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Abstract

Outlier detection is concerned with discovering exceptional behaviors of objects in data
sets. It i1s becoming a growingly useful tool in applications such as credit card fraud detec-
tion, discovering criminal behaviors in e-commerce, identifying computer intrusion, detecting
health problems; etc. In this paper, we introduce a connectivity-based outlier factor (COF)
scheme that improves the effectiveness of an existing local outlier factor (LOF) scheme when
a pattern itself has similar neighbourhood density as an outlier. We give theoretical and
empirical analysis to demonstrate the improvement in effectiveness and the capability of the

COF scheme in comparison with the LOF scheme.

1 Introduction

Outlier detection is an important branch in the area of data mining. It is concerned with discovering
the exceptional behaviors of certain objects. Revealing these behaviors is important since it signifies
that something out of ordinary has happened and shall deserve people’s attention. In many cases, such

exceptional behaviors will cause damage to users and must be stopped. In other cases, there can be
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“good” outliers which can help users to make profits. Therefore, in some sense detecting outliers is at
least as significant as discovering general patterns. Outlier detection is becoming a growingly useful tool
in applications to which people have already paid attention, such as credit card fraud detection, calling
card fraud detection, discovering criminal behaviors in e-commerce, discovering computer intrusion, and

etc. [4, 6].

Hawkins [7] characterizes an outlier in a quite intuitive way as follows:

An outlier 1s an observation that deviates so much from other observations as to arouse

suspicion that it was generated by a different mechanism.

Following the spirit of this definition, researchers have proposed various schemes for outlier detection.
A large amount of the work was under the general topic of clustering [5, 10, 13, 14, 16]. These algorithms
can also generate outliers as by-products. However, the outliers discovered this way are highly dependent
on the clustering algorithms used and hence subject to the clusters generated. Most methods in the early
work that detects outliers independently have been developed in the field of statistics [2]. These methods
normally assume that the distribution of a data set is known in advance and try to detect outliers by
examining the deviations of individual data objects based on such a distribution. In reality, however, a
priori knowledge about the distribution of a data set is not always obtainable. Besides, these methods

do not scale well for even modest number of dimensions as the size of a data set increases.

More recently, researchers proposed distance based schemes, which distinguish objects that are likely
to be outliers from those that are not based on the number of objects in the neighborhood of an object [8, 9,
11]. These schemes do not make any assumptions about the distribution of a data set. Furthermore, since
the counting process is restricted only to the neighborhood of an object, the scalability of these methods
is better than that of their predecessors. As a result, distance based schemes are more appropriate for

detecting outliers in large data sets without assuming a priori knowledge about their distributions.

Knorr and Ng [8] propose a distance based scheme, called DB(n,¢)-outlier. In this scheme, if the
neighborhood with the radius of ¢ (called “g-neighborhood”) of an object contains less than n objects,
then it is called an outlier with respect to n and ¢, otherwise it is not. The advantage of this scheme
is its simplicity while capturing the basic intuition given in Hawkins’ definition. Its weakness is that it
cannot deal with data sets that contain patterns with diverse characteristics. The scheme proposed by
Ramaswamy, et al. [11], called (¢, k)-nearest neighbor scheme, considers for each point its k-distance,
i.e., the distance to its kth nearest neighbor(s). Tt ranks the top ¢ objects with the maximum k-distances
as the outliers. If there are multiple objects with the same k-distance ranked as the top k, they are all
considered as outliers. Therefore, the number of outliers returned may be greater than ¢. This scheme is

actually a special case of DB(n, ¢q)-outlier. Thus it shares the same weakness as DB(n, ¢)-outlier has.
Recently, Breuning, et al, [3] proposed a density based formulation scheme as follows.

Let p,o € D and k be a positive integer. Let k-distance(o) be the distance from o to its k-th nearest
neighbor, where if two neighbors are at same distance from o, the ordering of “nearest” for them is
arbitrary. The k-distance neighbourhood of an object p is denoted by Nk-distance(p) (p) and is the set of

objects whose distance from p is not greater than k-distance.

