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Abstract

Modern silicon systems are constituted by hardware (e.g., integrated circuits) and soft-

ware (e.g., applications). It is essential to ensure prominent hardware design and desired

coordination from software to achieve high efficacy of the system. On the hardware side,

the complexity of hardware design is increasing as the technology node keeps shrink-

ing. Consequently, more design constraints are imposed and lead to a long design

cycle as well as a performance bottleneck, which calls for efficient design automation

methodologies. On the software side, the rapid development of deep learning (DL) has

catalyzed many innovative applications for intelligent systems. However, typical DL

models require a significant amount of resources on storage and computation, which

hinders the deployment on resource-constrained hardware. Therefore, methodologies

for hardware-friendly learning is required to ensure the efficacy of the system.

This dissertation attempts to present our research on a set of novel methodologies for

efficient hardware design automation and hardware-friendly learning, and demonstrates

the effectiveness in different stages covering a wide range along the design flow of silicon

systems. Our research includes graph learning in testability optimization, active leaning

in performance optimization, unified manufacturability optimization, and hardware-

friendly neural network optimization.
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Firstly, active learning methodology is studied for performance optimization. Due

to the inevitable optimality gap between the architectural level and physical design

level, traditional iterative tuning may cause an extremely long design cycle when the

design space is huge. We present an active learning methodology for cross-layer op-

timization, which is able to explore the design space and obtain the Pareto-optimal

designs efficiently while maintaining a low data labeling cost.

Secondly, the graph learning methodology is investigated for testability optimiza-

tion. Test point insertion is a critical step in design-for-testing. Thanks to the high

scalability of the data-driven learning techniques, they have become promising alterna-

tives to traditional heuristic methods and simulation methods. To tackle the irregular

structures of the netlists, a graph learning technique is explored such that the powerful

learning techniques can be smoothly leveraged, which fuses the conventional learning

approaches with typical circuit design problems. Besides, we propose a specialized

workflow for test point insertion based on the graph learning model.

Thirdly, a unified manufacturability optimization framework is presented. Layout

decomposition and mask optimization are two key stages in advanced technology nodes.

However, the conventional two-stage flow (i.e., layout decomposition followed by mask

optimization) cannot achieve good printability on their own. To tackle this problem, a

unified optimization framework is studied, which seamlessly integrates these two stages.

Combining the two processes together leads to a larger solution space and can obtain

higher quality masks.

For hardware-friendly neural network optimization, a unified framework to compress

any well-trained neural networks is firstly explored, which leverages both low-rankness

and sparsity for efficient calculation and can be applied in general scenario like su-
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pervised classification and regression tasks. In additional to the general compression

scheme, specifically designed schemes are also proposed to fully explore the room of

compression under special scenarios. A specific pruning strategy is investigated for

partial domain adaptation which is a special application of deep neural networks.

The effectiveness of proposed design methodologies is demonstrated on extensive ex-

periments on industrial benchmarks and widely used open benchmarks. These method-

ologies are capable of enhancing and accelerating hardware design automation, and

enabling hardware-friendly learning.
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現代數字系統主要是由硬件（例如集成電路）和軟件（例如應用程式）組成。為了達

到系統的高效能，保證精良的硬件設計以及了理想的軟件協調至關重要。在硬件方

面，隨著技術節點的縮小，設計複雜度日漸上升。更多的設計約束導致了冗長的設計

週期以及性能瓶頸，因此需要更加高效的設計自動化方法學来帮助达到目标。在軟件

方面，深度學習技術的發展催生了很多用於智能系統的創新應用。然而，典型的深度

學習模型需要大量的存儲和運算資源，因此也限制了此類應用在資源制約型硬件上面

的部署。因此，高效能系統也需要能促進硬件友好型機器學習技術的方法學。

本論文將展示多種新型的高效的硬件設計自動化方法和硬件友好型深度學習方法

的研究，並且顯示出這些方法在系統設計流程中多個不同階段的有效性。研究內容包

括用於可測試性優化的圖學習方法，用於性能優化的主動學習方法，用於可測試性設

計的聯合優化方法以及硬件友好型的神經網絡優化方法。

首先，我們研究了用於性能優化的主動學習技術。由於在電路設計的架構設計層

和物理實現層有著不可避免的最優間隙，在設計空間非常大的時候傳統迭代調試的方

法會導致很長的設計週期。為了解決這個問題，我們展示了一種可以實現跨層優化的

主動學習方法。此方法能高效的探索設計空間以獲得帕累托最優的設計點。另外，此

方法還能有效的控制數據標註的代價。

其次，我們研究了應用於可測試性優化的圖學習方法。測試點插入是可測試性設
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計中的關鍵步驟。考慮到機器學習方法的強擴展性，這類方法逐漸替代了傳統基於電

路模擬算法和啟發式算法。為了處理電路網表的非規則結構，我們研究了一種圖學習

方法。這種方法融合了通用的機器學習和電路設計問題。基於這種方法所得到的圖學

習模型，我們提出了一種特定的測試點插入的設計流程。

第三，我們展示了一種用於可製造性設計的統一優化方法。在可製造性設計中，

版圖分解和掩模優化是兩個最核心的步驟。然而，僅依賴通用的兩階段流程（版圖分

解–掩模優化）不能得到良好的製造結果。為了解決這個問題，我們研究出一種統一

可製造性優化框架來無縫集成這兩個步驟。將兩個步驟合併之後得到了更大的解空間

並且也得到了更高質量的掩模。

對於硬件友好型神經網路優化，首先我們研究了一種統一框架結合了低秩性和稀

疏性來實現對預訓練網路的壓縮和加速。這樣的框架能在大量的常見場景中使用，例

如監督式分類和回歸任務。除了通用的壓縮策略之外，我們還研究了訂製的壓縮策略

以充分探索在特殊應用下的壓縮空間。我們還研究了一種用於局部域適應特殊場景下

的壓縮方法來移除預訓練中模型中與目標任務不相關的參數。

我們在工業級測試基準和廣泛使用的公開測試基準上進行了大量的實驗，實驗結

果驗證了我們所提出的設計方法學的有效性，顯示出這一系列方法能夠增強以及加速

硬體設計自動化以及促進硬體友好型深度學習的實現。
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Chapter 1

Introduction

Hardware and software are two main components that constitute the prosperous in-

formation technology industry. The very large scale integration (VLSI) has become

one of the most representative technologies, which was under rapid evolvement in the

last few decades. Consequently, today’s integrated-circuits (ICs) are becoming smaller,

more powerful, and more power-efficient, which form the hardware foundation of all the

digital applications. Complementary to the hardware, software that runs on hardware

provides all kinds of services such that the entire system can operate as desired. For

instance, Google’s image retrieval system leverages deep learning software running on

the hardware named Tensor Processing Unit to provide services for users.

In order to design and optimize a VLSI circuit, there has been a conventional de-

sign flow for modern circuits, which consists of several typical stages, as shown in ??.

It starts from system level specification and architectural design. Then the system is

implemented with hardware languages. Then logic synthesis converts implementation

to gate level netlist. Physical design realizes circuit components into a layout with

positions and sizes of gates and wires. Then verification and design rule checks need to
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be conducted, and then chips can be fabricated in a foundry. When designing the soft-

ware, it is vital to be compatible with the hardware to achieve the maximum benefit.

Specifically, the hardware resource constraints should be taken into consideration, such

as power and storage constraints. With the outstanding achievements made by ma-

chine learning and deep learning, a trending research direction is the hardware-friendly

learning to well coordinate the algorithms and the hardware.

1.1 Challenges

In spite of the great achievements that have been made through the design flow, there

are also various emerging challenges. The issues can be categorized into three parts.

Firstly, the complexity of hardware design is increasing as the technology node

keeps shrinking. Thus, more constraints are imposed and the problem size is enlarging

as well. What’s worse, many problems in the design flow are NP-hard, leading to per-

formance bottleneck and severe runtime overhead in certain design stages. Therefore,

novel effective methodologies for improving the efficiency are in demand.

Secondly, the conventional long design flow is separated into multiple stages and

each stage is tackled separately. Due to the misalignment among the objectives of

different stages, the performance gap is inevitable, which requires enormous iterations

of engineering tuning to explore the design space. Considering the design space is so

large that it is extremely time-consuming to be explored exhaustively, methodologies

for efficient design space exploration and unified optimization across multiple stages are

very promising to further enhance and accelerate the hardware design automation.

Thirdly, the development of deep learning has catalyzed many innovative applica-

tions in various kinds of real-world software. However, large model size and inten-
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Figure 1.1: Conventional design flow for a digital system, and the corresponding stages
of the proposed techniques.

sive computations hinder the broad deployment of deep neural networks on resource-

constrained hardware. In order to fully exploit the capability of deep learning, designing

hardware-friendly learning models become essential. Particularly, since deep learning

has covered a wide range of applications and scenarios, the methodologies of enabling

hardware-friendly learning should contain general techniques as well as tackle special

3



scenarios.

1.2 Thesis Overview

This thesis attempts to enhance and accelerate both hardware design automation and

hardware-friendly learning. Several design stages are investigated, which are shown in

Figure 1.1.

Chapter 3 investigates the design space exploration problem for modern designs.

The purpose is to obtain the desired design in an enormous design space effectively

and efficiently. A Pareto frontier-driven active learning method is proposed to explore

the design space of 64-bit adders, and achieve good trade-offs among power, area, and

delay, while maintaining a low data labeling cost for learning.

Chapter 4 proposes a graph learning-based methodology for testability optimization,

which focuses on the test point insertion problem. In order to leverage the capability of

the data-driven approaches, a high-performance graph convolutional network (GCN)

model is proposed for the purpose of processing irregular graph representations of logic

circuits, which is further integrated into a test point insertion flow and achieve compa-

rable performance to commercial testability analysis tools.

Chapter 5 presents a unified optimization framework for manufacturability opti-

mization, which seamlessly integrates layout decomposition and mask optimization.

To tackle the inconsistency of the objectives of these two stages, a unified mathemati-

cal formulation is proposed, and it is solved with a set of numerical and combinatorial

techniques.

Chapter 6 focuses on hardware-friendly deep learning which aims to coordinate the

executed algorithms with hardware to achieve good trade-off among performance, power
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consumption, and throughput. Two aspects are studied: (1) A unified approximation

framework for accelerating and compressing deep neural network is firstly introduced,

which is a general technique and can be applied to most of the common deep models;

(2) A pruning methodology is proposed for unsupervised partial domain adaptation,

which is a special scenario in deep learning applications.
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Chapter 2

Literature Review

2.1 Design Space Exploration and Active Learning

Very large scale integration (VLSI) design methodologies have developed about 50

years, from manually-crafted design to computer-aided design (CAD) with increasingly

higher levels of the design specification. With the aggressive scaling of technology

nodes, design complexity increases dramatically and leads to a huge design space for a

modern design. As a result, efficient design space exploration (DSE) has emerged as

a promising solution to tackle the exponentially increasing size of the design space of

microprocessors and the consequent time-consuming synthesis runs, among which the

learning-based approached are used intensively. However, the data labeling cost should

always be considered in the machine learning application, especially in IC design. Active

learning is a machine learning algorithm that can obtain better performance with fewer

training data, provided that the data is selected based on what the algorithm learns.

This paradigm becomes more and more important in various scenarios where there is

a large amount of quantity of unlabeled data and the labels are very few due to the
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time-consuming and expensive labeling process. This section reviews the literature in

both DSE and active learning.

There are a variety of algorithms investigated to explore design space in different

design scenarios, ranging from high level synthesis to layout generation. Liu et al. [9]

presented a random forest-based learning model in high level synthesis, which can find

an approximated Pareto-optimal designs effectively. Meng et al. [10] proposed a ran-

dom forest-based method for Pareto frontier exploration, where non-Pareto-optimal

designs are carefully eliminated through an adaptive strategy. Multiple predictions can

be obtained through the random forest, which can be used for estimating the uncer-

tainty. Palermo et al. [11] deployed both linear regression and artificial neural networks

for multiprocessor systems-on-chip design. Apart from tuning the design parameters,

exploring the parameters in EDA tools has also been studied. FIST [12] leveraged a

boosting model and a feature importance identification scheme for automatic parameter

tuning in EDA tools. IBM built an entire workflow, SynTunSys, to assist in reducing

the design cycle in advanced technology nodes [13, 14, 15].

In addition, DSE for analog circuits design has also been heavily explored recently,

in which Bayesian optimization is broadly applied. Lyu et al. [16] proposed a multi-

objective Bayesian optimization framework for analog circuits synthesis. Despite its

superior efficiency to traditional design methodologies, the number of samples each it-

eration limits the overall improvement. To address that, a batch Bayesian optimization

framework ensembling multiple acquisition functions was proposed [17], which samples

multiple points by solving a multi-objective acquisition function. Gaussian process [18]

is a widely used surrogate model in Bayesian optimization. However, considering that

complexity of training a Gaussian process model is O(n3), easing the training overhead
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and sample efficiency could further accelerate the process. A multi-fidelity framework

[19] was proposed to leverage more data with low labeling cost and less data with high

data labeling cost to build the model. The neural network is applied as an explicit

kernel to approximate the implicit kernel representation [20] in the traditional Gaus-

sian Process, such that the training time scales linearly with the number of training

samples.

An active learning model requires queries in the data pool in order to get specific

unlabeled data points to be labeled, which in return can be applied to further train the

model. Therefore, evaluating the informativeness of unlabeled instances is the most

critical problem in an active learning algorithm.

Many approaches have been proposed to formulate the query schemes, which can

be categorized into three classes. The most commonly applied scheme is query based

on uncertainty, which is to select a data point with the least confidence on how to

label. Typically it is utilized in classification problem [21, 22, 23, 24]. In the case

of regression problems, the output is a continuous value instead of a discrete label.

Thus the uncertainty can be characterized by leveraging the variance of the output

[25, 26, 27].

The second query scheme is the query-by-committee (QBC) algorithm [28], which

involves maintaining a committee of different models that are all trained on the same

data set. Thus, each model in this committee would generate one label for every query

candidate. The one which receives the most disparate labels is determined to be the

most informative and then be queried for its label [29, 30, 31].

Another algorithm for selecting the query point is the expected-model-change (EMC)

which selects the point with the greatest impact on the current model given its new

8



label. A representative framework of EMC is the expected-gradient-length (EGL) [32].

The intuition is that the instance leading to the greatest change in gradient of the loss

function with respect to the model parameters is more likely to be more informative.

Generally, the EGL method is applicable to learning problems which use gradient-based

methods for training, and was investigated is several works [32, 33, 34].

2.2 Testability Analysis and Graph Learning

As the technology node scales down, there are billions of transistors on a single die,

which is much more prone to defects than ever. Therefore, circuits testing for manufac-

turing defects is of great importance in the production cycle of ICs since it affects the

reliability and development cost. In order to test a circuit, firstly a set of test patterns

needs to be generated, which is also called test set. Each pattern is a binary sequence

(vector) whose length is equal to the number of circuit inputs. Therefore, the size of

the input vector space is 2n for a circuit with n inputs, which grows exponentially with

n. Generating a test set with sufficient test patterns relies on automatic test patterns

generation (ATPG) tools that analyze the circuit netlist and produce corresponding

representative test patterns. However, ATPG is prone to runtime overhead due to the

poor testability of a circuit if the testability is not well-considered in the design stage,

which motivates the research on testability analysis and design-for-testing (DFT).

Test point insertion (TPI) is a broadly used approach in DFT to modify a circuit

and improve its testability, which involves adding extra control points (CPs) or obser-

vation points (OPs) to the circuit. CPs can be used for setting signal lines to desired

logic values, while OPs are added as scan cells to make a node observable. There are

several issues that needed to be considered when performing TPI. On one hand, the
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optimal test point placement problem is NP-complete [35]. Numerous TPI methods

have been proposed to investigate the efficiency and performance of TPI. Based on the

runtime, these methods can be categorized into exact fault simulation [36], approximate

measurements [37] and simulation-based methods [38]. On the other hand, inserting

test points may degrade the performance of a design in terms of area, power, and tim-

ing. The ultimate goal of TPI is to achieve high fault coverage with less performance

degradation. Previous works explored beneficial trade-offs between testability improve-

ment and performance degradation [39, 40, 41, 42, 43], among which CPs insertion is

considered in [42] and OPs insertion is considered in [43]. Touba et al. [40] consider

inserting both CPs and OPs.

The data-driven approaches are promising solutions for TPI. However, since a netlist

or circuit is usually modeled as a graph which is an irregular structure rather than a

regular one like a sequence or an image. Graph is a fundamental object in many

fields, which is a mathematical structure that models pairwise relationships among

different items. However, typical learning-based approaches are not directly applicable

to graph-related problems due to the irregular structures. Graph learning is a new

approach to machine learning with a wide range of applications [44]. One advantage is

the graph structure itself can reveal relevant information. Before performing a certain

task, representation of a node or graph should be obtained first, which is known as

embedding and can be fed to downstream models. Previous approaches exploring node

embedding problems can be classified into two categories. The first class of approaches

is based on heuristics to encode the structural information [45]. A more recent approach

is data-driven, which learns node embeddings automatically [46, 2, 47].

Graph convolution networks are one of these data-driven approaches. Within these
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data-driven approaches, they can be further classified into transductive and inductive.

Transductive approaches directly optimize the embedding for each node, thus they

require all nodes to be present during training, and hence cannot generalize to unseen

graphs [46]. Inductive approaches generate node embeddings through learning a set of

functions to aggregate the structural information and node attributes, which make the

learned model independent from training graphs. Therefore, inductive models can be

applied to unseen data [2, 47].

Unlike conventional graph learning tasks, graph learning for EDA problems is prone

to runtime overhead considering that the scale of circuits keeps soaring. Similar to con-

ventional CNNs, the most time-consuming process in the computation of a GCN is the

embedding generation. To tackle the issue of scalability, several attempts have been

made for efficient graph representation learning. It is pointed out that the inefficiency

might be caused by duplicated computation under the GraphSAGE-like framework [47].

To address this, PinSAGE [47] is proposed to select important neighbors by random

walk instead of aggregating all the neighbors, and a MapReduce pipeline is leveraged

for maximizing the inference throughput of a trained model. Recently, GraphZoom [48]

is proposed for improving both the accuracy and scalability of unsupervised graph em-

bedding algorithms, which is a multi-level spectral framework. In addition to designing

specific algorithms and models, there are also a few third-party libraries like DGL [49]

for users to make the network scalable.

2.3 Layout Decomposition and Mask Optimization

Due to the delay of the next generation of lithography techniques, the current lithog-

raphy wavelength is stuck at 193nm. As a result, resolution enhancement techniques
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(RETs) on layout and mask are of great importance to improve the yield. Multiple pat-

terning lithography (MPL) has achieved great success in pushing forward the technology

node. There are two of the most critical stages in the MPL process, including layout

decomposition and mask optimization. In layout decomposition, the target layout is

decomposed into several layouts so that each decomposed layout can be manufactured

under the current lithography condition. Two main types of MPL manufacturing pro-

cesses are litho-etch-litho-etch (LELE)-type MPL and spacer-type MPL. Spacer-type

MPL typically refers to self-aligned double patterning (SADP). LELE-type refers to

conventional double patterning layout decomposition (DPLD) or triple patterning lay-

out decomposition (TPLD), depending on the number of masks available.

To achieve high efficiency and maintain high solution quality, a variety of decompo-

sition algorithms have been proposed. These algorithms can be roughly categorized into

three types, including mathematical programming and relaxation, graph-theoretical ap-

proaches, and search-based approaches. Mathematical programming solves the MPLD

problem by formulating it into a standard optimization model. Integer linear program-

ming (ILP) is adopted to solve the problem of layout decomposition, including DPLD

[50, 51, 52] and TPLD [53, 54].

In order to deal with the runtime overhead of solving an ILP, relaxation is a com-

monly used approach. It can provide an upper bound or a lower bound on the optimal

value of the original problem. A representative relaxation is semidefinite programming

(SDP) relaxation [53], which can be solved in polynomial time. Lin et al. [55] proposed

to apply linear programming (LP) relaxation to avoid the infeasibility issue and find

a solution with few conflicts. Li et al. [56] proposed a discrete relaxation method for

TPLD problem. Firstly, the original TPLD problem is relaxed to an ILP by ignoring
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stitch insertion, whose optimal value can be treated as a lower bound of the optimal

value of the original TPLD problem. The ILP formulation of the relaxed problem

has fewer variables and fewer constraints than the reduced version of [53]. Another

category is to directly perform color assignment based on a set of graph-theoretical

algorithms, e.g., the maximal independent set (MIS) [57], the shortest-path [58, 59],

and fixed-parameter tractable (FPT) algorithms [60]. Search-based algorithms follow a

divide-and-conquer principle with each sub-graph containing a small number of nodes,

e.g., less than 20. Then a search procedure is applied to find the optimal solutions for

small sub-graphs [61, 57, 62, 53, 63, 64].

The diffraction effect of the light cannot be ignored since the size of the patterns on

a layout is comparable with the wavelength of the lithography light source, which may

result in low fidelity of the final on-wafer image. In mask optimization, e.g., optical

proximity correction (OPC), each mask is refined to compensate for the diffraction

effect of the light in advance to ensure the high quality of the on-wafer image. Finally,

all optimized masks go through the lithography process separately, then all printed

images are combined together to generate the target image.

Nowadays, there are three sorts of OPC methodologies, including model-based OPC,

inverse lithography technique, and learning-based OPC. A model-based flow is pre-

sented by Awad et al. [65] for maximizing the printability. Kuang et al. [66] propose an

acceleration trick to tackle the long runtime of simulation under multiple process cor-

ners. Su et al. [67] develop a model-based OPC flow, PVOPC, in which a novel dynamic

edge fragmentation is used to form segment candidates for correction. For ILT, it aims

to find the ideal mask by solving an inverse problem of the lithography system. The

objective of ILT is typically to minimize the difference between printed patterns of the
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mask and target patterns. Different from model-based OPC which makes correction on

edge segments, ILT is based on pixel-based representation. Poonawala et al. [68] adopt

relax the problem to continuous form and solve it by gradient descent. In addition

to conventional gradient descent algorithm, stochastic gradient descent (SGD) is also

used in ILT [69]. Another acceleration technique for ILT is proposed [5]. Considering

that the forward lithography model can be formulated by a series of weighted sum of

convolution, the “effective kernel” can be precomputed without loss of accuracy. Shen

et al. [70] shows that ILT can be modeled into an image restoration problem and can be

solved by the level-set method. Both the first-order accurate method [70] and the conju-

gate gradient method [71] are applied in the level-set method. For learning-based OPC

approaches, there are several attempts exploring to perform pixel-wise or segment-wise

correction on the mask [72, 73, 74]. GAN-OPC [75] firstly introduces the generative

adversarial network for mask optimization, which takes target circuit patterns as input

and generates quasi-optimal masks for post-refinement.

2.4 Hardware-Friendly Learning

As neural networks become deeper and deeper, the representation ability of neural

network keeps improving, leading to significant performance promotion in a variety of

tasks. However, the model size and the computation cost of neural networks are also

increasing due to the huge amount of weights learned, which results in low throughput

in the inference stage and restrains the deployment on resource-limited systems. For

example, embedded devices may lack enough storage and computation power to execute

the giant networks. Meanwhile, deep neural networks are demonstrated to be over-

parameterized [76], which motivates researchers to explore efficient approaches to make
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the deep models compact.

Low-rankness and sparse connections are the most commonly applied assumptions

when approximating a model. The sparse connection can be realized by pruning a

pre-trained network, which is the most straightforward approach. The majority of the

parameters in a sparse layer are zeros, thus the parameters can be stored with com-

pressed representation, e.g., compressed sparse row (CSR) format, for size reduction. A

hard thresholding approach is proposed in [77], which achieves high sparsity by remov-

ing the weights with less importance. However, the sparse pattern is non-structured

which has limited benefits for speedup during inference due to the poor weight locality.

[78] proposes to prune the entire convolution kernel rather than a single element based

on the intensity. A structured sparse learning algorithm is proposed in [79], which

enables us to learn a network with a structured sparse network by applying group

sparse regularizations during training. Since structured sparsity leads to zero-columns

and zero-rows in the lowered matrices, [79] further proposes to reduce the dimension

of lowered matrices by removing these zero-columns and zero-rows, which reduces the

dimension of the lowered weight matrix when applying General Matrix-Matrix Mul-

tiplication (GEMM) function and accelerates inference. A channel pruning method

is proposed in [80], which can be considered as a special case of structured sparsity.

The difference is that channel pruning is performed on a pre-trained model rather than

training the model from scratch. [80] formulated the problem as l0-norm minimization

problem, trying to find the “informative” channels of the feature map and the corre-

sponding weights. Instead of trying to minimize the reconstruction error layer by layer,

[81] targets at a unified goal which is to minimize the reconstruction error of important

response in the final response layer.
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In addition to sparsifying a network, the low-rank approximation is another sort

of approach which can be applied for both network compression and acceleration. In

modern convolutional neural networks (CNNs) structure, filters are usually a 4-D tensor.

Some tensor decomposition techniques are leveraged for acceleration and compression.

A straightforward idea is to replace the 4-D tensor with two consecutive tensors with

lower-rank [82]. In addition, other kinds of tensor decomposition can also be applied.

In [83], fully-connected layers are converted to the Tensor Train format, resulting in

compression by a huge factor. CP-decomposition of the filter tensors is proposed in

[84]. A relevant approach to low-rank approximation is tensor sketching [85]. The

difference is that low-rank approximation will increase the network depth since an

original layer will be decomposed into multiple layers. In order to conduct low-rank

approximation more efficiently, methods for training neural networks with low-rank

filters are investigated [86, 87, 88, 89].

Domain adaptation is a solution to reduce the need and effort to collect the train-

ing data [90]. Since the main issue is the distribution discrepancy across different

domains, many methods are proposed to match the feature distributions in the source

and the target domains [91, 92]. Recently, more efforts on unsupervised domain adap-

tation with deep learning methods have been witnessed. The first category is based

on explicit distribution matching with a well-defined criterion, e.g., MMD [93, 94, 95]

and central moment discrepancy (CMD) [96]. Alternatively, the adversarial training

scheme is investigated by leveraging a domain discriminator [97, 98, 99], assuming that

a good representation for domain transfer is one that an algorithm cannot distinguish

the origin domain of the input observation. These methods are based on an assumption

that the label space is fully shared between the source domain and the target domain,
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which may not always hold in PDA. The adversarial training scheme has been studied

for tackling the PDA problem [100, 101, 102, 103], which achieves the state-of-the-art

performance by introducing dedicated re-weighting mechanisms over the instances or

classes. Regarding the hardware-friendly PDA applications, previous works on net-

work compression focus more on the conventional supervised learning tasks in a single

domain, and there are bare of studies showing how network compression can help in

unsupervised domain adaptation tasks. A recent work [104] proposed a transfer channel

pruning approach for domain adaptation models by removing less important channels

iteratively. However, only identical label space setting is explored in [104].
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Chapter 3

Active Learning for Design Space

Exploration

In the last decades, the industrial EDA tools have advanced towards optimality, es-

pecially at the individual stages of the VLSI design cycle. Nevertheless, with growing

design complexity and aggressive technology scaling, physical design issues have be-

come more and more complex. As a result, the constraints and the objectives of higher

layers, such as the system or logic level, are very difficult to be mapped into those of

lower layers, such as physical design, and vice-versa, thereby creating a gap between the

optimality at the logic stage and the physical design stage. This necessitates the inno-

vation of data-driven methodologies, such as machine learning [105, 106, 10, 107, 108],

to bridge this gap.

Adder design is one of the fundamental problems in the digital semiconductor indus-

try, and its main bottleneck (in terms of both delay and area) is the carry-propagation

unit. This unit can be realized by hundreds of thousands of parallel prefix structures,

but it is hard to evaluate the final metrics without running through physical design
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Figure 3.1: Regular adders (picture taken from [3]).

tools. Historically, regular adders [109, 110, 111, 112] have been proposed for achieving

the corner points in terms of various metrics as shown in Figure 3.1 in the architectural

stage.

To address this gap between prefix adder synthesis and actual physical design of

the adders, one approach is to explore a huge design space efficiently. An exhaustive

bottom-up enumeration technique with several pruning strategies are investigated to

generate innumerable prefix structure solutions [1]. However, it is very hard to analyti-

cally model the physical design complexities, such as wire-length and congestion issues,

the physical design metrics, such as the area, power, delay, etc., may not be mapped

well to the prefix structure metrics, such as the size, max-fan-out (mfo), etc. Although

the performance can be evaluated with commercial synthesis tools, it is computationally

very intensive to run all solutions through synthesis, placement, and routing. To tackle
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the high computational effort during the synthesis flow, machine learning methodolo-

gies are leveraged to perform the design space exploration. Our main contributions are

summarized as follows:

• A comprehensive framework for optimal adder search by machine learning method-

ology bridging the prefix architecture synthesis to the final physical design;

• A machine learning model for prefix adders, guided by quasi-random data sam-

pling with features considering architectural attributes and EDA tool settings;

• A design space exploration method to generate the Pareto frontier for delay

vs. power/area over a wide design space;

• An active learning approach for the design space exploration, which uses less

labeled data and achieves better quality of Pareto frontier.

The rest of the chapter is organized as follows. Section 3.1 presents the background

of prefix adder synthesis, Next, two machine learning approaches of design space ex-

ploration for high-performance adders are described. Section 3.3 presents the passive

supervised learning, while Section 3.4 introduces a Pareto frontier-driven active learn-

ing approach. Section 3.5 lists the experimental results, followed by a summary in

Section 3.6.

3.1 Preliminaries

3.1.1 Prefix Adder Synthesis

An n bit adder accepts two n bit addends A = an−1..a1a0 and B = bn−1..b1b0 as

input, and computes the output sum S = sn−1..s1s0 and carry out Cout = cn−1, where
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si = ai⊕ bi⊕ ci−1 and ci = aibi + aici−1 + bici−1. The simplest realization for the adder

network is the ripple-carry-adder but with logic level n − 1, which is too slow. For

faster implementation, the carry-lookahead principle is used to compute the carry bits.

Mathematically, this can be represented with bitwise (group) generate function g (G)

and propagate function p (P ) by the Weinberger’s recurrence equations as follows [113]:

• Pre-processing (inputs): Bitwise generation of g, p

gi = ai · bi and pi = ai ⊕ bi. (3.1)

• Prefix processing: This part is the main carry-propagation component where the

concept of generate/propagate is extended to multiple bits and G[i:j], P[i:j] (i ≥ j)

are defined as

P[i:j] =

 pi, if i = j,

P[i:k] · P[k−1:j], otherwise,
(3.2)

G[i:j] =

 gi, if i = j,

G[i:k] + P[i:k] ·G[k−1:j], otherwise.
(3.3)

The associative operation ◦ is defined for (G, P ) as:

(G,P )[i:j] = (G,P )[i:k] ◦ (G,P )[k−1:j]

= (G[i:k] + P[i:k] ·G[k−1:j], P[i:k] · P[k−1:j]).

(3.4)
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Figure 3.2: 6 bit prefix adder network.

• Post-processing (outputs): Sum/Carry-out generation

si = pi ⊕ ci−1, ci = G[i:0], and Cout = cn−1. (3.5)

The ‘Prefix processing’ or carry propagation network can be mapped to a prefix

graph problem with inputs ik = (pk, gk) and outputs ok = ck, such that ok depends

on all previous inputs ij (j ≤ k). Any node except the input nodes is called a prefix

node. Size of the prefix graph is defined as the number of prefix nodes in the graph.

