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Abstract— Useful connections between radial basis function (RBF) nets and kernel regression estimators (KRE)
are established. By using existing theoretical results obtained for KRE as tools, we obtain a number of interesting
theoretical results for RBF nets. Upper bounds are presented for convergence rates of the approximation error with
respect to the number of hidden units. The existence of a consistent estimator for RBF nets is proven constructively.
Upper bounds are also provided for the pointwise and L, convergence rates of the best consistent estimator for RBF
nets as the numbers of both the samples and the hidden units tend to infinity. Moreover, the problem of selecting the
appropriate size of the receptive field of the radial basis function is theoretically investigated and the way this selection
is influenced by various factors is elaborated. In addition, some results are also given for the convergence of the
empirical error obtained by the least squares estimator for RBF nets.
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1. INTRODUCTION

After several years’ extensive study of multilayer per-
ceptrons, many researchers have turned their attention
to a number of other neural network models. Among
these models, radial basis function (RBF) networks are
perhaps the ones that have been studied most inten-
sively (Poggio & Girosi, 1989; Moody & Darken, 1989;
Broomhead & Lowe, 1988; Chen, Cowan, & Grant,
1991; Girosi & Poggio, 1989; Renals & Rohwer, 1989;
Kraaijveld & Duin, 1991; Nowlan, 1990; Stokbro,
Umberger, & Hertz, 1990; Xu, Krzyzak, & Oja, 1992;
Xu, Klasa, & Yuille, 1992; Platt, 1991; Weymaere &
Martens, 1991; Kardirkamanathan, Niranjan, & Fall-
side, 1991; Botros & Atkeson, 1991). There has not
only been a lot of work on applications but also several
theoretical results have been obtained. It has been
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shown that the RBF net can be naturally derived from
the regularization theory, that is, the least squares fitting
subject to a constraint term imposed by a differential
operator (Poggio & Girosi, 1989; Yuille & Grzywacz,
1989). Like the multilayer perceptron, RBF nets have
also been shown to have the universal approximation
ability (Hartman, Keeler, & Kowalski, 1989; Park &
Sandberg, 1991, 1993). Furthermore, RBF nets also
have the so-called best approximation ability (Girosi
& Poggio, 1989).! In contrast, Girosi & Poggio (1989)
showed that multilayer perceptrons do not have the best
approximation property for the class of continuous
functions defined on a subset of R?. In addition, RBF
nets can be related to Parzen window estimators of
probability density (it can be considered a special ex-
ample of an RBF net) and probabilistic neural networks
(Specht, 1990) that directly use the Parzen window
estimator for estimating the class densities and then
uses these estimators for classification by the Bayesian
decision rule. It has long been known that, for any
smooth density function, the Parzen window estimator

! An approximation scheme has the best approximation property
if in the set ¥ of approximating functions there is one that has min-
imum approximating error for any function to be approximated from
a given set of functions.
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is consistent in the quadratic sense (Specht, 1990), that
is, the expected mean square error tends to zero as the
number of the windows used tends to infinity.

In this paper, we establish connections between RBF
nets and the kernel regression estimator (KRE), which
is an extension of the Parzen window estimator from
density estimation to statistical regression problems.
We argue that KRE, which includes the Parzen window
estimator as a special case, can also be regarded as a
particular kind of an RBF net. By using the theoretical
results obtained about KRE as tools, we get a number
of interesting theoretical results for RBF nets. First,
upper bounds are presented for the pointwise and L,
convergence rates of the approximation error with re-
spect to the number # of basis functions (i.e., hidden
units); an example of such bounds is O(n~2*/(2a+d))
for the L, convergence rate for approximating a func-
tion f(x) in the function class that satisfies Lipschitz
condition of order o, 0 < a < 1, or O(n~29/24*) for
the L, convergence rate for approximating a function
f(x) in the class of functions that have order-q (¢ = 1)
derivatives that are square integrable, where d is the
dimensionality of x. Second, the learnability of RBF
nets is proved by showing the existence of a consistent
estimator for RBF nets constructively. Third, upper
bounds are also provided for the pointwise and L, con-
vergence rates of the best consistent estimator for RBF
nets as #» and N (the number of the learning samples,
N = n) tend to co. An example of such bounds are
O(n=2/Qerd)y N> por O(n~2924D) N = nfor the
L, convergence rates for the two function classes de-
scribed above. Fourth, the problem of selecting the ap-
propriate size of the receptive field of the radial basis
function is investigated theoretically and the ways in
which some influential factors impact on this selection
are qualitatively elaborated. In addition, some results
are also given for the convergence of the empirical error
obtained by the least squares estimator for RBF nets.
We believe that these results are important both theo-
retically and practically, especially because no papers
on these aspects of RBF nets have been published, to

- our best knowledge, in the current literature of neural
networks. (While revising this paper we learned of
technical reports by Girosi & Anzellotti, 1992, and
Corradit & White, 1992, who have also got some results
for the convergence rates of the approximation error.
Their studies are significantly different from ours and
we will discuss them in Section 3.)

Section 2 explores the connections between KRE
and RBF nets. Section 3 gives heuristic descriptions of
the main results of this paper. Section 4 describes theo-
rems for various types of convergences and their rates.
Section 5 is about the selection of the receptive fields
of radial basis functions. The paper is concluded in
Section 6. For clarity, the proofs of all the lemmas and

" theorems are placed in the appendix.

L. Xu, A. KrzyZak, and A. Yuille

2. KRE, RBF NETS AND THEIR
CONNECTIONS

2.1. RBF Networks

Many types of RBF nets can be summarized by the
following general form:

f(0) =2 wid([x — ¢ 127 [x — &) (1)
i=1

where ¢(r?) is a prespecified basis function satisfying
certain weak conditions. The most common choice is
the Gaussian function, ¢(r2) = e~ with = = a(n)?I,
but a number of alternatives can also be used, (e.g.,
several choices are listed in Poggio & Girosi, 1989). ¢;
is called the center vector and w; € R™ is a weight
vector. 2 is a d X d positive matrix that controls the
receptive field of the basis functions ¢([x — ¢;]1'Z [ x
-¢l).

The receptive field is defined as the support of the
function ®(x) = ¢([x — ;1’27 '[x — ¢;]) — a. with a,
= 0 being a constant. In other words, the receptive field
is the subset of the domain of x such that ¢([x —
¢;1'Z7[x — ¢;]) takes values larger than a previously
specified number a.. That is, the receptive field is the
range for which an input x can cause a sufficiently large
output. We will usually have different receptive fields
for different kinds of basis functions ¢(r2). For a specific
#(r?), that is, a Gaussian ¢(r2) = e, the size, shape,
and orientation of the receptive field are determined
by the matrix . When = = ¢(n)2I, the shape is a
hyperspherical ball with its size (i.e., radius) given by
the value of o(n). When = = diag[a(n)i, ...,
o(n)3], the shape is an elliptic ball with each axis co-
inciding with a coordinate axis, and the length of each
axis being decided by o(n),, ..., a(n),, respectively.
When 2 is a nondiagonal matrix, we have £ = RTDR
with D being a diagonal matrix that determines the
shape and size of the receptive field, and with R being
arotation matrix that determines the orientation of the
receptive field.