The reachability distance of p with respect to o for k is defined as:

reach-disk;(p,0) = maz{k-distance(o), dist(p,0)}.
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Figure 1: A Data Set showing the strength of LOF

The reachability distance smoothes the fluctuation of the distances between p and its “close” neighbors.

The local reachability density of p for k£ is defined as:
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That is, Irdy(p) is the inverse of the average reachability distance from p to the objects in its k-distance
neighborhood. For simplicity, we shall refer to the local reachability density of a point p as the density
of p. The local outlier factor of p is defined as
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The value on the right side is the average fraction of the reachability densities of p’s k-distance neighbors
and that of p. Thus, as pointed out in [3], the lower the density of p, or the higher the densities of p’s
neighbors, the larger the value of LOFy(p), which indicates p has a higher degree of being an outlier.

Note that the density based scheme does not explicitly categorize the objects into either outliers or
non-outliers. (If desired, a user can do so by choosing a threshold value to separate the LOF values of
the two classes.) It uses the LOF to measure how strong an object can be an outlier. Since the LOF
value of an object is obtained by comparing its density with those in its neighborhood, it has stronger

modeling capability than a distance based scheme, which is based only on the density of the object itself.

In [3] the authors give an example, which we have duplicated in Figure 1. The data set contains
an outlier o, and C'l and C?2 are two clusters with very different densities. The authors show that the
DB(n,q)-outlier method cannot distinguish o from the rest of the data set no matter what values the

parameters take. However, LOF method can handle it successfully.



The weakness of the density based scheme is that it considers solely the difference between the density
of an object and those of its neighbors (we shall show such an example in the next section). Thus its
effectiveness will diminish if the density of an outlier is close to those of its neighbors. In this paper,
we introduce a connectivity-based outlier factor (COF) scheme for outlier formulation, We use empirical
analysis to demonstrate the improvement in effectiveness and the capability of the COF scheme over the
LOF scheme.

The rest of this paper is organized as follows. In Section 2 we propose a definition of ON-compatibility
for the goodness of an outlier detection method. In Section 3, we revisit the density based schemes. In
Section 4, we introduce the connectivity-based scheme. In Section 5, we compare the connectivity-based
and density-based schemes using the experimental data. In Section 6, we discuss the complexity involved

in calculating the COF. Finally in Section 7 we conclude the paper by summarizing the main results.

2 ON-Compatibility

All the previously introduced methods utilize an outlier measure function and a number of parameter
settings. For the DB(n,q)-outlier method, the measurement for an object is the number of objects within
a radius of ¢, and the outlier decision is based on whether the number is less than n. The parameters
are ¢ and n. For the (¢, k)-nearest neighbors, the measurement for an object is the distance to the k-th
nearest neighbor, and decision is based on whether the distance is among the top ¢ such values. The LOF
measurement is a little more complex and also utilize parameters of k in k-distance. In all the above, the
measurement is typically for a data point p and its value depends on some set of parameters .S, hence
it can be denoted by f(p,S). We would like f(p,S) to be large when p is an outlier, and small if it is
not. Therefore for the DB(n,q)-outlier method, f(p,S) can be set as n divided by the number of objects

within a radius of q.

In [15] we have developed a stack of measurements to evaluate the capabilities of outlier measure
functions for different formulation schemes, with the increasingly relaxed requirements down the stack.
Due to the space limitation we introduce only the measurement on the top of the stack, termed ON-
Compatibility (ON stands for Outliers and Non-outliers). We will use ON-compatibility to evaluate the

effectiveness of the density-based scheme and the connectivity based scheme.

Definition 1 The outlier measure function f(p,S) is ON-compatible with a given set of data with outliers
and non-outliers (we call this an interpretation I), if there erists a parameter setting S, and a value u,
such that

(1). for each outlier o, the measure f(o,S) has a value above u.

(2). for each of the non-outliers n, the measure f(n,S) has a value below u.

The value u s called cut-off value.