Figure 3.2 shows an example of such prefix graph of 6 bit and we can see that Cout =

c5 = o5 is given by

o5 = (i5 ◦ i4) ◦ ((i3 ◦ i2) ◦ (i1 ◦ i0)). (3.6)

Size (s), logic level (L) and maximum-fan-out (mfo) for this network are respec-

tively 8, 3 and 2. Note that here the number of fan-ins for each of the associative

operation o is two, thus this is called radix-2 implementation of the prefix graph. How-

ever, there exist other options such as radix-3 or radix-4, but the complexity is very

high and not beneficial in static CMOS circuits [114]. In this work, the logic levels
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for all output bits are log2 n, i.e., the minimum possible, to target high-performance

adders.

3.1.2 Pareto Optimality

Definition 1 (Pareto Optimality) An objective vector f(x) is said to dominate f(x′)

if:
∀i ∈ [1, n], fi(x) ≤ fi(x′)

and ∃j ∈ [1, n], fj(x) < fj(x′).

(3.7)

A point x is Pareto-optimal if there is no other x′ in design space such that f(x′)

dominates f(x).

Definition 2 (Hypervolume) The hypervolume computes the volume enclosed by the

Pareto frontier and the reference point in the objective space [115].

In Figure 3.3, the shaded area is an example of the hypervolume of a Pareto set with

two objectives. Then the hypervolume error for a predicted Pareto set P̂ is defined as

η =
V (P )− V (P̂ )

V (P )
, (3.8)

where P is the true Pareto-optimal set, and V (P ) is the hypervolume of the Pareto set

P . Note that a prediction P̂ which contains the whole design space has an error of 0.

Thus the predicted set P̂ with fewer points is desired.
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Figure 3.3: Hypervolume with two objectives in objective space.

3.2 Bridging Architectural Solution Space to Phys-

ical Solution Space

In most EDA problems, the metrics of the solution quality are typically conflicting.

For instance, if we optimize the timing of the design, then the power/area may be

compromised and vice versa. So one imperative job of EDA engineers is to find the

Pareto-optimal points of the design enabling the designers to select among those. In

this section, we first provide the preliminaries about Pareto optimality and the error

metrics of Pareto optimal solutions. Then we discuss the gap between the prefix ar-

chitectural solution space and physical solution space in adders, which motivates the

need for the machine learning-based approach for optimal adder exploration. Finally,

a domain knowledge-based feature selection details are presented along with training

data sampling for the learning models.

As in this work for adder design, a Pareto-optimal design is where none of the

objective metrics, such as area, power, or delay, can be improved without worsening at

least one of the others. The Pareto Frontier is the set of all the Pareto-optimal designs

in the objective space. Therefore, the goal is to identify the Pareto-optimal set P for
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Figure 3.5: (a) An example of architectural solution: Bit-width = 64, size = 201,
Max. level= 6, Max. fanout = 12; (b) Corresponding physical solution.

all the Pareto-optimal designs.

3.2.1 Gap Between Logic and Physical Design

Since we focus on high-performance adders and explore the prefix adders of logic level

L = log2 n, the metrics at this architecture stage are prefix node size s and max fan-

out mfo. These two metrics are conflicting, i.e., if we reduce mfo, s increases and

vice-versa. A similar competing relationship exists between delay and power/area af-
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Figure 3.6: Defining spfo of a node.

ter physical design. It should be stressed that power and s are correlated, and mfo

indirectly controls the timing as a more restricted fan-out can mitigate congestion and

load-distribution, thereby improving the delay of the adder. However, this relationship

between architectural synthesis and physical design is approximate, and not a very

high-fidelity one.

To demonstrate this, we plot node size s vs. mfo and power vs. delay in Figure 3.4

for several 64 bit adder solutions. In this experiment, we generated the prefix archi-

tecture solutions with prefix graph generation algorithms, and the final power/delay

numbers are obtained by running those solutions through EDA tools as explained later

in Section 3.5. An example of the prefix architecture and the corresponding physical

solution is presented in Figure 3.5. In Figure 3.4a, we broadly categorize the solutions

into 2 groups, (i) G1 with higher node size and lower mfo, and (ii) G2 with lower node

size and higher mfo. In Figure 3.4b, the same designs as Figure 3.4a are projected into

the physical solution space, restoring the group information. Design Compiler [116]

(version F-2011.09-SP3) is used for logical synthesis, and IC Compiler [117] (version J-

2014.09-SP5-3) is used for the placement and routing. Non-linear delay model (NLDM)

in 32nm SAED cell-library [118] is used for technology mapping. The key observations
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here are firstly, there is a correlation between architectural solution space and physical

design solution space. For instance, the solutions from G1 are mostly on the upper

side, and those of G2 are mostly on the lower side in Figure 3.4b, thereby indicating a

correspondence between s and power. Nevertheless, it is not completely reliable. For

example, (i) the delay numbers for G1 and G2 are very much spread, (ii) a cluster can

be observed where the solutions from G1 and G2 are mixed up in Figure 3.4b, and (iii)

several solutions of G1 are better than several solutions of G2 in power, which is not

in accordance with the metrics at the prefix adder architecture stage. So we can not

utterly rely on architectural solution space to achieve the optimal output in physical

solution space.

However, since our algorithm generates hundreds of thousands of prefix graph

structures, it is intractable to run the synthesis and physical design flows for even a

small percentage of all available prefix adder architectures. To address this fidelity

gap between the two design stages and the high computational cost together, we come

up with a novel machine learning guided design space exploration as a replacement of

exhaustive search.

3.2.2 Feature Selection

The feature is a representation which is extracted from the original input representation,

and it plays an important role in machine learning tasks. We now discuss the features to

be used for the learning model. Features are considered from both prefix adder structure

and tool settings, with a focus on the former. We select node size and maximum-fan-

out (mfo) of a prefix adder as two main features for our learning model. However, for

any given mfo and node size, there will be hundreds or even thousands of different
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prefix architectures. Therefore, additional features are required to better distinguish

individual prefix adder attributes. We define a parameter sum-path-fan-out (spfo) for

this. Let a and b are the fan-in nodes of a node n, then spfo(n) is defined recursively

as:

spfo(n) =


0, if n ∈ input,

sum(fo(a) + spfo(a),

fo(b) + spfo(b)), otherwise.

(3.9)

Here fo(n) denotes the fan-out of any node n. Consider the prefix adder structure

in Figure 3.6, and according to the definition we have:

spfo(o1) = sum(fo(i0) + spfo(i0), fo(i1) + spfo(i1))

= sum(1, 1) = 2,

spfo(b1) = sum(fo(i2) + spfo(i2), fo(i3) + spfo(i3))

= sum(2, 1) = 3,

spfo(b2) = sum(fo(i4) + spfo(i4), fo(i5) + spfo(i5))

= sum(2, 1) = 3.

Therefore, we can use the recursive definition to calculate

spfo(o3) = sum(fo(o1) + spfo(o1), fo(b1) + spfo(b1))

= sum(3 + 2, 2 + 3) = 10,

spfo(o5) = sum(fo(o3) + spfo(o3), fo(b2) + spfo(b2))

= sum(3 + 10, 3 + 3) = 19.
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In our methodology, we use the spfo of the output nodes which are at log2 n level

(there are 32 nodes at level 6 for 64 bit adder) as the features to characterize the prefix

structures, in addition to mfo, size and target delay. The basic intuition for selecting

spfo of the output nodes as the features is that the critical path delay of the adder

is the longest path delay from input to output. So it depends on the (i) path-lengths,

which can be represented at the prefix graph stage by the logic level of the node, and

(ii) the number of fan-outs driven at every node on the path. Note that we have skipped

the spfo of the output nodes which are not at log2 n level as for those nodes, the path

length is smaller, and those would not potentially dictate the critical path delay.

Apart from these prefix graph structural features, we also consider tool settings from

the synthesis stage and physical design stage as other features. We have synthesized the

adder structures using industry-standard EDA synthesis tool [116], where we can specify

the target-delay for the adder. The tool then adopts different strategies internally to

meet that target-delay which we can hardly take into account during prefix graph

synthesis. Consequently, changing target-delay can lead to different power/timing/area

metrics. So we have considered target-delay as a feature in our learning approach.

In physical design, utilization is an important parameter, which defines the area

occupied by standard cell, macros, and blockages. Different utilization values can lead

to different layouts after physical design. Therefore, we take utilization as another

feature in the learning model.

In addition to the target delay and utilization, other tool settings have also been

explored. The optimization level setting in logical synthesis has a potential impact

on the performance of adders, which can be adjusted by compile and compile_ultra

commands with different options. After synthesizing, it is observed that the solutions
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generated with compile_ultra can significantly dominate the solutions generated by

compile. Therefore, this setting is fixed to compile_ultra level as we are aiming at

superior designs.

In this work, the technology node is not used as a feature. From the machine

learning perspective, there is a common assumption for conventional machine learning

applications that the training and test data are drawn from the same feature space

and the same distribution [90]. The values of area/power/delay may vary a lot un-

der different technology nodes, which results in different underlying data distributions.

Therefore, the technology node for synthesis should be consistent. The proposed ap-

proach for feature extraction can also be applied to other technology nodes as long as

the technology node is consistent during the design flow. If the technology node of the

testing data switches to another one, the machine learning model should be re-trained

using the data from that technology node to ensure the accuracy of the model.

3.2.3 Data Sampling

Since we can not afford to run the physical design flow for too many architectures, and

too few training data may degrade the model accuracy significantly, a set of adders need

to be selected to represent the entire design solution space. However, finding a succinct

set of representative training data for traditional supervised learning is difficult. In

order to tackle this difficulty, we come up with two learning approaches in the next

two sections. The first one is the passive supervised learning where a quasi-random

data sampling is performed to obtain the training data, followed by multi-objective

scalarization to achieve Pareto optimal solutions. The second one is the active learning

approach where model training is integrated into finding Pareto-optimal frontiers of the
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design space.

3.3 α-sweep learning

In this section we propose a pareto-frontier exploration flow which is based on support

vector machine. The overall flow of our α-sweep supervised learning-based Pareto-

frontier exploration is presented in Figure 3.7.

3.3.1 Scalarization to the Single-Objective

In this work, supervised learning is preferred over unsupervised learning since super-

vised learning has a substantial advantage over unsupervised learning for our problem.

In particular, supervised learning allows to take advantage of the golden result, i.e., the

true area/power/delay, generated by the synthesis tools for each design, instead of just

letting the algorithm work out for itself what the classes should be. In general, super-

vised learning usually outperforms the unsupervised learning for this kind of regression

and classification tasks.

Before applying machine learning for exploring the Pareto frontier, we first validate

the effectiveness of the features we extract by building regression models for single

metric prediction. For learning models, we explored (i) several supervised learning

techniques, such as linear regression, Lasso/Ridge, Bayesian ridge model and support

vector regression (SVR) with linear, polynomial and radial-basis-function (RBF) kernel,

and (ii) 36 features, including 4 primary features, size, mfo, target delay and utilization

(tool settings), and 32 secondary features for spfo. We observed that we could get an

R2 score above 0.95 for area and power even with primary features and linear models.
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Figure 3.7: Overall flow of α-sweep learning.
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However, we don’t get good scores for delays with only primary features. The best

model fitting for the delay is achieved with SVR (RBF kernel) with these 4 primary

and 32 secondary features. Since SVR with RBF kernel gives good MSE (mean-squared-

error) scores for all metrics, delay, area, and power, we have used this model throughout

for design space exploration.

The model experiments give us the following key insights: (i) tool setting can play

an important role in building the learning models in EDA. For instance, MSE scores

for area and power improve from 0.021 to 0.003, and 0.228 to 0.027 respectively when

we add the ‘target delay’ feature in our model building, (ii) secondary features play

an important role in improving model accuracy. For instance, when we include spfo

features in model building, the MSE score for delay improves from 0.200 to 0.170. (iii)

linear models are not sufficient for modeling delay. For instance, MSE scores of delay

improve from 0.214 to 0.170 when we go from linear models to SVR with RBF kernel,

with the same set of features.

The problem of exploring the Pareto frontier of rich prefix adder space can be

approached by first sampling a subset of prefix adder architectures, and generating the

power, area, delay numbers of each prefix adder by running through the logic synthesis

and physical design flow. Those known data set will be used as the training and testing

data for supervised machine learning guided model fitting. Once the model is fitted, we

can apply the exhaustive prefix adder architectures to this model and get the predicted

Pareto frontier solution set. This is due to the merit of much faster runtime for a

machine learning model in the prediction stage than running the entire VLSI CAD

flow.

However, the conventional machine learning problem aims at maximizing the pre-
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diction accuracy rather than exploring a Pareto frontier out of a solution set. Improving

the model accuracy does not necessarily improve the Pareto frontier and the direct use

of the fitted model for Pareto frontier exploration can even miss up to 60% Pareto

frontier points [10]. We therefore need a machine learning integrated Pareto frontier

exploration methodology, where the Pareto frontier selection does not rely only on the

model accuracy. So we develop a fast yet effective algorithmic methodology, enabled

by the regression model to explore the Pareto frontier of prefix adder solutions.

First, we consider two spaces for Pareto frontier exploration: the delay vs. area as

well as the delay vs. power. For either space, there exists a strong trade-off between the

two metrics. For delay vs. power space, we propose to use a joint output Power-Delay

function (PD) as the regression output rather than using any single output.

PD = α · Power +Delay. (3.10)

The rationale of using scalarization [119] or the linear summation of the power and

delay metrics is that such a linear relation provides a weighted bonding between the

power and the delay so that by changing the α value, the regression model will try to

minimize the prediction error on the more weighted axis hence leads to more accuracy

in that direction. In contrast, the other metric direction will be predicted with less

accuracy hence introducing some level of relaxations. It can be foreseen that changing

the α value can lead to different fitting accuracies of the regression model. By sweeping

α over a wide range from 0 to large positive values, each time the regression model will be

fitted to predict different best solutions which altogether form the Pareto frontier. We

call this approach α-sweep. Note that, the Power and Delay values in Equation (3.10)
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are normalized and scaled to the range between 0 and 1 by Equation (3.11).

x =
x−min(X)

max(X)−min(X)
, x ∈ X. (3.11)

Similarly, we have a joint output Area-Delay (AD) function for Pareto frontier

exploration on Area and Delay space.

AD = α · Area+Delay. (3.12)

This α-sweep technique can be extended to simultaneously consider power, perfor-

mance or delay, and area (PPA), using two scalars (α1 and α2) instead of one scalar

factor α. The joint output function for Pareto frontier exploration on the area – power

– delay space can be formulated as:

PPA = α1 · Area+ α2 · Power +Delay. (3.13)

The results of α-sweep for both two-dimensional space and three-dimensional space

are shown in the Section 3.5.

3.4 Pareto Active Learning

In our adder design problem, obtaining the true area/power/delay values or the labeled

data for each adder requires running logic synthesis and physical design flow, which is

often time-consuming if the amount of data is huge. Active learning is iterative super-

vised learning which is able to interactively query the data pool to obtain the desired

outputs at new data points. Since the samples are selected by the learning algorithm,
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the number of samples to fit a model can often be much lower than the number re-

quired in traditional supervised learning. Since an active sampling strategy is required

in active learning, an “uncertainty estimation” of the prediction is needed. Gaussian

Process (GP) can make predictions and, more importantly, provide the uncertainty

estimation of its predictions by nature. Therefore, in this work, we further propose a

Pareto active learning algorithm based on Gaussian Process regression.

3.4.1 Overall Flow

The overall flow of the Pareto active learning (PAL) is shown in Figure 3.8. Given all the

prefix adder structures, first, we extract the feature vector for each adder as introduced

in Section 3.2.2. The active learning starts with Gaussian Process regression which will

be illustrated later. Unlike the passive supervised learning in which all the features

and the corresponding labels are prepared in advance, the active learning derives the

labels of each training data during the learning process on-demand. To be specific, the

algorithm incrementally identifies the most representative instances along with their

features which are later fed into EDA synthesis flow (synthesis, placement, and routing)

for true area/power/delay numbers. Namely, the EDA synthesis flow and the learning

process are interleaving. As more and more designs being selected, the model gets more

and more accurate till convergence.

3.4.2 Gaussian Process Prediction

A Gaussian process is specified by its mean function and covariance function. A Pareto

active learning scheme based on Gaussian process regression is proposed in [27]. The

prior information is important to train the Gaussian Process model, which is a parame-
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Figure 3.8: Overall flow of Pareto active learning.

terized mean and covariance functions. Conventionally, the training process selects the

parameters in the light of training data such that the marginal likelihood is maximized.
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Then the Gaussian Process model can be obtained and the regression can proceed with

supervised input [18]. The ability of GP indicating prediction uncertainty reflects in

GP learner providing a Gaussian distribution N (m(x), σ(x)) of the values predicted for

any test input x by computing

m(x) = k(x,X)⊤(k(X,X) + σ2I)−1Y,

σ2(x) = k(x, x)− k(x,X)⊤(k(X,X) + σ2I)−1k(x,X),

(3.14)

where X is the training set, Y is the supervised information of trained set X. For

Gaussian Process regression, a prediction of a design objective consists of a mean and

a variance. The mean value m(x) represents the predicted value and the variance σ(x)

represents the uncertainty of the prediction.

3.4.3 Active Learning Algorithm

The ability of GP learners in quantifying prediction uncertainty enables a suitable

application for active learning. Basically, three sets are maintained during the PAL

process, including a set of Pareto-optimal designs (P ), non-Pareto-optimal designs (N)

and ‘unclassified’ designs (U).

The GP models with discrepant prior are applied to learn the objective functions

farea(x), fpower(x), fdelay(x). PAL calls GP inference to predict the mean vector m(x)

and the standard deviation vector σ(x) of all unsampled x in the design space based

on Equation (3.14). Unlike other regression models such as linear regression and sup-

port vector regression, whose outputs are in form of numerical or categorical results,

the output of GP is a distribution where uncertainties are involved. To capture the

prediction uncertainty for a design x, a hyper-rectangle is defined as
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HR(x) = {y : mi(x)− β
1
2σi(x) ≤ yi ≤ mi(x) + β

1
2σi(x)},

where i ∈ {1, 2, 3}, corresponding to area, power and delay metrics in physical space.

β is a user-defined parameter which determines the impact of σi(x) on the region. In

our implementation, β is set to 16 based on the analysis in [27, 120].

As shown in Figure 3.8, the PAL algorithm is an iterative process. A few new

points are selected in each iteration, and the GP model is retrained with new training

set. Note that the model is supposed to be more and more accurate as more data being

sampled. Therefore, the uncertainty region should be smaller and smaller. In order to

ensure the non-increasing monotonicity of the uncertainty region while sampling and

incorporating the previous evaluations, the uncertainty region of x in the (t + 1)-th

iteration is defined as

Rt+1(x) = Rt(x) ∩HR(x), (3.15)

where the initial R0 = Rn which is the entire objective space.

The numbers of designs in Pareto-optimal set P and non-Pareto-optimal set N are

non decreasing as iteration t increments. Thus, at iteration t, the points in P and

N keep their classification. Intuitively, if one wants to compare the predicted perfor-

mance of two designs, two extreme cases, i.e., optimistic prediction min(Rt(x)) and

the pessimistic prediction max(Rt(x)) of each design, can be applied. If the optimistic

prediction of design x is dominated by the pessimistic prediction of other design x′,

then x is classified as non-Pareto-optimal; And if the pessimistic prediction of design x

is not dominated by optimistic prediction of any other design x′, then x is classified as

Pareto-optimal; A design will remain unclassified if neither condition holds. Figure 3.9
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Figure 3.9: An example of classification.

is presented here as an example.

In the implementation, an error tolerance δ with value 0.001 is applied during clas-

sification. The rules for classification can be represented as follows.

x ∈


P, if max(Rt(x)) ≤ min(Rt(x′)) + δ,

N, if max(Rt(x′)) ≤ min(Rt(x)) + δ,

U, otherwise.

(3.16)

After classification in each iteration, a new adder design with the largest length

of the diagonal of its uncertainty region R(x) is selected for sampling. The value is

attached to x as

wt(x) = max
y,y′∈Rt(x)

||y− y′||2. (3.17)

Intuitively, Equation (3.17) picks the points which are most worth exploring. After-

ward, these designs are going through EDA flow to get the real area, power, and delay

numbers, and the GP model will hence be improved with those feedback results.

The entire process is presented in Algorithm 1. It starts with the initialization
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Algorithm 1 Active Learning for Pareto-frontier Exploration
Require: Adder architectural design space E, GP prior, maximum iteration number

Tmax;
Ensure: predicted Pareto-optimal set P̂ ;

1: P ← ∅, N ← ∅, U ← E;
2: Randomly select a small subset X = {xi} of E;
3: Get true values Y = {yi|yi = EDAFlow(xi)};
4: S ← X;
5: R0(x)← Rn, ∀x ∈ E;
6: t← 0;
7: while U ̸= ∅ and t < Tmax do
8: Building GP model with {(xi, yi) : ∀xi ∈ S};
9: Obtain Rt(x), ∀x ∈ E;

10: for all x ∈ U do
11: if x is Pareto-optimal based on Equation (3.16) then
12: P.add(x), U.delete(x);
13: else if x is non-Pareto-optimal based on Equation (3.16) then
14: N.add(x), U.delete(x);
15: end if
16: end for
17: Obtain wt(x), ∀x ∈ (U ∪ P ) \ S;
18: Choose x′ ← argmax{wt(x)};
19: S ← S ∪ x′;
20: t← t+ 1;
21: Obtain new data (x′, y′) by running EDA flow;
22: end while
23: P̂ ← P ;

(lines 1–6). In each iteration, the GP model is trained with the current training set S,

and the uncertainty region for each design is obtained (lines 8–9). Then the designs in

the U set are classified based on uncertainty regions and classification rules (lines 10–16).

After that, the design with the largest uncertainty is sampled and the sampling set S is

updated (lines 17–19). The newly sampled design is fed into synthesis tools to get the

label which is used for training GP model in the next iteration (line 21). The learning

process stops after all adder designs in architectural design space are classified. The
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prediction is P̂ = P (line 23). Suppose Tmax is the maximum number of iterations, and

|E| is the size of solution set, then the complexity of Algorithm 1 is at most O(Tmax|E|),

as maximum size of U can be |E|. However, it should be stressed that although there

are Tmax|E| operations for PAL algorithm, the cost of each operation (which is a simple

inference based on the Gaussian Process Regression model) is negligible in comparison

to EDA synthesis flow run-time, and we will demonstrate later in Table 3.3 that the

total run-time of different approaches are dictated by the number of EDA synthesis

flow runs needed in the respective approaches.

3.5 Experimental Results

In this section we show the effectiveness of the proposed algorithms and methodologies.

First we compare the physical solution space before/after applying PGG algorithm.

Then the Pareto frontier obtained by α-sweep is presented. Next, we demonstrate the

Pareto frontier obtained by active learning, and compare the quality of Pareto frontiers

generated by two approaches. Finally, we compare our explored optimal adders against

legacy adders.

Since high performance adders are commonly used in CPU architectures which are

typically 64 bit, we have mainly presented the results for 64 bit adders to demonstrate

the methodology. However, the approach is very general to be used for adders of

arbitrary bit-width. The flow is implemented in C++ and Python on Linux machine

with 72GB RAM and 2.8GHz CPU. We use Design Compiler [116] (version F-2011.09-

SP3) for logical synthesis, and IC Compiler [117] (version J-2014.09-SP5-3) for the

placement and routing. "tt1p05v125c" corner and Non Linear Delay Model (NLDM)

in 32nm SAED cell-library for LVT class [118] (available by University Program) is
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used for technology mapping. Primary input activity of 0.1 is used along with 1GHz

operating frequency for power estimation. Regarding the tool settings, target delays of

0.1ns, 0.2ns, 0.3ns and 0.4ns are used. Utilization values are set to 0.5, 0.6, 0.7 and 0.8.

We used Python based machine learning package scikit-learn [121] for the predictions.

Throughout our all experiments, the run time for machine learning predictions is less

than a minute.

We relied more on the fidelity of the SAED library rather than accuracy considering

that SAED library may not be very realistic as that used in industry. For instance,

the FO4 delay for a unit sized inverter for this library in the operating corner is 36ps

[1, 122]. So 11 FO4 delay, typically being presented to be the delay for 64-bit adders

in literatures [123], is approximately 400ps which is close to the reported delays for

64-bit adders in our work. To further demonstrate the fidelity of this library, we run

the Kogge-Stone adders with bit-widths of 8, 16, 32, 64, 128 and 256 through the

synthesis flow using this library. Then we normalize the measured delay in terms of

FO4 delay, and plot it with bit-width (n) as shown in Figure 3.10. It can be seen that

the delay is linear with log2 n, which is expected for a logarithmic tree adder such as

Kogge-Stone adder. So we believe if this algorithmic methodology is applied to more

realistic industrial libraries, it can show similar benefit as demonstrated with SAED

32nm library.

To validate the optimality and the hypervolume error of the two learning approaches

against the real world solution space, we need to run the logical/physical EDA flow on

a large set of adder solutions. Our machine and tool set takes about 5.5 minutes to

complete this full flow of a single prefix adder. Therefore, we select a reasonable number

(3000) of prefix adder solutions, which eventually took about 300 hours to complete, but
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Figure 3.10: Delay values (× FO4 delay) of Kogge-Stone adders with various bit-width.

still a comparatively larger data set in comparison to our training data set. Crucially,

those 3000 adders are also sampled in a Quasi-random manner in order to represent

the entire solution space.

3.5.1 Pareto Frontier Predicted by α-sweep Learning

In this experiment, we show the effectiveness of our α-sweep learning approach. We

apply the α-sweep method with 15 different α values of (1000, 0, 100, 1
100

, 50, 1
50
, 20,

1
20
, 10, 1

10
, 8, 1

8
, 2, 1

2
, 1), and collect the best 150 solutions for delay-area and delay-power

spaces where for each α value, the best 10 architectures with lowest PD or AD values

are fed into the logical/physical EDA flow to generate similar Pareto points. Note that

15 + 15 = 30 learning models have been derived for this for all, but it is very fast as

the same training data have been used, and the models are regression based.

Figure 3.11a and Figure 3.11b respectively show the corresponding Pareto frontiers

of the α-sweep approach and the ground truth Pareto frontiers for the 3000 represen-

tative adders. Each dot in the delay-area or delay-power space indicates one adder
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Figure 3.11: Pareto Frontier: (a) area vs. delay; (b) power vs. delay.

solution after going through the logical/physical EDA flow. We can see that generally

the predicted Pareto frontier solutions are fairly close to the real Pareto frontier, with

some exceptions. Overall, the proposed approach can effectively achieve near optimal

Pareto frontier without affording to spend expensive runtime on every adder. So this

45



Table 3.1: Comparison of different model accuracies

Model MSE Hypervolume error
Area Power Delay Area-Delay Power-Delay Area-Power-Delay

Original 0.003 0.027 0.170 0.139 0.122 0.154
Noisy 0.024 0.951 0.711 0.168 0.148 0.162

Table 3.2: Pareto frontiers for PAL vs. α-sweep [8]

Objective Hypervolume error PAL α-sweep [8]

Area-Delay average 0.100 0.139
best 0.044 0.093

Power-Delay average 0.109 0.122
best 0.075 0.076

Area-Power-Delay average 0.056 0.154
best 0.039 0.125

Notes: All hypervolume error above are collected from 1000 repeated experiments.

learning based methodology can be readily adopted to achieve Pareto frontiers for much

larger solution space which is intractable for exhaustive exploration by conventional de-

sign flow.

We have conducted additional experiments to show the impacts of the low accuracy

of the machine learning model. The basic idea is to inject random noise in the prediction

stage, i.e., additional Gaussian noise is added into the predicted value. The accuracy

will be lower than original results. Then we explore the Pareto frontier based on the

noisy prediction. Generally, the quality of the final Pareto frontier is worse than original

model. The comparison of Pareto frontier quality is presented in Table 3.1.
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3.5.2 Comparison of the Quality of Pareto-Frontier between

PAL and α-sweep

We implement PAL to predict Pareto-optimal designs in both two-dimensional design

spaces which are area-delay space and power-delay space, as well as three-dimensional

space which is area-power-delay space. The results are compared with those of [8].

The initial input set for both area-delay and power-delay is of size 250, which are

randomly selected from the exhaustive design space. The curves of Pareto frontiers

for two-dimensional spaces are shown in Figure 3.11. The hypervolume of area-delay

Pareto frontiers are calculated with reference point (max(delay), max(area)). Similarly,

The hypervolume of power-delay Pareto frontiers are calculated with reference point

(max(delay), max(power)). Note that the unit for delay is nanosecond (ns) when

calculating the hypervolume. It should be stressed that there is a sort of randomness in

both α-sweep and PAL algorithm. For α-sweep, the training set is selected randomly.

On the contrary, the initial set in PAL is randomly selected (line 2), thereby may result

in different outputs. So the experiments are conducted for 1000 times such that the

general performance is reflected. The comparison between two approaches are shown

in Table 3.2. Comparing the hypervolume error of Pareto frontier obtained by PAL

and α-sweep, it can be seen that PAL achieves better performance in predicting Pareto

frontier in all design spaces, including area-delay, power-delay, and area-power-delay

spaces.

47



Table 3.3: Comparison of runtime with single machine among different approaches

Method #INIT #AS #VERI #Total Runtime (mins)
EDA Modeling Total

Exhaustive 10000 - - 10000 55000.0 - 55000.0
α-sweep 2500 - 150 2650 14575.0 20.0 14595.0

PAL 700 10 290 1000 5500.0 2.0 5502.0
Notes: The designs in “#INIT” and “#VERI” can be synthesized in parallel. The number
of designs in each category is collected from 1000 repeated experiments.

3.5.3 Runtime Comparisons among Exhaustive Approach, α-

sweep and PAL

There are three factors that will affect the runtime: (i) the total number of EDA

synthesis runs required; (ii) Among all these required EDA synthesis runs how many of

them can be parallelized; (3) The runtime of the training process in machine learning

model. All these details are recorded in Table 3.3. The ‘INIT’ represents the set of

training data in the α-sweep and the initial set in PAL, which can be parallelized

because all the points are obtained in advance. The ‘AS’ represents the set of designs

which are actively sampled during the learning process, which cannot be parallelized.

The α-sweep approach does not involve active sampling, so the ‘AS’ set is none here.

The ‘VERI’ represents the set of designs which are predicted to be Pareto-optimal. We

should run EDA synthesis flow to get the real PPA values of these designs to extract

the Pareto-frontier. This set of designs are obtained after the learning process stops,

so the EDA synthesis runs on these designs are also conducted offline, which can be

parallelized. Each EDA synthesis run takes about 5.5 minutes.

Then we can compare the total runtime of different exploration methodologies.

For exhaustive exploration, all the prefix adders should be fed into EDA tools for

synthesizing to obtain the value of each metric, which is extremely time-consuming.
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There is no training, additional sampling, verification. The total runtime cost involves

EDA flows of all the designs in the design space. The Pareto frontier can be extracted

from the results, whose runtime is much less than synthesizing and can be neglected.

The total runtime is

Texh =
5.5×#INIT
#Machines . (3.18)

Since the entire solution space is so huge that one can hardly run all of them, in our

experiment, we sample representative 10K designs by random sampling. The total

runtime of synthesizing is about 55000 minutes with single machine. It should be noted

that the entire solution space is much more than 10K.