The model eqn (1) has also been further modified
into the following normalized version that has often
been used recently (Moody & Darken, 1989; Nowlan,
1990; Jones et al., 1991):

2hiwid([x — ]2 7' [x — ¢])
2hid(x— ¢l 27 x—¢])

Ja(x) = (2)
which reduces back to eqn (1) when 27, ¢([x —
¢;1'Z7[x — ¢;]) = 1. In this paper, we will concentrate
on this normalized model.

For a given fixed ¢(r?), in eqn (2) there are three
sets of parameters: (i) the w;, i = 1, ..., n, which are
the weight vectors of the output layer of a RBF net, (ii)
the center vectors¢;, i = 1, ..., n, and (iii) the matrix
2. The last two sets constitute the weights of the hidden
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layer of a RBF net. For convenience, we use 0 to denote
the vector consisting of all these parameters. Each spe-
cific value of O specifies a function f,(x) in the set F,
of functions defined by eqn (2). In this case, we have
a specified RBF net.

The problem of determining a specific value © for
0 is called learning or training. In the literature of
neural networks, the learning problem is solved based
on a given sample set Dy = { X;, ¥; } Y. Usually, a value
O [and thus an f,,,N(x), which depends on Dy] is de-
cided by the following minimization:

ekee(Dy, fun) = min  eker( Dy, fin)

0, NEFn

= mgn 82RBF[$N>fn,N(X, 0)],

l N
e%{BF[ﬂN,fn,N(Xa 0)] = N > Y = fun(Xi, ®)|2 (3)
i=1

where |z|2 = 27, |zP|? for a vector z = [zV,
co, M
However, the minimization with respect to all the
parameters simultaneously is usually a hard problem
because the minimization with respect to 2 and ¢;,
=1, ... n will lead to a problem of nonlinear opti-
mization. Although it is theoretically possible to find a
solution (maybe a local minimum) by using a gradient
descent method, the iterative method has rarely been
used due to its low efficiency. Instead, the existing stud-
ies (Broomhead & Lowe, 1988; Chen et al., 1991;
Moody & Darken, 1989; Poggio & Girosi, 1989; Powell,
1987) usually assume that 2 takes some externally
prespecified values suchas = =1, 2 = o(n)?I,0or T =
diag[o(n)}, ..., a(n)%] with known a(n)2, o(n)?,
..,0(n)3,andthatthec;,i=1,..., nare determined
directly based on the samples D7 = { X; } V. Under such
assumptions, the minimization of e&ge( Dy, f,.n) can
be simplified considerably because it is now made only
with respect to w;, i = 1, ..., n. The minimization of
eqn (3) becomes linear with respecttow;, i =1, ...,
n, and leads to a set of linear equations that can be
solved by the least squares method, with the solution
given by:

W=YM"(MMT)™! (4)

where W = [w, ... w,]isam X nmatrix, Y = [Y|,
..., Yy]isa m X N matrix, and

Pij
M= i.n b I“:—*—v“’
[mj] xNs  Mij s by
¢ = ¢([X; — ¢ 1Z7'[X;— 1) (5)
For determining ¢;, i = 1, ..., n from samples D

= {X;}Y, there are two commonly used methods. In
the first method, a clustering algorithm is used to let
D¥be partitioned into # clusters, and the mean vectors
of these clusters are used as center vectors¢;, i =1, ...
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n. The second way is much simpler:? a n-element subset
is randomly selected from D and every selected sample
is directly used as a center vector, that is, ¢; = X;, i =
1, ..., n. In this case, eqn (2) becomes

2hwie([x — X127 [x — X;1)
Zhad([x — X127 x—X])

J(x) = (6)

For convenience, we call the specified RBF nets ob-
tained by the minimization of all the parameters as
ones of the ideal type or type-0; we call the specified
RBF nets given by eqn (6) ones of the basic type or
type-I, and we call those RBF nets with their center
vectors determined by some clustering algorithm ones
of the clustering-aided type or type-11. Both type-I and
type-II nets have been used widely in the literature
(Poggio & Girosi, 1989; Moody & Darken, 1989;
Broomhead & Lowe, 1988; Chen et al., 1991; Girosi
& Poggio, 1989; Renals & Rohwer, 1989; Kraaijveld &
Duin, 1991; Nowlan, 1990; Stokbro et al., 1990; Xu
etal., 1992; Platt, 1991; Botros & Atkeson, 1991; Wey-
maere & Martens, 1991; Powell, 1987).

2.2. KRE and Its Connections to RBF Nets

Let (X, Y) be a pair of random vectors in RY X R™
and f(x) = E{Y | X = x} be the corresponding regres-
sion function. Let u denote the probability measure of
X. Moreover, let D& = { X}, Y’} be a set of indepen-
dent identically distributed samples drawn from (X,
Y). The kernel regression estimate of f( x) is defined

as follows:
o Y;K(X;IX")
g:(x) = g(x, DF) = s A e
s, ")

which is the weighted average of Y’ for approximating
the conditional mean of Y under a given X = x with
weights depending nonlinearly on the X;s. Here, 4, is
usually called a smoothness parameter and is a positive
number that depends on the number of samples n. K
> 0 is a p integrable kernel on R¢. The following con-
dition will be imposed on K in a number of theorems
proposed in subsequent sections:

aH(|Ix) = K(x) < H(| x]|) and cljy<y < K(x) (8)

where H is a nonincreasing bounded function with
t“H(t) > 0 as t > oo and ¢, ¢, ¢, r are positive
constants. I is the indicator function.

2 Any one of the C% = N!/n!(N — n)! n-sample subsets of { X;,
i=1,...N} ischosen at random. However, without losing generality,
we assume that the subset just consists of the first » samples of D¥,
because if this is not the case, we can reorder the indices of D¥ to let
it be true because these indices are originally specified arbitrarily.
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The estimator (7) is closely related to the Parzen
window estimator,
- x =X
Pa(x) = palx, DE) = . 2 K—;

n =1 By

), 9)

which is used to approximate a density function p(x)
on R¢. The so-called probabilistic neural network pro-
posed in Specht (1990) is one possible direct extension
of eqn (9): it uses eqn (9) to approximate the density
function of each pattern class and uses these estimates
to design a classifier based on the Bayesian decision
rule.

Now let us explore the connections between the es-
timator (7) and various types of RBF nets introduced
in the previous subsection.

First, let us start from observing the KRE equation,
eqn (7). According to Krzyzak (1986), we know that
the condition (8) is nearly as strong as assuming spher-
ical symmetry of the kernel K(x). Thus, we can rewrite

eqn (7) as:
" Ix = Xxill\,,,
S K(mhn )Y,~

&n(x) = -
2;'=,l<("x hX,II)

Furthermore, we let

(10)

K(r*)=¢(r*), Z=hil, o(n)*=h;,
and w=Y;=Y, X=X, i=1,...,n (11)

We see that eqn (10) is identical to eqn (6). That
is, a spherically symmetrical kernel K(r?) is just a type
of radial basis function where the smoothness param-
eter h, represents the size of the basis function’s recep-
tive field (of a hyperspherical shape) and Y acts as an
approximate solution of w;. Thus, we can consider the
kernel regression estimator (7) as a particular case of
RBF nets of type-I given by eqn (6), with a hyper-
spherically shaped receptive field specified by the matrix
3 = h2I, and with the weight vectors w;, i = 1,...,n
being given not by eqn (3), but simply assigned to the
specified values Y, i = 1, ..., n. It is interesting to
notice that the assumption of hyperspherically shaped
receptive fields is commonly used in the existing studies
of RBF nets (Broomhead & Lowe, 1988; Chen et al.,
1991; Moody & Darken, 1989; Poggio & Girosi, 1989).