ON-compatibility indicates the capability of an outlier measure function to use a single parameter
setting to detect all outliers for a given interpretation. It is most desirable, but not often attainable. An

interpretation is given by a set of data D together with its partitioning into the set of outliers D, and the
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Figure 2: Failure of Outliers detection for LOF

set of non-outliers D,,. With the following theorem, we introduce a method to determine when a function

is not compatible with some given interpretation.

Theorem 1 Let f(p,S) be an outlier measure function and I be an interpretation: D = D, U Dy, then
the following holds for f(p,S): It is not ON-compatible with I if for any setting S, there exist an object
a € Dy, and an object o € D,, such that f(0,5) < f(a,S).

3 Density Based Schemes Revisited

We have seen from the previous sections, the density based scheme, such as LOF, is more powerful than
the previous methods. However, one weakness of the density based scheme is that it may rule out outliers
close to some non-outliers pattern that has low density. To understand the problem, let us first take a

closer look at the concept of pattern. According to the Concise Oxford Dictionary, a pattern is

“a regular or logical form, order or arrangement of parts ...”.
We observe that although a high density can reflect such a logical form, order or arrangement, it nonethe-
less 1s not a necessary condition, at least in the form defined in the current literature. As a result, an
outlier does not always have to be of a lower density than a pattern it deviates from. A typical example

is shown in Figure 2.

In this figure, the pattern, C, is a straight line, which is of low density in a two dimensional space.
Point ol and the points in Cy are outliers. Since ol shifts away from a low density pattern, the density
based outlier measure function will not be effective to identify it, unless we use a small k. On the other
hand, using too small a k will rule out the outliers in C'y, which must be identified using a value for &
larger than its cardinality. In the following, we assume some specific values for the variables of the data

set.



EXAMPLE 1 C contains 91 points, with distance one between adjacent points. ol is a point closest
to the middle of Cy. The circle Cy with radius of one contains eight points evenly positioned on its
circumference. The center of Ca, ol and the middle point in Cy are on a line. (Note that the circle for
C'y has been much enlarged in Figure 2.) The distance from ol to Cy is 1000. The distance from ol to the
middle point of Cy is two. Let I be the interpretation: D = D,UD,, where D, = {o1}UCy and D,, = C}.

For the values given in the above example, we can formally prove
ASSERTION 2 The LOF outlier measure is not ON-compatible for I in the data set of Example 1.

The proof of the above assertion is based on Theorem 1, and is omitted here. In a later section, we
will show the ineffectiveness of LOF in handling a similar case. In the next section, we will introduce
a scheme that can handle low density patterns such as the line of points in Figure 2, while at the same

time does not compromise detecting a group of stay-together outliers like those in Figure 2.

4 Connectivity-Based Outliers

Our solution is based on the idea of differentiating “low density” from “isolativity”. While low density
normally refers to the fact that the number of objects in the “close” neighborhood of an object is
(relatively) small, isolativity refers to the degree that an object is “connected” to other objects. As a
result, isolation can imply low density, but the other direction is not always true. For example, in Figure
2 point ol is isolated, while any point p in C7 is not. But both of them are of roughly equal low density.
In the general case a low density outlier results from deviating from a high density pattern, and an
isolated outlier results from deviating from a connected pattern. An outlier indicator should take into

consideration of both cases.

We observe that patterns that possess low densities usually exhibit low dimensional structures. For
example, a pattern shown in Figure 2 is a line in the two dimensional space. The isolativity of an object,
on the other hand, can be described by the distance to its nearest neighbor. In the general case we can
also talk about the isolativity of a group of objects, which is the distance from the group to its nearest

neighbor.

We first introduce some notations and then formulate our connectivity-based outlier scheme.

Definition 2 Let P,Q C D, PNQ = 0 and P,Q # 0. We define dist(P,Q) = min{dist(z,y) : z €
P & y € Q}, and call dist(P, Q) the distance between P and (). For any given q € @), we say that q is
the nearest neighbor of P in Q) if there is a p € P such that dist(p,q) = dist(P, Q).

In the following definitions, let G = {p1,p2,...,pr} be a subset of D.