In the exploration by α-sweep, not all adders in the design space are needed for

synthesizing. The total runtime is

Tα =
5.5× (#INIT + #VERI)

#Machines + Modeling time. (3.19)

In our experiment, we select 2500 of the designs out of those 10K designs by random

sampling to build the model, including training and testing phases. It takes about 1.5

minutes to build the model and make predictions. When exploring in area-power-delay

design space, 150 designs on average in the design space are predicted to be Pareto-

optimal. So on average 2650 designs are needed. The runtime for synthesizing is 14575

minutes. Note that in terms of learning models, the α-sweep method needs to build

15× 15 = 225 models since α1 and α2 both have 15 values to choose from.
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Similarly, the runtime of PAL can be calculated by

TPAL =
5.5× (#INIT + #VERI)

#Machines + 5.5×#AS

+ Modeling time. (3.20)

The size of initial set is fixed, which is 700. It takes about 4 minutes to build the model

and make predictions during the PAL process. When exploring the Pareto-optimal

designs in area-power-delay space, 10 designs on average are sampled during PAL. 290

designs on average in the design space are predicted to be Pareto-optimal. In total,

1000 designs are needed on average. The runtime is 5500 minutes with single machine.

PAL algorithm needs to build N models where N is the number of iterations in PAL.

In our implementation, the maximum iteration is set to 20. It can be observed that the

active learning approach outperforms the α-sweep learning in terms of both the quality

of Pareto frontier and the number of EDA flow runs.

Note that all the runtime calculations are based on single machine. However, the

EDA synthesis runs in all three flows can be distributed to multiple machines if avail-

able, except the adders sampled during active learning, which (10 on average in our

experiments) is very less in comparison to the total number of the synthesis runs. So

PAL can get a significant speedup over α-sweep and exhaustive approach with single

machine and multiple machines.

3.5.4 Different Sampling Strategies in PAL

In the sampling stage of PAL, the number of instances to be sampled has impact on

the runtime since the EDA flow is required to obtain the real value for area, power and
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Figure 3.12: Comparison of runtime with different number of machines.

delay. The less instances we sample in each iteration, the more iterations are needed to

ensure the PAL process converge, which is more likely to result in less samples in total.

The more instances we sample in each iteration, the less iterations are needed. However,

the total number of sampled instances would be large. In practice, the runtime cost of

running EDA flow can be reduced by parallel execution if there are multiple licenses

available. In this section, we explore the effect of different sampling strategies in terms

of the total runtime and the quality of Pareto frontier in practical scenarios.

The results for different sampling strategies are listed in Figure 3.13. Since the EDA

flow for synthesis, placement and routing takes up the most significant part of the total

runtime cost, the key factor is the number of adders which needs to be through EDA

tool flow. If we have multiple machines available for the EDA tool flow, the runtime

is determined by the total number of iterations as long as the number of samples does

not exceed the number of machines. From the result, it can be seen that we can obtain

the Pareto-frontier with comparable quality, using less runtime.
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Figure 3.13: Comparison among different number of samples per iteration.
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Note that when the sample size increases from 1 to 5, the average hypervolume error

increases from 0.056 to about 0.070, which is still less than 0.154 (average hypervolume

error achieved in α-sweep approach). Therefore, batch sampling can not only take care

of parallel synthesizing but also achieve better quality for Pareto frontier than α-sweep,

which can also show the advantages of the PAL.

3.5.5 PPA Comparison

Finally, we compare our explored adders against DesignWare adders, legacy adders,

such as Kogge-Stone, Sklansky, as well as a state-of-the-art adder synthesis algorithm

in Table 3.4. Since our approach generates numerous solutions, it is not feasible to

perform a one-to-one comparison. Instead for each of the solution points in regular

adders and [124], we have picked the Pareto points from our solution set which are

able to excel them in all metrics. For instance, P1 could provide around 8ps better

delay with respectively 14% and 12% lesser area and power over Kogge-Stone adder.

The DesignWare adders are synthesized from behavioral description of adder (Y = A

+ B) with the 16 configurations of tool settings (Combination of 4 target delay and

4 utilization values). We pick the one with best delay, denoted by “DesignWare” in

Table 3.4. The same pareto point P1 dominates that solution by providing around

7.5ps better delay, 14% lesser area, and 15% lesser energy. For [124] we pick the best

delay solution. Note for a fixed mfo, [124] can give prefix network with smaller size,

but this approach only provides a limited set of prefix structures. As a result, it is

hard for [124] to explore the full physical design space of adders by machine learning.

It should be stressed that [124] beats the custom adders implemented in an industrial

design, and our methodology is able to excel the adders generated by the algorithm
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Table 3.4: Comparison with other approaches for 64 bit adders

Method Delay (ps) Area (µm2) Energy (fJ/op)
DesignWare 346.5 2531.3 8160
Ours (P1) 339.0 2180.8 6930

Kogge-Stone 347.9 2563.7 8780
Ours (P1) 339.0 2180.8 6930
Sklansky 356.1 1792.5 6100

Ours (P2) 353.0 1753.0 5900
[124] 348.7 1971.4 6980

Ours (P3) 343.0 1912.6 6390

presented in [124].

3.6 Summary

In this chapter, a novel methodology of machine learning guided design space explo-

ration for high-performance prefix adders is presented. We have successfully demon-

strated the effectiveness of our learning models, developed by training with quasi-

random sampled data and features encapsulating architectural and tool attributes.

Moreover, an active learning approach is applied to ease the demand of labeled data and

achieves even better Pareto frontier, and provide a remarkable performance vs. power

vs. area Pareto frontier over a large representative solution space. To the best of our

knowledge, this is the first work to bridge the gap between architectural and physical

solution space for parallel prefix adders.
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Chapter 4

Graph Learning for Testability

Analysis

Graphs play a vital role in EDA since they are natural representations for fundamental

objects such as netlists and layout. Many problems have previously been solved using

graph processing, such as partitioning [125], layer assignment [126], multiple patterning

layout decomposition [50, 53] and testability analysis [127]. However, there are few DL-

based solutions proposed for graph-based problems in EDA [128]. One reason is that

it is not straightforward to generalize CNNs from processing regular grid-based data

input to processing graphs. Recently, a number of studies from the DL community have

shown how to adopt learning models on graphs, most notably the graph convolutional

network (GCN) approach [129, 2, 47]. As shown in the example in Figure 4.1, the

essential idea is to obtain an embedding for each node by aggregating information from

a node’s local neighborhood iteratively such that the node attributes and structural

information are encoded. The embeddings can then be leveraged as features in the

machine learning tasks.
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Figure 4.1: Network for node embedding and classification. Layer 1 and Layer 2 gen-
erate node embeddings. Nodes are classified through fully-connected (FC) layers.

Circuits testing is a fundamental problem in the design flow, which aims to test

each device within reasonable cost and to screen out the parts that may contain defects.

However, the difficulty and cost of testing increases as the technology node scales down,

which results in more and more defects can be missed and test quality degrades. The

reason is that circuits are designed only for functionality and few considerations are

given to test. Therefore, these problems lead to the development of design-for-testing

(DFT) techniques to improve the testability of circuit designs. Testability is used to

measure the effort or cost of testing a logic circuit. Analyzing the testability can help

to identify areas of poor testability, and hence can guide to improve the testability.

In this chapter, a high-performance GCN model is proposed for tackling EDA prob-

lems with inputs structured as graphs. With a netlist represented as a graph, the GCN

model can generate the embedding for each node automatically using the aggregators

and encoders, considering both node attributes and graph structural information. By

selecting the aggregators properly and leveraging efficient GPU computation, the GCN

model is scalable to process a graph containing millions of nodes and edges efficiently.

The proposed GCN model is applied to testability analysis for improving circuits testa-

bility, which is cast as an imbalanced classification problem and an observation point
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insertion problem. The proposed GCN model provides fast and accurate prediction,

and iteratively inserts observation points to improve testability effectively. The main

contributions are summarized as follows:

• A methodology using GCNs for netlist representation and modeling is proposed.

• A parallel training scheme with multiple GPUs and a fast inference scheme are

presented for efficient GCN training and inference, which can scale to millions of

standard cells.

• A GCN classifier is trained to predict observation point candidates in a netlist,

and the proposed GCN classifier is integrated in an iterative observation point

insertion process.

• Experimental results indicate the GCN outperforms conventional machine learn-

ing models in terms of classification accuracy, and the proposed flow can achieve

superior testability results to conventional testability analysis tool on industrial

designs.

The rest of this chapter is organized as follows. In Section 4.1, preliminary material

about test point insertion is introduced. The proposed GCN model is presented in

Section 4.2. Section 4.3 describes how to integrate the GCN classifier to observation

points insertion flow. The experimental results are reported in Section 4.4.
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Figure 4.2: (a) Original circuit. Module 1 is unobservable. Module 2 is uncontrollable;
(b) Insert test points to the circuit. Set (CP1, CP2) to (0, 1) and (1, 1) will set line I
to 0 and 1, respectively; Set CP2 to 0 is the normal operation mode.

4.1 Preliminaries

4.1.1 Test Points Insertion

Test point insertion (TPI) is a broadly used approach in DFT to modify a circuit and

improve its testability, which involves adding extra control points (CPs) or observation

points (OPs) to the circuit. An example of TPI is given in Figure 4.2. CPs can be used

for setting signal lines to desired logic values, while OPs are added as scan cells to make

a node observable. The ultimate goal of TPI is to achieve high fault coverage with less

performance degradation. The approach investigated in this chapter is generic and can

be applied to both CPs insertion and OPs insertion.

4.1.2 Problem Formulation

In this work, we focus on applying observation points insertion (OPI) to improve the

testability of a design. From the perspective of a machine learning model, finding the

location where the observation points should be inserted in a circuit can be cast as

a binary classification problem. For each gate in a design, the problem is whether to

add an observation point on the output port or not. If historical data on a sufficient
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number of designs can be obtained, a classifier can be trained and applied to other

designs. Considering that the netlist can be easily represented as graph, GCN is an

appropriate approach for this application.

Problem 1 (Observation Points Insertion) Given a set of netlists with all the

nodes labeled as either difficult-to-observe or easy-to-observe. The objective is to train

a classifier and adopt it to find a set of locations where the observation points should be

inserted, which can maximize fault coverage and minimize observation points number

and test pattern number.

4.2 GCN for Node Classification

4.2.1 Dataset Generation

A netlist is represented as a directed graph in which each node corresponds to a cell

and each edge is a wire. The source nodes and sink nodes correspond to primary

input and primary output, respectively. Each node has an attribute which is a four

dimensional feature vector [LL,C0, C1, O]. LL denotes logic level of the corresponding

gate. [C0, C1, O] are SCOAP measurements [130], which correspond to controllability-

0, controllability-1 and observability, respectively. Every node also has a binary label.

‘0’ (negative) means easy-to-observe and ‘1’ (positive) means difficult-to-observe. La-

bels can be obtained from commercial DFT tools. Given the graphs with node attributes

and node labels, a GCN model can be trained, which will be introduced later.
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4.2.2 Node Embedding Structures

To classify a node in the graph, the neural network first generates its node embedding

which is not only based on its own attributes but also the structural information of the

local neighborhood. Then, a classification model takes the node embedding as input

and predicts a label. To achieve this, three kinds of modules are included in our GCN

model, which are aggregator, encoder and classifier. Aggregators and encoders are used

to generate the node embeddings by exploiting node attributes and the neighborhood

information. The classifier predicts the label for each node in the graph based on its

embedding.

Next, we introduce how the node embedding is generated using aggregators and

encoders. Essentially, an aggregator or an encoder can be interpreted as a layer of

the GCN. Each of them performs a specific operation on the node. An aggregator

gathers the feature information from the node’s neighbors using an aggregation function

Agg(·). An encoder is applied to propagate information between different layers using

a weight matrix. The embedding computation process, i.e., aggregation and encoding,

is performed iteratively. Fully-connected layers are used as classifier which takes the

node embedding as input, and predicts the label for the node.

Suppose that the network is trained and all the weights are obtained. Given a graph

G(V , E) and node attributes {x(v) : ∀v ∈ V}, the node embeddings {e(v) : ∀v ∈ V}

are generated as in Algorithm 2. Since the node embedding is expected to aggregate

the information in local neighborhood, a depth D is specified to indicate the “radius”

of the neighborhood region of a node. The initial representation [LL,C0, C1, O] is

set as the node attributes (line 1). There are two loops involved. In each step of

the outer loop, the representation of each node is updated through aggregation and
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<latexit sha1_base64="GwNhdARjeSUjS0HEid7r0fNk3zQ=">AAAB+XicbZC7SgNBFIbPxluMt1VLm8FEsAq7aUwZsLGMYC6wWcLsZDYZMnth5mwgLHkTGwtFbH0TO9/GSbKFJv4w8PGfczhn/iCVQqPjfFulnd29/YPyYeXo+OT0zD6/6OokU4x3WCIT1Q+o5lLEvIMCJe+nitMokLwXTO+X9d6MKy2S+AnnKfcjOo5FKBhFYw1tu+a5ZIAi4pq4jaZfG9pVp+6sRLbBLaAKhdpD+2swSlgW8RiZpFp7rpOin1OFgkm+qAwyzVPKpnTMPYMxNav8fHX5gtwYZ0TCRJkXI1m5vydyGmk9jwLTGVGc6M3a0vyv5mUYNv1cxGmGPGbrRWEmCSZkGQMZCcUZyrkBypQwtxI2oYoyNGFVTAju5pe3oduou4YfG9VWo4ijDFdwDbfgwh204AHa0AEGM3iGV3izcuvFerc+1q0lq5i5hD+yPn8A0YCRww==</latexit><latexit sha1_base64="GwNhdARjeSUjS0HEid7r0fNk3zQ=">AAAB+XicbZC7SgNBFIbPxluMt1VLm8FEsAq7aUwZsLGMYC6wWcLsZDYZMnth5mwgLHkTGwtFbH0TO9/GSbKFJv4w8PGfczhn/iCVQqPjfFulnd29/YPyYeXo+OT0zD6/6OokU4x3WCIT1Q+o5lLEvIMCJe+nitMokLwXTO+X9d6MKy2S+AnnKfcjOo5FKBhFYw1tu+a5ZIAi4pq4jaZfG9pVp+6sRLbBLaAKhdpD+2swSlgW8RiZpFp7rpOin1OFgkm+qAwyzVPKpnTMPYMxNav8fHX5gtwYZ0TCRJkXI1m5vydyGmk9jwLTGVGc6M3a0vyv5mUYNv1cxGmGPGbrRWEmCSZkGQMZCcUZyrkBypQwtxI2oYoyNGFVTAju5pe3oduou4YfG9VWo4ijDFdwDbfgwh204AHa0AEGM3iGV3izcuvFerc+1q0lq5i5hD+yPn8A0YCRww==</latexit><latexit sha1_base64="GwNhdARjeSUjS0HEid7r0fNk3zQ=">AAAB+XicbZC7SgNBFIbPxluMt1VLm8FEsAq7aUwZsLGMYC6wWcLsZDYZMnth5mwgLHkTGwtFbH0TO9/GSbKFJv4w8PGfczhn/iCVQqPjfFulnd29/YPyYeXo+OT0zD6/6OokU4x3WCIT1Q+o5lLEvIMCJe+nitMokLwXTO+X9d6MKy2S+AnnKfcjOo5FKBhFYw1tu+a5ZIAi4pq4jaZfG9pVp+6sRLbBLaAKhdpD+2swSlgW8RiZpFp7rpOin1OFgkm+qAwyzVPKpnTMPYMxNav8fHX5gtwYZ0TCRJkXI1m5vydyGmk9jwLTGVGc6M3a0vyv5mUYNv1cxGmGPGbrRWEmCSZkGQMZCcUZyrkBypQwtxI2oYoyNGFVTAju5pe3oduou4YfG9VWo4ijDFdwDbfgwh204AHa0AEGM3iGV3izcuvFerc+1q0lq5i5hD+yPn8A0YCRww==</latexit><latexit sha1_base64="GwNhdARjeSUjS0HEid7r0fNk3zQ=">AAAB+XicbZC7SgNBFIbPxluMt1VLm8FEsAq7aUwZsLGMYC6wWcLsZDYZMnth5mwgLHkTGwtFbH0TO9/GSbKFJv4w8PGfczhn/iCVQqPjfFulnd29/YPyYeXo+OT0zD6/6OokU4x3WCIT1Q+o5lLEvIMCJe+nitMokLwXTO+X9d6MKy2S+AnnKfcjOo5FKBhFYw1tu+a5ZIAi4pq4jaZfG9pVp+6sRLbBLaAKhdpD+2swSlgW8RiZpFp7rpOin1OFgkm+qAwyzVPKpnTMPYMxNav8fHX5gtwYZ0TCRJkXI1m5vydyGmk9jwLTGVGc6M3a0vyv5mUYNv1cxGmGPGbrRWEmCSZkGQMZCcUZyrkBypQwtxI2oYoyNGFVTAju5pe3oduou4YfG9VWo4ijDFdwDbfgwh204AHa0AEGM3iGV3izcuvFerc+1q0lq5i5hD+yPn8A0YCRww==</latexit>

1 [1⇥ 64]
<latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit>

1 [1⇥ 64]
<latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit>

2 [1⇥ 64]
<latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit>

3 [1⇥ 64]
<latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit>

4 [1⇥ 64]
<latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit><latexit sha1_base64="f9szBjwYn0ydUMqNSBJnJA0gKjI=">AAAB+HicbZDLSgNBEEVr4ivGR0ZdumlMBFdhJoi6DLhxGcE8IBlCT6cnadLzoLtGiEO+xI0LRdz6Ke78GzvJLDTxQsPhVhVVff1ECo2O820VNja3tneKu6W9/YPDsn103NZxqhhvsVjGqutTzaWIeAsFSt5NFKehL3nHn9zO651HrrSIowecJtwL6SgSgWAUjTWwy9WeS/ooQq7J1aVXHdgVp+YsRNbBzaECuZoD+6s/jFka8giZpFr3XCdBL6MKBZN8VuqnmieUTeiI9wxG1GzyssXhM3JunCEJYmVehGTh/p7IaKj1NPRNZ0hxrFdrc/O/Wi/F4MbLRJSkyCO2XBSkkmBM5imQoVCcoZwaoEwJcythY6ooQ5NVyYTgrn55Hdr1mmv4vl5p1PM4inAKZ3ABLlxDA+6gCS1gkMIzvMKb9WS9WO/Wx7K1YOUzJ/BH1ucPXe+RiA==</latexit>

1 [1⇥ 4]
<latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit>

2 [1⇥ 4]
<latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit>

3 [1⇥ 4]
<latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit>

4 [1⇥ 4]
<latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit><latexit sha1_base64="Esc1wQglJvTU8pmXrR3WrZTvTbE=">AAAB9XicbZBNS8NAEIYnftb6VfXoZbEVPJWkCHosePFYwX5AGstmu22XbjZhd6KU0P/hxYMiXv0v3vw3btsctPWFhYd3ZpjZN0ykMOi6387a+sbm1nZhp7i7t39wWDo6bpk41Yw3WSxj3Qmp4VIo3kSBkncSzWkUSt4OxzezevuRayNidY+ThAcRHSoxEIyitR4qvke6KCJuyGVQ6ZXKbtWdi6yCl0MZcjV6pa9uP2ZpxBUySY3xPTfBIKMaBZN8WuymhieUjemQ+xYVtYuCbH71lJxbp08GsbZPIZm7vycyGhkziULbGVEcmeXazPyv5qc4uA4yoZIUuWKLRYNUEozJLALSF5ozlBMLlGlhbyVsRDVlaIMq2hC85S+vQqtW9Szf1cr1Wh5HAU7hDC7Agyuowy00oAkMNDzDK7w5T86L8+58LFrXnHzmBP7I+fwBa0WRFw==</latexit>

Encoding Encoding Encoding Encoding

1 2 3 4
[4⇥ 4]

<latexit sha1_base64="t0vBBJQHG1pyts/Wwe3QLMuVU1w=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmQkCXATcuI5gHTMbQ0+lJmvQ86K5RwpD/cONCEbf+izv/xk4yC0280HC4VUVVXz+RQqNtf1uFjc2t7Z3ibmlv/+DwqHx80tFxqhhvs1jGqudTzaWIeBsFSt5LFKehL3nXn9zM691HrrSIo3ucJtwL6SgSgWAUjfVQdRukjyLkmjS86qBcsWv2QmQdnBwqkKs1KH/1hzFLQx4hk1Rr17ET9DKqUDDJZ6V+qnlC2YSOuGswomaRly2unpEL4wxJECvzIiQL9/dERkOtp6FvOkOKY71am5v/1dwUg2svE1GSIo/YclGQSoIxmUdAhkJxhnJqgDIlzK2EjamiDE1QJROCs/rldejUa47hu3qlWc/jKMIZnMMlOHAFTbiFFrSBgYJneIU368l6sd6tj2VrwcpnTuGPrM8fb/KRGg==</latexit><latexit sha1_base64="t0vBBJQHG1pyts/Wwe3QLMuVU1w=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmQkCXATcuI5gHTMbQ0+lJmvQ86K5RwpD/cONCEbf+izv/xk4yC0280HC4VUVVXz+RQqNtf1uFjc2t7Z3ibmlv/+DwqHx80tFxqhhvs1jGqudTzaWIeBsFSt5LFKehL3nXn9zM691HrrSIo3ucJtwL6SgSgWAUjfVQdRukjyLkmjS86qBcsWv2QmQdnBwqkKs1KH/1hzFLQx4hk1Rr17ET9DKqUDDJZ6V+qnlC2YSOuGswomaRly2unpEL4wxJECvzIiQL9/dERkOtp6FvOkOKY71am5v/1dwUg2svE1GSIo/YclGQSoIxmUdAhkJxhnJqgDIlzK2EjamiDE1QJROCs/rldejUa47hu3qlWc/jKMIZnMMlOHAFTbiFFrSBgYJneIU368l6sd6tj2VrwcpnTuGPrM8fb/KRGg==</latexit><latexit sha1_base64="t0vBBJQHG1pyts/Wwe3QLMuVU1w=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmQkCXATcuI5gHTMbQ0+lJmvQ86K5RwpD/cONCEbf+izv/xk4yC0280HC4VUVVXz+RQqNtf1uFjc2t7Z3ibmlv/+DwqHx80tFxqhhvs1jGqudTzaWIeBsFSt5LFKehL3nXn9zM691HrrSIo3ucJtwL6SgSgWAUjfVQdRukjyLkmjS86qBcsWv2QmQdnBwqkKs1KH/1hzFLQx4hk1Rr17ET9DKqUDDJZ6V+qnlC2YSOuGswomaRly2unpEL4wxJECvzIiQL9/dERkOtp6FvOkOKY71am5v/1dwUg2svE1GSIo/YclGQSoIxmUdAhkJxhnJqgDIlzK2EjamiDE1QJROCs/rldejUa47hu3qlWc/jKMIZnMMlOHAFTbiFFrSBgYJneIU368l6sd6tj2VrwcpnTuGPrM8fb/KRGg==</latexit><latexit sha1_base64="t0vBBJQHG1pyts/Wwe3QLMuVU1w=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmQkCXATcuI5gHTMbQ0+lJmvQ86K5RwpD/cONCEbf+izv/xk4yC0280HC4VUVVXz+RQqNtf1uFjc2t7Z3ibmlv/+DwqHx80tFxqhhvs1jGqudTzaWIeBsFSt5LFKehL3nXn9zM691HrrSIo3ucJtwL6SgSgWAUjfVQdRukjyLkmjS86qBcsWv2QmQdnBwqkKs1KH/1hzFLQx4hk1Rr17ET9DKqUDDJZ6V+qnlC2YSOuGswomaRly2unpEL4wxJECvzIiQL9/dERkOtp6FvOkOKY71am5v/1dwUg2svE1GSIo/YclGQSoIxmUdAhkJxhnJqgDIlzK2EjamiDE1QJROCs/rldejUa47hu3qlWc/jKMIZnMMlOHAFTbiFFrSBgYJneIU368l6sd6tj2VrwcpnTuGPrM8fb/KRGg==</latexit>

1 2 5
[3⇥ 4]

<latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit>

1 3 6
[3⇥ 4]

<latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit><latexit sha1_base64="ZRWAUcQqUl4U4xlVrk2nk3hc1Vc=">AAAB9XicbZDLSgNBEEVr4ivGV9Slm8ZEcBVmoqDLgBuXEcwDJmPo6fQkTXoedNcoYch/uHGhiFv/xZ1/YyeZhSZeaDjcqqKqr59IodG2v63C2vrG5lZxu7Szu7d/UD48aus4VYy3WCxj1fWp5lJEvIUCJe8mitPQl7zjj29m9c4jV1rE0T1OEu6FdBiJQDCKxnqouhekhyLkmlx61X65YtfsucgqODlUIFezX/7qDWKWhjxCJqnWrmMn6GVUoWCST0u9VPOEsjEdctdgRM0iL5tfPSVnxhmQIFbmRUjm7u+JjIZaT0LfdIYUR3q5NjP/q7kpBtdeJqIkRR6xxaIglQRjMouADITiDOXEAGVKmFsJG1FFGZqgSiYEZ/nLq9Cu1xzDd/VKo57HUYQTOIVzcOAKGnALTWgBAwXP8Apv1pP1Yr1bH4vWgpXPHMMfWZ8/bmORGQ==</latexit>

1 4
[2⇥ 4]

<latexit sha1_base64="gz9sTuEnDC8pCyixZBfR1XQG1ko=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYCJ4CruLoMeAF48RzAM2a5idzCZDZh/M9CphyX948aCIV//Fm3/jJNmDJhY0FFXddHcFqRQabfvbWlvf2NzaLu2Ud/f2Dw4rR8dtnWSK8RZLZKK6AdVcipi3UKDk3VRxGgWSd4LxzczvPHKlRRLf4yTlfkSHsQgFo2ikh5rnkh6KiGty6df6lapdt+cgq8QpSBUKNPuVr94gYVnEY2SSau05dop+ThUKJvm03Ms0Tykb0yH3DI2pWeTn86un5NwoAxImylSMZK7+nshppPUkCkxnRHGkl72Z+J/nZRhe+7mI0wx5zBaLwkwSTMgsAjIQijOUE0MoU8LcStiIKsrQBFU2ITjLL6+Stlt37Lpz51YbbhFHCU7hDC7AgStowC00oQUMFDzDK7xZT9aL9W59LFrXrGLmBP7A+vwBbNKRGA==</latexit><latexit sha1_base64="gz9sTuEnDC8pCyixZBfR1XQG1ko=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYCJ4CruLoMeAF48RzAM2a5idzCZDZh/M9CphyX948aCIV//Fm3/jJNmDJhY0FFXddHcFqRQabfvbWlvf2NzaLu2Ud/f2Dw4rR8dtnWSK8RZLZKK6AdVcipi3UKDk3VRxGgWSd4LxzczvPHKlRRLf4yTlfkSHsQgFo2ikh5rnkh6KiGty6df6lapdt+cgq8QpSBUKNPuVr94gYVnEY2SSau05dop+ThUKJvm03Ms0Tykb0yH3DI2pWeTn86un5NwoAxImylSMZK7+nshppPUkCkxnRHGkl72Z+J/nZRhe+7mI0wx5zBaLwkwSTMgsAjIQijOUE0MoU8LcStiIKsrQBFU2ITjLL6+Stlt37Lpz51YbbhFHCU7hDC7AgStowC00oQUMFDzDK7xZT9aL9W59LFrXrGLmBP7A+vwBbNKRGA==</latexit><latexit sha1_base64="gz9sTuEnDC8pCyixZBfR1XQG1ko=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYCJ4CruLoMeAF48RzAM2a5idzCZDZh/M9CphyX948aCIV//Fm3/jJNmDJhY0FFXddHcFqRQabfvbWlvf2NzaLu2Ud/f2Dw4rR8dtnWSK8RZLZKK6AdVcipi3UKDk3VRxGgWSd4LxzczvPHKlRRLf4yTlfkSHsQgFo2ikh5rnkh6KiGty6df6lapdt+cgq8QpSBUKNPuVr94gYVnEY2SSau05dop+ThUKJvm03Ms0Tykb0yH3DI2pWeTn86un5NwoAxImylSMZK7+nshppPUkCkxnRHGkl72Z+J/nZRhe+7mI0wx5zBaLwkwSTMgsAjIQijOUE0MoU8LcStiIKsrQBFU2ITjLL6+Stlt37Lpz51YbbhFHCU7hDC7AgStowC00oQUMFDzDK7xZT9aL9W59LFrXrGLmBP7A+vwBbNKRGA==</latexit><latexit sha1_base64="gz9sTuEnDC8pCyixZBfR1XQG1ko=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYCJ4CruLoMeAF48RzAM2a5idzCZDZh/M9CphyX948aCIV//Fm3/jJNmDJhY0FFXddHcFqRQabfvbWlvf2NzaLu2Ud/f2Dw4rR8dtnWSK8RZLZKK6AdVcipi3UKDk3VRxGgWSd4LxzczvPHKlRRLf4yTlfkSHsQgFo2ikh5rnkh6KiGty6df6lapdt+cgq8QpSBUKNPuVr94gYVnEY2SSau05dop+ThUKJvm03Ms0Tykb0yH3DI2pWeTn86un5NwoAxImylSMZK7+nshppPUkCkxnRHGkl72Z+J/nZRhe+7mI0wx5zBaLwkwSTMgsAjIQijOUE0MoU8LcStiIKsrQBFU2ITjLL6+Stlt37Lpz51YbbhFHCU7hDC7AgStowC00oQUMFDzDK7xZT9aL9W59LFrXrGLmBP7A+vwBbNKRGA==</latexit>

Aggregation Aggregation Aggregation Aggregation

d = 2
<latexit sha1_base64="jpxVY4aTErt9hJMB0trgCd4dSrA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4ut4KkkvehFKHjxWMG2QhvKZrNpl242YXcilNAf4cWDIl79Pd78N27bHLT1hYWHd2bYmTdIpTDout9OaWNza3unvFvZ2z84PKoen3RNkmnGOyyRiX4MqOFSKN5BgZI/pprTOJC8F0xu5/XeE9dGJOoBpyn3YzpSIhKMorV69ZDckGZ9WK25DXchsg5eATUo1B5WvwZhwrKYK2SSGtP33BT9nGoUTPJZZZAZnlI2oSPet6hozI2fL9adkQvrhCRKtH0KycL9PZHT2JhpHNjOmOLYrNbm5n+1fobRtZ8LlWbIFVt+FGWSYELmt5NQaM5QTi1QpoXdlbAx1ZShTahiQ/BWT16HbrPhWb5v1lrNIo4ynME5XIIHV9CCO2hDBxhM4Ble4c1JnRfn3flYtpacYuYU/sj5/AEa744J</latexit><latexit sha1_base64="jpxVY4aTErt9hJMB0trgCd4dSrA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4ut4KkkvehFKHjxWMG2QhvKZrNpl242YXcilNAf4cWDIl79Pd78N27bHLT1hYWHd2bYmTdIpTDout9OaWNza3unvFvZ2z84PKoen3RNkmnGOyyRiX4MqOFSKN5BgZI/pprTOJC8F0xu5/XeE9dGJOoBpyn3YzpSIhKMorV69ZDckGZ9WK25DXchsg5eATUo1B5WvwZhwrKYK2SSGtP33BT9nGoUTPJZZZAZnlI2oSPet6hozI2fL9adkQvrhCRKtH0KycL9PZHT2JhpHNjOmOLYrNbm5n+1fobRtZ8LlWbIFVt+FGWSYELmt5NQaM5QTi1QpoXdlbAx1ZShTahiQ/BWT16HbrPhWb5v1lrNIo4ynME5XIIHV9CCO2hDBxhM4Ble4c1JnRfn3flYtpacYuYU/sj5/AEa744J</latexit><latexit sha1_base64="jpxVY4aTErt9hJMB0trgCd4dSrA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4ut4KkkvehFKHjxWMG2QhvKZrNpl242YXcilNAf4cWDIl79Pd78N27bHLT1hYWHd2bYmTdIpTDout9OaWNza3unvFvZ2z84PKoen3RNkmnGOyyRiX4MqOFSKN5BgZI/pprTOJC8F0xu5/XeE9dGJOoBpyn3YzpSIhKMorV69ZDckGZ9WK25DXchsg5eATUo1B5WvwZhwrKYK2SSGtP33BT9nGoUTPJZZZAZnlI2oSPet6hozI2fL9adkQvrhCRKtH0KycL9PZHT2JhpHNjOmOLYrNbm5n+1fobRtZ8LlWbIFVt+FGWSYELmt5NQaM5QTi1QpoXdlbAx1ZShTahiQ/BWT16HbrPhWb5v1lrNIo4ynME5XIIHV9CCO2hDBxhM4Ble4c1JnRfn3flYtpacYuYU/sj5/AEa744J</latexit><latexit sha1_base64="jpxVY4aTErt9hJMB0trgCd4dSrA=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4ut4KkkvehFKHjxWMG2QhvKZrNpl242YXcilNAf4cWDIl79Pd78N27bHLT1hYWHd2bYmTdIpTDout9OaWNza3unvFvZ2z84PKoen3RNkmnGOyyRiX4MqOFSKN5BgZI/pprTOJC8F0xu5/XeE9dGJOoBpyn3YzpSIhKMorV69ZDckGZ9WK25DXchsg5eATUo1B5WvwZhwrKYK2SSGtP33BT9nGoUTPJZZZAZnlI2oSPet6hozI2fL9adkQvrhCRKtH0KycL9PZHT2JhpHNjOmOLYrNbm5n+1fobRtZ8LlWbIFVt+FGWSYELmt5NQaM5QTi1QpoXdlbAx1ZShTahiQ/BWT16HbrPhWb5v1lrNIo4ynME5XIIHV9CCO2hDBxhM4Ble4c1JnRfn3flYtpacYuYU/sj5/AEa744J</latexit>