Second, let us start from observing the RBF net of
the basic type given by eqn (6) and observe that, under
the assumption of a hyperspherically shaped receptive
field given by = = h2I, we have

b
er}=| ¢Ij ’

¢ij=¢(|

M = [mylnsn, my =

X — X

h

2
). (12)

L. Xu, A. Krzyzak, and A. Yuille

For those commonly used ¢(7?) (e.g., Gaussians), we
have ¢(r?) ~ 0 for r*> > 0. If, in addition, we impose
the condition 4, < min{ | X; — X,|, i #j,i,j=1,...,
n}, then it approximately holds that

m; =1, when i=j;
=0, when i#j. (13)
It follows from eqn (6) that, approximately,
[l X)) =~ w;, for i<n;
=0, for n<i<N,

and thus eqn (3) approximately becomes M =
[Lxn| Onscn-ny] and (MM T)™' = I. By putting them
into eqn (4), we have

W=YMT, or w=Y;, i=1,...,n (14)

Again, we see that the normalized RBF nets of type-
I with hyperspherically shaped receptive field given by
= = h?] are approximately identical to the KRE given
byeqn (7)when X; = X;, Y, =Y, i=1,...,nif
the receptive field size 4, is appropriately chosen.

Third, let Dy = {X;, Y;}) be the same as in eqn
(3)and, in parallel to eqn (3), we denote the empirical
error of KRE by

1 N
ekre(Dy, &) =7\72 1Y; = gu(X))|*. (15)
i=1

Note that g,(x) given by eqn (10) is specified by a
set D¢ and that Dy and D do not necessarily contain
the same samples. Moreover, as given in eqn (3),
e&pr( Dy, fo.n) denotes the minimum of ekpr( Dy, fo.v)
obtained by minimizing all the parameters w;, ¢;, | =
1, ..., n and T simultaneously, that is, eipr(Dy,
fun) is the empirical error obtainable by a specified
RBEF net of type-0 by the least squares estimator. Here,
we further let egpr(Dy, f1 y) denote the value of
ekpr(Dn, fo.n) for a specified RBF nets of type-I by the
least squares estimator.

In the sequel, we propose the following lemma,
which relates the errors obtained by KRE and RBF
nets, respectively.

LEMMA 1. Let K(r*) = ¢(r*). We have:

(4) E{eksr(Dn, fim)} = E{1Y; = fun(X)]?},
E{ckre(Dn, g)|DE} = E{|Y; — g.(X;)|?| D%},
(X:, Y;) € Dy. When Dy, D& are independent, we
further have E{|Y, — g,(X;)|*| D%} = e§ + ekre(f. 84),
where

ef = E{|Y; — f(X)I*},
e%(RE(fr gn) = E{lgn(Xt) _f(Xl)|2|$§}

- [ v -gorran. a6

where U is the support of the measure u.
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(B) ekpr(Dn, f;:,N) < ekre(Dy, &), when Dy,
D& are independent, we also have

E{erpr(Dy, fun)} < €3 + ekre(f, 81);

(C) Let *D8, Y D& denote the sets of X, Y samples
in D%, respectively, that is, D& = { X}, Y;}], *D% =
{Xi}, YDF = {Y;}1. When *D§ = D7, we have
e&er (D, fun) < ekr( Dy, [ 1n) < ekre(Dw, &), with
the same receptive field T = h21I for the specified RBF
nets of type-I and KRE; furthermore, if Dy, *DE are
independent conditioning on *D&, then

E{"%{BF(ﬂN,f::,N)} = E{CZRBF($N7f£t,N)} <ep
+ E{ekre(f. 2)}-

In the following sections, based on the connections
discussed above, we will show that a number of existing
theoretical results about kernel regression estimators
developed in the statistical literature can be brought
into the neural networks literature yielding important
new results about RBF nets.

3. MAIN RESULTS: HEURISTIC
DESCRIPTIONS

3.1. Mathematical Terms

3.1.1. On Convergences and Rates. Given a vector-
valued function f( x) = [f‘V(x), ..., "™(x)]7, and
asequence { f,(x)} ¥ of either deterministic or random
functions, let

e(fifo) = If(x) = fu(0)],
Ay(f, fo) = sup elfifn) = sup [f(x) = fu(x)],

PV = [ leds il dx
U

=fu () = £ dulx), (17)

where [z(x)| = Z7Z, [z0(x)] for z(x) = [z("(x),
.o, 2M(x)]7, U is the domain of x, and u denotes
the measure on x. For any ¢ > 0, (i) if there exists a
specific #1y(x) such that for each x € U we have e,(f,
J») < efor any n > ny(x), then f, is said to pointwisely
converge to f (ii) if there exists a specific 7, such that
Ay(f, fn) < e for any n > ny, then f, is said to uniformly
converge to f; and (iii) if there exists a specific 7 such
that p3(f, f,) < ¢ for any n > ny, then f, is said to
converge in L, to f.

When {f,(x)}{ are random functions, we have
three modes of convergence: in probability, almost
surely, and completely. A random positive sequence £,
is said to converge to 0, (i) in probability if for every ¢
> 0, lim,.,, P[§&, > €] = 0; (i) almost surely if
Pllim,_., £ = 0] = 1; and (iii) completely if 2 2,
P{t,> ¢} < 0, for every e > 0. Using e.(f, f»), Av(/f,
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f»), and p%(f, f,) to replace £,, we can use the defini-
tions of pointwise, uniform, and L, convergences for
the three modes, respectively.

Given a random positive sequence &, that tends to
zero as n —> oo, for any one of the three types of con-
vergence (i.e., pointwise, uniform, and L,), the con-
vergence rate of £, is said to be of O[r(n)] (in proba-
bility, almost surely, and completely, respectively) if
there is an explicit positive function r(n) of n with
r(n)—=>0asn—> o [e.g., r(n) =n"9, qg> 0] such that
aukn/r(n) —> 0 as n = oo (in probability, almost surely,
and completely, respectively) for any sequence of pos-
itive numbers { a, } that satisfies a, = 0 as n = o0.

3.1.2. On Approximation Ability and Statistical Con-
sistency. A function approximation scheme is a device
of a set F of functions supported on R?. Usually, this
device consists of a number of components so that the
set F can be characterized by this number (say #), that
is, we can denote it by F,. Examples of such devices are
multilayer networks with # hidden sigmoid units and
RBF nets with n radial basis functions given by eqns (1)
or (2). Let ¥y = U, #,, then the function approxi-
mation scheme is said to have the property of universal
approximation (Hornik, Stinchocombe, & White, 1989)
if &, is dense in the space of the continuous functions
C[ U] defined on some domain U of R or in other
words, if for any continuous function f(x) supported
on U, there exists a specific f, € %, such that f.(x) con-
verges to f( x) uniformly. Similarly, for any function f( x)
of a given a function class #.(U) supported on U, if
there exist a specific f, € %, such that f,(x) converges
to f(x) in the L, sense, we say that the function ap-
proximation scheme has the property of L, approxi-
mation for the function class F.(U).