Definition 3 A set based nearest path, or SBN-path, from py on G is a sequence (p1,pa,...,pr) such
that for all 1 < i <r —1,p;41 is the nearest neighbor of set {p1,...,pi} in {pix1,...,pr}-

Imagine that a set initially contains object p; only. Then it goes into an iterative expansion process.

In each 1iteration, it picks up its nearest neighbor among the remaining objects. If its nearest neighbor is



not unique, we can impose a pre-defined order among its neighbors to break tie. Thus an SBN-path is

uniquely determined. An SBN-path indicates the order in which the nearest objects are presented.

Definition 4 Let s = (p1,pa, ..., pr) be an SBN-path. A set based nearest trail, or SBN-trail, with respect
to s is a sequence {e1,...,er_1) such that for all 1 < i <r—1, ¢; = (0;,pi41) where o; € {p1,...,pi},
and dist(e;) = dist(o;,piy1) = dist({p1,...,pi}, {pit1, ..., pr}). We call each e; an edge and the sequence
(dist(er), ..., dist(er—1)) the cost description of (e1,...,er_1).

Again, if 0; 1s not uniquely determined, we should break tie by a pre-defined order. Thus the SBN-trail
is unique for any SBN-path.

Definition 5 Let s = (p1,p2,...,pr) be an SBN-path from p1 and e = (e1,...,e,_1) be the SBN-trail
with respect to s. The average chaining distance from py to G — {p1}, denoted by ac-distg(p1), is defined

as

ac-distg(p1) =

The average chaining distance from p; to G — {p1} is the weighted sum of the cost description of the
SBN-trail for some SBN-path from p;. Since this cost description is unique for p1, our definition is well
defined. Rewriting

r—1

) 1 2(r—1d) .
ac-dista(p1) = R Z " - dist(e;)

=1

and viewing the fraction following the summation sign as the weight, the average chaining distance can
then be viewed as the average of the weighted distances in the cost description of the SBN-trail. Note
that larger weights are assigned to the earlier terms. Thus if the edges close to p; are substantially larger
than those away from pi, then they contribute more in the ac-distg(p1). This is consistent with our

motivation. In the special case where dist(e;) is the same for all e;, we have ac-distg(p1) = dist(e;).

Definition 6 Let p € D and k be a positive integer. The connectivity-based outlier factor (COF) at p
with respect to its k-neighborhood is defined as

|Nk(p)| - ac-distn, (p) ()
Yo, (p) @c-disty, (o) (0)

COFy(p) =

The connectivity-based outlier factor at p is the ratio of the average chaining distance from p to Ny (p)
and the average of the average chaining distances from p’s k-distance neighbors to their own k-distance
neighbors. It indicates how far away a point shifts from a pattern. We now use an example to highlight

the motivation behind it.

Consider the data set in Figure 3. The pattern is a single line and two points shift away from it.
Suppose dist(1,2) = b, dist(2,7) = 3, and the distance between any two adjacent points in the line is 1.
Let £ = 10. We now calculate the average chaining distances for three sample points to show how the

COF values of those sample points reflect “shifting from pattern” in an appropriate way.
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Figure 3: Calculating COF

For point 1: Ni(1) ={2,9,10,8,11,7,12,6,13,5}. The SBN-path from 1 on Nj(1) U {1} is
s1=(1,2,7,6,5,8,9,10,11,12,13).
The SBN-trail for s is
tr1 = ((1,2),(2,7),(7,6), (6,5), (7,8), (8,9), (9, 10), (10, 11}, (11,12), (12, 13)).

The cost description of try is ¢y = (5,3,1,1,1,1,1,1,1,1), and ac-disty, (1)u{13(1) = 2.05.
For point 2: Ni(2) = {7,6,8,5,9,4,10,3,11,1}. The SBN-path from 2 on Ny(2) U {2} is

53 = (2,7,6,5,4,3,8,9,10, 11, 1).
The SBN-trail for s is
tra = ((2,7),(7,6),(6,5), (5,4), (4,3),(7,8),(8,9), (9, 10), (10,11), (2, 1)).
The cost description of try is co = (3,1,1,1,1,1,1,1,1,5), and ac-disty, (2yuf23(2) = 1.46.
For point 7: Ni(7) = {6,8,5,9,4,10,2,3,11,12}. The SBN-path from 7 on Ny (7) U {7} is
s3 = (7,6,5,4,3,8,9,10, 11, 12, 2).
The SBN-trail for s3 is
trs = ((7,6),(6,5),(5,4), (4,3),(7,8),(8,9),(9,10), (10, 11), (11, 12), (7, 2)).