K2 = 128
<latexit sha1_base64="X6qJQxdJCNDB4/kqt0E4zH3odo8=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcFVmZmM3QsGN4KaCvUg7lEyaaUOTzJBkhDL0Kdy4UMStj+POtzFtZ6GtPwQ+/nMOOecPE860cd1vp7CxubW9U9wt7e0fHB6Vj0/aOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTm3m980SVZrF8MNOEBgKPJIsYwcZaj9W7gX/t+fXqoFxxa+5CaB28HCqQqzkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPYsSC6qDbLHwDF1YZ4iiWNknDVq4vycyLLSeitB2CmzGerU2N/+r9VIT1YOMySQ1VJLlR1HKkYnR/Ho0ZIoSw6cWMFHM7orIGCtMjM2oZEPwVk9eh7Zf8yzf+5WGn8dRhDM4h0vw4AoacAtNaAEBAc/wCm+Ocl6cd+dj2Vpw8plT+CPn8wdc846+</latexit><latexit sha1_base64="X6qJQxdJCNDB4/kqt0E4zH3odo8=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcFVmZmM3QsGN4KaCvUg7lEyaaUOTzJBkhDL0Kdy4UMStj+POtzFtZ6GtPwQ+/nMOOecPE860cd1vp7CxubW9U9wt7e0fHB6Vj0/aOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTm3m980SVZrF8MNOEBgKPJIsYwcZaj9W7gX/t+fXqoFxxa+5CaB28HCqQqzkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPYsSC6qDbLHwDF1YZ4iiWNknDVq4vycyLLSeitB2CmzGerU2N/+r9VIT1YOMySQ1VJLlR1HKkYnR/Ho0ZIoSw6cWMFHM7orIGCtMjM2oZEPwVk9eh7Zf8yzf+5WGn8dRhDM4h0vw4AoacAtNaAEBAc/wCm+Ocl6cd+dj2Vpw8plT+CPn8wdc846+</latexit><latexit sha1_base64="X6qJQxdJCNDB4/kqt0E4zH3odo8=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcFVmZmM3QsGN4KaCvUg7lEyaaUOTzJBkhDL0Kdy4UMStj+POtzFtZ6GtPwQ+/nMOOecPE860cd1vp7CxubW9U9wt7e0fHB6Vj0/aOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTm3m980SVZrF8MNOEBgKPJIsYwcZaj9W7gX/t+fXqoFxxa+5CaB28HCqQqzkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPYsSC6qDbLHwDF1YZ4iiWNknDVq4vycyLLSeitB2CmzGerU2N/+r9VIT1YOMySQ1VJLlR1HKkYnR/Ho0ZIoSw6cWMFHM7orIGCtMjM2oZEPwVk9eh7Zf8yzf+5WGn8dRhDM4h0vw4AoacAtNaAEBAc/wCm+Ocl6cd+dj2Vpw8plT+CPn8wdc846+</latexit><latexit sha1_base64="X6qJQxdJCNDB4/kqt0E4zH3odo8=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8FWcFVmZmM3QsGN4KaCvUg7lEyaaUOTzJBkhDL0Kdy4UMStj+POtzFtZ6GtPwQ+/nMOOecPE860cd1vp7CxubW9U9wt7e0fHB6Vj0/aOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTm3m980SVZrF8MNOEBgKPJIsYwcZaj9W7gX/t+fXqoFxxa+5CaB28HCqQqzkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPYsSC6qDbLHwDF1YZ4iiWNknDVq4vycyLLSeitB2CmzGerU2N/+r9VIT1YOMySQ1VJLlR1HKkYnR/Ho0ZIoSw6cWMFHM7orIGCtMjM2oZEPwVk9eh7Zf8yzf+5WGn8dRhDM4h0vw4AoacAtNaAEBAc/wCm+Ocl6cd+dj2Vpw8plT+CPn8wdc846+</latexit>

d = 1
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Figure 4.3: An illustration to compute the embedding for a node with D = 2. (a)
Graph; (b) Procedure to compute the embedding for node 1.
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encoding. More specifically, in the d-th iteration of the outer loop, every node first

aggregates information from its neighbors using aggregation function Agg(·) which takes

the representations of node v and its neighbors generated at (d − 1)-th iteration as

input, and generates a new representation for node v, denoted by g
(v)
d (line 4). We

use a weighted sum function as the aggregation function. Assume predecessors (PR)

and successors (SU) have different weights. The aggregation Agg(·) can be formulated

explicitly as:

g
(v)
d = e

(v)
d−1 + wpr ×

∑
u∈PR(v)

e
(u)
d−1 + wsu ×

∑
u∈SU(v)

e
(u)
d−1, (4.1)

where wpr and wsu are weights for predecessors and successors, respectively, and they

are the same in each step of outer loop. Next, a non-linear transformation is performed

to encode the aggregated representation using a weight matrix Wd ∈ RKd−1×Kd and an

activation function σ(·) (line 5). Kd is the dimension of the embedding after d-th step

and K0 is 4 which is the initial attribute dimension. A concrete example is shown in

Figure 4.3 which illustrates the procedure of computing node embedding with D = 2.

Essentially, after d iterations, the embedding of a node combines the information of its

d-hop neighborhood.

When maximum depth D is reached, the final embeddings are obtained and fed to

the fully-connected layers for classification. Parameters that need to be trained include

wpr, wsu, W1, . . . ,WD and parameters in FC layers. All the parameters in the network

can be trained end-to-end.

Different from other transductive approaches which cannot generalize to unseen

graphs [129, 46], the entire classification procedure for each node is only based on its

neighborhood information and the learned parameters and can be shared across different
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Algorithm 2 Node Embedding Computation
Require: Graph G(V , E); node attributes {x(v) : ∀v ∈ V}; Search depth D; non-linear

activation function σ(·); Weight matrices Wd of encoders Ed, d = 1, ..., D;
Ensure: Embedding of for each node e

(v)
D , ∀v ∈ V .

1: e
(v)
0 ← x(v), ∀v ∈ V ;

2: for d = 1, ..., D do
3: for all v ∈ V do
4: Compute g

(v)
d based on Equation (4.1); ▷ Aggregation

5: e
(v)
d ← σ(Wd · g(v)

d ); ▷ Encoding
6: end for
7: end for

Stage-1 Stage-2 Stage-3

Positive point
Negative point

Decision boundary

+
-

+- +-

Figure 4.4: An example of three-stage GCN classification.

graphs.

4.2.3 Multi-stage Classification

For a typical design, it is common to have many more negative nodes than positive

nodes, which is not desireable for training machine learning models. Training a single

classification model can lead to poor overall performance since significant bias would

be introduced towards the majority class. To tackle this imbalance issue, we developed

a multi-stage GCN for this problem. In each stage, a GCN is trained and only filters

out negative cases with high confidence, and passes the remaining nodes to the next

stage, which is illustrated in Figure 4.4. This is achieved by imposing a large weight
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on the positive nodes such that the penalty of misclassifying them would be large. In

this way, most positive points remain on the right side of the decision boundary until

negative points are substantially reduced. After a few stages, the remaining nodes

should become relatively balanced and a network can make the final predictions.

4.2.4 Efficient Training and Inference

4.2.4.1 Inference

Making the GCN model scalable to large graphs is a critical problem, especially be-

cause fast inference is desired. The computation shown in Algorithm 2 is an iterative

process. However, it would be inefficient since the neighborhoods of different nodes

may have overlap, thus there are many duplicated computations [2, 47]. Here we in-

troduce another approach to inference computation that enables our GCN to process

millions of nodes efficiently. The key idea is to leverage the adjacency matrix of the

graph, denoted by A ∈ RN×N . N is the total number of nodes in the graph. A matrix

Ed ∈ RN×Kd can also be obtained, in which the v-th row represents the embedding of

node v after the d-th iteration, i.e., Ed[v, :] = e
(v)
d . Take the graph in Figure 4.3a as an
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example. The weighted sum aggregation in iteration d is equivalent to Equation (4.2).

Gd = A ·Ed−1 =

1 2 3 4 5 6



1 1 w1 w1 w1 0 0

2 w2 1 0 0 w1 0

3 w2 0 1 0 0 w2

4 w2 0 0 1 0 0

5 0 w2 0 0 1 0

6 0 0 w1 0 0 1

×





e
(1)
d−1

e
(2)
d−1

e
(3)
d−1

e
(4)
d−1

e
(5)
d−1

e
(6)
d−1

(4.2)

Here A ∈ R6×6, Gd ∈ R6×Kd−1 , and the v-th row is the representation for node v

after aggregation in the d-th iteration. The inner loop in Algorithm 2 (line 3 – line 6)

can be simply formulated as

Ed = σ(Gd ·Wd) = σ((A ·Ed−1) ·Wd). (4.3)

Then, all the computation can be formulated as a series of matrix multiplications which

can be efficiently computed, and duplicated computation can be avoided. One potential

issue is the dimension of adjacency matrix A is N × N , which is extremely large and

cannot be stored in memory directly. However, we can exploit the fact that the A

is a sparse matrix. For every design in our benchmarks, the sparsity is higher than

99.95%. Then A can be represented in a compressed sparse format, e.g., coordinate

(COO) format which stores a list of (value, row_index, column_index) tuple. The

matrix can be stored in the memory to enable the matrix multiplication. For instance,

the COO representation of A in Equation (4.3) is represented as
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value: [1, w1,w1,w1,w2,1, w1,w2,1, w2,w2,1, w2,1, w1,1]
r_index:[1, 2, 3, 4, 1, 2, 5, 1, 3, 6, 1, 4, 2, 5, 3, 6]
c_index:[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6]

,

Training data:

Output Evaluate

Gradient
GPU1 GPU2

Output

Figure 4.5: Parallel training with multiple GPUs.

where each column is a tuple indicating the value and indices of a non-zero element

in the matrix. Moreover, the COO format is very efficient for incremental matrix

construction which facilitates graph modifications in our flow.

4.2.4.2 Training

The strategy proposed for inference can also accelerate the GCN training process. In

practice, the training set may contain many graphs. A straightforward method is to

compose multiple graphs into a single graph, but the memory of a single GPU may not

be sufficient to hold all intermediate results in this case. To overcome this bottleneck,

we leverage a parallel training scheme with multiple GPUs shown in Figure 4.5. Our

scheme can be seen as a variant of a conventional data-parallel scheme. Conventionally,

a batch of input data is split into equal chunks and each GPU processes a chunk. With

our GCN approach, the input of one graph includes an adjacency matrix and node

representation matrix which cannot be split. Therefore, we separate multiple graphs
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Figure 4.6: An illustration to compute the impact for an OP. (a) Prediction on original
graph with 5 positives in fan-in cone of a; (b) Prediction on graph after inserting an
observation point with 1 positive. The impact of node a is 5− 1 = 4.

into individual graph. Each GPU processes one graph, and all of the output is gathered

to calculate the loss and then do back-propagation to update the model.

4.3 Iterative OP Insertion

After a multi-stage GCN model is trained, it can identify difficult-to-observe nodes

in a netlist, which can be used as guidance for observation point insertion. However,

not every difficult-to-observe node has the same impact for improving the observability

since it is possible that adding an observe point may improve the observability of other

nodes in its fan-in cone. In order to minimize the number of insertion points, we must

select the observation point locations with largest impact. Next we develop a flow to

identify which locations are more significant using the trained classifier. We define the

impact of each location as the positive prediction reduction in a local neighborhood

after inserting an observation point. Figure 4.6 gives an example of impact calculation.

An iterative flow for points insertion is developed, which is shown in Figure 4.7. In

each iteration, every positive prediction is evaluated to get its impact. Finally, a list

containing observation points location is obtained. Then they are sorted based on their
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Figure 4.7: Iterative flow for observation points insertion.

impact and select the top ranked locations. Next, we modify the graph and perform

inference for prediction. The positive predictions will become the candidates in the

next iteration. The exit condition is there are no positive predictions left.

Inserting observation points modifies the netlist, thus the graph should be modified,

including the graph structure and node attributes. Inserting one observation point to

a target node v corresponds to adding a new node p to the graph and adding an edge

from the target node v to new node p. Essentially, the adjacency matrix A and initial

embedding matrix E0 should be updated. A critical problem in this iterative flow is

how to update the graph efficiently. In our flow Figure 4.7, the graph can be updated

incrementally. A can be incrementally updated by adding a column and a row, and

setting corresponding entries as wpr or wsu, which can be done efficiently under COO

format by appending 3 tuples (wpr, p, v), (wsu, v, p) and (1, p, p). E0 is updated by

appending attribute of new node p which is set to [0,1,1,0]. Then only the attributes

of the nodes in the fan-in cone of the new node should be updated based on SCOAP

method [130]. Since this GCN model is inductive, the updated A and E0 are directly

fed to the model for prediction.
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Table 4.1: Statistics of benchmarks

Design #Nodes #Edges #POS #NEG

B1 1384264 2102622 8894 1375370
B2 1456453 2182639 9755 1446698
B3 1416382 2137364 9043 1407338
B4 1397586 2124516 8978 1388608

4.4 Experimental Results

The experiments are performed on 4 industrial designs implemented in 12nm technol-

ogy. Statistics of designs are summarized in Table 4.1. #POS and #NEG indicate the

number of difficult-to-observe nodes and easy-to-observe nodes, respectively. The la-

bels are obtained from commercial DFT tools. The GCN is implemented with PyTorch

and trained on a Linux machine with 32 cores and 4 NVIDIA Tesla V100 GPUs. The

total memory used in the training is 64GB.

4.4.1 Node Classification Results

Search depth is an important hyper-parameter that may affect the performance of a

GCN. On one hand, increasing search depth can cover a larger neighborhood such that

more information can be involved. On the other hand, too large region may lead to

over-fitting. We select the search depth by monitoring and comparing the training

and testing accuracy among different settings on the search depth. K1, K2 and K3

are set as 32, 64 and 128, respectively. The Rectified linear unit (ReLU) function

ReLU(x) = max(x, 0) [131] is used as the activation function. Four FC layers are

consistent, whose dimensions are 64, 64, 128 and 2. Figure 4.8 shows the record of

training accuracy and testing accuracy during learning for 300 epochs with search depth
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Figure 4.8: Performance with different search depth D.

1, 2 and 3. It can be seen that the performance of GCN improves as the search depth

increases. Search depth D = 3 is used for all the remaining experiments. The entire

network consists of 3 aggregators, 3 encoders (with ReLU layer) and 4 FC layers. We use

cross-entropy function as loss function and stochastic gradient descent for optimization.

We compare the classification performance between our proposed GCN and vari-

ous classical machine learning models, including logistic regression (LR), random forest

(RF), support vector machine (SVM) and Multi-layer perceptron (MLP). Considering a

single classifier may not have good performance on the benchmark that is highly imbal-

anced, we compare the performance on balanced datasets by sampling a subset within

the entire dataset. Since other classical machine learning models require handcrafted

features with a fixed dimension, we integrate neighborhood features by collecting the

features of the nodes in the fan-in cone and fan-out cone. 500 nodes in fan-in cone and

500 nodes in fan-out cone are collected. Starting from the target node, breadth-first-

search is performed to collect the nodes in each cone. Every time a node is visited, the
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Table 4.2: Accuracy comparison on balanced dataset

Design LR RF SVM MLP GCN
B1 0.778 0.790 0.813 0.860 0.928
B2 0.767 0.785 0.809 0.845 0.929
B3 0.779 0.793 0.814 0.856 0.930
B4 0.782 0.801 0.821 0.862 0.935

Average 0.777 0.792 0.814 0.856 0.931

feature of this node is concatenated to the current feature vector. Therefore, the dimen-

sion of the feature vector for traditional learning models is (500 + 500 + 1)× 4 = 4004.

For each design, we generate a balanced dataset by using all the positive nodes and

sampling the same number of negative nodes randomly. Each time we use three designs

for training and the remaining one for testing. For the MLP approach, the configuration

of the network is the same as the classifier module in GCN. The accuracy comparison is

presented in Table 4.2. GCN achieves 93.1% accuracy on average, outperforming other

models on all designs.

4.4.2 Visualization of node embeddings with t-SNE

In the proposed GCN, each node needs to go through aggregation-encoding process for

three times. Actually, the output vectors of E1, E2 and E3 correspond to the represen-

tation vectors for a node after integrating features of the nodes in 1-hop neighborhood,

2-hop neighborhood and 3-hop neighborhood, respectively. Data visualization can fa-

cilitate us to justify whether the representation of a node is discriminative or not. The

representation vector of each node generated by the GCN is in high dimensional space,

which is difficult to inspect directly. Principle component analysis (PCA) and t-SNE
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Figure 4.9: Visualization of node embeddings with different search depth K. (a) K=1;
(b) K=2; (c) K=3.

[132] are widely used techniques for high dimensional data analysis and visualization.

In this experiment, we visualize the feature representation obtained from different en-

coders using t-SNE for 1000 nodes, including 500 positive nodes and 500 negative nodes.

The visualization is shown in Figure 4.9. It can be observed that the representations

obtained for positive class and negative class becomes more discriminative as search

depth increases.

4.4.3 Multi-stage Classification

We have shown that a GCN can obtain significantly better performance in distinguish-

ing positive nodes and negative nodes than classical learning models. However, the

performance a single GCN is not satisfying if it is directly trained and tested on origi-

nal imbalanced dataset. To validate the advantage of the multi-stage GCN, we compare

the performance between the multi-stage GCN and single GCN. In highly imbalanced

classification, F1-score is commonly used since accuracy would be misleading. The

training and testing schemes are the same as before. Each time we use three designs for

training and the remaining design for testing. 3 stages are applied and the prediction
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Figure 4.10: F1-Score comparison.

results of each stage are combined to obtain the F1-score on the entire dataset. The

results comparison is shown in Figure 4.10. The multi-stage GCN achieves much higher

F1-scores than single GCN on all these imbalanced datasets.

4.4.4 Scalability vs. State-of-the-art GCN

By taking the advantage of the sparse representation of the adjacency matrix and ma-

trix multiplication-based computation, the proposed GCN can scale to process designs

with millions of cells. To demonstrate the scalability of our acceleration strategy, we

compare the inference runtime between two approaches on graphs with different sizes,

ranging from 103 nodes to 106 nodes. We leverage the released implementation of [2]

for comparison, which uses recursion-based computation. The inference runtime com-

parison between two approaches is shown in Figure 4.11. For a design with 1 million

cells, the recursive computation takes more than one hour to complete the inference.
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Figure 4.11: Scalability vs. [2].

With our acceleration strategy, the inference runtime is only 1.5 seconds, which is three

orders of magnitude speedup compared to [2].

4.4.5 Verified in Industrial Testing Flow

Finally we show the testability results of applying the multi-stage GCN and the iterative

test points insertion flow. We use the testability analysis results from a commercial

testability analysis tool as a baseline. 3 metrics are used for evaluation, including

the total number of OPs inserted, the fault coverage and the number of test patterns

required. The output list of our proposed iterative GCN-based flow is fed to the same

commercial tool to get a test report from which we can get the pattern number and

fault coverage for a fair comparison. The results are shown in Table 4.3. Column

‘#OPs’ represents the total number of OPs inserted. ‘#PAs’ represents the number
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Table 4.3: Testability results comparison

Design Industrial Tool GCN-Flow
#OPs #PAs Coverage #OPs #PAs Coverage

B1 6063 1991 99.31% 5801 1687 99.31%
B2 6513 2009 99.39% 5736 2215 99.38%
B3 6063 2026 99.29% 4585 1845 99.29%
B4 6063 2083 99.30% 5896 1854 99.31%

Average 6176 2027 99.32% 5505 1900 99.32%
Ratio 1.00 1.00 1.00 0.89 0.94 1.00

of test patterns. ‘Coverage’ represents fault coverage. It can be seen that the OPs

recommended by the proposed GCN model and iterative flow outperform the industrial

tool, achieving 11% reduction on the number of inserted OPs and 6% reduction on test

patterns without any degradation on fault coverage.

4.5 Summary

In this chapter, a GCN-based methodology is proposed to identify difficult-to-observe

points in a netlist, in which GCN shows superior performance to classical learning mod-

els. A multi-stage GCN is developed to handle the imbalanced classification problem,

which achieves significantly higher F1-score than single GCN model. A parallel train-

ing scheme is developed to enable large scale training and a fast inference scheme is

proposed to enhance the scalability of the GCN model. Based on the GCN model and

an iterative observation points insertion flow, we have achieved better testability on

industrial designs compared to a widely used commercial tool.
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Chapter 5

Unified Mask Optimization

In accordance with the Moore’s law, through extreme scaling, the transistor number

on a chip has increased exponentially in the last five decades. However, the continued

scaling of the transistor feature size has pushed the conventional 193nm wavelength

lithography system (Figure 5.1) into its resolution limit, thus the whole semiconductor

industry is facing severe manufacturing challenges [133]. To overcome these issues,

resolution enhancement techniques (RETs) on layout and mask levels toward better

printability and yield are of great importance [134].

Two of the most critical RET stages are layout decomposition and mask optimiza-

tion. In the first stage, layout decomposition divides target image into several masks so

that the coarser pitches on every mask can be manufactured through 193nm wavelength

lithography. Otherwise, defects can be formed in the manufactured devices. An exam-

ple is shown in Figure 5.2. Depending on the total mask number available, the problem

is also called double patterning layout decomposition (two masks) or triple patterning

layout decomposition (three masks). The diffraction effect of the light cannot be ig-

nored since the size of the patterns on layout is comparable with the wavelength of the
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Illumination Source

Condenser

Mask

Projection lens

Wafer

Figure 5.1: An example of a typical lithography system.

lithography light source, which may result in distortion of the final on-wafer image. In

mask optimization, e.g., optical proximity correction (OPC), each mask is refined to

compensate the diffraction effect of the light in advance to ensure the high quality of

on-wafer image, as demonstrated in Figure 5.3. Finally, all optimized masks go through

lithography process separately to generate corresponding printed image, and all printed

images are combined together to generate the target patterns.

In emerging technology nodes, the conventional two-stage flow (i.e., layout decom-

position followed by mask optimization) cannot achieve good printability on their own.

The reasons are two-fold. (1) The layout decomposition and mask optimization are

separated from each other and each problem is solved independently, which may lose

a global view. (2) Due to the inconsistency between the objectives of the two stages,

decomposed results with identical quality may cause diverse printed image qualities

after mask optimization. That is, the layout decomposition is based on simple design
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(a) (b) (c) (d)

Figure 5.2: An example of double patterning lithography. (a) Without double pattern-
ing; (b) Printed image on the wafer without double patterning. Defects are formed; (c)
With double patterning. Two masks labeled with different colors; (d) Printed image on
the wafer with double patterning. No Defects are formed.

Design Target Mask Printed image

No OPC

OPC

Figure 5.3: Performing OPC leads to better printed image on the wafer.

or coloring rules, which are just coarse regression of complicated lithography model;

while the mask optimization is verified by accurate and sophisticated lithography sim-

ulation. Figure 5.4 gives an example on such inconsistency. Given the identical target,

two different layout decomposition results are found (LD stage in the figures), and both
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Printed
Image

(a) (b)

Figure 5.4: Same quality layout decompositions (LD) can achieve different EPE viola-
tion number after mask optimization (MO): (a) Solution 1 with #EPE violation = 3;
(b) Solution 2 with #EPE violation = 1.

of them satisfy all design rules and coloring rules. After the mask optimization (MO

stage in the figures) on each mask, however, it can be observed that the qualities of

the printed images are diverse: Figure 5.4a has three EPE violations, while Figure 5.4b

has only one EPE violation. Therefore, there is an increasing need to bridge the gap

between layout decomposition and mask optimization by a unified design framework.

In this chapter, we propose a unified optimization framework which aims at solving

layout decomposition and mask optimization simultaneously. Combining the two pro-

cesses together leads to a larger solution space, which has potential to obtain a higher

quality mask design. In addition, through effective pruning techniques, our framework

can avoid exhaustive mask optimization on all layout decomposition solutions, there-

fore the overall efficiency can be significantly improved. The main contributions of this

work are listed as follows.
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• To the best of our knowledge, this is the first framework handling multiple pat-

terning layout decomposition and mask optimization simultaneously.

• We propose a unified problem formulation and develop a gradient-based opti-

mization approach, while process variation issue is studied to guarantee mask

robustness.

• We further apply a set of discrete optimization techniques (e.g., semi-definite

programming, randomized rounding, and pruning) to avoid being stuck in local

optimum.

• The experimental results verify the effectiveness of the proposed framework.

The rest of the chapter is organized as follows. Section 5.1 introduces lithography

models and evaluation criteria. Section 5.2 formulates the problem mathematically and

describes algorithmic details in our framework. Section 5.3 lists the experimental results

to support our methodologies, followed by a discussion in Section 5.4 and Section 5.5

summarizes this chapter.

5.1 Preliminaries

In this section, we provide preliminaries on lithography models, and then introduce the

evaluation criteria. For convenience, notations used in this work are listed in Table 5.1.

Note that in this work we focus on DPL scenario, but the problem formulation and the

corresponding methodologies can be extended to triple patterning counterpart.
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Table 5.1: Notations used in this work.

Zt Target image
Z1, Z2 Binary images under the nominal condition

Z Printed image under the nominal condition
Z(n) The printed image under the n-th process condition

M1, M2 Output masks
P1, P2 Unconstrained variables
I1, I2 Aerial images under the nominal condition
I i
1, I i

2 Aerial images under the i-th process condition
H A set of optical kernels {h1, . . . ,hK}

H∗ The conjugate transpose of H
⊙ Element-wise matrix multiplication operator
⊗ Convolution operator

5.1.1 Forward Lithography Models

Two models are needed to transform mask patterns into printed image: optical lithogra-

phy model and photo resist model. First, an aerial image I is generated by convolving

the mask M with a set of optical kernels [135], which is represented as

I = foptical(M ) =
K∑
k=1

wk · |M ⊗ hk|2, (5.1)

where hk is the k-th optical kernel, wk is the weight of hk, and K is the total kernel

number.

Then a resist model is applied to the aerial image. In our work a constant threshold

resist model is used, which sets an intensity threshold Ith to binarize the aerial image,
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Printed image
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EPE violation EPE

Figure 5.5: Illustration of EPE measurement.

denoted by Z in the following equation.

Z(x, y) = fresist(I) =


1, if I(x, y) ≥ Ith,

0, otherwise.
(5.2)

Finally, binary images Z1 = fresist(I1) and Z2 = fresist(I2) are combined to form

the printed image. Considering that the printed image is binary as well, the process

can be represented by performing logical OR operation as follows:

Z(x, y) = Z1(x, y) ∨Z2(x, y). (5.3)

5.1.2 Evaluation Metrics

Given a target layout and the printed image, the edge placement error (EPE) and

process variation band (PV Band) are defined as follows.

Definition 3 (EPE) EPE is defined as the geometric displacement of the image con-

tour from the edge of target image on the layout. A violation is introduced if the

perpendicular displacement is greater than an EPE threshold value, as shown in Fig-

ure 5.5.
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Target contour

Printed contour

PV band

Figure 5.6: Example of PV band.

Definition 4 (PV Band) PV Band is measured as the area between the outermost

printed edge and the innermost printed edge among all process conditions, as shown in

Figure 5.6. It is used to evaluate the mask robustness against process variations.

In our implementation, the EPE threshold value is set to 10nm. An example of

our EPE measurement is given in Fig. 5.5: to facilitate the computation, a set of

measure points are sampled on each edge and EPE violation will be checked at the

measure points. For PV Band, we use XOR operations to compute the region among

all possible printed images.

5.2 Methodologies

Given the above notations, the problem of layout decomposition and mask optimization

(LDMO) is defined as follows.

Problem 2 (LDMO) Given target image Zt, two optimized masks, M1 and M2, are

generated. The objective is to minimize the difference between the final printed image

Z and the target image Zt.
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5.2.1 Mathematical Formulation for LDMO

Since we are seeking a pair of masks which can form printed image with high fidelity,

the LDMO problem can be formulated as an optimization problem as follows.

min
M1,M2

F = ∥Zt −Z∥22 (5.4a)

s.t. M1(x, y) ∈ {0, 1}, ∀x, y, (5.4b)

M2(x, y) ∈ {0, 1}, ∀x, y, (5.4c)

I1 =
K∑
k=1

wk · |M1 ⊗ hk|2, (5.4d)

I2 =
K∑
k=1

wk · |M2 ⊗ hk|2, (5.4e)

Z = fresist(I1) ∨ fresist(I2). (5.4f)

The problem is strongly non-convex with discrete constraints, thus is hard to be

solved directly. In this section, we propose a unified flow for solving the LDMO problem.

5.2.2 Numerical Optimization

Gradient-based method has been widely adopted in solving numerical optimization

problems. However, there are non-differentiable discrete constraints in our formulation.

Therefore, it is necessary to do relaxation before deriving the gradient.

In the formulation of LDMO, the variables M1, M2, Z1 and Z2 are binary, which

are non-differentiable. One possible method is to relax them into floating values with a

feasible region of [0,1], which cannot be solved by gradient-based method directly. Al-
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ternatively, the binary constraints can be replaced with sigmoid function for relaxation

so that the variables become unconstrained, and hence convenient to derive the gradi-

ent. To apply sigmoid function, we need to introduce new variables P1 and P2. Then

M1 and M2 can be relaxed by applying sigmoid function on P1 and P2, respectively

(see Equations (5.5) and (5.6)).

M1(x, y) = sig(P1(x, y)) =
1

1 + exp[−θMP1(x, y)]
, (5.5)

M2(x, y) = sig(P2(x, y)) =
1

1 + exp[−θMP2(x, y)]
. (5.6)

Similarly, the sigmoid function can be applied to I1 and I2 to relax Z1 and Z2

as shown in Equations (5.7) and (5.8). θM and θZ are user-defined parameters which

represent the steepness of sigmoid functions, and Ith is the threshold in the resist model.