These properties describe the approximation ability
of one set of functions to another set of functions. For
a given function f( x), the properties only say that there
exists, in the set ¥, defined by the function approxi-
mation scheme, a function that can approximate f( x)
well as n = oo. They say nothing about how to find
such a function. Usually, &, is characterized by a set ©
of unspecified parameters. Each specified value © of ©
determines a £,(x) in %,. The value ® [thus f,(x)] is
obtained based on a set of observed samples Dy = { X;,
Y; } ¥ of a given function f( x). Usually these observed
samples X, Y, ..., Xy, Yy are identical and inde-
pendent random variables with f( x) being their regres-
sion function, that is, f(X;) = E(Y;|X;). Such a
fn(x) is called an estimator of f(x). To explicitly in-
dicate its dependence on Dy, we denote it by f, ().
Examples of such estimators include KRE, a specified
RBF net obtained by eqn (3), as well as the specified
RBF nets of type-I and type-II.

Because Dy are random samples, f,,,N(x) is also a
random variable. Its convergence behavior is described
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by a property called statistica consistency that describes
how the estimator approaches the regression function
f(x) = E(Y|X = x) as the number of samples tends
to infinity. An estimator f,,,N(x) is said to be consistent
pointwisely, uniformly, or in L,, respectively, if it con-
verges to f( x) pointwisely, uniformly, or in L,, respec-
tively, as N = oo and n = oo. Each of the three con-
sistency types can again have three different modes: in
probability, almost surely, and completely. For example,
we can say that f,,,N(x) is pointwisely consistent in
probability, almost surely, or completely if f, y(x) con-
verges pointwisely to f( x) in probability, almost surely,
or completely, respectively, as N = oo and n = 0.

The class of functions f( x) we consider in this paper
is rather large [e.g., #.(U) = C(U)] and it cannot be
defined using finite number of parameters. The esti-
mation problem considered in this paper is fundamen-
tally nonparametric.

3.2. Main Results

In recent years there have been many attempts to find
mathematical justifications for the use of neural nets
like multilayer perceptrons and varieties of RBF nets
(Hornik et al., 1989; Hornik, 1991; Girosi & Poggio,
1989; Hartman et al., 1989; Park & Sandberg, 1991,
1993). Typical results are that both multilayer percep-
trons and RBF nets possess the properties of universal
approximations and L, approximation for continuous
functions. Furthermore, they may also possess L, ap-
proximation for noncontinuous functions that satisfy
some weak conditions.

However, these studies are far from complete in de-
scribing the convergence behaviors of neural networks.
There remain many important open problems to be
studied. We will now describe some of these problems
and at the same time heuristically describe our main
results (the more precise descriptions and the related
proofs will be given in the later sections):

3.2.1. Convergence Rate of Approximation Error. The
properties of universal approximation and L, approx-
imation only say that for a given function f( x), there
exists an £(x) in %, such that f,(x) converges to f(x)
uniformly or in the L, sense. Actually, such a f,(x) may
not be unique. There may be a subset %, C F, such
that for every f,(x) € %,, f,(x) converges to f( x) uni-
formly or in the L, sense. Let f ¥ (x) denote the one
that approximates f( x) best. That is, we have

e(f,f*) =min e(f, /), Au(f,f%) = min Ay(f, /),
JnEFn JiEFn
p}(f, ) = min p3(f, /) (18)
JEFn

where e.(f, /), Au(f. f»), p( [, f) are defined by eqn
(17). It is more important to know the rate at which

£ *(x) converges with respect to the number 7 of hidden
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units. We call this rate the convergence rate on approx-
imation error of the network. The faster the rate, the
better. Recently, some results have been obtained on
this issue for multilayer feedforward networks by Barron
(1991), but scarcely any results have been reported for
RBF networks.3

It follows from Section 2.2 that a KRE is a particular
specified RBF net and its g,(x) belongs to the set ¥,
that is defined by the RBF net eqn (2). Theorems 1,
2, 3, and 4 in the next section provide the pointwise
and L, convergence of g,(x) converges to regression
function f(x) in probability and almost surely, as n
tends to co. In other words, for a given f( x), we can
construct a specific RBF net f, € ¥, by simply letting
the parameters 0 to assume the values provided by the
samples { X;, Y;}1 in the same way as it was done for
the KRE eqn (10). As a result, this f, will converge
pointwisely or in L, to f( x) in probability and almost
surely with the same rates as given by Theorems 1, 2,
3, and 4. Moreover, such a specific f, may not be the
best /*. So the convergence rates of f* will be not
worse than the rates provided by Theorems 1, 2, 3, and
4. That is, we can get upper bounds for the convergence
rates of f * . These bounds are described more precisely
in Theorems 13, 14, 15, and 16.

It will be instructive to observe some special cases
of the results given by Theorems 13, 14, 15, and 16.
For a f( x) belonging to the function class ¥, that sat-
isfies a Lipschitz condition of order « [i.e., |f(x) —
f(»] =Clx—yll*, 0 <a =<1, for all yin the neigh-
borhood of x] and [ |f|* du < o0, s > 1, we obtain
in Theorems 13 and 14 the pointwise convergence
rate O(n~*/2*9))  and the L, convergence rate
O(n~2*/2=*d)) Furthermore, if f( x) is in the class of
functions that exist order-q (¢ = 1) derivatives that are
square integrable, from Theorems 15 and 16 we have
the pointwise convergence rate O(n~9/24*9)_and the
L, convergence rate O(n~29/(24+4)) Tt is interesting to
observe that the rates are related to the ratio d/a or
d/ q. The higher the dimension d is, the slower the rate;
the more smooth of the functions in the class ¥, (i.e.,
the larger the « or q), the faster the rate is. Specifically,
for functions of order-q (¢ = 1) derivatives that are
square integrable and that have a constant ratio d/q,

3 At about the same time as we finished the earlier version of the
present paper—a technical report (Xu, Krzyzak & Yuille, 1992),
Girosi and Anzellotti (1992) and Corradit and White (1992) also
produced technical reports describing results for RBF net convergence
rates of the approximation error. Their studies differ from ours in
many aspects. First, they study the unnormalized RBF net eqn (1)
instead of the normalized version eqn (2). Second, they use tools
totally different from what we use here. Third, their results concern
only convergence rate of the approximation error; our results are, as
will be shown in the sequel, much broader. Fourth, even for this com-
mon case, the conditions assumed and the detailed results are also
different, though their rates are consistent with ours.
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the convergence rate does not depend on the dimen-
sionality. In other words, for approximating the func-
tions in this particular case, the problem of curse of
dimensionality can be avoided. Furthermore, for
the very smooth function class (g is quite large) the
rate will approach the optimal value O(1/ V;) for the
pointwise convergence and O(1/n) for the L, conver-
gence.

Theorems 13, 14, 15, and 16 together give several
rates under different conditions, which covers quite
general cases.