The cost description of try is ez = (1,1,1,1,1,1,1,1,1,3), and ac-disty, (7yui73(7) = 0.98.

The average chaining distances for the other points on the line can be calculated similarly. The above
results show that for points that shift more from the pattern, such as points 1 and 2, the first few items
in their cost description lists tend to be larger values than those for points that shift less, such as point

7. Since earlier items in a cost description list are assigned larger weights, they contribute more to the



corresponding average chaining distance, which is the weighted sums of the values in the cost description.
Thus, strongly shifted points will have larger average chaining distances than weakly shifted ones. In the
general case, most points in the k-distance neighborhood of a strongly shifted point should have small
average chaining distances. This results in a larger connectivity-based outlier factor for such a strongly
shifted point. On the other hand, for a weakly shifted point, most points in its k-distance neighborhood
should have comparable average chaining distance values, resulting in a smaller connectivity-based outlier
factor for such a point. The weakest shifted points are those that belong to the pattern itself. Their
connectivity-based outlier factors should be close to 1. For the three sample points in the above example,

we have the following:

COFy(1) = 2.1, COF,(2) = 1.35 and COF,(T) = 0.96.

5 Comparison of COF and LOF

The connectivity-based scheme has some important properties like the density-based scheme, for example
the COF value for an object deep inside a cluster being close to 1. For instance, for an object p and a
cluster C' such that Ng(p) C C, we can prove that 1%-5 < COFg(p) < 1+ ¢ where € is a small value.
We follow the approaches in [3] to show those similar bounds for COF. But first we give the following

definition.

Definition 7 Given any object p € D, let s = {e1,...,e,—_1} be the SBN-trail with respect to the SBN-
path from p on Ni(p). We define

path-min(p) = min{dist(e1),..., dist(e,—1)},
path-maz(p) = maz{dist(e1),..., dist(e,—1)}.

Theorem 3 Given any set C C D, let path-min = min{ path-min(p) : p € C} and path-mazr =
maz{ path-maz(p) : p € C}. Let ¢ = —% — 1, then for every object p € C' such that

(i) Ne(p) C €, and

(ii) for every q € Ni(p), Nik(q) C C, we have

1
—< I <l+e
- < COFilp) < 1+¢

The above theorem, together with the illustration in the previous section, indicate that the con-
nectivity based scheme has the similar power to that of the density based scheme in detecting outliers
which deviate from high density patterns. On the other hand, recall that the motivation for introducing
the connectivity based scheme is to handle outliers deviating from low density patterns. We showed
previously in Figure 3 an example of a low density pattern. We now present a similar example in Figure
4. (We have assumed special geometric shapes and distances for the data set. These are used only for

convenience of plotting the results.)

EXAMPLE 2 In Figure 4, Cy contains 8 points lying on the circle with its center at (1,0) and a radius

of 1. Distances between any two adjacent points on the circle are the same. Cy contains 91 points lying



Figure 4: Data Set for Comparison

on two straight lines l; and ly. The two lines meet at the point p = (20,0). Line Iy and the z-azxis form
an angle of %, and so do line ly and the z-axis. Cy contains p and {5 points on each of the lines I
and ly. Moreover, the distance between any two adjacent points on each line is /2. Finally, o = (23,0).
According to Hawkins’ definition, it is easy to understand that point o and the points in Cy can be
considered as outliers while others are non-outliers. Thus, we have an interpretation I : D =D, U D,

where D, = {0} UCy and D, = C4.
Our result is contained in the following assertion.
ASSERTION 4 The LOF outlier measure is not ON-compatible for I in the above example.

