,” Mathematical programming, 1974.

[18] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “Gordian:
Vlsi placement by quadratic programming and slicing optimization,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 1991.

[19] Iscas85 combinational benchmark circuits. [Online]. Available:
https://filebox.ece.vt.edu/ mhsiao/iscas85.html