In addition, one can also observe that our results
also imply constructive proofs of the properties of uni-
versal approximation and L, approximation by the
RBF nets (2).

3.2.2. Statistical Consistency and Learnability. The
properties of universal approximation and L, approx-
imation only say that there exists a specific £,(x) in F,
that approximates f( x) well. They say nothing about
whether the network can learn such a specific f,(x)
from a set of observed random i.i.d. samples Dy =
{X;, Y;}Y with f(x;) = E(Y;| X; = x;). That is, for
any f(x) in a function class ¥, can we find a consistent
estimator f,,,N(x) that converges to f( x) as N = oo and
n = 0? If so, then we say that the network can /earn
any functions in F,. This property is called statistical
consistency or learnability. This issue has been studied
by White (1990), Barron (1991), and Geman, Bi-
enenstock, and Doursat (1992) for multilayer feedfor-
ward networks. However, to our knowledge, there is no
reported study for RBF networks.

In this paper, we have shown that the RBF nets given
by eqn (2) do have this property. From Theorems 1
and 2 we know that the KRE estimator g,(x) given by
eqn (2) is both pointwise and L, consistent to f( x) in
probability, almost surely, and completely under very
weak conditions on Y (e.g., E{|Y|*} < o0,s=1o0r
|Y| < M < oo for pointwise consistency and
E{|Y|**} < o0, s > 0 for L, consistency). It follows
from Section 2.2 that we can construct a particular
estimator f, x(x) € F, for the RBF net (2) by simply
setting f, n(x) = f,,,,,(x) = g,(x). As both the number
of samples and the number of radial basis functions N
= n —> o0, this estimator will converge pointwise and
in L, to f(x) in probability, almost surely, and com-
pletely under the weak conditions on Y specified above.
That is, the RBF net given by eqn (2) has learnability
or statistical consistency properties (Theorems 3 and
4). In addition, KRE has also provided a way to obtain
this property.

3.2.3. Convergence Rate of Estimation Error. Let us
modify eqn (17) slightly into
e(fs fun) = 1(%) = Lm0,
Ay(f, fuw) = sup ex(f, fun) = sup 1f(x) = fun(x)l,
xeU x€U
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oW fo) = [ et o) dx
U
= [ 1700 = w0 du). (19)

These are the estimation errors of the estimator
f;,,N(x). The property of learnability only tells us that
these errors will converge to zero as N = oo and n —
o0, but says nothing about how fast this convergence
will be. Because it is not necessary to have a unique
consistent estimator ﬂ, ~(x), we let %, v denote the sub-
set consisting all these consistent estimators. Let
f n(x)E ?;’,,,N denote the one that approximates f( x)
best. That is, we have

ex(f;f:,N) = mln ex(fsfn,N)s
Jn NEFN

Au(f,fﬁ,zv) = min AU(.fyf;l,N)a
Jn,NES

pB(fs [ hN) = ]r:elg pYSf, fan)- (20)

More interestingly, we want to know the rate with
which £ * y(x) converges to f(x) as N, n = 0. At
present, there are some results available on this topic
for multilayer feedforward networks (Barron, 1991;
Lugosi & Zeger, 1993). However, once again there are
no results reported on this issue for RBF networks (to
our knowledge).

As pointed out a moment ago, we can get a consistent
estimator in ¥, y simply by letting f, y(x) = f, .(x) =
2,(x). The convergence rates of g,(x) [and thus of the
estimator f,,,,,(x)] are provided by Theorems 5, 6, 7,
and 8. Furthermore, this specific fi,,,,(x) may not nec-
essarily be the best estimator f ¥ v(x). Thus, the con-
vergence rates of f ¥ v(x) will not be worse than the
rates of g,(x). In other words, the convergence rates
provided by Theorems 3, 6, 7, and 8 for g,(x) provide
upper bounds for the convergence rates of / * y(x). In
Theorems 9, 10, 11, and 12, several rates are obtained
under different conditions for several general cases. To
get some flavor, we now informally give a special ex-
ample of L, convergence. For an f( x) belonging to the
function class ¥, that satisfies the above-mentioned
Lipschitz condition of order o, 0 < a < 1, with the
condition that Y is bounded and that the basis function
¢ has compact support, we find that the L, convergence
rate is O(n~2%/?«*d) N > n. Furthermore, if f( x) is
in the class of functions that have order-q (g = 1) de-
rivatives that are square integrable, even when the basis
function ¢ does not have compact support, we can also
similarly get L, convergence rate of O(n~29/(2¢*d)) N
> n. The rate depends on the ratio of dimensionality
to smoothness also. For a particular function class with
a constant value for d/q, there will again be no curse
of dimensionality. For a very smooth function class,
the rate will approach the optimal value O(1/n).
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3.2.4. Convergence Related to the Least Squares Es-
timator. In the neural network literature, the least
squares estimator is commonly used for the RBF net
given by eqn (2). That is, f:,,N(x) is obtained by min-
imization of eqn (3). What properties does such an
estimator have? Is it a consistent estimator? What is its
rate of convergence? These questions are clearly im-
portant. If f, () is the best estimator f¥n(x), orifit

is better than fn,,,(x) 2,(x) in the sense that
ex(f, o) < e fs &), Aulfs fon) < Aol 8),
P fan) < pU(S, 81)

then our results can be directly applied. Unfortunately,
the answers to these questions remain open and will be
dealt in future studies. Instead, it follows from Lemma
1 that E {ekpp(Dn, fun)} < €3+ ekre(f, g»). Because
we know that g, is consistent with convergence rates
given by Theorems 5, 6, 7, and 8, we obtain Theorems
17 and 18, which tell us that as # = co and N = oo,
the expected empirical error of this estimator will re-
duce with the same rates and finally will drop below
€3 = E{|Y; — f(X;)|?} —an error that is irrelevant to
any estimator. Similarly, from E{cksr(Dn, fun)} <
E{ekpr(Dy, f1n)} < e} + E{ekre(f, g,)}, we can
also know how the expected empirical error of the es-
timator given by the specified RBF net of type-I reduces
as n > oo. Our results described here for the least
squares estimator are only preliminary. To complete
this study, we need to know whether the empirical error
edpr(Dy, ﬁ,,N) can converge to its expected value
E{ekpe(Dn, fun)}, and, if so, with what rate. Unfor-
tunately the large number law does not automatically
apply because the terms |Y; — f, y(X;, 0)|? in
e&pr( Dy, fnn) are not independent. Each term depends
on all data in Dy. In addition, we also need to know
whether E {e&pr( Dy, fnn)} converges to e3 instead of
dropping below it. We leave these two questions out of
this paper for further studies and hypothesize that the
tool of Vapnik-Cervonenkis dimensionality may be
useful in studying this issue.