We support the above assertion by the experimental data. We choose two non-outlier points p =
(20,0) and ¢ = (65,45) from D,, and two outlier points w = (0,0) and o = (23,0) from D,. The four
points are illustrated in Figure 4. Note that ¢ is the end point of C; on line [;. Note also that the total
number of points in the data set i1s 100. We have calculated the LOF values for all those four points for
k=1,2,...,99. The calculation has been done by a C++ program with a precision of 10 decimal digits.
The computing environment is a Dell Precision 530 running SuSE Linux 7.2 with two 1.5 GHz Pentium
Xeon Processors, 2 GB RAM and 40 GB hard disk. The LOF values for the four points are reported in
Figure 5. For 1 < k < 7, we have LOFj(q) >LOF(w). For 8 < k < 98, we have LOFj(q) >LOF (o). For
k =99, we have LOF(p) = 1.0013753983 >LOF; (w) = 0.9992365171. Because p and ¢ are non-outliers
and o and w are outliers, it follows from the definition of the outlier measure function of the LOF scheme

that this measure is not ON-compatible with the interpretation given above. On the other hand, we have

ASSERTION 5 For the data set in Example 2 shown in Figure 4, COF is ON-compatible with T

10
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Figure 5: LOF Values for Four Points on Different Settings

This assertion is supported by the experimental result shown in Figure 6. We choose k£ = 13 and
calculate COF values for all points in the data set. All calculations were done by a C++ program with
a precision of 10 decimal digits. The computing environment is the same as that for Assertion 4. All
the 8 outliers in C5 have the same COF value 1.1518705044 and the other outlier o has a COF value
1.0761474038. On the other hand, the first 15 points, starting from p, on each of the two lines 1 and ¢
have COF values between 0.9941766178 and 0.9995440551, and the rest of the points in C; have COF
value of 1. Thus, we can set a threshold of 1.076 to distinguish the outliers from the non-outliers. Hence,
by Definition 2, COF is ON-compatible with Z as defined in Assertion 4.

\
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Figure 6: COF Values of All Points When k=13
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6 Time Complexity

Suppose that the database D has n objects. As the LOF algorithm in [3], the COF algorithm can be
divided into two steps. In the first step, the COF method finds the k-nearest neighborhoods and the
SBN-trails. Precisely, the COF algorithm finds, for any object p € D, the k-nearest neighborhoods
together with their distances to p, and the SBN-trail together with the costs of the objects in the trail.
The result of this step is materialization database M of size 2 X n x k. Similar to the LOF algorithm, the
size of this intermediate database is independent of the dimensionality of the original data. The running
time of this step is O(n x (time for a k-nn query)). Depending on the particular implementations of
the k-nn query, its time complexity can vary from constant time for low-dimensional data, to logn for
medium-dimensional data, and to n for extremely high-dimensional data. Hence, the time complexity
of the COF algorithm in the first step can vary from O(n) for low-dimensional data, to O(nlogn) for

medium dimensional data, and to O(n?) for extremely high-dimensional data.

In the second step, the COF method computes the COF values with the help of the materialization
database M. The original database is not needed in this step. The COF algorithm scans the database
M twice. In the first scan, the algorithm finds the average chaining distance for every objects. In the
second scan, the COF values of every objects are computed and written to a file. The time complexity

of this step is O(n). Notice that the time complexity for computing COF is similar to that for LOF.

7  Conclusions

While the field of data mining has been studied extensively, most work has concentrated on the discovery
of patterns. Outlier detection as a branch of data mining has many important applications, and deserves
more attention from data mining community. The existing work on outlier detection is either distance
based or density based. In essence, these schemes all assume patterns have high (relative) densities.
Therefore they do not work adequately where the patterns are of low densities. We propose a scheme
that overcomes this weakness. Our scheme separates the notion of density from that of isolation. It
can therefore detect outliers independently of the densities of the patterns from which they deviate. To
measure the capabilities of outlier detection schemes, we introduce a notion of ON-compatibility. We
show that while our scheme preserves the same nice properties as those of the density based method, 1t

can achieve better results for data sets with connectivity characteristics in the data patterns.
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