Z1(x, y) = sig(I1(x, y)) =
1

1 + exp[−θZ(I1(x, y)− Ith)]
, (5.7)

Z2(x, y) = sig(I2(x, y)) =
1

1 + exp[−θZ(I2(x, y)− Ith)]
. (5.8)

Note that Z is also a binary value, but different from Z1 and Z2, it is calculated

by logical OR. We relax constraint (5.4f) to

Z(x, y) = min{Z1(x, y) +Z2(x, y), 1}. (5.9)

Considering that the maximum value of Z before relaxation is 1, here we set an

upper bound to 1, which may reduce the error when calculating the objective value.

The relation between Z(x, y) and (Z1(x, y) +Z2(x, y)) is shown in Figure 5.7. Then it

is easy to derive the gradient formulation of Z with respect to Z1 and Z2, denoted by
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Figure 5.7: Relation between Z(x, y) and Z1(x, y) +Z2(x, y).

B, which is given by

∂Z(x, y)

∂Z1(x, y)
=

∂Z(x, y)

∂Z2(x, y)
=B(x, y) =


1, if Z(x, y) ≤ 1,

0, otherwise.
(5.10)

After relaxation, we can formulate the relaxed LDMO problem as follows.

min
P1,P2

F = ∥Zt −Z∥22 (5.11)

s.t. (5.4d)− (5.4e), (5.5)− (5.9).

Now variables P1 and P2 are unconstrained, and functions in Equation (5.5)–
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Equation (5.9) are differentiable. We obtain the gradient according to the chain rule.

∂F

∂P1(x, y)
=

∂
∑

i,j(Zt(i, j)−Z(i, j))2

∂P1(x, y)

= 2
∑
i,j

(Z(i, j)−Zt(i, j)) ·
∂Z(i, j)

∂Z1(i, j)
· ∂Z1(i, j)

∂P1(x, y)
, (5.12)

where

∂Z1(i, j)

∂P1(x, y)
= θMθZZ(i, j)(1−Z(i, j))

×{[M1(i, j)⊗H∗(i, j)]H(i− x, j − y)

+ [M1(i, j)⊗H(i, j)]H∗(i− x, j − y)}

×M1(i, j)[1−M1(i, j)]. (5.13)

Then we can compute the gradient of F with respect to P1 and P2 as follows.

∇P1F = 2θMθZ ×M1 ⊙ (1−M1)⊙

{H ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M1 ⊗H∗)]+

H∗ ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M1 ⊗H)]}, (5.14)

∇P2F = 2θMθZ ×M2 ⊙ (1−M2)⊙

{H ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M2 ⊗H∗)]+

H∗ ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M2 ⊗H)]}. (5.15)

The numerical optimization algorithm is described in Algorithm 3. First we initialize

P1 and P2, the maximum iteration number T and the tolerance ϵ (line 1). An intuitive
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Algorithm 3 Numerical Optimization Flow
1: Initialize P1, P2, maximum iteration T , tolerance ϵ;
2: for i = 1, · · · , T do
3: Compute the printed image according to current P1 and P2;
4: if printed image is illegal then
5: Discrete optimization ; ▷ Section 5.2.5
6: else
7: MaskUpdate(P1, P2); ▷ Algorithm 4
8: if RMS(∇P1F ) + RMS(∇P2F ) ≤ ϵ then
9: break;

10: end if
11: end if
12: end for

Algorithm 4 Gradient-Based Mask Update
1: function MaskUpdate(P1, P2)
2: Initialize stepsize t;
3: Compute the relaxed masks M1,M2;
4: Compute Z according to current P1 and P2;
5: Compute the gradient ∇P1F , ∇P2F through Equations (5.4d)–(5.4e), (5.17)–

(5.18);
6: P1 ← P1 − t×∇P1F ;
7: P2 ← P2 − t×∇P2F ;
8: return P1,P2, ∇P1F , ∇P2F ;
9: end function

initial solution is that P1 is initialized so that the corresponding M1 is identical to the

target image, and P2 is initialized so that M2 is empty. In each iteration, the printed

image is obtained based on variables P1 and P2 (line 3). The violation checking will be

carried out in every iterations, which will be introduced in Section 5.2.4. If the printed

image is illegal, a discrete optimization step will be executed, which will be introduced

in Section 5.2.5. Otherwise, the function MaskUpdate will be called to update the

masks. To save the runtime, the loop will exit early if the sum of the root mean square

(RMS) of the gradient is less than a tolerance ϵ, which indicates that the objective

88



function may be very close to the optimal value. The loop will finally terminate when

the maximum number of iteration T is achieved. In our implementation, T is set to 40.

θM and θZ are set to 85 and 4, respectively.

The procedure for mask update is described in Algorithm 4. To derive the gradient,

the lithography simulation is conducted first to compute the corresponding printed

image based on current masks (line 4). Next, gradient of objective F with respect

to P1 and P2 are computed (line 5), followed by variables update (lines 6–7). In our

implementation, the tolerance ϵ is set to 0.01 and stepsize t is set to 0.4.

5.2.3 Process Variation-aware Mask Optimization

Process variation is a critical issue in realistic manufacturing stage since it can impact

the yield directly. Therefore, not only image fidelity but also mask robustness should

be taken into considerations. In this section, we extend the LDMO problem to consider

process variation issue. Based on the above notations, the problem of process variation-

aware layout decomposition and mask optimization is defined as follows.

Problem 3 (PV-LDMO) Given target image Zt, two optimized masks, M1 and M2,

are generated. The objectives are two fold, (i) minimize the difference between the final

printed image Z and the target image Zt, and (ii) the obtained masks, M1 and M2,

are robust to process variation.

PV Band is a commonly applied criterion to evaluate the mask robustness, which

can be naturally integrated into the proposed unified optimization framework. The

illustration of PV Band is depicted in Section 5.1. It can be observed that the calcula-

tion of PV Band requires a series of boolean operations among printed images under all
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possible process conditions. In order to make the calculation more tractable, we resort

to minimize the difference between possible images and the target image, which is in

accordance with the target of process variation optimization. The conventional OPC

scenario optimizes single mask, therefore the possibility of printed image is the same as

the number of process corners Np. Differently, PV-LDMO considers dual masks, thus

the possibility of printed image is more than Np due to the possible combination on

separate mask. The PV-LDMO problem can be formulated as below.

min
M1,M2

Fpv = ∥Zt −Z∥22 +
N2

p∑
l=1

∥Zt −Zl∥22 (5.16a)

s.t. In
1 =

K∑
k=1

wnk · |M1 ⊗ hnk|2, n = 1 . . . Np, (5.16b)

In
2 =

K∑
k=1

wnk · |M2 ⊗ hnk|2, n = 1 . . . Np, (5.16c)

Zl = fresist(I
i
1) ∨ fresist(I

j
2),

i, j = 1 . . . Np, l = 1 . . . N 2
p (5.16d)

(5.4b)− (5.4f), (5.16e)

where Np is the number of process windows under consideration. In1 and In2 are the

aerial images under the n-th process window from M1 and M2, respectively. Zl is the

l-th possible combined printed image. Similar to solving Formulation 5.4, the same

relaxation scheme can be applied here. Then we can derive the gradient based on the

extended objective function and the chain rule as follows.

90



∇P1F = 2θMθZ ×M1 ⊙ (1−M1)⊙

{[H ⊗ ((Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M1 ⊗H∗))+

H∗ ⊗ ((Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M1 ⊗H))]+

N2
p∑

l=1

[H ⊗ ((Zl −Zt)⊙B ⊙Zl ⊙ (1−Zl)⊙ (M1 ⊗H∗))+

H∗ ⊗ ((Zl −Zt)⊙B ⊙Zl ⊙ (1−Zl)⊙ (M1 ⊗H))]}. (5.17)

∇P2F = 2θMθZ ×M2 ⊙ (1−M2)⊙

{H ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M2 ⊗H∗)]+

H∗ ⊗ [(Z −Zt)⊙B ⊙Z ⊙ (1−Z)⊙ (M2 ⊗H)]}
N2

p∑
l=1

[H ⊗ ((Zl −Zt)⊙B ⊙Zl ⊙ (1−Zl)⊙ (M2 ⊗H∗))+

H∗ ⊗ ((Zl −Zt)⊙B ⊙Zl ⊙ (1−Zl)⊙ (M2 ⊗H))]}. (5.18)

Then we follow the numerical optimization algorithm presented in Algorithm 3 to

solve the extended PV-LDMO problem with new gradient calculation steps.

5.2.4 Violation Detection

If two features of the same mask are too close to each other, there will be a violation

in the printed image after lithography simulation and it is difficult to be legalized only

through gradient-based optimization. Intuitively, the violation can be resolved if the

violated patterns are assigned to different masks. However, we need to locate where

the violations occur. To do so, a Hanan-like grid is built based on the geometry of
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Figure 5.8: Pattern grids and spacing grids.

the bounding box of each target image. Each bounding box shares the same centroid

with the pattern inside. Considering that the further assignment is also based on the

grid and extra pattern may be generated around the original pattern during the mask

optimization, each bounding box is set to be a bit larger than the pattern. In our

implementation, the extra width and extra height are both set to 20nm. All the grids

are then categorized into pattern grid and spacing grid depending on their positions

on the target image. Different from conventional Hanan grid in which all the grids are

aligned horizontally and vertically, the adjacent pattern grids in our Hanan-like grid

will be merged so that a single pattern will not be split by grids. In addition, the

spacing grids between two patterns are also merged into one grid. The orientation of

each merged spacing grid is set according to its relative position to the two pattern

grids, as shown in Figure 5.8. The H, V and D in Figure 5.8 represent the orientation

of horizontal, vertical and diagonal, respectively.

As mentioned before, the violation checking is conducted by every w iterations

rather than by each iteration such that the efficiency of the whole flow is maintained.

The violation detection is performed through the following way. The printed image

is first mapped to the Hanan-like grids. Since all the violations happen at the region
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Figure 5.9: Different kinds of violation.

between patterns, i.e., the spacing grids, we only check the spacing grids between two

patterns (see Figure 5.9). For each spacing grid, we initialize a matrix A with the

same size as the spacing grid, so that each pixel in the grid corresponds to an entry of

A. Then we find all printable pixels in the grid and set the corresponding entries of

the matrix to 1 and set the rest of the entries to 0. An intuitive observation is that

a horizontal or vertical violation is caused by a printable line in spacing grids which

connects an edge to the opposite side. Diagonal violation is due to the printable lines

diagonally connecting two corners. For vertical or horizontal violation, we can check the

sum of each row and each column of the matrix A. Combined with the orientation, the

violation can be determined. If the sum of one row is equal to the width W or the sum

of one column is equal to the height H, there exists a violation. For diagonal violation,

we compute the diagonal length of diagonal spacing grid. If the diagonal length is less

than a spacing threshold, there is a diagonal violation. In our implementation, the

threshold is set as 110nm.
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5.2.5 Discrete Optimization

The masks M1 and M2 are updated in each iteration to reduce the objective value.

Since both LDMO and PV-LDMO are highly non-convex problems, the gradient-based

method can only achieve local optimum with poor quality. One reason is that the

gradient-based method actually performs a greedy search and it is hard to escape from

local optimum. To tackle this problem, we further propose a discrete optimization

method to collaborate with the numerical optimization flow.

The most critical issue in multiple patterning lithography is the violations in printed

images. Therefore, a critical step of the proposed framework is to resolve violations in

the printed image and obtain high quality and robust masks. Generally, resolving

violations can be achieved by assigning violated pattern grids to different masks. How-

ever, since the correlation between EPE violation and the distribution of patterns is

unknown, it is difficult to derive a mathematical formulation to bridge the gap.

To overcome this issue, in this work we develop a discrete optimization approach

seeking a two-way partitioning of the pattern grids considering image violation, EPE

violation as well as potential spacing rules. Note that the proposed approach here can be

easily extended to handle triple patterning lithography, where a three-way partitioning

is adopted. With the position of printed image violation and the position of EPE

violation, a weighted graph G(V,E) can be constructed, where the vertex vi represents

i-th pattern grid and the edges with weight 1 connecting two vertices are conflict with

each other. In addition, we add edges with weight β between the vertices which have

large EPE, where 0 < β < 1. Therefore, the objective of discrete optimization is to find

a cut of the graph so that total weight of the edges between the cut and its complement

is maximized. We use a vector x to denote the assignment of pattern grids, where
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xi = 1 means vi is assigned to mask 1 and xi = −1 means vi is assigned to mask 2.

Moreover, in order to further ease the mask optimization process, the graph is refined

with one more kind of edge. Besides the violation edge and EPE edge, a set of spacing

edges are added to the graph, which are similar to the diagonal violation edges in the

sense that their existence is determined by the distance between each pair of nodes.

The threshold for determining a spacing edge is 130nm. Then the two-way partitioning

problem can be formulated as follows.

max
x

∑
(i,j)∈E

wij(1− xixj) (5.19a)

s.t. xi ∈ {−1, 1}, ∀vi ∈ V, (5.19b)

where wij defines the edge weight as follows.

wij =



1, if vi and vj have violation,

β, if vi and vj both have large EPE,

γ, if vi and vj are close but not conflicted,

0, otherwise.

(5.20)

In our implementation, if the sum of EPE violations of two grids is greater than

seven and they are not violated patterns, they will be connected by an edge of weight

β, and β is set as 0.1.

Formulation in (5.19) can be approximated to a semidefinite programming (SDP)

with Equation (5.21), which can be solved efficiently while maintaining high accuracy.
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EPE violation

Pattern grid

Printed image

1 2

3
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(a) (b)

Figure 5.10: (a) Pattern on the mask; (b) Corresponding lithography printed image
with EPE violations.

violation edge 

EPE edge

1

3

2

4 5spacing edge
W =


0 0 0 0 β
0 0 1 0 0
0 1 0 0 γ
0 0 0 0 1
β 0 γ 1 0


Figure 5.11: The conflict graph and the corresponding weighted matrix W .

min
X

W •X (5.21a)

s.t. diag(X) = e, (5.21b)

X ⪰ 0, (5.21c)

where e = [1, 1 . . . , 1]⊤.

The optimal solution X∗ of Problem (5.21) need not to be in the form of xx⊤, and
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hence it does not yield a feasible solution to Problem (5.19) immediately. However,

we can extract from X∗ a solution via randomized rounding [136]. First, we compute

Cholesky factorization X∗ = U⊤U of X∗. The i-th column of U , denoted by ui,

corresponds to the assignment of grid i. Let r be a vector uniformly distributed over

the unit sphere (i.e., ∥r∥2 = 1). Then we can set xi as follows.

xi = sgn(u⊤
i r) =


1, if u⊤

i r ≥ 0,

−1, otherwise.
(5.22)

In other words, we partition the grids according to whether their corresponding vectors

lie “above” or “below” the hyperplane. The grids are therefore assigned to different

masks according to the value of xi.

An example of graph construction is given in Fig. 5.10 and Fig. 5.11. After solving

the SDP, the solution X∗ and U are given by

X∗ =



1 0 0 1 −1

0 1 −1 0 0

0 −1 1 0 0

1 0 0 1 −1

−1 0 0 −1 1


,U =



1 0 0 1 −1

0 1 −1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

With a random vector r = [r1, r2 · · · r5]⊤ and Equation (5.22), vector x is obtained

by

x = [sgn(r1), sgn(r2), sgn(−r2), sgn(r1), sgn(−r1)]⊤. (5.23)

By solving SDP we can obtain multiple solutions which are useful to avoid being

stuck in local optimum during the succeeding numerical optimization process. Further-

more, the runtime cost of solving SDP is much smaller than lithography simulation.
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Therefore, SDP is an efficient method for our discrete optimization. Once the SDP

is solved, we can obtain multiple solutions for x. Then all these obtained solutions

are further optimized through numerical optimization flow without violation checking,

where these solutions will go through a pruning process and sub-optimal ones will be

removed.

The detailed procedure is shown in Algorithm 5. Firstly, an empty set P is initialized

to store the potential solutions (line 1). Then S solutions are obtained by randomized

rounding, from which we can get the corresponding assignment solution for two masks,

i.e., P1 and P2. Each pair of P1 and P2 is treated as a 2-tuple which is stored in P

(lines 2–6). Next, gradient-based mask update illustrated in Algorithm 3 is performed

for T iterations for each solution in P. After that, the legality of the printed image of

each solution will be checked. The solutions generating illegal printed images will be

discarded first. Then the number of EPE violations of all the solutions will be compared

and half of the solutions with larger EPE violation will be discarded (lines 8–15). The

pruning process will be repeated until only one element in P is left. In order to balance

the runtime and performance, T and S are both set to 5 in our implementation.

Compared with the graph construction method in [7], our conflict graph construction

can reflect the lithography principles better by considering the spacing rules. The

advantage is two fold. (1) By adding the spacing edges with weight γ, the solution

space of the SDP is tighter than that in [7], which helps the search procedure to focus

more on the superior solutions. (2) The runtime of the search and pruning routine

(Algorithm 5) depends on the number of the solutions we obtained from the SDP solver.

Constraining the solutions space in a superior region also accelerates the algorithm to

converge. These advantages can be verified in our experimental results.
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Algorithm 5 Pruning
Require: SDP solution X∗.
Ensure: P1, P2.

1: Initialize set P;
2: for i← 1, · · · , S do
3: Randomized rounding; ▷ Equation (5.22)
4: Get corresponding P i

1 , P i
2 ; ▷ {P1,P2} is a 2-tuple

5: Save {P i
1 ,P

i
2} in P;

6: end for
7: while P.size()> 1 do
8: for all {P i

1 ,P
i
2} ∈ P do

9: for j ← 1, · · · , T do
10: MaskUpdate(P i

1 ,P
i
2); ▷ Algorithm 4

11: end for
12: Check legality of the printed image and get the number of EPE violations;
13: end for
14: Remove solutions with illegal printed image;
15: Remove half of solutions with larger EPE violations;
16: end while
17: return the remaining {P1,P2};

5.2.6 Overall Flow

From the problem formulation, it is clear that the LDMO and PV-LDMO are both

strongly non-convex problems without analytic structure, which makes them numeri-

cally hard to solve. In order to solve the problem, we design a unified optimization

flow which includes a numerical optimization flow and a discrete optimization flow.

These two engines are collaborative with each other. Basically, the masks are opti-

mized numerically with gradient-based optimization. Once the violation is detected

in the printed image, another SDP-based discrete optimization engine is triggered to

resolve the violations. Multiple solutions are obtained from the solution of SDP, which

can help to jump out of local optimum and act as a guidance of numerical optimization.

The solutions returned by SDP will be numerically optimized until a pair of masks with
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Output Optimized 
Masks

Discrete Layout 
Optimization

Numerical Layout 
Optimization

Grid Construction

SDP

Pruning

Initialization

 Gradient-based Mask 
Update

Violation Detection

Y

N

converge?

Input Cell Layout

Figure 5.12: Overall LDMO flow.

highest quality is selected, which will be further optimized by numerical optimization

flow. The overall flow is presented in Figure 5.12.

5.3 Experimental Results

5.3.1 Environment and Implementation Details

We implement our algorithms with C++ on an Intel Core 2.6 GHz Linux machine

with 48 GB RAM. To solve SDP we use Csdp, a package for specifying and solving

semidefinite programming problems [137]. We use an open source lithography simulator

and EPE checker [138], where the intensity threshold is set to 0.039. The EPE violation

threshold value is set to 10nm, which is more strict than the 15nm used in [138]. The

experiments are conducted using NanGate, an open-source standard cell library [139].
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Mask 2

Target LDMO Output Printed Image

Mask 1

Figure 5.13: Example of our layout decomposition and mask optimization on cell
OR2_X1.

We test the proposed unified framework on contact layers where stitches are forbidden.

Figure 5.13 gives an example of our output masks and the printed images for cell

OR2_X1. All the solutions obtained are legal in our experiments. We implement a

layout decomposition engine, where branch-&-bound methodology is applied to search

for all legal coloring solutions. In layout decomposition, the coloring distance is set

to 110nm, so all contact layers are double patterning friendly. We obtain a modified

binary of mask optimization engine from [5].

5.3.2 Results of LDMO

In the first experiment, we compare the proposed framework with an exhaustive op-

timization flow, where all legal layout decomposition solutions are enumerated, and

all the solutions are fed into the mask optimization engine [5]. The results of the ex-

haustive optimization are shown in the merged column “ENUM + [5]” of Table 5.2.

The column “#LD” represents the total number of enumerated layout decomposition

solutions. Considering that it will take extremely long time if we run mask optimiza-
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tion on all layout decomposition solutions, we set an upper bound of runtime, which

is 36000 seconds (i.e., 10 hours). The column “#Complete” lists the total number of

solutions that have been finished within the runtime limit. Then we can obtain the

best decomposed layout with the least EPE violations. The columns “#EPEV” and

“RT (s)” list the best EPE violation number and the total mask optimization runtime

in seconds. Note that compared to expensive mask optimization, the runtime of layout

decomposition is usually ignorable. The corresponding results of our unified framework

are shown in the merged column “Ours”. Compared with the exhaustive optimization

flow, our unified framework can effectively reduce the EPE violations number by 8×,

meanwhile it can achieve more than 35× speed-up on average.

In order to avoid the unrealistic runtime cost of the exhaustive optimization, heuris-

tic selection methods were proposed in previous work by Yu et al. [4] and Chen et al. [6].

In the second experiment, we use these two strategies to select from the exhaustive

layout decomposition solutions, and feed the selected solutions to mask optimization

engine of [5]. Then we compare the quality of corresponding printed patterns with ours.

The corresponding results are shown in merged columns “[4] +[5]” and “[6] +[5]” in

Table 5.2. Here columns “#EPEV” and “RT (s)” represent the EPE violation number

and the runtime of mask optimization on the selected layout decomposition solutions.

From the table we can see that our proposed framework can achieve around 65% and

66% EPE violation reduction compared to the heuristic selection in [4] and [6], respec-

tively. The experimental results show that the density based layout decomposition

strategy may not promise an optimal printed image quality after mask optimization.

Compared with the preliminary work [7], new violation graph is constructed as

described in Section 5.2.5, which boosts the performance in terms of both image quality
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and runtime. On average, with the new techniques, LDMO achieves 4× reduction on

the number of EPE violations, and more than 2× speed-up.

In addition, we also have explored the how the proposed framework perform under

stricter EPE violation threshold conditions. We further use 8nm and 5nm as the

threshold for determining an EPE violation, and the results are presented in Tables 5.3

and 5.4. It can be observed that the proposed framework can still outperform all the

baselines in terms of the quality of the obtained masks and the running time.

For comprehensive comparison among the three flows listed in Table 5.2, we plot

the distribution of EPE violations of all enumerated solutions of a cell according to the

results of “ENUM+[5]” (see Figure 5.14). We can find that different solutions of layout

decomposition result in diverse EPE cost after mask optimization. The solution ob-

tained by different methods are marked in the figure. It can also be seen that among all

the potential solutions, most coloring solutions are actually sub-optimal, while methods

proposed in [4] and [6] do not select the optimal ones which correspond to the leftmost

bar in each chart. Take Figure 5.14a as an example. There are 22 DPLD solutions,

while the number of EPE violations of these solutions ranges from 1 to 9, among which

half of the solutions have 5 EPE violations, including the solutions selected by methods

proposed in [4] and [6]. The masks generated by our method can achieve 0 violation.

The same observation can also be found from Figure 5.14c. We can see that the quality

of the masks obtained by unified optimization can even outperform all the solutions

obtained by conventional two-stage flow.

Figure 5.15 demonstrates the convergence of the EPE violation number. Since the

optimization process will not get stuck in local optimum, it can be seen that the number

of EPE violations goes up on some iterations. Eventually, it will converge to a solution
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with fewer EPE violations.

Examples of printed images of the contact layers are given in Figures 5.16 to 5.18

in which the EPE violations are marked with red cross on the pattern. It can be seen

more explicitly that the proposed algorithm can find masks with higher quality, which

have fewer EPE violations on printed images.

5.3.3 Results of PV-LDMO

In practical manufacturing process, the process variation is also a critical issue to be

considered. The proposed PV-LDMO flow is designed for this target. Next, we demon-

strate the experimental results of the PV-LDMO flow. The statistics are presented in

Figures 5.19 to 5.21. In the figures, “NG” and “PV” denote new graph construction

and process variation-aware optimization, respectively. We use the fundamental LDMO

flow proposed by the preliminary work [7] as baseline. It can be noted that by consid-

ering the new PV Band optimization objective and applying new layout representation

graph, the number of EPE violations and the PV Band area are reduced significantly.

Compared with the preliminary work [7], the number of EPE violation is reduced by

84%, while the PV Band area is improved by 2%. What’s more, the new flow achieves

2× speedup on runtime.

We verify the effectiveness of each new presented technique of the PV-LDMO flow

by conducting comprehensive ablation study. To do so, each newly designed optimiza-

tion technique is enabled separately to justify the benefit of its own. The results can

also be observed in Figures 5.19 to 5.21. It is shown that applying only new graph

construction will result in the shortest runtime and smaller number of EPE violations.

Solely applying PV Band optimization will result in the smallest PV Band area, while
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the number of EPE violation will increase. Leveraging both of them can take the good

side of each and lead to satisfying results on all aspects.

5.3.4 Robustness and Pattern Density

In the experiment, we use a straight-forward method for initialization. M1 is initial-

ized with target image Z and M2 is initialized as a 0 matrix (empty mask), which

is a conventional initialization approach for mask optimization [5, 66]. The decompo-

sition/assignment happens in the discrete optimization. Different initial assignments

may be obtained at the first discrete optimization process due to the randomized round-

ing and pruning, which may lead to different final solutions. In order to analyze the

sensitivity of the initial decomposition to the proposed framework, we conduct multiple

runs and record all the results which is shown as in Table 5.5. It can be seen that

there are slight vibration among different runs while the overall results is robust to the

randomness.

In double patterning process, the pattern density uniformity between two masks is

of great importance in manufacturing. The final on-wafer image is generated by etch-

ing process which is sensitive to the pattern density. Since the proposed framework

is targeting at simultaneous layout decomposition and mask optimization in multiple

patterning process, pattern density issue should be taken into consideration. It can be

realized in two ways. (1) Pruning solutions based on a combined metric considering

both printed image quality and pattern density uniformity (e.g., a weighted summation

of these two metrics); (2) Set a hard constraint on the uniformity and directly pruned

unsatisfied ones. To verify the idea, we implement a uniformity-aware discrete opti-

mization and conducted the experiments. Since in our experiments the total regions
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Table 5.6: Performance of pattern uniformity-aware LDMO

Cell
NG only PV only NG+PV

EPEV PVB EPEV PVB EPEV PVB
# (nm2) # (nm2) # (nm2)

INV_X1 0 14189 0 13946 0 13951
NOR2_X1 0 19253 0 18742 0 18987
BUF_X1 0 19142 0 19055 0 18996

CLKBUF_X1 0 17742 0 17296 0 16992
OAI211_X1 1 31354 1 30897 1 31244
AOI211_X1 1 30561 2 30496 0 30478
AND2_X1 0 23861 0 23869 2 23798
OR2_X1 0 22478 0 22190 0 22148

NAND4_X1 0 28429 4 26795 0 28210
NAND3_X2 1 37232 1 35931 0 35894
OR4_X1 0 28478 1 28173 0 28403
NOR3_X2 3 31280 2 31096 2 30703
OAI33_X1 1 33467 0 33282 1 33472
Average 0.54 26805 0.85 25520 0.46 25636
Ratio 1.17 1.04 1.85 0.99 1.0 1.0

of the two masks are the same, we use the pattern area on each mask to represent the

pattern density. Denote the pattern density on the two masks as D1 and D2, respec-

tively. They can be calculated using M1 and M2, or can be approximately calculated

using the solution (Equation (5.23)). The constraint is set to be |D1−D2| ≤ 20%×D,

where D is the total area of the target patterns. The results are shown in Table 5.6

after applying the uniformity-aware constraint.

5.4 Discussion

5.4.1 Handling Variable Threshold Resist Model

The relaxation approach applied in Equation (5.7) and Equation (5.8) assumes a con-

stant threshold model (CTM) when forming a printed image from an aerial image.
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The proposed Algorithm 3 and Algorithm 4 are also applicable to the scenario where

a variable threshold model (VTM) is used. Recall that CTM is relaxed using sigmoid

function to incorporate with numerical optimization (Equations (5.7) and (5.8)). Sim-

ilar approaches can be used if the resist model is VTM. Essentially, we just need to

obtain pixel-wise threshold before binarizing the aerial image to printed image. Sup-

pose a VTM is given as Ivth = C1 + C2 × Imax [140], where Imax is the maximum

intensity of a local region of aerial image, Ivth is the threshold of the pixels within the

same region. C1 and C2 are the parameters in the model. After aerial images I1 and

I2 are generated, two threshold matrices Ivth1 and Ivth2 can be obtained, which have

the same dimension as the corresponding aerial images. The entries in Ivth1 and Ivth2

indicate the threshold of the corresponding pixels in I1 and I2, respectively. Then the

Equations (5.7) and (5.8) can be written as

Z1(x, y) =
1

1 + exp[−θZ(I1(x, y)− Ivth1(x, y))]
, (5.24)

Z2(x, y) =
1

1 + exp[−θZ(I2(x, y)− Ivth2(x, y))]
. (5.25)

Considering the Ivth1 and Ivth2 are only correlated with the maximum local intensity

in I1 and I2, thus they can be treated as constants when deriving the gradient based

on above equations, which makes the gradient calculation the same as Equations (5.17)

and (5.18).
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5.4.2 Handling More Advanced Multiple Patterning Lithogra-

phy

The proposed framework contains a gradient-based numerical optimization as well as

a set of discrete optimization. The main step for gradient-based numerical optimiza-

tion is the mathematical relaxation and derivation of the gradient for each individual

mask. For triple patterning process, the problem formulation can be rewritten with an

additional variable M3 and additional constraints.

M3(x, y) ∈ {0, 1}, ∀x, y, (5.26)

I3 =
K∑
k=1

wk · |M3 ⊗ hk|2, (5.27)

Z = fresist(I1) ∨ fresist(I2) ∨ fresist(I3). (5.28)

It can be observed that the gradient derivation is not limited to only 2 masks, since

all the mathematical relaxation methods can be applied to the newly added variables

and constraints, and a similar equation can be derived for M3. The discrete optimiza-

tion requires a slightly change to handle triple patterning lithography cases which is

essentially a three-way partition. For double patterning process, the problem is formu-

lated into a max-cut problem and relaxed to an SDP formulation. For triple patterning

process, discrete optimization solutions can be generated based on vector programming

which also can be relaxed to an SDP formulation, as proposed in [141, 53]. Considering

that there may be some patterns that have multiple assignment choices, we can also

obtain multiple solutions from the three-way partition step. Similarly, the pruning step

is applied to select the most promising solution containing a 3-tuple, and proceed as
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shown in Figure 5.12.

5.4.3 Handling Other Layers

In addition, although the experiments are conducted with contacted layers in this work,

the optimization methodologies proposed in this framework are general. Specifically,

the gradient-based numerical optimization is a conventional technique which is generally

applicable to any layers. The discrete optimization is designed to assist the conflicting

pattern separation and help to explore higher quality solutions, therefore the funda-

mental idea is applicable to other layers. In order to perform LDMO for other layers,

there are a few detailed modifications can be applied to some of the sub-modules. Par-

ticularly, the grid construction needs to incorporate other issues like stitch insertion,

which essentially requires more engineering efforts for stitch insertion [50, 53] and grid

merging, such that the violation detection, discrete optimization and pruning can still

perform the functionality as they are.