3.2.5. Selection of the Size of Receptive Field. In prac-
tical applications, the specified RBF nets of type-I or
type-II are mostly used because of their simplicity. That
is, the size A, of the receptive field for a RBF net is
usually specified externally. Naturally, there rises a
question: how can the scale parameter 4, be selected
appropriately? At present very little is known about the
appropriate selection of this parameter and in practice
the selection is usually based on heuristic strategies (Mel
& Omohundro, 1991). In Section 5, we will give results
on this issue by studying the appropriate selection of
the smoothness parameter 4 for KRE estimators—a
particular RBF net of type-I. The key idea is to trade
off between the two components of the estimation error
ex(f, &) or p3(f, g,) defined in eqn (17). This trade-
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offis closely related to the well-known trade-off between
bias and variance. Theorems 19, 20, and 21 tell us that
one component will increase monotonically with 4 at
an order of O(h?), g > 0 pointwisely or O(429) in the
L, sense; the other will reduce at the order of
O(1/Vnh?) pointwise or O(1/nh?) in L,, depending
on both n and 4, where ¢ is a parameter related to the
smoothness of the regression function f(x) (e.g., the
function has g derivatives), and d is the dimension of
x. To minimize B(x)h + A(x)/Vnh? or Dh2 +
C/nhg, we find that the appropriate size should be of
the order O{[A4(x) d/2qB(x)V;]2/‘2"+d’} for point-
wise or O[(C d/2q Dn)"/?¢*®] for I, Usually, accurate
calculation of the coefficients 4(x), B(x), C, D is dif-
ficult. However, the results here can give us some theo-
retical understanding and qualitative guide for appli-
cations. The details about these coefficients are given
in Section 5.

4. STATISTICAL CONSISTENCY AND
CONVERGENCE RATES

4.1. Statistical Consistency

Theorems 1 and 2 are about the consistency of the
KRE estimator g,(x) given by eqn (7).

THEOREM 1. (Pointwise consistency, KRE.) Let K be
a nonnegative kernel satisfying condition eqn (8), and
H a bounded function nonincreasing in the interval [0,
o) and t*H(t) > 0 ast = . Let p denote the prob-
ability measure of X, f(x) = E{Y|X = x} denote the
regression function.

(A) Let E{|Y|*} < o0, s > 1. If limy., hy = O,
lim,., nhd — oo, then g,(x) is pointwisely consistent
to f(x) in probability for almost all x(u) € R*.

(B) Let |Y| <M < o0 andlim,_. o, h, =0, lim,,
nhi/log n = o, then g,(x) is pointwisely consistent
to f(x) almost surely for almost all x(n) € R?.

(C) Let E{|Y|*} < o0, s> 1 and lim,_. . h, = 0,
lim,.,(n"V/*hd/log n) = oo, then g,(x) is point-
wisely conmsistent to f(x) almost surely for almost all
x(u) € R

(D) Let |Y| < M < 0. If limyo, h, = 0 and
lim,. ., nhé/log n = oo, then g,(x) is pointwisely con-
sistent to f( x) completely for almost all x(u) € R®.

(E) Let E{|Y|*} < 00, s> 1 and lim,,, h, = 0,
lim, ., (n“Y/5he/log n) = o, then g,(x) is point-
wise{iy consistent to f( x) completely for almost all x(u)
€ R“.

THEOREM 2. (L, consistency, KRE.) Let lim,,_, ., h, =
0, lim,., nh = co. Assume that K(x) = cls, S, =
{x|lx] <r}, fsupyex+s, K(y)dx < +c0. Let p denote
the probability measure of X, and f(x) = E{Y|X =
x} denote the regression function. For all distributions
of (X, Y) with E{|Y|**} < o0, s > 0, g,(x) is L,
consistent to f( x) almost surely.



Radial Basis Function Nets and Kernel Regression

An example that satisfies the assumption f
SUPyex+s, K(¥) dx < oo in Theorem 2 is the Riemann
integrable monotonically decreasing kernel. In fact, the
class of applicable kernels for the above theorems is
very large. Not only does it includes various kernels
with bounded support, for example,

K(r) = Iynisy,
K(r)= (1 = r)I <y
(Whel‘e I{Ilrllsl} = 1 when "r" =< 19 and I{”’”Sl} =0

otherwise), but it also includes a great many kernels
with unbounded support, for example,

K(r)= e,

K(r)=e",

K(r) = sin?(r)/r?,
K(ry=1/(1+ |r|'), §>0;

and even some nonintegrable kernels as well, for ex-
ample,

K(r)={1/e if |rl<e

In(|x[)/] x|

Theorems 3 and 4 are about the consistency of the
RBF nets (2).

THEOREM 3. (Pointwise consistency, RBF.) Let F, be
the function set defined by the RBF nets (6). Let u
denote the probability measure of X, f(x) = E{Y | X =
x} denote the regression function, and assume that
E{|Y|*} < 0, s= 1. Let ¢(x) be a nonnegative radial
basis function satisfying

otherwise.

aH(llx]) = ¢(x) < H (| xl) and cI <y < ¢(x) (21)

where H is a nonincreasing bounded function with
t“H(t) > 0 as t > o and ¢, ¢, ¢, ry are positive
constants. I is the indicator function. Given a set of
i.i.d. random samples Dy = {X;, Y;}¥, there exists
(and also we can construct) an estimator f, ~NX)EF,
such that as n > oo, N > oo, f,,,N(x) is pointwisely
consistent to f(x) in probability, almost surely, and
completely, respectively, for almost all x(p) € R?.

THEOREM 4. (L, consistency, RBF.) Let &, be the
function set defined by the RBF nets (6). Let u denote
the probability measure of X, f(x) = E{Y|X = x)
denote the regression function, and assume that
E{|Y|*"} < o0, s > 0. Assume that $(x) = cIs, S,
= {x|lxl < r}, [ supyexss, é(¥) dx < +o0. Given a
set of i.i.d. random samples Dy = {X;, Y;}Y, there
exists (and we can also construct) an estimator
Ja(X) € F, such that as n > oo, N - o0, f, v(x) is
L, consistent to f( x) almost surely.

4.2. Convergence Rates of KRE

THEOREM 3. (Pointwise convergence rate, KRE.) Let
K be a nonnegative kernel satisfying condition (8), and
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H(t) be a bounded function nonincreasing in the interval
[0, 00) with tYH(t) > 0 as t = 0. Let u denote the
probability measure of X and f(x) = E{Y|X = x}
denote the regression function. Assume that f( x) locally
satisfies a Lipschitz condition of order a in the neigh-
borhood of x, that is, |f(x)—f(y)| < C|x—y|* 0
<a<1jforaly€S,, whereS,, is a sphere of the
radius p centered at x. Let b,, denote the smallest so-
lution of the nonlinear equation

(A H*(bshD]* = b,

where H* (z) = sup{¢t, H(t) > z}.

For the g,(x) given by eqn (7), we have:

(4) Let E{|Y|°} < 00, s > 1. Iflim,., h, = O,
lim,,., nh? = oo, then g,(x) converges pointwisely
to f(x) in probability with the rate O(max {0, ,, b,})
for almost all x(u) € RY, where 6;, =
min { (nhd)~"D/s (nhd)=1/2},

(B) Letesssupy E{|Y|*|X} < o00,s> 1. If lim,. o,
h,=0andlim,_, ,(n*"Y/5hd/log n) > oo, then g,(x)
converges pointwisely to f(x) almost surely with the
rate O(B,Vlog n) for almost all x(u) € R? where 8, =
max {(nC~D/spd)=1/2 p 3,

(C) Let |Y| <=M < oo. Iflim,., h, = 0 and
lim,., nh%/log n > oo, then g,(x) converges point-
wisely to f(x) almost surely with the rate
O(B,Vlog n) for almost all x(un) € R?, where B8, =
max {(nh2)~12, b,}.

It has also been shown in Krzyzak (1986) that the
assumption that f( x) locally satisfies a Lipschitz con-
dition of order « in the neighborhood of x can be re-
laxed to include functions that do not require continuity
of f(x) almost everywhere. An example of such func-
tions is the Dirichlet function defined on the closed
interval [0, 1] as follows:

1 if x rational,

f(X)={

0 otherwise.
It is easy to see that f( x) is nowhere continuous.

THEOREM 6. ( L, convergence rate, KRE.) Let u denote
the probability measure of X and f(x) = E{Y | X = x}
denote the regression function. Assume that f( x) sat-
isfies the same conditions as in Theorems 5, and that
K(x) = cIs, S, = {x||xl <r}, [ supyexss, K(y) dx
< +00 and || x| “K(x) —> 0 as | x| = co. Let b, denote
the smallest solution of the nonlinear equation

[hK* (bhi)]* = b,

where K*(z) = sup{t, K*(t) > z}, K¥t) =
sup { K(x) 1 >0y (X) }.

Let lim,, , h, = 0, lim,_., nh% — oo, then for the
8n(x) given by eqn (7) we have:

(A4) If Y| = M < oo (M is a positive constant),
then g,(x) converges in L, to f( x) in probability with
the rate O[max{(nh?)~', b,}1; moreover, if K has
compact support, then this rate is O] n~122/Qa+ )]
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(B) IfE{|Y|°} < 0, s> 2+ d/a and K has com-
pact support, then g,(x) converges in L, to f(x) in
probability with the rate O[ n(3/)~12a/atd)]]

In particular, when f( x) has g-order continuous de-
rivatives, then we also have:

THEOREM 7. (Pointwise convergence rate, KRE.) Let
p(x) denote the probability density of X. Assume that
E{Y?} <o, p(x)ECY f(x)EC, and [ |fD(x)]
du(x) < oo, where C? is the set of all functions that
have g-order continuous derivatives. Also assume that
K(x) satisfies the following conditions:

(a) [ |K| dx < o and sup|K| < oo.

(b) K(x) = [14, H(x), H(z) is radially sym-
metric and [ H(z)dz = 1, [ z2PH(z)dz =0, i = 1,

L q=1,0<[|z|9H(z2)| dz < 0.

Let h, > 0, nh? = oo. Then g,(x) given by egn
(7) converges pointwisely to f(x) in probability with
the rate O(n=%29%4) at all points of continuity of s*(x)
= E{Y?X = x}.

THEOREM 8. (L, convergence rate, KRE.) Let p(x)
denote the probability density of X. Assume |Y| < M
and infp(x) > 0. Assume that K(x) satisfies the fol-
lowing conditions:

(a) [ |K| dx < oo and sup|K| < co.

(b) K(x) =14, H(xD), H(z) is radially sym-
metric and [ H(z)dz = 1, [ z2PH(z)dz =0, i = 1,

., q—1,0< [ |z]H(z)| dz < 0.

Let h, = 0, nh?— . Then g,(x) given by eqn (7)
converges in L, to f(x) in probability with the rate
O(n=%429%4)  provided that all partial derivatives of f
and p of orders i, 1 < i < p exist and are square in-
tegrable.

4.3. Convergence Rates of RBF Nets

THEOREM 9. (Pointwise convergence rate, RBF nets.)
Let ¢ be a nonnegative kernel satisfying condition (8),
and H(t) be a bounded function nonincreasing in the
interval [0, oo) with t?H(t) > 0 ast —> . Let u
denote the probability measure of X, f(x) = E{Y|X
= x} denote the regression function which satisfies the
same condition as in Theorem 5, and b, denote the
smallest solution of the nonlinear equation

(A H* (b, h)]* = b,

where H*(z) = sup{t, H(t) > z}.

Let 27,,, ~denote the set consisting of all the consistent
estimators for the RBF nets (6), given a sample set Dy.
Let f ¥ y(x) € .y denote the one that approximates
f(x) best in the sense of eqn (20), then as n = oo,
N = oo with N = n, we have:

(A) Let E{|Y|*} < o0, s > 1, then f ¥ y(x) con-
verges pointwisely to f(x) in probability with a rate
upper-bounded by O(max {0, », b,}) for almost all x(w)
€ RY, wheref,,, = min {(nhd)~~V/s (nh%)~'/2}, and
h, satisfies lim,., h, = 0, lim,_., nh% = 0.

L.Xu, A. Krzyzak, and A. Yuille

(B) Let esssupy E{|Y|*|X} < o0, s > 1, then
f* v(x) converges pointwisely to f(x) almost surely
with a rate upper-bounded by O(ﬁnV@ n) for almost
all x(r) € R, where B, = max{(n‘~V/spd)~1/2
b,}, and h, satisfies lim,.. h, 0 and
lim,,, ., (" Y/*h%/log n) = oo.

(C) Let |Y| < M < oo, then f ¥ y(x) converges
pointwisely to f(x) almost surely with a rate upper-
bounded by O(B,Vlog n) for almost all x(x) € R?,
where 8, = max{(nh2)"'/2, b,}, and h, that lim,. ,,
h, =0 and lim,_, ., nh%/log n - .

THEOREM 10. (L, convergence rate, RBF nets.) Let u
denote the probability measure of X and f(x) = E{Y | X
= X} denote the regression function. Assume that f( x)
satisfies the same conditions as in Theorem 5, and that
d(x) = cls, S, = {x| x| < r}, [ supyess, d(y) dx <
+00 and || x||?¢(x) = 0 as |x|| = oo. Let b, denote
the smallest solution of the nonlinear equation

(hag* (bah)1* = b,

where ¢*(z) = sup{t, ¢*1t) > z}, ¢¥1) =
sup,{ ¢(X) > (X) } -

Let #, y denote the set consisting of all the consistent
estimators for the RBF nets (6), given a sample set D .
Let f v(x) € 5‘,,,1\, denote the one that approximates
f(x) best in the sense of eqn (20), then as n = o,
N = oo with N = n, we have:

(A) If |Y| < M < oo (M is a positive constant),
thenf % n(x) converges in L, to f( x) in probability with
a rate upper-bounded by O(max{(nh®)~', b,});
moreover, if ¢ has compact support, then this rate is
O(n~2¢/Qat DYy \where h, satisfies lim,.,, h, = 0,
liMyso nhé —> 0.

(B) IfE{|Y |} <0, s>2+d/aand ¢ has com-
pact support, then f* y(x) converges in L, to f(x)
in probability with a rate upper-bounded by
O(n@/9)-[2a/Qat )]y

In particular, when f( x) has g-order of continuous
derivatives, then we also have

THEOREM 11. (Pointwise convergence rate, RBF nets.)
Let p(x) denote the probability density of X. Assume
that E{Y*} < o, p(x) € CY, f(x) € C9 and
[ 1If@x)| du(x) < oo, where C is the set of all func-
tions that have g-order continuous derivatives. Also as-
sume that ¢(x) satisfies the following conditions :

(a) [ || dx < oo and sup|e| < 0.