5.5 Summary

In this chapter we have proposed a unified framework solving layout decomposition and

mask optimization problem, while taking process variation issues into consideration. In

this framework, we designed two collaborative flows for optimization: a gradient-based

numerical optimization, as well as a set of discrete optimizations to jump out of local

optimum. The experimental results show that our proposed framework outperforms

conventional flow in terms of both runtime and EPE violation number. To the best

of our knowledge, this is the first work trying to handle multiple patterning layout
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decomposition and mask optimization simultaneously. Note that our framework is

general and it can be extended to handle triple or quadruple patterning lithography

coloring rules. We hope this work can stimulate more future work into this field.
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Figure 5.14: Distribution of #EPE violations of different cells: (a) BUF_X1; (b) OR2_X1;
(c) NAND4_X1.
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(a) (b) (c) (d)

Figure 5.16: Printed image of cell BUF_X1; (a) [4] +[5], #EPEV=5; (b) [6] +[5],
#EPEV=5; (c) [7], #EPEV=1. (d) Ours, #EPEV=0.

(a) (b) (c) (d)

Figure 5.17: Printed image of cell OR2_X1; (a) [4] +[5], #EPEV=3; (b) [6] +[5],
#EPEV=7; (c) [7], #EPEV=0. (d) Ours, #EPEV=0.

116



(a) (b) (c) (d)

Figure 5.18: Printed image of cell NAND4_X1; (a) [4] +[5], #EPEV=6; (b) [6] +[5],
#EPEV=5; (c) [7], #EPEV=1. (d) Ours, #EPEV=0.
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Figure 5.19: Comparison on the number of EPE violations.

117



IN
V_

X1

NO
R2

_X
1

BU
F_

X1

CL
KB

UF
_X

1

OA
I2

11
_X

1

AO
I2

11
_X

1

AN
D2

_X
1

OR
2_

X1

NA
ND

4_
X1

NA
ND

3_
X2

OR
4_

X1

NO
R3

_X
2

OA
I3

3_
X1

Aver
age

1

2

3

4

·104

PV
Ba

nd
(n
m

2
)

[7] NG only PV only NG+PV

Figure 5.20: Comparison on PV Band.
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Figure 5.21: Comparison on runtime.
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Chapter 6

Hardware-Friendly Deep Learning

Typically, the research of hardware-friendly learning can be established in different per-

spectives. Firstly, deep learning algorithms can be designed to be hardware-friendly

in terms of storage and power consumption, which can be useful to general comput-

ing platforms. Deep neural networks are demonstrated to be over-parameterized [76],

which motivates researchers to explore efficient approaches to make the deep models

compact. Secondly, specific hardware can be designed for deep learning applications, as

the bottleneck of processing these tasks is in the memory access. Several previous works

investigated particular dataflows to maximize the data reuse, and hence the amount

of DRAM accesses can be reduced significantly [142, 143, 144, 145]. In addition, a

combination of hardware-software co-design is able to perform coordination between

two sides [146, 147], which also draws great attention in recent years.

In this chapter, we focus on the first category and develop a set of methodologies

to design efficient deep learning models for hardware-friendly learning. In Section 6.1,

a unified approximation framework is developed for compressing and accelerating deep

neural networks, which is a general technique and can be applied to most of commonly
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seen convolutional neural networks. Moreover, a pruning methodology is proposed for

unsupervised partial domain adaptation in Section 6.2, which is a special scenario in

deep learning applications.

6.1 A Unified Approximation Framework for Deep

Neural Networks

Approximating the deep models involves removing the redundancy and seeking for sim-

plified structures such that the approximated network may retain the performance on

original tasks. In this work, we propose a unified approximation framework for CNNs

which approximates the convolutional layers with two components, including a struc-

tured sparse component and a low-rank component. The illustration is presented in

Figure 6.1. In contrast to [148], our constraints not only facilitate model compression

but also favors acceleration because of the structured sparse weights [79]. We retain the

accuracy of the model by approximating the nonlinear response after activation. The

layer-wise network approximation problem is formulated as minimizing the reconstruc-

tion error of the response after non-linear ReLU. To overcome the resulted difficulty of

non-convex optimization, we propose a convex relaxation scheme which considers the

constraints for structured sparsity and low-rankness, and then solve it with an exten-

sion of alternating direction method of multipliers (ADMM) [149]. Moreover, we prove

that the extended ADMM algorithm converges to the optimal solution of the relaxed

problem.

The proposed method is evaluated on well-known DNN architectures, including

VGG-16 [150], NIN [151], AlexNet [152] and GoogLeNet [153]. For VGG-16 with
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the CIFAR-10 dataset, we achieve 4.4× model compression with only 0.4% accuracy

drop. Meanwhile, with the compressed model the inference is accelerated by 2.2×. For

AlexNet with the ImageNet dataset, we achieve 4.9× model compression at the cost

that the top-5 accuracy drops slightly from 81.3% to 80%. For GoogLeNet with the

ImageNet dataset, the proposed method also brings 2.9× reduction of the model param-

eters without any degradation on the accuracy of inference. These experimental results

reveal that the proposed approximation framework is able to remarkably compress the

CNN models while keeping high accuracy.

The rest of this section is organized as follows. The problem formulation of the

proposed methodology is given in Section 6.1.1. Section 6.1.2 presents a numerical

optimization algorithm for solving the problem. The experimental results are reported

in Section 6.2.4.

6.1.1 Problem Formulation

In this section, we introduce our mathematical formulation for network approximation

using structured sparse and low-rank decomposition, while taking non-linearity into

account. To this end, we propose to formulate the problem into a unified optimization

model. In the following context, we focus on CNNs which involve a large model size.

In an FC layer of a CNN, the output feature map can be computed as

Y = WX, (6.1)

where X ∈ Rm and Y ∈ Rn represent the input feature vector and output response,

respectively. W ∈ Rn×m denotes the weight matrix. For a convolutional layer the
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convolution operation can also be represented as Equation (6.1). The illustration is

shown in Figure 6.1a. The convolution filter is W ∈ Rn×c×k×k, where k is spatial size,

c is the number of input channels and n is the number of filters. The filter can be

reshaped to a matrix with size n-by-k2c. The input X is lowered to a matrix such

that each k2c volume involved in a convolution forms a column. Then the convolution

operation is converted to matrix multiplication.

The information loss is inevitable when we approximate the original filters by low-

rank or sparse filters, which may cause performance degradation. In order to compress

the network and accelerate the computation, we perform low-rank approximation and

network sparsification simultaneously. The output feature maps of a layer is generated

by the sum of convolving with each filter. In order to preserve the performance, we aim

at minimizing the reconstruction error of the response generated by the approximated

filters in each layer after activation. An example block structure in the network is

demonstrated in Figure 6.2. Then, the problem is formulated as follows:

min
A,B

N∑
i=1

∥Yi − r((A+B)Xi)∥2F ,

s.t. ∥A∥0 ≤ S, rank(B) ≤ L.

(6.2)

Here Yi and Xi represent the output feature map and the input feature map of a

layer, respectively. Structured sparse component A and low-rank component B are two

weight matrices we are looking for, each of which is the lowered matrices of a 4-D tensor.

N is the total number of samples used for approximation. ∥·∥F is Frobenius norm. r(·)

is the activation function in the network, i.e., ReLU(·). S and L are user-defined target

sparsity level and target rank for the filters.
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Y 2 Rd⇥n
<latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

⌦
<latexit sha1_base64="BKxXdQ+px1MKj+qr7bW3X9GVajs=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYhbs0WgZsLCOYD0mOsLfZJEt2947dOSEc+RU2ForY+nPs/Ddukis08cHA470ZZuZFiRQWff/b29jc2t7ZLewV9w8Oj45LJ6ctG6eG8SaLZWw6EbVcCs2bKFDyTmI4VZHk7WhyO/fbT9xYEesHnCY8VHSkxVAwik56rPRiFIrbSr9U9qv+AmSdBDkpQ45Gv/TVG8QsVVwjk9TabuAnGGbUoGCSz4q91PKEsgkd8a6jmrotYbY4eEYunTIgw9i40kgW6u+JjCprpypynYri2K56c/E/r5vi8CbMhE5S5JotFw1TSTAm8+/JQBjOUE4docwIdythY2ooQ5dR0YUQrL68Tlq1auD4fa1cr+VxFOAcLuAKAriGOtxBA5rAQMEzvMKbZ7wX7937WLZuePnMGfyB9/kDO5uP9w==</latexit><latexit sha1_base64="BKxXdQ+px1MKj+qr7bW3X9GVajs=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYhbs0WgZsLCOYD0mOsLfZJEt2947dOSEc+RU2ForY+nPs/Ddukis08cHA470ZZuZFiRQWff/b29jc2t7ZLewV9w8Oj45LJ6ctG6eG8SaLZWw6EbVcCs2bKFDyTmI4VZHk7WhyO/fbT9xYEesHnCY8VHSkxVAwik56rPRiFIrbSr9U9qv+AmSdBDkpQ45Gv/TVG8QsVVwjk9TabuAnGGbUoGCSz4q91PKEsgkd8a6jmrotYbY4eEYunTIgw9i40kgW6u+JjCprpypynYri2K56c/E/r5vi8CbMhE5S5JotFw1TSTAm8+/JQBjOUE4docwIdythY2ooQ5dR0YUQrL68Tlq1auD4fa1cr+VxFOAcLuAKAriGOtxBA5rAQMEzvMKbZ7wX7937WLZuePnMGfyB9/kDO5uP9w==</latexit><latexit sha1_base64="BKxXdQ+px1MKj+qr7bW3X9GVajs=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYhbs0WgZsLCOYD0mOsLfZJEt2947dOSEc+RU2ForY+nPs/Ddukis08cHA470ZZuZFiRQWff/b29jc2t7ZLewV9w8Oj45LJ6ctG6eG8SaLZWw6EbVcCs2bKFDyTmI4VZHk7WhyO/fbT9xYEesHnCY8VHSkxVAwik56rPRiFIrbSr9U9qv+AmSdBDkpQ45Gv/TVG8QsVVwjk9TabuAnGGbUoGCSz4q91PKEsgkd8a6jmrotYbY4eEYunTIgw9i40kgW6u+JjCprpypynYri2K56c/E/r5vi8CbMhE5S5JotFw1TSTAm8+/JQBjOUE4docwIdythY2ooQ5dR0YUQrL68Tlq1auD4fa1cr+VxFOAcLuAKAriGOtxBA5rAQMEzvMKbZ7wX7937WLZuePnMGfyB9/kDO5uP9w==</latexit><latexit sha1_base64="BKxXdQ+px1MKj+qr7bW3X9GVajs=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYhbs0WgZsLCOYD0mOsLfZJEt2947dOSEc+RU2ForY+nPs/Ddukis08cHA470ZZuZFiRQWff/b29jc2t7ZLewV9w8Oj45LJ6ctG6eG8SaLZWw6EbVcCs2bKFDyTmI4VZHk7WhyO/fbT9xYEesHnCY8VHSkxVAwik56rPRiFIrbSr9U9qv+AmSdBDkpQ45Gv/TVG8QsVVwjk9TabuAnGGbUoGCSz4q91PKEsgkd8a6jmrotYbY4eEYunTIgw9i40kgW6u+JjCprpypynYri2K56c/E/r5vi8CbMhE5S5JotFw1TSTAm8+/JQBjOUE4docwIdythY2ooQ5dR0YUQrL68Tlq1auD4fa1cr+VxFOAcLuAKAriGOtxBA5rAQMEzvMKbZ7wX7937WLZuePnMGfyB9/kDO5uP9w==</latexit>

Filters: n⇥ c⇥ k ⇥ k
<latexit sha1_base64="QcvUOuC/A9a18l9pIaEjFzMO4Rg=">AAACEHicbZDNSsNAFIVv6l+tf1GXbgZb0VVJulFcFQRxWcG2QhvKZDpph04mYWYilNBHcOOruHGhiFuX7nwbJ20Ubb0w8HHOvdy5x485U9pxPq3C0vLK6lpxvbSxubW9Y+/utVSUSEKbJOKRvPWxopwJ2tRMc3obS4pDn9O2P7rI/PYdlYpF4kaPY+qFeCBYwAjWRurZx5eMa+Ofo4pAXc1CqhD5htEPVHp22ak600KL4OZQhrwaPfuj249IElKhCcdKdVwn1l6KpWaE00mpmygaYzLCA9oxKLDZ46XTgyboyCh9FETSPKHRVP09keJQqXHom84Q66Ga9zLxP6+T6ODMS5mIE00FmS0KEo50hLJ0UJ9JSjQfG8BEMvNXRIZYYpJlVDIhuPMnL0KrVnUNX9fKdSePowgHcAgn4MIp1OEKGtAEAvfwCM/wYj1YT9ar9TZrLVj5zD78Kev9C2YQm3k=</latexit><latexit sha1_base64="QcvUOuC/A9a18l9pIaEjFzMO4Rg=">AAACEHicbZDNSsNAFIVv6l+tf1GXbgZb0VVJulFcFQRxWcG2QhvKZDpph04mYWYilNBHcOOruHGhiFuX7nwbJ20Ubb0w8HHOvdy5x485U9pxPq3C0vLK6lpxvbSxubW9Y+/utVSUSEKbJOKRvPWxopwJ2tRMc3obS4pDn9O2P7rI/PYdlYpF4kaPY+qFeCBYwAjWRurZx5eMa+Ofo4pAXc1CqhD5htEPVHp22ak600KL4OZQhrwaPfuj249IElKhCcdKdVwn1l6KpWaE00mpmygaYzLCA9oxKLDZ46XTgyboyCh9FETSPKHRVP09keJQqXHom84Q66Ga9zLxP6+T6ODMS5mIE00FmS0KEo50hLJ0UJ9JSjQfG8BEMvNXRIZYYpJlVDIhuPMnL0KrVnUNX9fKdSePowgHcAgn4MIp1OEKGtAEAvfwCM/wYj1YT9ar9TZrLVj5zD78Kev9C2YQm3k=</latexit><latexit sha1_base64="QcvUOuC/A9a18l9pIaEjFzMO4Rg=">AAACEHicbZDNSsNAFIVv6l+tf1GXbgZb0VVJulFcFQRxWcG2QhvKZDpph04mYWYilNBHcOOruHGhiFuX7nwbJ20Ubb0w8HHOvdy5x485U9pxPq3C0vLK6lpxvbSxubW9Y+/utVSUSEKbJOKRvPWxopwJ2tRMc3obS4pDn9O2P7rI/PYdlYpF4kaPY+qFeCBYwAjWRurZx5eMa+Ofo4pAXc1CqhD5htEPVHp22ak600KL4OZQhrwaPfuj249IElKhCcdKdVwn1l6KpWaE00mpmygaYzLCA9oxKLDZ46XTgyboyCh9FETSPKHRVP09keJQqXHom84Q66Ga9zLxP6+T6ODMS5mIE00FmS0KEo50hLJ0UJ9JSjQfG8BEMvNXRIZYYpJlVDIhuPMnL0KrVnUNX9fKdSePowgHcAgn4MIp1OEKGtAEAvfwCM/wYj1YT9ar9TZrLVj5zD78Kev9C2YQm3k=</latexit><latexit sha1_base64="QcvUOuC/A9a18l9pIaEjFzMO4Rg=">AAACEHicbZDNSsNAFIVv6l+tf1GXbgZb0VVJulFcFQRxWcG2QhvKZDpph04mYWYilNBHcOOruHGhiFuX7nwbJ20Ubb0w8HHOvdy5x485U9pxPq3C0vLK6lpxvbSxubW9Y+/utVSUSEKbJOKRvPWxopwJ2tRMc3obS4pDn9O2P7rI/PYdlYpF4kaPY+qFeCBYwAjWRurZx5eMa+Ofo4pAXc1CqhD5htEPVHp22ak600KL4OZQhrwaPfuj249IElKhCcdKdVwn1l6KpWaE00mpmygaYzLCA9oxKLDZ46XTgyboyCh9FETSPKHRVP09keJQqXHom84Q66Ga9zLxP6+T6ODMS5mIE00FmS0KEo50hLJ0UJ9JSjQfG8BEMvNXRIZYYpJlVDIhuPMnL0KrVnUNX9fKdSePowgHcAgn4MIp1OEKGtAEAvfwCM/wYj1YT9ar9TZrLVj5zD78Kev9C2YQm3k=</latexit>

(a)

U 2 R(k2c)⇥r
<latexit sha1_base64="gv822Bw48tr9oBmhNhohoXYtP40=">AAACFHicbVC7TsMwFHV4lvIKMLJYtEhFSFXSBcYKFsaCSFupSSvHdVqrjhPZDlIV5SNY+BUWBhBiZWDjb3DaDNByJEvH59yre+/xY0alsqxvY2V1bX1js7RV3t7Z3ds3Dw7bMkoEJg6OWCS6PpKEUU4cRRUj3VgQFPqMdPzJde53HoiQNOL3ahoTL0QjTgOKkdLSwDyvuiFSYz9IncylHM5/fnqX9dPapN/AZ66iIZFQZNWBWbHq1gxwmdgFqYACrYH55Q4jnISEK8yQlD3bipWXIqEoZiQru4kkMcITNCI9TTnSg7x0dlQGT7UyhEEk9OMKztTfHSkKpZyGvq7Md5aLXi7+5/USFVx6KeVxogjH80FBwqCKYJ4QHFJBsGJTTRAWVO8K8RgJhJXOsaxDsBdPXibtRt226vZto9K8KuIogWNwAmrABhegCW5ACzgAg0fwDF7Bm/FkvBjvxse8dMUoeo7AHxifPyHhnjY=</latexit><latexit sha1_base64="gv822Bw48tr9oBmhNhohoXYtP40=">AAACFHicbVC7TsMwFHV4lvIKMLJYtEhFSFXSBcYKFsaCSFupSSvHdVqrjhPZDlIV5SNY+BUWBhBiZWDjb3DaDNByJEvH59yre+/xY0alsqxvY2V1bX1js7RV3t7Z3ds3Dw7bMkoEJg6OWCS6PpKEUU4cRRUj3VgQFPqMdPzJde53HoiQNOL3ahoTL0QjTgOKkdLSwDyvuiFSYz9IncylHM5/fnqX9dPapN/AZ66iIZFQZNWBWbHq1gxwmdgFqYACrYH55Q4jnISEK8yQlD3bipWXIqEoZiQru4kkMcITNCI9TTnSg7x0dlQGT7UyhEEk9OMKztTfHSkKpZyGvq7Md5aLXi7+5/USFVx6KeVxogjH80FBwqCKYJ4QHFJBsGJTTRAWVO8K8RgJhJXOsaxDsBdPXibtRt226vZto9K8KuIogWNwAmrABhegCW5ACzgAg0fwDF7Bm/FkvBjvxse8dMUoeo7AHxifPyHhnjY=</latexit><latexit sha1_base64="gv822Bw48tr9oBmhNhohoXYtP40=">AAACFHicbVC7TsMwFHV4lvIKMLJYtEhFSFXSBcYKFsaCSFupSSvHdVqrjhPZDlIV5SNY+BUWBhBiZWDjb3DaDNByJEvH59yre+/xY0alsqxvY2V1bX1js7RV3t7Z3ds3Dw7bMkoEJg6OWCS6PpKEUU4cRRUj3VgQFPqMdPzJde53HoiQNOL3ahoTL0QjTgOKkdLSwDyvuiFSYz9IncylHM5/fnqX9dPapN/AZ66iIZFQZNWBWbHq1gxwmdgFqYACrYH55Q4jnISEK8yQlD3bipWXIqEoZiQru4kkMcITNCI9TTnSg7x0dlQGT7UyhEEk9OMKztTfHSkKpZyGvq7Md5aLXi7+5/USFVx6KeVxogjH80FBwqCKYJ4QHFJBsGJTTRAWVO8K8RgJhJXOsaxDsBdPXibtRt226vZto9K8KuIogWNwAmrABhegCW5ACzgAg0fwDF7Bm/FkvBjvxse8dMUoeo7AHxifPyHhnjY=</latexit><latexit sha1_base64="gv822Bw48tr9oBmhNhohoXYtP40=">AAACFHicbVC7TsMwFHV4lvIKMLJYtEhFSFXSBcYKFsaCSFupSSvHdVqrjhPZDlIV5SNY+BUWBhBiZWDjb3DaDNByJEvH59yre+/xY0alsqxvY2V1bX1js7RV3t7Z3ds3Dw7bMkoEJg6OWCS6PpKEUU4cRRUj3VgQFPqMdPzJde53HoiQNOL3ahoTL0QjTgOKkdLSwDyvuiFSYz9IncylHM5/fnqX9dPapN/AZ66iIZFQZNWBWbHq1gxwmdgFqYACrYH55Q4jnISEK8yQlD3bipWXIqEoZiQru4kkMcITNCI9TTnSg7x0dlQGT7UyhEEk9OMKztTfHSkKpZyGvq7Md5aLXi7+5/USFVx6KeVxogjH80FBwqCKYJ4QHFJBsGJTTRAWVO8K8RgJhJXOsaxDsBdPXibtRt226vZto9K8KuIogWNwAmrABhegCW5ACzgAg0fwDF7Bm/FkvBjvxse8dMUoeo7AHxifPyHhnjY=</latexit>

V 2 R12r⇥n
<latexit sha1_base64="cZQcePJt5hPp/lQjInQJyWnATx4=">AAACEnicbVC7TsMwFHV4lvIqMLJYtEiwVEkXGCtYGAuiD6lJK8d1WquOE9k3SFWUb2DhV1gYQIiViY2/wW0zQMuRLB2fc6/uvcePBddg29/Wyura+sZmYau4vbO7t186OGzpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sfXU7/9wJTmkbyHScy8kAwlDzglYKR+6bzihgRGfpC2MpdLPP/56V3WS51eTbnAQ6axzCr9Utmu2jPgZeLkpIxyNPqlL3cQ0SRkEqggWncdOwYvJQo4FSwruolmMaFjMmRdQyUxg7x0dlKGT40ywEGkzJOAZ+rvjpSEWk9C31RON9aL3lT8z+smEFx6KZdxAkzS+aAgERgiPM0HD7hiFMTEEEIVN7tiOiKKUDApFk0IzuLJy6RVqzp21bmtletXeRwFdIxO0Bly0AWqoxvUQE1E0SN6Rq/ozXqyXqx362NeumLlPUfoD6zPH/oMnaM=</latexit><latexit sha1_base64="cZQcePJt5hPp/lQjInQJyWnATx4=">AAACEnicbVC7TsMwFHV4lvIqMLJYtEiwVEkXGCtYGAuiD6lJK8d1WquOE9k3SFWUb2DhV1gYQIiViY2/wW0zQMuRLB2fc6/uvcePBddg29/Wyura+sZmYau4vbO7t186OGzpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sfXU7/9wJTmkbyHScy8kAwlDzglYKR+6bzihgRGfpC2MpdLPP/56V3WS51eTbnAQ6axzCr9Utmu2jPgZeLkpIxyNPqlL3cQ0SRkEqggWncdOwYvJQo4FSwruolmMaFjMmRdQyUxg7x0dlKGT40ywEGkzJOAZ+rvjpSEWk9C31RON9aL3lT8z+smEFx6KZdxAkzS+aAgERgiPM0HD7hiFMTEEEIVN7tiOiKKUDApFk0IzuLJy6RVqzp21bmtletXeRwFdIxO0Bly0AWqoxvUQE1E0SN6Rq/ozXqyXqx362NeumLlPUfoD6zPH/oMnaM=</latexit><latexit sha1_base64="cZQcePJt5hPp/lQjInQJyWnATx4=">AAACEnicbVC7TsMwFHV4lvIqMLJYtEiwVEkXGCtYGAuiD6lJK8d1WquOE9k3SFWUb2DhV1gYQIiViY2/wW0zQMuRLB2fc6/uvcePBddg29/Wyura+sZmYau4vbO7t186OGzpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sfXU7/9wJTmkbyHScy8kAwlDzglYKR+6bzihgRGfpC2MpdLPP/56V3WS51eTbnAQ6axzCr9Utmu2jPgZeLkpIxyNPqlL3cQ0SRkEqggWncdOwYvJQo4FSwruolmMaFjMmRdQyUxg7x0dlKGT40ywEGkzJOAZ+rvjpSEWk9C31RON9aL3lT8z+smEFx6KZdxAkzS+aAgERgiPM0HD7hiFMTEEEIVN7tiOiKKUDApFk0IzuLJy6RVqzp21bmtletXeRwFdIxO0Bly0AWqoxvUQE1E0SN6Rq/ozXqyXqx362NeumLlPUfoD6zPH/oMnaM=</latexit><latexit sha1_base64="cZQcePJt5hPp/lQjInQJyWnATx4=">AAACEnicbVC7TsMwFHV4lvIqMLJYtEiwVEkXGCtYGAuiD6lJK8d1WquOE9k3SFWUb2DhV1gYQIiViY2/wW0zQMuRLB2fc6/uvcePBddg29/Wyura+sZmYau4vbO7t186OGzpKFGUNWkkItXxiWaCS9YEDoJ1YsVI6AvW9sfXU7/9wJTmkbyHScy8kAwlDzglYKR+6bzihgRGfpC2MpdLPP/56V3WS51eTbnAQ6axzCr9Utmu2jPgZeLkpIxyNPqlL3cQ0SRkEqggWncdOwYvJQo4FSwruolmMaFjMmRdQyUxg7x0dlKGT40ywEGkzJOAZ+rvjpSEWk9C31RON9aL3lT8z+smEFx6KZdxAkzS+aAgERgiPM0HD7hiFMTEEEIVN7tiOiKKUDApFk0IzuLJy6RVqzp21bmtletXeRwFdIxO0Bly0AWqoxvUQE1E0SN6Rq/ozXqyXqx362NeumLlPUfoD6zPH/oMnaM=</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

X 2 Rd⇥(k2c)
<latexit sha1_base64="hB2qTO+GpLSPUbONHsZTIgQeYWQ=">AAACE3icbVC7TsMwFHXKq5RXgJHFokUqDFXSBcZKLIwF0YfUpJXjOK1Vx4lsB6mK8g8s/AoLAwixsrDxNzhtBmg5kqXjc+7Vvfd4MaNSWda3UVpb39jcKm9Xdnb39g/Mw6OujBKBSQdHLBJ9D0nCKCcdRRUj/VgQFHqM9Lzpde73HoiQNOL3ahYTN0RjTgOKkdLSyLyoOSFSEy9I+5lDOVz8vPQuG6a+o2hIZH06bOLzrDYyq1bDmgOuErsgVVCgPTK/HD/CSUi4wgxJObCtWLkpEopiRrKKk0gSIzxFYzLQlCM9zE3nN2XwTCs+DCKhH1dwrv7uSFEo5Sz0dGW+slz2cvE/b5Co4MpNKY8TRTheDAoSBlUE84CgTwXBis00QVhQvSvEEyQQVjrGig7BXj55lXSbDVvz22a1ZRVxlMEJOAV1YINL0AI3oA06AINH8AxewZvxZLwY78bHorRkFD3H4A+Mzx+sfp3v</latexit><latexit sha1_base64="hB2qTO+GpLSPUbONHsZTIgQeYWQ=">AAACE3icbVC7TsMwFHXKq5RXgJHFokUqDFXSBcZKLIwF0YfUpJXjOK1Vx4lsB6mK8g8s/AoLAwixsrDxNzhtBmg5kqXjc+7Vvfd4MaNSWda3UVpb39jcKm9Xdnb39g/Mw6OujBKBSQdHLBJ9D0nCKCcdRRUj/VgQFHqM9Lzpde73HoiQNOL3ahYTN0RjTgOKkdLSyLyoOSFSEy9I+5lDOVz8vPQuG6a+o2hIZH06bOLzrDYyq1bDmgOuErsgVVCgPTK/HD/CSUi4wgxJObCtWLkpEopiRrKKk0gSIzxFYzLQlCM9zE3nN2XwTCs+DCKhH1dwrv7uSFEo5Sz0dGW+slz2cvE/b5Co4MpNKY8TRTheDAoSBlUE84CgTwXBis00QVhQvSvEEyQQVjrGig7BXj55lXSbDVvz22a1ZRVxlMEJOAV1YINL0AI3oA06AINH8AxewZvxZLwY78bHorRkFD3H4A+Mzx+sfp3v</latexit><latexit sha1_base64="hB2qTO+GpLSPUbONHsZTIgQeYWQ=">AAACE3icbVC7TsMwFHXKq5RXgJHFokUqDFXSBcZKLIwF0YfUpJXjOK1Vx4lsB6mK8g8s/AoLAwixsrDxNzhtBmg5kqXjc+7Vvfd4MaNSWda3UVpb39jcKm9Xdnb39g/Mw6OujBKBSQdHLBJ9D0nCKCcdRRUj/VgQFHqM9Lzpde73HoiQNOL3ahYTN0RjTgOKkdLSyLyoOSFSEy9I+5lDOVz8vPQuG6a+o2hIZH06bOLzrDYyq1bDmgOuErsgVVCgPTK/HD/CSUi4wgxJObCtWLkpEopiRrKKk0gSIzxFYzLQlCM9zE3nN2XwTCs+DCKhH1dwrv7uSFEo5Sz0dGW+slz2cvE/b5Co4MpNKY8TRTheDAoSBlUE84CgTwXBis00QVhQvSvEEyQQVjrGig7BXj55lXSbDVvz22a1ZRVxlMEJOAV1YINL0AI3oA06AINH8AxewZvxZLwY78bHorRkFD3H4A+Mzx+sfp3v</latexit><latexit sha1_base64="hB2qTO+GpLSPUbONHsZTIgQeYWQ=">AAACE3icbVC7TsMwFHXKq5RXgJHFokUqDFXSBcZKLIwF0YfUpJXjOK1Vx4lsB6mK8g8s/AoLAwixsrDxNzhtBmg5kqXjc+7Vvfd4MaNSWda3UVpb39jcKm9Xdnb39g/Mw6OujBKBSQdHLBJ9D0nCKCcdRRUj/VgQFHqM9Lzpde73HoiQNOL3ahYTN0RjTgOKkdLSyLyoOSFSEy9I+5lDOVz8vPQuG6a+o2hIZH06bOLzrDYyq1bDmgOuErsgVVCgPTK/HD/CSUi4wgxJObCtWLkpEopiRrKKk0gSIzxFYzLQlCM9zE3nN2XwTCs+DCKhH1dwrv7uSFEo5Sz0dGW+slz2cvE/b5Co4MpNKY8TRTheDAoSBlUE84CgTwXBis00QVhQvSvEEyQQVjrGig7BXj55lXSbDVvz22a1ZRVxlMEJOAV1YINL0AI3oA06AINH8AxewZvxZLwY78bHorRkFD3H4A+Mzx+sfp3v</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>

Y 2 Rd⇥n
<latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit>

(b)

Y 2 Rd⇥n
<latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit><latexit sha1_base64="YmPkeJlIVJEaJpLSd9HqFkIjj5g=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkXGCuxMBZEH6gJleM6rVXHiewbpCrKH7DwKywMIMTKysbf4LYZoOVIlo7PuVf33uPHgmuw7W+rsLK6tr5R3Cxtbe/s7pX3D9o6ShRlLRqJSHV9opngkrWAg2DdWDES+oJ1/PHl1O88MKV5JG9hEjMvJEPJA04JGKlfPq26IYGRH6R3mcslnv/89Ca7Twcu8JBpLLNqv1yxa/YMeJk4OamgHM1++csdRDQJmQQqiNY9x47BS4kCTgXLSm6iWUzomAxZz1BJzCAvnd2T4ROjDHAQKfMk4Jn6uyMlodaT0DeV03X1ojcV//N6CQQXXsplnACTdD4oSASGCE/DwQOuGAUxMYRQxc2umI6IIhRMhCUTgrN48jJp12uO4df1SsPO4yiiI3SMzpCDzlEDXaEmaiGKHtEzekVv1pP1Yr1bH/PSgpX3HKI/sD5/ACa1nKc=</latexit>

=<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

S 2 R(k2c)⇥n
<latexit sha1_base64="QRR/Tl1JVRP3x0Ie9U59ozu+Q4w=">AAACFHicbVC7TsMwFHXKq5RXgJHFokUqQqqSLjBWsDCWRx9Sk1aO67RWHSeyHaQqykew8CssDCDEysDG3+C0GaDlSJaOz7lX997jRYxKZVnfRmFldW19o7hZ2tre2d0z9w/aMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEmV5nfeSBC0pDfq2lE3ACNOPUpRkpLA/Os4gRIjT0/uUsdyuH85yW3aT+pTvp1fOooGhAJeVoZmGWrZs0Al4mdkzLI0RyYX84wxHFAuMIMSdmzrUi5CRKKYkbSkhNLEiE8QSPS05QjPchNZkel8EQrQ+iHQj+u4Ez93ZGgQMpp4OnKbGe56GXif14vVv6Fm1AexYpwPB/kxwyqEGYJwSEVBCs21QRhQfWuEI+RQFjpHEs6BHvx5GXSrtdsq2bf1MuNyzyOIjgCx6AKbHAOGuAaNEELYPAInsEreDOejBfj3fiYlxaMvOcQ/IHx+QMYf54w</latexit><latexit sha1_base64="QRR/Tl1JVRP3x0Ie9U59ozu+Q4w=">AAACFHicbVC7TsMwFHXKq5RXgJHFokUqQqqSLjBWsDCWRx9Sk1aO67RWHSeyHaQqykew8CssDCDEysDG3+C0GaDlSJaOz7lX997jRYxKZVnfRmFldW19o7hZ2tre2d0z9w/aMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEmV5nfeSBC0pDfq2lE3ACNOPUpRkpLA/Os4gRIjT0/uUsdyuH85yW3aT+pTvp1fOooGhAJeVoZmGWrZs0Al4mdkzLI0RyYX84wxHFAuMIMSdmzrUi5CRKKYkbSkhNLEiE8QSPS05QjPchNZkel8EQrQ+iHQj+u4Ez93ZGgQMpp4OnKbGe56GXif14vVv6Fm1AexYpwPB/kxwyqEGYJwSEVBCs21QRhQfWuEI+RQFjpHEs6BHvx5GXSrtdsq2bf1MuNyzyOIjgCx6AKbHAOGuAaNEELYPAInsEreDOejBfj3fiYlxaMvOcQ/IHx+QMYf54w</latexit><latexit sha1_base64="QRR/Tl1JVRP3x0Ie9U59ozu+Q4w=">AAACFHicbVC7TsMwFHXKq5RXgJHFokUqQqqSLjBWsDCWRx9Sk1aO67RWHSeyHaQqykew8CssDCDEysDG3+C0GaDlSJaOz7lX997jRYxKZVnfRmFldW19o7hZ2tre2d0z9w/aMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEmV5nfeSBC0pDfq2lE3ACNOPUpRkpLA/Os4gRIjT0/uUsdyuH85yW3aT+pTvp1fOooGhAJeVoZmGWrZs0Al4mdkzLI0RyYX84wxHFAuMIMSdmzrUi5CRKKYkbSkhNLEiE8QSPS05QjPchNZkel8EQrQ+iHQj+u4Ez93ZGgQMpp4OnKbGe56GXif14vVv6Fm1AexYpwPB/kxwyqEGYJwSEVBCs21QRhQfWuEI+RQFjpHEs6BHvx5GXSrtdsq2bf1MuNyzyOIjgCx6AKbHAOGuAaNEELYPAInsEreDOejBfj3fiYlxaMvOcQ/IHx+QMYf54w</latexit><latexit sha1_base64="QRR/Tl1JVRP3x0Ie9U59ozu+Q4w=">AAACFHicbVC7TsMwFHXKq5RXgJHFokUqQqqSLjBWsDCWRx9Sk1aO67RWHSeyHaQqykew8CssDCDEysDG3+C0GaDlSJaOz7lX997jRYxKZVnfRmFldW19o7hZ2tre2d0z9w/aMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEmV5nfeSBC0pDfq2lE3ACNOPUpRkpLA/Os4gRIjT0/uUsdyuH85yW3aT+pTvp1fOooGhAJeVoZmGWrZs0Al4mdkzLI0RyYX84wxHFAuMIMSdmzrUi5CRKKYkbSkhNLEiE8QSPS05QjPchNZkel8EQrQ+iHQj+u4Ez93ZGgQMpp4OnKbGe56GXif14vVv6Fm1AexYpwPB/kxwyqEGYJwSEVBCs21QRhQfWuEI+RQFjpHEs6BHvx5GXSrtdsq2bf1MuNyzyOIjgCx6AKbHAOGuAaNEELYPAInsEreDOejBfj3fiYlxaMvOcQ/IHx+QMYf54w</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>

X 2 Rd⇥(k2c)
<latexit sha1_base64="IWy3Xt/otXJq/d4FeRaOz+jrIBE=">AAACE3icbVC7TsMwFHV4lvIKMLJYtEiFoUq6wFjBwlgQfUhNWjmO01p1nMh2kKoo/8DCr7AwgBArCxt/g9NmgJYjWTo+517de48XMyqVZX0bK6tr6xubpa3y9s7u3r55cNiRUSIwaeOIRaLnIUkY5aStqGKkFwuCQo+Rrje5zv3uAxGSRvxeTWPihmjEaUAxUloamudVJ0Rq7AVpL3Moh/Ofl95lg9R3FA2JrE0GDXyWVYdmxapbM8BlYhekAgq0huaX40c4CQlXmCEp+7YVKzdFQlHMSFZ2EklihCdoRPqacqSHuenspgyeasWHQST04wrO1N8dKQqlnIaersxXloteLv7n9RMVXLop5XGiCMfzQUHCoIpgHhD0qSBYsakmCAuqd4V4jATCSsdY1iHYiycvk06jblt1+7ZRaV4VcZTAMTgBNWCDC9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x0xSh6jsAfGJ8/seaeAQ==</latexit><latexit sha1_base64="IWy3Xt/otXJq/d4FeRaOz+jrIBE=">AAACE3icbVC7TsMwFHV4lvIKMLJYtEiFoUq6wFjBwlgQfUhNWjmO01p1nMh2kKoo/8DCr7AwgBArCxt/g9NmgJYjWTo+517de48XMyqVZX0bK6tr6xubpa3y9s7u3r55cNiRUSIwaeOIRaLnIUkY5aStqGKkFwuCQo+Rrje5zv3uAxGSRvxeTWPihmjEaUAxUloamudVJ0Rq7AVpL3Moh/Ofl95lg9R3FA2JrE0GDXyWVYdmxapbM8BlYhekAgq0huaX40c4CQlXmCEp+7YVKzdFQlHMSFZ2EklihCdoRPqacqSHuenspgyeasWHQST04wrO1N8dKQqlnIaersxXloteLv7n9RMVXLop5XGiCMfzQUHCoIpgHhD0qSBYsakmCAuqd4V4jATCSsdY1iHYiycvk06jblt1+7ZRaV4VcZTAMTgBNWCDC9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x0xSh6jsAfGJ8/seaeAQ==</latexit><latexit sha1_base64="IWy3Xt/otXJq/d4FeRaOz+jrIBE=">AAACE3icbVC7TsMwFHV4lvIKMLJYtEiFoUq6wFjBwlgQfUhNWjmO01p1nMh2kKoo/8DCr7AwgBArCxt/g9NmgJYjWTo+517de48XMyqVZX0bK6tr6xubpa3y9s7u3r55cNiRUSIwaeOIRaLnIUkY5aStqGKkFwuCQo+Rrje5zv3uAxGSRvxeTWPihmjEaUAxUloamudVJ0Rq7AVpL3Moh/Ofl95lg9R3FA2JrE0GDXyWVYdmxapbM8BlYhekAgq0huaX40c4CQlXmCEp+7YVKzdFQlHMSFZ2EklihCdoRPqacqSHuenspgyeasWHQST04wrO1N8dKQqlnIaersxXloteLv7n9RMVXLop5XGiCMfzQUHCoIpgHhD0qSBYsakmCAuqd4V4jATCSsdY1iHYiycvk06jblt1+7ZRaV4VcZTAMTgBNWCDC9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x0xSh6jsAfGJ8/seaeAQ==</latexit><latexit sha1_base64="IWy3Xt/otXJq/d4FeRaOz+jrIBE=">AAACE3icbVC7TsMwFHV4lvIKMLJYtEiFoUq6wFjBwlgQfUhNWjmO01p1nMh2kKoo/8DCr7AwgBArCxt/g9NmgJYjWTo+517de48XMyqVZX0bK6tr6xubpa3y9s7u3r55cNiRUSIwaeOIRaLnIUkY5aStqGKkFwuCQo+Rrje5zv3uAxGSRvxeTWPihmjEaUAxUloamudVJ0Rq7AVpL3Moh/Ofl95lg9R3FA2JrE0GDXyWVYdmxapbM8BlYhekAgq0huaX40c4CQlXmCEp+7YVKzdFQlHMSFZ2EklihCdoRPqacqSHuenspgyeasWHQST04wrO1N8dKQqlnIaersxXloteLv7n9RMVXLop5XGiCMfzQUHCoIpgHhD0qSBYsakmCAuqd4V4jATCSsdY1iHYiycvk06jblt1+7ZRaV4VcZTAMTgBNWCDC9AEN6AF2gCDR/AMXsGb8WS8GO/Gx7x0xSh6jsAfGJ8/seaeAQ==</latexit>

(c)

Figure 6.1: (a) Transform convolution to matrix multiplication; (b) Approximate weight
matrix W using two matrices with lower-rank; (c) Impose structured sparsity on weight
matrix W.

6.1.2 Optimization Methodology

6.1.2.1 Problem Relaxation

Solving Problem (6.2) directly involves both l0 minimization and rank minimization,

which is NP-hard. Besides, we want A to be structured sparse, which leads to extra
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+
<latexit sha1_base64="RgQFrgPP09G9wiNkCBnzA2EsptM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxVYQhJL0oseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5XLSr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5qVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0ijYEb/nlVdKqVT236t3XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEoUY0J</latexit><latexit sha1_base64="RgQFrgPP09G9wiNkCBnzA2EsptM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxVYQhJL0oseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5XLSr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5qVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0ijYEb/nlVdKqVT236t3XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEoUY0J</latexit><latexit sha1_base64="RgQFrgPP09G9wiNkCBnzA2EsptM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxVYQhJL0oseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5XLSr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5qVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0ijYEb/nlVdKqVT236t3XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEoUY0J</latexit><latexit sha1_base64="RgQFrgPP09G9wiNkCBnzA2EsptM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxVYQhJL0oseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5XLSr9UdqvuHGSVeDkpQ45Gv/TVG8QsjbhCJqkxXc9N0M+oRsEknxZ7qeEJZWM65F1LFY248bP5qVNybpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0ijYEb/nlVdKqVT236t3XyvWbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEoUY0J</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit>
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Figure 6.2: Structure combining sparse and low-rank decomposition.

difficulty. To tackle this challenge, we apply convex relaxation to the constraints. The

rank constraint on B is relaxed by nuclear norm of B, which is the sum of the singular

values of B. As for the l0 norm constraints, a general way is to relax it by l1 norm which

is convex and has good performance in imposing sparsity. However, as we discussed

above, structured sparse patterns can be more easily used for computation acceleration.

Therefore, here we relax l0 constraint by l2,1 norm (the sum of the Euclidean norms of

the columns) such that the zero elements in A appear column-wise. Then, the original

problem is reformulated as

min
A,B

N∑
i=1

∥Yi − r((A+B)Xi)∥2F + λ1 ∥A∥2,1 + λ2 ∥B∥∗ , (6.3)

where ∥·∥2,1 is l2,1 norm and ∥·∥∗ is nuclear norm. λ1 and λ2 are coefficients of the

relaxed terms. The problem (6.3) now is a convex optimization problem. To solve

it, we make use of the alternating direction method of multipliers (ADMM), which is

widely used in large-scale problems arising in statistics [149]. Especially, the optimal

solution of the sub-problems involving l2,1-norm and nuclear norm can be obtained in

closed-form as in subspace learning [154] and the singular value thresholding (SVT)

operator [155], respectively.
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By introducing an auxiliary variable M , the Problem (6.3) can be rewritten as

min
A,B,M

N∑
i=1

∥Yi − r(MXi)∥2F + λ1 ∥A∥2,1 + λ2 ∥B∥∗ ,

s.t. A+B = M .

(6.4)

Then the augmented Lagrangian function of Problem (6.4) is

Lt(A,B,M ,Λ) =
N∑
i=1

∥Yi − r(MXi)∥2F + λ1 ∥A∥2,1

+ λ2 ∥B∥∗ + ⟨Λ,A+B −M⟩+ t

2
∥A+B −M∥2F ,

(6.5)

where t > 0 is the penalty parameter and Λ is Lagrange multiplier. ⟨·, ·⟩ represents the

inner product operator.

6.1.2.2 Variables Update

ADMM solves the minimization problem of Lt(A,B,M ,Λ) iteratively. The variables

are alternatively updated in each iteration. To update A,B,M in iteration k+ 1, our

algorithm takes two steps. Firstly, we consider the following three sub-problems.

min
A

λ1 ∥A∥2,1 +
t

2

∥∥∥∥A+Bk −Mk +
Λk

t

∥∥∥∥2

F

, (6.6)

min
B

λ2 ∥B∥∗ +
t

2

∥∥∥∥B + Âk −Mk +
Λk

t

∥∥∥∥2

F

, (6.7)

min
M

N∑
i=1

∥Yi − r(MXi)∥2F + ⟨Λk, Âk + B̂k −M⟩

+
t

2

∥∥∥Âk + B̂k −M
∥∥∥2

F
. (6.8)
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All these three problems are proximal mapping problems. For Problem (6.6), the

optimal solution is given by

Âk = proxλ1
t
∥·∥2,1

(Mk −Bk −
Λk

t
). (6.9)

The explicit representation of Equation (6.9) can be derived based on [154]. Let

C = Mk −Bk −
Λk

t
, then the column i in Âk is given as

[Âk]:,i =


∥[C]:,i∥2 −

λ1

t

∥[C]:,i∥2
[C]:,i, if ∥[C]:,i∥2 >

λ1

t
;

0, otherwise.
(6.10)

For Problem (6.7), the optimal solution is given by

B̂k = proxλ2
t
∥·∥∗

(Mk − Âk −
Λk

t
). (6.11)

The explicit representation of Equation (6.11) can be obtained based on SVT oper-

ator Dτ [155]. Let D = Mk − Âk −
Λk

t
. We perform singular value decomposition on

D such that D = UΣV , where Σ = diag({σi}1≤i≤r) and σi is the i-th largest singular

value. Then B̂k is given by

B̂k = UDλ2
t

(Σ)V , (6.12)

where Dλ2
t

(Σ) = diag({(σi − λ2

t
)+}).

For Problem (6.8), it is non-trivial to derive the closed-form of the optimal solu-

tion of the sub-problem with respect to M since r(·) is a piecewise linear function.

However, the function is continuous and convex so that we can approach the optimal

solution of M iteratively by applying gradient-based method. In our implementation,
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we apply stochastic gradient descent (SGD) to solve it, and set learning rate as 10−3

and momentum as 0.9.

Up to now we are extending the classical ADMM to a three-block separable convex

programming. This direct extension, however, is not necessarily convergent, as shown

in the previous works [156, 157]. To address this issue, a simple correction step was

proposed in [156], shown as follows.


Bk+1

Mk+1

Λk+1

 =


Bk

Mk

Λk

− α


I (τ − 1)I O

τI I O

O O I




Bk − B̂k

Mk − M̂k

Λk − Λ̂k

 , (6.13)

where O denotes zero matrix. τ is set to 1
2
. α is set to 3

4
. With this correction step,

the extended ADMM can ensure the global convergence.

The overall optimization procedure is summarized in Algorithm 6. It starts with an

initialization for all the variables and hyper-parameters (line 1). Then these variables

are updated alternatively in each iteration based on the equations or SGD algorithm,

as described above (line 3 – line 6). Each iteration ends up with a correction step

presented as Equation (6.13) (line 7). The entire optimization procedure exits when

the pre-defined condition is satisfied.

6.1.2.3 Convergence Analysis

In this subsection, we prove the convergence of Algorithm 6. Let f1(M ) =
∑N

i=1 ∥Yi − r(MXi)∥2F ,

f2(A) = λ1 ∥A∥2,1, and f3(B) = λ2 ∥B∥∗. Let m denote the vectorization of M , i.e.,

m = vec(M ), and similarly, let a = vec(A), and b = vec(B).

Using these notations, the problem in Equation (6.4) takes the following generic
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Algorithm 6 ADMM for solving Problem (6.4)
Require: Feature maps Yi,Xi, i = 1 · · ·N , given λ1, λ2.
Ensure: Structured sparse matrix A & low-rank matrix B.

1: Initialize k ← 0, Λ0, A0, B0, M0, error tolerance ϵ, t;
2: while not converged do
3: Calculate Âk by Equation (6.10);
4: Calculate B̂k by Section 6.1.2.2;
5: Calculate M̂k by solving Problem (6.8) with SGD method;
6: Λ̂k ← Λk + t(Âk + B̂k − M̂k);
7: Perform correction step by Equation (6.13);
8: k ← k + 1;
9: end while

10: return Ak and Bk;

form

min
A,B,M

f1(M ) + f2(A) + f3(B),

s.t. C1a +C2b−C3m = c,
(6.14)

where C1, C2, and C3 are the identity matrices, and c = 0. The convergence of

ADMM for solving the standard form (6.14) was studied in [156, 157]. We establish

the convergence of our algorithm by transforming the problem in Equation (6.4) into

a standard form (6.14). Note that our algorithm alternates between three blocks of

variables, A, B and M . According to the definitions of f1(M ), f2(A), and f3(B), it is

easy to verify the problem in Equation (6.4) and our algorithm satisfy the convergence

conditions of the problem in Equation (6.14), as stated in [156]. Thus, we have the

following theorem.

Theorem 1 Consider the problem in Equation (6.4), where f1(M ), f2(A), and f3(B),

are convex functions, and C1, C2, and C3 are the identity matrices, and have full column
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rank. The sequence {Ak,Bk,Mk} generated by Algorithm 6 converges to the optimal

solution {A∗,B∗,M ∗} of the problem in Equation (6.4).

6.1.3 Experimental Results

6.1.3.1 Experimental Setup

Algorithm 6 takes in the input and output feature maps generated from the inference

on some sample data, and outputs the approximated network layers. The tested CNNs

include VGG-16 [150], NIN [151], AlexNet [152] and GoogLeNet [153]. For each net-

work, we first obtain its approximation, and then fine-tune the network based on the

obtained structures to restore the accuracy. During the approximation, different layers

use different weight coefficients λ1 and λ2. In our experiments, we find out setting λ2

to be 2.5 ∼ 3 times larger than λ1 gives good trade-off between accuracy and model

compression rate. And we let λ1 ranges from 0.08 ∼ 0.3. The penalty parameter t in

(5) is set to 10−3. The runtime of Algorithm 6 varies from layer to layer, ranging from

10 minutes to half an hour.

The inference is conducted on Caffe [158] using CIFAR-10 and ILSVRC-2012, i.e.,

ImageNet [159]. After the network approximation, a small initial learning rate of 10−5

is used in the fine-tuning step. We use three metrics for evaluation, including accuracy

loss, compression rate (CR) and speedup ratio. The CR is calculated as

CR =
Approximated layer size

Original layer size × 100%. (6.15)

The accuracy loss is the degradation on accuracy after approximation, denoted by

“accu. ↓” in the table. The “speed-up” ratio indicates the acceleration for inference.
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Table 6.1: Results on VGG-16 with CIFAR-10

Layer CR(A)(%) CR(B)(%) CR(A+B)(%)

conv1-1 0.0 100.0 100
conv1-2 5.4 52.1 57.5
conv2-1 5.4 38.2 43.6
conv2-2 2.2 28.6 30.8
conv3-1 2.8 47.7 50.5
conv3-2 4.0 54.3 58.3
conv3-3 10.0 59.0 69.0
conv4-1 2.0 16.0 18.0
conv4-2 2.0 22.4 24.4
conv4-3 4.0 16.3 24.3
conv5-1 2.0 9.8 11.8
conv5-2 2.0 8.7 10.7
conv5-3 2.0 6.7 8.7

fc1 44.2 0.0 44.2
fc2 36.2 0.0 36.2
fc3 24.0 0.0 24.0
CR 22.5% (4.44× reduction of model size)

Speed-up 2.2×
Accu. ↓ 0.40%

6.1.3.2 Experiments on CIFAR-10

VGG-16 VGG-16 [150] network is a convolutional neural network consisting of 13

convolution layers and 3 FC layers. All the convolutional filters have the same spatial

size of 3× 3. We test the proposed method with experiments on the CIFAR-10 dataset

which consists of 50K training images and 10K test images. We first train a VGG-16

network from scratch to obtain the baseline, which has an accuracy of 92.05%. To

make the approximation, 1000 images are selected from training set for inference and

the input and output feature maps are collected for Algorithm 6.

The approximation is performed on each layer sequentially. The layer-wise approx-
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Table 6.2: Results on NIN with CIFAR-10

Layer CR(A)(%) CR(B)(%) CR(A+B)(%)

conv1 0.0 18.4 18.4
cccp1 0.0 100.0 100
cccp2 0.0 100.0 100
conv2 0.0 16.9 16.9
cccp3 0.0 100.0 100
cccp4 0.0 100.0 100
conv3 0.0 38.2 38.2
cccp5 0.0 100.0 100
cccp6 0.0 100.0 100

CR 36.0% (2.77× reduction of model size)
Speed-up 2.2×
Accu. ↓ 0.41%

imation results are shown in Table 6.1. In our experiment, we find out approximating

the first convolutional layer may lead to significant accuracy drop. Therefore, the first

layer is not approximated. The sparse component A is stored in CSR format. More-

over, we constrain the sparse component A to be structured sparse to accelerate the

computation as in [79]. The low-rank component is represented by the product of two

smaller matrices. For FC layers, we only use the sparse component for approximation

to reduce accuracy drop.

The performance comparison with other previous work [78] is presented in Table 6.3.

With the approximation, the model size is reduced by 4.44×, which corresponds to

2.2× speedup on inference. Both compression rate and speedup ratio outperform [78].

Without fine-tuning, there is some classification accuracy drop. In order to restore the

accuracy of the compressed model, we retrain the compressed network with the training

set for 5 epochs. With this fine-tuning step the accuracy loss reduces from 1.8% to only
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Table 6.3: Comparison on CIFAR-10

Model Method Accu. ↓ CR Speed-up

VGG-16
Original 0.00% 1.00 1.00

ICLR’17 [78] 0.06% 2.70 1.80

Ours 0.40% 4.44 2.20

NIN
Original 0.00% 1.00 1.00

ICLR’16 [86] 1.43% 1.54 1.50

IJCAI’18 [85] 1.43% 1.45 -

Ours 0.41% 2.77 1.70
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Figure 6.3: Accuracy on CIFAR-10 using symmetric reconstruction and asymmetric
reconstruction.

0.40%, which becomes very close to the accuracy of the original VGG-16.
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Figure 6.4: Comparison of reconstructing linear response and non-linear response: (a)
layer conv2-1; (b) layer conv3-1.
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If a shallow layer is approximated, the approximation error may be accumulated

when deeper layers are approximated. In order to handle this issue, we take the ‘asym-

metric’ strategy used in [160]. We approximate the layers from shallow to deep. When

approximating a deep layer, use the response produced by all previous layers instead

of the non-approximate response as the input feature map Xi. Figure 6.3 shows the

comparison of classification error increase. We can observe that with more layers be-

ing approximated, the performance becomes worse for both strategies. However, the

asymmetric version loses less accuracy.

We further compare the performance between reconstructing non-linear response

and reconstructing linear response. We perform the comparison on a single layer each

time, while the remaining layers are kept unchanged. In Figure 6.4, we plot the relation

between the CR and the accuracy degradation of two approaches of different layers. The

performance is evaluated by the accuracy drop compared with original model. We take

two convolutional layers in two different stages of the VGG-16, including conv2-1 and

conv3-1. Figure 6.4 shows that under the same CR, reconstructing non-linear response

achieves lower accuracy drop than reconstructing linear response, which verifies the

advantage of reconstructing the non-linear response. In Figure 6.5, we visualize the

sparse filter and low-rank filter after the approximation of layer conv3-1. B has rank

136 and it can be further decomposed by B = UV , where both U and V have rank

136.

NIN Network-in-network (NIN) [151] has 9 convolutional layers among which 6 lay-

ers have a spatial size of 1×1. Considering that these 1×1 convolutional layers have less

contribution to the overall model size and computation, we focus on remaining three

layers which have spatial size of 3×3 or 5×5. We present the layer-wise approximation
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Figure 6.5: Approximated filters of conv3-1. Blue dots have non-zero values. Low-
rank filter B with rank 136 is decomposed into UV , both of which have rank 136. (a)
Matrix U ; (b) Matrix V . (c) Column-wise sparse filter A.

results in Table 6.2. It can be observed that for all the approximated convolutional

layers, only low-rank component is used and structured sparse didn’t show up, which

means approximating NIN using CIFAR10 dataset reduces to low-rank approximation

and sparse components are not beneficial to the objectives. It indicates that the pro-

posed unified framework is flexible to find good solutions and does not rely on prior

assumptions to achieve good results.

Experimental results using the same network (i.e., NIN) and CIFAR10 are reported

in previous work [86, 85]. The comparison of accuracy loss, compression rates and the

accuracy is shown in Table 6.3. We can see that the number of parameters is reduced

by 2.77× and the inference time is accelerated by 1.70×, with only 0.41% accuracy

loss compared with original model. All these three metrics are significantly better than
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previous work [86, 85].

6.1.3.3 Experiments on ImageNet

AlexNet AlexNet [152] has 5 convolutional layers and 3 FC layers. It is tested for

the ImageNet classification task. We evaluate the top-5 accuracy with single-view.

The ILSVRC-2012 dataset consists of 1.2 million training images and 50 thousand test

images. Images are resized with 256 pixels on the shorter side. The testing image

is on the center crop of 224 × 224 pixels. We use the pre-trained model provided by

Caffe Model Zoo as the baseline. In our experiment, we first select 1500 images from the

training set and collect their responses for building the approximate network. The layer-

wise approximation results are demonstrated in Table 6.4. The first two convolutional

layers of AlexNet are not approximated, in order to preserve good accuracy. For FC

layers, again we only use the structured sparse component for approximation.

The compression rates and the accuracy comparison are shown in Table 6.6. From

the table we see that the network is compressed by more than 5×, which outperforms

[86], [161], and [81], while the top-5 accuracy drop is only 1.3%. This reveals that the

proposed approximation framework can remarkably compress AlexNet while keeping

good accuracy.

GoogLeNet GoogLeNet [153] is another widely used network in image recognition

and classification. Different from AlexNet, GoogLeNet combines two spatial sizes of

convolutional filters, 3 × 3 and 5 × 5, in each inception block. In order to collect the

input samples for optimization, we use a pre-trained model provided by Caffe Model Zoo

to perform inference and dump the input and output feature maps of each convolutional

layer. After performing approximation on GoogLeNet, both model size and inference
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Table 6.4: Results on AlexNet with ILSVRC-2012

Layer CR(A)(%) CR(B)(%) CR(A+B)(%)

conv1 0.0 100.0 100.0
conv2 21.4 23.6 45.0
conv3 30.0 22.9 52.9
conv4 0.0 32.6 32.6
conv5 0.0 26.0 26.0
fc1 12.8 0.0 12.8
fc2 26.2 0.0 26.2
fc3 18.8 0.0 18.8
CR 18.0% (5.56× reduction of model size)

Speed-up 1.1×
Top-5 accu. ↓ 1.27%

time are reduced. The layer-wise approximation results are shown in Table 6.5. The

comparison of accuracy loss, compression rates and accuracy are shown in Table 6.6.

We can see that the model size is reduced by 2.87× and the inference time is accelerated

by 1.35×, without loss on accuracy. All these three metrics are significantly better than

previous works using the same network model and dataset [86, 161, 81].

6.1.4 Summary

In this work, we have proposed a unified approximation model for DNNs with simul-

taneous low-rank approximation and structured sparsification. It also considers the

non-linear activation to retain the accuracy. To obtain this model, a layer-wise opti-

mization problem is presented, relaxed, and solved with an extended ADMM algorithm

whose convergence is provably guaranteed. The effectiveness of the proposed approxi-

mation framework is verified on VGG-16, NIN, GoogLeNet and AlexNet. By sacrificing

little accuracy, VGG-16 and AlexNet are compressed by up to 5.56×. GoogLeNet is
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Table 6.5: Results on GoogLeNet with ILSVRC-2012

Layer CR(A)(%) CR(B)(%) CR(A+B)(%)

conv1 0.0 100.0 100.0
conv2 0.0 100.0 100.0

inception-3a 2.1 31.1 33.2
inception-3b 5.4 39.8 45.3
inception-4a 3.8 28.6 32.4
inception-4b 2.3 23.7 26.1
inception-4c 8.9 29.9 38.9
inception-4e 2.7 23.7 26.5
inception-5a 2.4 28.8 31.2
inception-5b 1.6 31.6 33.3

fc 35.0 0.0 35.0
CR 34.8% (2.87× reduction of model size)

Speed-up 1.35×
Top-5 accu. ↓ 0.00%

compressed by nearly 3× without loss of accuracy. What’s more, since structured sparse

filters and low-rank filters are independent to each other, more inference speedup may

be expected if taking actual architecture and parallel computing into account.
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Table 6.6: Comparison on ILSVRC-2012

Model Method Top-5 Accu.↓ CR Speed-up

AlexNet

Original 0.00% 1.00 1.00
ICLR’16 [86] 0.37% 5.00 1.82
ICLR’16 [161] 1.70% 5.46 1.81
CVPR’18 [81] 1.43% 1.50 -

Ours 1.27% 5.56 1.10

GoogleNet

Original 0.00% 1.00 1.00
ICLR’16 [86] 0.42% 2.84 1.20
ICLR’16 [161] 0.24% 1.28 1.23
CVPR’18 [81] 0.21% 1.50 -

Ours 0.00% 2.87 1.35
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6.2 Compressing Deep Neural Networks for Partial

Domain Adaptation

A common restriction of conventional DL algorithms is the great demand of labeled

data which is costly and hence hinders the deployment of DL. Domain adaptation is

a promising solution to tackle this problem, which leverages rich labeled data in the

source domain to build a model for the target domain where very limited or even no

labeled data is available. The core idea is to learn domain invariant representations

such that the cross-domain distribution inconsistency can be resolved. Thanks to the

extraordinary capability of feature extraction of deep models, recent studies show that

deep learning models can achieve compelling performance in domain adaptation [98,

93, 94, 162, 97].

Despite the appealing performance of deep learning models on partial domain adap-

tation, the execution overhead remains a critical issue for modern deep neural networks

in terms of power consumption and storage occupation. Intuitively, the number of

parameters in a neural network suggests its representation capability. Therefore, it is

worth exploring model compression for partial domain adaptation since redundancy is

more likely to exist in this situation. For example, a large CNN is designed and trained

on a large/difficult labeled dataset (e.g., ImageNet-1000), and it needs to be transferred

to a small/easy dataset (e.g., Office-31). There is a high chance that the original model

is over parameterized for the target task, which motivates us to compress the model.

Although there is rich literature studying model compression, most of them are devel-

oped for supervised learning tasks, in which labeled data is needed to guide the pruning

process or retrain a pruned model to retain performance. Unfortunately, these methods
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Figure 6.6: (a) Conventional MMD-based approach applied to partial domain adapta-
tion. Outlier class (represented by triangle) leads to poor performance; (b) Proposed
approach. Increase the importance of shared classes and decrease the importance of
outlier classes, with the model size reduced at the same time.

cannot be directly applied to our domain adaptation scenario due to the unavailability

of labeled data in the target domain.

In this work, we investigate a new perspective for the PDA problem which is com-

bined with model compression. The model compression and PDA are seamlessly inte-

grated into a unified training process by iteratively pruning and training a base network.

As a result, a slimmed model is obtained and negative transfer can be circumvented.

The resulting model also achieves superior performance than general maximum mean

discrepancy (MMD) approaches, as shown in Figure 6.6. Specifically, we design two

collaborative schemes for network training and pruning, respectively. On one hand, the

distribution discrepancy is bridged by minimizing a soft-weighted MMD to learn the
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domain-invariant features and promote the knowledge transfer, which is more effective

for the PDA problem than the hard-weighted scheme. The class weights can be directly

computed for the source domain because the labels are available. By assigning a soft

pseudo label to each sample in the target domain, the class weights are estimated for

the target domain. Based on the class weights in both domains, the shared classes

and outlier classes can be distinguished and a soft-weighted MMD is calculated and

adopted in training. On the other hand, a channel pruning scheme is designed on top

of the network training. The importance of each channel is evaluated and those less

important channels are identified and pruned. In contrast to other methods that di-

rectly evaluate on channels, we leverage the scaling factors in batch normalization (BN)

layers for channel pruning based on Taylor expansion, which makes use of the gradient

statistics during backward computation, thus pruning can be naturally integrated with

model training. Reducing the model size also reduces the chance of over-fitting, hence

our proposed model can achieve appealing performance on the target task and is en-

ergy efficient for deployment. In summary, the main contributions of this work are as

follows.

• The partial domain adaptation problem is investigated from the model compres-

sion perspective using a unified training and pruning process;

• Domain discrepancy issue in the PDA problem is addressed by a soft-weighted

MMD. It can omit outlier samples in contrast to conventional MMD, and is

beneficial to training convergence compared to hard-weighted MMD;

• Model pruning is performed with BN scaling factors based on Taylor expansion,

which can be naturally integrated into model training;
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• Experimental results demonstrate that the proposed method can reduce both

computation and model size by more than 70% with little performance degrada-

tion compared to state-of-the-art PDA methods.

6.2.1 Unsupervised Partial Domain Adaptation with Soft-weighted

MMD

Unsupervised domain adaptation is a challenging task because the labels in the target

domain are not available. Firstly, we briefly introduce a conventional MMD metric,

which is used to represent the distance between distributions and is widely used in

previous works for unsupervised domain adaptation [93, 162, 104]. Given the samples

from source domain Ds and target domain Dt, MMD can be empirically estimated as

follows [163]:

MMD2(Ds,Dt) =

∥∥∥∥∥∥ 1

ns

∑
xi∈Ds

ϕ(xi)−
1

nt

∑
xj∈Dt

ϕ(xj)

∥∥∥∥∥∥
2

H

, (6.16)

where H denotes Reproducing Kernel Hilbert Space (RKHS), and ϕ(·) denotes the

feature mapping from samples to RKHS and is associated with Gaussian kernel. ns and

nt represent the number of samples in source domain and target domain, respectively.

Previous works apply MMD based on an assumption that the label space is fully

shared between source and target domains. However, in the case of PDA where the

assumption does not hold, the MMD-based methods cannot be directly applied. More

specifically, the class prior distributions are significantly different between source and

target domains since a certain number of classes do not even exist in the target do-

main. To make MMD effective, we need to distinguish if a sample xi ∈ Ds belongs to

shared classes or outlier classes, and rely on the samples in shared classes for knowledge
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transfer. However, it is not easy since it is unknown to us which categories are shared.

To handle this, we design a weighting mechanism on class-level to identify the shared

classes and the outlier classes, which can be converted to instance-level and leads to a

weighted MMD criterion to tackle the PDA problem. A related approach is studied to

address the class bias [162] by re-weighting classes in label space. PDA can be seen as

an extreme case of class bias.

Let Ys and Yt denote the label space of the source domain and the target domain,

respectively. Then Yt ⊂ Ys is the condition in partial domain adaptation. Denote the

weights of classes as a vector w ∈ R|Cs|. Let w
(s)
c and w

(t)
c denote the weight of class

c ∈ Ys in the source domain and the target domain, respectively. Since the labels of

the source domain are available, we can obtain the number of samples for each class

c in source domain, denoted by n
(s)
c , then the weight of class c in source domain is

calculated as w
(s)
c =

n
(s)
c

n(s)
, where n(s) is the total number of samples in source domain.

Note w
(t)
c = 0 for c ∈ Ys \ Yt. Let rc =

w
(t)
c

w
(s)
c

. Given a set of samples {(x(s)
i , y

(s)
i )}

drawn from source domain and {x(t)
j } drawn from target domain, the weighted MMD

is empirically estimated as:

WMMD2(Ds,Dt) =

∥∥∥∥∥∥∥
1∑

xi∈Ds

r
y
(s)
i

∑
xi∈Ds

r
y
(s)
i
ϕ(xi)−

1

nt

∑
xj∈Dt

ϕ(xj)

∥∥∥∥∥∥∥
2

H

. (6.17)

Typically, MMD is implemented as a loss layer in the network and integrated with

the training. The CEM framework [164] is applied to network training in [162]. In

each training iteration, a hard pseudo label y′j is assigned to each sample xj ∈ Dt. An

estimation of the class prior in the target domain is obtained based on the percentage
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of each class. However, it did not work well in PDA. The reasons are two-fold. (1)

Assigning hard pseudo labels to the samples xj ∈ Dt makes the process easily get stuck

at the local optima if the hard labels are wrong from the very beginning, and it is

very likely to happen since the network is not well-trained and hence not discriminative

enough; (2) Due to the missing categories in Yt, several elements in r could go to 0, which

is equivalent to omitting part of the samples xi ∈ Ds when calculating the weighted

MMD based on Equation (6.17). In this case, the number of effective samples to

calculate MMD in each iteration may be very small, which makes MMD not an effective

estimation for distribution discrepancy if combined with the reason (1), thus leading to

inferior results. Detailed statistics and results will be presented in Section 6.2.4.

To address this issue, we assign soft pseudo labels instead of hard labels to the

target samples, based on which a soft-weighted MMD (SWMMD) is calculated as a

regularization for network training. In contrast to assigning a specific class y′j ∈ Ys

to a target sample xj ∈ Dt, the soft pseudo label is obtained by using the softmax

function to compute the posterior distribution based on the output of the last fully

connected layer in the network. Then the class weights of target domain w(t) ∈ R|Ys| is

estimated by averaging the soft pseudo labels over all the samples xj ∈ Dt. Denote the

parameters in the network as W and the entire forward computation as f(W, ·), w(t)

can be calculated as:

w(t) =
1

nt

nt∑
j=1

ỹj =
1

nt

nt∑
j=1

Softmax(f(W, xj)), (6.18)

where ỹ ∈ R|Ys| is the posterior predictive distribution, i.e., soft pseudo label, of a sample

xj ∈ Dt. Then the soft label-based class weights r ∈ R|Ys| is calculated as mentioned
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before. Recall that the weighted MMD can be calculated as Equation (6.17) as long as

the class weights are provided. Therefore, SWMMD can be similarly calculated based

on Equation (6.17) using the soft label-based class weights r.

The loss function of the network contains a supervised classification loss Lcl on the

source domain data {(x(s)
i , y

(s)
i )} and SWMMD (Equation (6.17)) as regularization. The

classification loss is formulated as:

Lcl = −
1

ns

∑
xi∈Ds

|Ys|∑
c=1

y
(s)
i,c log(ỹi,c), (6.19)

where ỹi and y
(s)
i is the prediction posterior distribution and the one-hot encoded label

of data xi, and ỹi,c is the predicted probability of being class c.

In addition, an entropy minimization principle [165] is included, which is to minimize

the entropy over the posterior predictive probability of the samples on target domain

and is formulated as

Len =
1

nt

∑
xj∈Dt

(−
|Ys|∑
c=1

ỹj,c log ỹj,c). (6.20)

Therefore, the training loss is written as

L = Lcl + β · SWMMD2(Ds,Dt) + γ · Len. (6.21)

During the training, the class weights r and model parameters W are alternatively

updated. r is updated at the start of each iteration using the up-to-date parameters W

in the network. Then the loss is calculated (Equation (6.21)) and back-propagated to

update model parameters W.
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6.2.2 Model Pruning for Unsupervised Partial Domain Adap-

tation

In addition to achieving high performance on the target tasks, the execution overhead

should also be taken into consideration since redundancy is highly speculated to exist in

base networks of the PDA model. To ease the overhead and remove redundancy in the

network for PDA, a channel pruning method is introduced for a complement. Network

pruning is to remove the parameters in the network which are useless or even harmful to

the target task, and hence lead to a sparsified neural network. Several previous works

utilize a mask to the network and each value in the mask serves as a scaling factor of a

feature map. Then sparsifying the network is equivalent to sparsifying the mask. The

mask can be trained along with the weights in the network with certain sparsity driven

regularizations [166, 167, 168, 169]. As a result, extra parameters are introduced as

masks to the training stage.

Batch normalization (BN) [170] is already widely applied in conventional DNNs to

facilitate the training process. In this work, we adopt a pruning scheme by exploiting

the statistics in BN layers to directly prune redundant channels without introducing

extra training weights. Regarding the PDA task, it is revealed in AdaBN [171] that BN

layers contain the traits of the data domain, which suggests that manipulating the BN

layers could be effective for DA problems. Moreover, if combined with network pruning,

pruning channels in a feature map is equivalent to setting corresponding scaling factors

to 0. Compared with other direct channel pruning methods such as TCP [104], the

implementation of pruning BN scaling factors is much easier. Therefore, in this work

statistics in the BN layers are leveraged for channel pruning without introducing extra

parameters.
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Essentially, redundant channels are supposed to impact the least to the training

loss compared with other important ones, based on which the model pruning can be

formulated as an optimization problem. The objective is to minimize the loss change

after removing a set of channels. For a network with the BN layers, removing a channel

Xi,j (the j-th channel in the i-th layer) is equivalent to setting the corresponding BN

scaling factor γi,j as 0. To facilitate the analysis, let Γ = {γi,j} denote the full set of

the BN scaling factors in the network. Given a set of pruning candidates Γ′ ⊂ Γ, let

function h(Γ′) denote the loss change after setting γ ∈ Γ′ to 0. The objective is to find

such a subset of Γ such that the loss change is minimized.

min
Γ′

h(Γ′)

s.t. Γ′ ⊂ Γ,

h(Γ′) = |L(W,Γ′ = 0)− L(W,Γ′)| ,

card(Γ′) = P,

(6.22)

where L(W,Γ′ = 0) and L(W,Γ′) represent the corresponding loss for those channels

are pruned and kept, respectively. P is number of channels to be removed each time.

card(Γ′) denotes the total number of elements in set Γ′.

Solving this combinatorial problem exactly requires exhaustively evaluating all the

possible combinations of P channels in the network, which is not practical due to the

intensive computation. Instead, we use a greedy methodology based on Taylor expan-

sion for selection. A similar approach has been studied to prune individual parameters

in the network [172]. We transform this approach to tackle channel pruning based on

the BN scaling factors. In contrast to evaluating a subset Γ′ in the network, we eval-

uate each individual scaling factor first and rank them based on their impacts. Then
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a subset Γ′ is formed by selecting P items with the least impacts. The Taylor expan-

sion for an infinitely differentiable function f(x) at point x = a is represented as in

Equation (6.23).

f(x) =
P∑

p=0

f (p)(a)

p!
(x− a)p +Rp(x). (6.23)

Therefore, the loss function L(W, γi,j) near γi,j = 0 can be approximated as Equa-

tion (6.24).

L(W, γi,j = 0) = L(W, γi,j)−
δL
δγi,j

γi,j +R1(γi,j = 0). (6.24)

Here R1(γi,j = 0) is the Lagrange form remainder which is neglected due to the heavy

computation required and marginal impacts on the results [172]. Then h(γi,j) can be

approximated with

h(γi,j) =

∣∣∣∣ δLδγi,j γi,j
∣∣∣∣ . (6.25)

The first term can be derived in backward computation and the second term is the

current value of the scaling factor, thus Equation (6.25) can be computed efficiently.

6.2.3 Overall Training Steps

With the introduced training loss and pruning criterion, the training and compression

of the partial domain adaptation model can be seamlessly integrated into a single-stage

process. Pruning and model training are iteratively performed. Specifically, pruning

is performed for every T epochs of model training, where T is user-defined. The stop

condition is set to be the desired trade-off between the performance on the target

domain and the execution overhead.
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Table 6.7: The performance comparison on Office-31 dataset with VGG-16 as the base
network.

Tasks VGG [150] DAN [93] WDAN [162] SAN [100] ETN [102] TCP [104] Ours-Pr. Ours
Acc. Acc. Acc. Acc. Acc. Acc. Param. FLOPs Acc. Acc. Param. FLOPs

A31-W10 60.34 58.78 71.52 83.39 85.66 52.88 -65% -57% 83.27 85.08 -63% -88%
A31-D10 76.34 54.76 73.88 90.70 89.43 46.50 -63% -60% 94.27 91.08 -61% -87%
W31-A10 79.12 67.29 92.28 91.85 92.28 54.18 -56% -59% 92.28 92.28 -62% -76%
W31-D10 99.36 92.78 96.17 100.00 100.00 91.00 -58% -61% 99.36 99.36 -68% -84%
D31-A10 72.96 55.42 71.18 87.16 95.93 50.73 -63% -51% 94.98 91.85 -57% -64%
D31-W10 97.97 85.86 87.45 99.32 100.00 84.41 -61% -64% 100.00 99.32 -58% -70%

Average 81.03 69.15 82.08 92.07 93.88 63.28 -61% -59% 94.02 93.16 -62% -78%

Table 6.8: The performance comparison on Office-31 dataset with ResNet-50 as the
base network

Tasks ResNet [173] DAN [93] WDAN [162] SAN [100] ETN [102] TCP [104] Ours-Pr. Ours
Acc. Acc. Acc. Acc. Acc. Acc. Param. FLOPs Acc. Acc. Param. FLOPs

A31-W10 75.59 59.32 73.55 93.90 94.52 48.81 -59% -50% 95.25 94.58 -70% -80%
A31-D10 83.44 61.78 78.17 94.27 95.03 60.50 -49% -40% 94.27 91.72 -63% -50%
W31-A10 84.97 67.64 93.52 88.73 94.64 56.57 -58% -50% 94.89 94.05 -73% -60%
W31-D10 98.09 90.45 98.08 99.36 100.00 91.71 -67% -60% 99.36 99.36 -80% -70%
D31-A10 89.92 74.95 92.17 94.15 96.21 55.32 -57% -50% 95.30 94.08 -63% -50%
D31-W10 96.27 73.90 87.11 99.32 100.00 78.64 -67% -60% 99.32 98.64 -71% -60%

Average 87.05 71.34 87.10 94.96 96.73 65.26 -60% -52% 96.40 95.41 -70% -62%

6.2.4 Experimental Results

We conduct experiments on two benchmark datasets to evaluate the efficacy of the

proposed approach. We compare the results with several other deep learning-based

domain adaptation methods.

6.2.4.1 Setup

Two public datasets are adopted in our experiments, including Office-31 and ImageCLEF-

DA. Office-31 is a widely used benchmark for domain adaptation. There are in total

of 31 categories and 4652 images in this dataset. The images are divided into three

distinct domains which are denoted by Amazon (A), Webcam (W) and DSLR (D). There

are 10 categories that are shared between Caltech-256 and Office-31. Then we use
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these shared 10 categories only in each domain of Office-31 as target domain, thus we

can build six partial domain adaptation tasks: A31-D10, A31-W10, W31-D10, W31-A10,

D31-W10, D31-A10.

ImageCLEF-DA is a benchmark for the ImageCLEF 2014 domain adaptation chal-

lenge. It contains four domains which are formed by selecting images from four public

datasets, including Caltech-256 (C), ImageNet ILSVRC 2012 (I), Pascal VOC 2012 (P)

and Bing (B). Each domain consists of 12 categories and each category contains 50

images. To perform partial domain adaptation, only the first 6 classes are selected and

the remaining classes are discarded in the target domain. Following [104], we build 6

partial domain adaptation tasks: I12-P6, P12-I6, I12-C6, C12-I6, P12-C6, C12-P6.

We compare the performance of the proposed approach with other state-of-the-art

unsupervised domain adaptation and network compression methods, including fine-

tuned CNN, Deep Adaptation Network (DAN) [93], Weighted Domain Adaptation

Network (WDAN) [162], Selective Adversarial Networks (SAN) [100], Example Trans-

fer Networks (ETN) [102] and Transfer Channel Pruning (TCP) [104]. SAN targets

at the partial domain adaptation task, which eases negative transfer by ruling out the

outlier source classes and promotes positive transfer by maximally matching the data

distributions in the shared label space using multiple branch discriminators. Note that

Importance Weighted GAN (IWGAN) [101] is also a method for PDA. ETN [102] has

made a comparison with [101] on the same tasks, in which [101] is dominated by ETN

or SAN. So we only list SAN and ETN as baselines for comparison. TCP is designed

for pruning less important channels while simultaneously learning transferable features

by reducing the cross-domain distribution divergence. For a fair comparison, the exper-

iments are conducted using two different base-networks, including VGG-16 [150] and
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ResNet-50 [173], which are also used in SAN, TCP, and ETN.

We implement all the approaches based on PyTorch deep learning framework. The

training starts from VGG-16 and ResNet-50 model pre-trained on ImageNet, which

are provided by PyTorch. The soft weighted MMD layer is added before the last

fully connected layer. We use mini-batch stochastic gradient descent (SGD) with the

momentum of 0.9 and the weight decay of 5 × 10−4. The learning rate is dynamically

adjusted during the training process using the rule applied in [97, 100]: lr =
lr0

(1 + αp)τ
,

where lr0 = 10−3, α = 10 and τ = 0.75. p is linearly adjusted from 0 to 1 during

the training process. The user-defined penalty weights of soft weighted MMD loss and

entropy loss are gradually increasing during the training. A similar way is applied in

[104]. Since the model training should focus on the source data first, the cross-entropy

loss should be relatively large. As the knowledge is retrieved during the optimization,

the model should switch to focus on the target dataset, and the SWMMD loss and the

entropy loss should have larger weights. The update rule is set as 2/(1 + e−it/IT ) − 1,

where IT is the total number of training iterations and it ∈ [0, IT ] is the current

iteration. The number of channels pruned P is set to 128. The specific hyper-parameters

are selected through cross-validation.

6.2.4.2 Results

In our experiments, three metrics are leveraged to evaluate different methods on the

partial domain adaptation tasks, including classification accuracy on the target domain,

model size and total floating-point operations (FLOPs) of a complete inference. The

FLOPs in a convolutional layer is calculated as 2HW (CinK
2+1)Cout, where H, W and

Cin are height, width and number of channels of the input feature map. K is the kernel
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Table 6.9: The performance on ImageCLEF-DA with VGG-16 as base network.

Tasks VGG [150] DAN [93] TCP [104] Ours-Pr. Ours
Acc. Acc. Acc. Param. FLOPs Acc. Acc. Param. FLOPs

P12-C6 94.00 92.67 63.67 -40% -50% 94.00 96.00 -46% -60%
C12-P6 77.67 74.00 54.33 -36% -50% 86.33 86.67 -45% -60%
P12-I6 88.67 85.67 61.33 -37% -50% 88.00 88.67 -49% -60%
I12-P6 88.00 83.00 60.33 -38% -50% 88.00 89.00 -47% -60%
C12-I6 82.33 82.00 56.00 -40% -50% 90.00 87.33 -45% -60%
I12-C6 96.00 94.67 73.67 -35% -50% 98.33 98.00 -42% -60%
Average 87.78 73.17 61.56 -38% -50% 90.78 90.95 -46% -60%

Table 6.10: Performance on ImageCLEF-DA with ResNet-50 as base network.

Tasks ResNet [173] DAN [93] TCP [104] Ours-Pr. Ours
Acc. Acc. Acc. Param. FLOPs Acc. Acc. Param. FLOPs

P12-C6 94.67 91.67 65.33 -58% -50% 98.00 97.00 -72% -60%
C12-P6 79.00 73.67 53.00 -58% -51% 88.33 83.33 -73% -60%
P12-I6 89.33 87.00 63.67 -53% -51% 92.00 92.00 -71% -60%
I12-P6 89.67 85.67 62.57 -57% -51% 87.00 86.67 -73% -60%
C12-I6 86.00 83.67 57.33 -58% -50% 93.00 89.33 -73% -60%
I12-C6 96.00 94.00 77.00 -58% -50% 97.00 97.00 -73% -60%

Average 89.11 74.11 63.15 -57% -51% 92.56 90.89 -73% -60%
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Figure 6.7: Accuracy on target domain vs. FLOPs reduction on Office-31 datasets.
Left: VGG-16 as base network; Right: ResNet-50 as base network.

width and height, and Cout is the number of channels of the output feature map. For a

fully connected layer, we compute FLOPs as (2I − 1)O, where I and O are the input

dimensionality and the output dimensionality of a fully connected layer, respectively.

Firstly, we compare the performance of our method with WDAN, SAN, ETN and
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Figure 6.8: Accuracy on target domain vs. FLOPs reduction on ImageCLEF-DA
datasets. Left: VGG-16 as base network; Right: ResNet-50 as base network.

TCP on the six partial domain adaptation tasks of the Office-31 dataset, which is

presented in Table 6.7 and Table 6.8. We use the model size and FLOPs of original base

networks as baselines and demonstrate the reduction in the model size and computation.

SAN and ETN are based on adversarial training for PDA. The negative transfer can be

circumvented well. However, once the network is trained, the model size computation

overhead is the same as the original base network (i.e., VGG-16 or ResNet-50), which

is very large. TCP performs similar strategies to iteratively prune channels and fine-

tune. Since only fully shared label space between domains is considered, the negative

transfer issue is not well addressed, thus leads to significant accuracy degradation when

models become smaller. With the proposed SWMMD and pruning methods, all three

aspects are taken good care of. For comparison, we also disable the pruning process and

training the network for PDA and the performance is listed in “Ours-Pr.”. Nearly 80%

of FLOPs and more than 62% of parameters are reduced with less than 1% accuracy

degradation compared to ETN. Notably, the accuracy results are shown in Table 6.7

achieve the same level or even outperform ETN on certain tasks such as A31-D10 and

W31-A10, which validates that the redundancy does exist and removing that can be
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Figure 6.9: t-SNE visualization on learned features on task A31-W10. (a) ResNet-50;
(b) DAN with ResNet-50; (c) Ours.

beneficial to PDA. Also, when ResNet-50 serves as the base network, 70% of parameters

and 62% of FLOPs are reduced with only 1.3% loss on performance, which indicates

that the proposed approach can generalize well to different CNN architectures.

Another experiment is conducted using the ImageCLEF-DA dataset. Following

[104], six experiments are performed. Similar to the experiments on Office-31, both

VGG-16 and ResNet-50 are used as base networks to compare different methods. DAN

[93] ignores the change of the class prior distribution, and hence it will lead to negative

transfer in PDA settings. Therefore, using base networks directly to perform domain

adaptation, i.e., train on the source domain and test on the target domain, can achieve

higher accuracy than DAN. If we do not apply pruning process and only train the base

network with the SWMMD scheme, it can be observed from Table 6.9 and Table 6.10

that the accuracy can be improved by a large margin, which validates the effectiveness

of the SWMMD method on negative transfer alleviation. If further combined with the

pruning process, the redundancy is proved to exist and can be removed substantially.

When the FLOPs are reduced by 60%, the number of parameters can be reduced by

nearly 50% on VGG-16 and more than 70% on ResNet-50.
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Figure 6.10: t-SNE visualization on learned features on task C12-P6. (a) ResNet-50;
(b) DAN with ResNet-50; (c) Ours.

It can be observed from Table 6.9 that higher accuracy can be attained on VGG-

16 when the pruning process is enabled, even though the pruning ratio is as large as

60%, which reveals that there exists huge redundancy in VGG-16. For ResNet-50, the

accuracy slightly degrades when pruning ratio is 60%, as shown in Table 6.10, which

indicates the redundancy issue is less severe than VGG-16 but still exists. The trade-off

between overhead and accuracy is detailed analyzed in Section 6.2.4.3.

6.2.4.3 Analysis

Intuitively, small size and high performance are naturally in conflict with each other

to some extent. Only when there exists large redundancy can we find that smaller

size can boost the performance. To analyze whether the assumed intensive redundancy

exists in the PDA scenario, the trade-off curves can provide us the insight into this

problem. The relation curves on Office-31 dataset are shown in Figure 6.7. With

VGG-16 as the base network, it is observed that three tasks (D31-A10, D31-W10, A31-

D10) reflect an obvious trade-off between accuracy and computation. The accuracy of

the W31-D10 task keeps steady all the time until FLOPs are reduced by 80%, which

validates the existence of large redundancy. On A31-W10 and W31-A10 tasks, there
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is even an increase in the accuracy as models get smaller. These observations reflect

that transferring a large pre-trained model to a small scale task is unnecessary, and

slimming a model can be beneficial to both performance and computation efficiency.

With ResNet-50 as base network, noticeable trade-offs are observed in 4 out of 6 tasks.

Similarly, the accuracy of A31-W10 and W31-D10 tasks are not impacted by the model

size. While on ImageCLEF-DA, the trade-offs are reflected in nearly all the tasks on

both bottleneck networks. Despite the performance degradation on the end, which may

be because pruning is already very aggressive, all the curves shown in Figure 6.7 and

Figure 6.8 keep steady for a while, indicating the room and the necessity of performing

model pruning.

We visualize the learned representations to demonstrate the effectiveness of dif-

ferent methods with the t-SNE method [132] which embeds the representation of a

high dimensional space into a 2-dimensional space. The representations learned in two

tasks are presented, including A31-W10 on Office-31 and C12-P6 on ImageCLEF-DA, as

shown in Figure 6.9 and Figure 6.10. Orange dots and green dots represent the shared

classes between source and target domains. Blue dots represent outlier classes. Strong

alignment between the orange dots and green dots indicate the effective circumvention

of negative transfer. It can be observed that Figure 6.9a and Figure 6.10a show better

alignment than Figure 6.9b and Figure 6.10b, which is expected. Figure 6.9c and Fig-

ure 6.10c show the strongest alignment, which suggests the advantage of the proposed

method.
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6.2.5 Summary

This work presents a new perspective on the challenging partial domain adaptation

problem by integrating with neural network compression. An SWMMD is applied to

match the cross-domain distribution when the label spaces are not identical in the

source and the target domains. On top of that, a channel pruning method is developed

to iteratively prune channels based on the corresponding scaling factors in the BN

layer. Experimental results indicate the proposed approach can simultaneously achieve

compelling accuracy, smaller model size and fewer computations compared to other

model pruning and domain adaptation works.
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Chapter 7

Conclusion

In this thesis, a set of methodologies are proposed for improving the efficiency of the

hardware design automation and enabling hardware-friendly learning, covering several

significant stages in typical design flow.

• In Chapter 3, we enhance a state-of-the-art prefix adder synthesis algorithm to

obtain a much wider solution space in architectural domain. On top of that, a

machine learning-based design space exploration methodology is applied to pre-

dict the Pareto frontier of the adders in physical domain. Considering the high

cost of obtaining the true values for learning, an active learning algorithm is pro-

posed to use less labeled data while achieving better quality of Pareto frontier.

Experimental results demonstrate that our framework can achieve Pareto frontier

of high quality over a wide design space, bridging the gap between architectural

and physical designs.

• In Chapter 4, a high performance graph convolutional network model is proposed

for the purpose of processing irregular graph representations of logic circuits. A
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GCN classifier is firstly trained to predict observation point candidates in a netlist,

and is used as part of an iterative process for observation point insertion. Exper-

imental results show the proposed GCN model has superior accuracy to classical

machine learning models on difficult-to-observation nodes prediction. Compared

with commercial testability analysis tools, the proposed observation point inser-

tion flow achieves similar fault coverage with an 11% reduction in observation

points and a 6% reduction in test pattern count.

• In Chapter 5, we propose a unified framework LDMO, which seamlessly integrates

layout decomposition and mask optimization. We propose a gradient-based ap-

proach to solve the unified mathematical formulation, as well as a set of discrete

optimization techniques to avoid being stuck in local optimum. The conventional

optimization process can be accelerated as some inferior decomposition results

can be smartly pruned in early stages. The experimental results show that the

proposed unified framework can achieve more than 34× speed-up compared with

the conventional two-stage flow, meanwhile it can dramatically reduce EPE vio-

lations by more than 8×, and thus maintain better design quality.

• In Chapter 6, we propose different methodologies for hardware-friendly learning

in different scenarios. Firstly, in Section 6.1, we propose a unified framework to

compress the CNNs by combining the low-rankness and sparsity. Each layer in

the network is approximated by the sum of a structured sparse component and

a low-rank component, which is formulated as an optimization problem. Then,

an extended version of ADMM with guaranteed convergence is presented to solve

the relaxed optimization problem. Experiments carried out on conventional net-

works with large image classification datasets show that the proposed method is
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able to remarkably compress the model (with up to 4.9× reduction of parame-

ters) at a cost of little loss or without loss on accuracy, and outperform previous

work in terms of accuracy degradation, compression rate and speedup ratio. In

Section 6.2, partial domain adaptation and model compression are seamlessly

integrated into a unified training process. The cross domain distribution diver-

gence is reduced by minimizing a soft-weighted maximum mean discrepancy. To

compress the over-parameterized model, we utilize the gradient statistics to iden-

tify and prune redundant channels based on the corresponding scaling factors in

batch normalization layers. Experimental results demonstrate that our method

can achieve comparable classification performance to the state-of-the-art methods

on various partial domain adaptation tasks, with significant reduction on model

size and computation overhead.

Although a set of new methodologies have been investigated in this thesis, there

are still enormous challenges in the design automation and system integration. With

the continuously increasing difficulty in design, manufacturing and integration, it is

highly expected that more and more methodologies could arise to further push forward

the technology innovation. Particularly, the following research problems and directions

would be worthy exploring.

• The mainstream learning-based methodologies in design automation are super-

vised learning, which requires much expertise to obtain well-designed features for

the objects, e.g., the SCOAP values in our DFT problem (Chapter 4), mfo and

mpfo in DSE problem (Chapter 3). Although deep learning has eased the prob-

lem of purely manual feature extraction, suitable representation or pre-processing

is still essential to the performance, as demonstrated in layout verification and
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mask synthesis problems [174, 175, 176, 75]. Therefore, unsupervised learning

or feature learning for automatic embedding generation could be a promising

technique to further boost the learning-based methodologies.

• There are many scenarios in design automation that could lead to data distri-

bution discrepancy issue. For example, circuits may be designed under different

technology nodes, or for totally different functional modules, which are referred

as different domains. In these cases, training a universal model for data in all

domains could not be practical. Transfer learning is a potential solution to bridge

the distribution discrepancy, which could help to exploit the knowledge from one

domain and apply to other domains without training a new model from scratch.

It is also of great significance in terms of reducing the data labeling cost.

• Current learning-based methodologies mainly play as assistant modules in the

design flow, which provide certain feedback to designers such that they can make

decisions more efficiently and more accurately. In order to further improve the

efficiency, reinforcement learning is another technique with great hopes invested.

By training an agent for sequential decision making on designing hardware and

system, it is expected that the target could get improved gradually. It would

achieve a “no-human-in-the-loop” diagram and shorten the design cycle dramat-

ically.
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