(b) ¢(x) = [14, H(xD), H(z) is radially sym-
metric and [ H(z)dz = 1, [ zPH(z)dz = 0,i =1,

L q—1,0< [ |z]YH(z)| dz < 0.

Let 27,,, w denote the set consisting of all the consistent
estimators for the RBF nets (6), given a sample set D .
Let  * y(x) € F,,.v denote the one that approximates
f(x) best in the sense of eqn (20), then as n - o,
N —> oo with N = n, f * y(x) converges pointwisely to
f(x) in probability with a rate upper-bounded by
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O(n=729*) for all points of continuity of o?(x)
= E{Y?|X = x}.

THEOREM 12. (L, consistent convergence rate, RBF
nets.) Let p(x) denote the probability density of X. As-
sume | Y| < M and infop(x) > 0. Assume that ¢(x)
satisfies the following conditions:

(a) [ |¢| dx < oo and sup|¢| < .

(b) o(x) = 14, H(x?), H(z) is radially sym-
metric and [ H(z)dz = 1, [ zPH(z)dz =0, i =1,

..,q—10 <f |z|9|H(z)| dz < 0.

Let fci,,,N denote the set consisting of all the consis-
tent estimators for the RBF nets (6), given a sample set
Dy. Let [ ¥ y(x) € F, v denote the one that approx-
imates f(x) best in the sense of egn (20), then as
n—> oo, N=> oo with N = n, f*y(x) converges in
L, to f(x) in probability with a rate upper-bounded by
O(n~%929%4) | provided that all partial derivatives of f
and p of orders i, 1 < i < p exist and are square in-
tegrable.

4.4. RBF Net Convergence Rates in Approximation

THEOREM 13. (Pointwise convergence rate in approx-
imation, RBF.) Assume that ¢( x) be a nonnegative ra-
dial basis function satisfying eqn (21) with H being a
bounded function decreasing in the interval [0, o) and
t“H(t)~> 0ast— . Let F, be the function set defined
by the RBF nets (6), and u denote the measure on x.
Also assume that f( x) satisfies the same conditions as
in Theorem 5. Let f *(x) denote the one in F, that
approximates f( x) best in the sense of eqn (18), and
b, denote the smallest solution of nonlinear equation

[(hH* (b.h?)]1* = b,

where H*(z) = sup{¢, H(t) > z}. Then, we have:

(4) When [ [f(x)]® du(x) < o0, 5 > L f¥(x)
converges to f( x) pointwisely with a rate upper-bounded
by O(max {0y, b,}) for almost all x(p) € R?, where
0., = min {(nh2)~C"V/s (nhd)7112}, and h, satisfies
lim,o, h, = 0, lim, .., nh?—> .

(B) When |f(x)| is bounded, f ¥ (x) converges to
f(x) pointwisely with a rate upper-bounded by
O(B,Vlog n) for almost all x(u) € R?, where 8, =
max { (nhd)~""2, b,}, and h,, satisfies lim,.,, h, = 0
and lim,,., nhé/log n > .

THEOREM 14. (L, convergence rate in approximation,
RBF.) Let %, be the function set defined by the RBF
nets (6), and u denote the measure on x. Assume that
f(x) satisfies the same conditions as in Theorem 5, and
that ¢(x) = cIs, S, = {x|llx|| < r}, [ supyexss, #()
dx < +oo and ||x|%¢(x) = 0 as ||x|| = o. Let b,
denote the smallest solution of the nonlinear equation

[ * (bh)1** = by

where ¢*(z) = sup{t, ¢*(t) > z}, ¢*1) =
sup,{ ¢(x) Ljgisy (%) } -
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Let [ *(x) denote the one in %, that approximates
f(x) best in the sense of eqn (18), then

(A) When |f(x)| is bounded, f ¥ (x) converges to
f(x) in L, with a rate upper-bounded by
O(max {(nh?®)™', b,}); moreover, if ¢ has compact
support, then this bound is O(n=2/?*®) where h,,
satisfies lim,.o, h, = 0, lim,.,, nhé = .

(B) When [ |f(x)]° du(x) < 0, s > 2+ d/a,
£ *(x) converges to f( x) in L, with a rate upper-bounded
by O(n(Z/s)—[Za/(2a+d)]).

For the cases that f( x) has g-order continuous de-
rivatives, then we have

THEOREM 15. (Pointwise convergence rate in approx-
imation, RBF.) Let &, be the function set defined by
the RBF nets (6), and let u denote the measure on x
with [% du(x) = 1. Assume that [ f*(x) du(x) < oo,
u(x) € CT f(X)E Cland [ |fP(x)| du(x) < co.
Also assume that ¢(x) satisfies the following conditions:

(a) [ 1¢| dx < oo and sup|¢| < 0.

(b) ¢(x) = T14, H(xD), H(z) is radially sym-
metricand [ H(z)dz =1, [ zPH(z)dz=0,i=1,

., q=1,0< [ |z|9H(2)| dz < .

Let [ *(x) denote the one in %, that approximates
f(x) best in the sense of eqn (18), then f ¥ (x) converges
to f(x) pointwisely with a rate upper-bounded
O(n-(q/2q+d)).

THEOREM 16. (L, convergence rate in approximation,
RBF.) Let #, be the function set defined by the RBF
nets (6), and let u denote the measure on x with

X du(x) = 1. Assume |f(x)| < M and info[du(x)/
dx] > 0, and assume that ¢(x) satisfies the following
conditions:

(a) [ |¢ldx < oo andsup|d| < 0.

(b) ¢(x) = T14, H(xD), H(z) is radially sym-
metricand [ H(z)dz = 1, [ zPH(z)dz =0, i =1,

L g—1,0< [ |z]?H(2)| dz < .

Let f *(x) denote the one in ¥, that approximates
f(x) best in the sense of eqn (18), then f * (x) converges
10 f(x) in L, with a rate upper-bounded O(n~2%/24+4)),
provided that all partial derivatives of f and du(x)/dx
of orders i, 1 < i < p exist and are square integrable.

4.5. Convergence Related to the Least Squares
Estimator for RBF Nets

Here, we give some results about the least squares es-
timator used for the RBF net, that is, an estimator
fnn(x) obtained by minimization of eqn (3). The re-
sults show how the expectation of the empirical error
ekpr( Dy, fo.n) given by eqn (3) changes when n = oo,
N = oo with N = n.

THEOREM 17. Let u denote the probability measure of
X, f(x) = E{Y|X = x} denote the regression function.
Assume that f(x) satisfies the same conditions as in
Theorem 5, and that ¢(x) = cls,, S, = {x|||Ix| < r},
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| supyexss, #(») dx < +oo and |x]|“p(x) - 0 as
x| = oo. Let b, denote the smallest solution of the
nonlinear equation

(A" (bhD1?* = b,

where ¢*(z) = sup{t, ¢*1t) > z}, ¢*%1) =
Sup,{ ¢(x) [y (X) } .

Then, as n = oo, N = oo with N = n, we have

(A4) If Y| = M < oo (M is a positive constant),
the expectation E{ekpe(Dy, fon)} will drop below e3
= E{|Y; — f(X))|?} in probability with the rate
O(max {(nh®)™', b,}); moreover, if ¢ has compact
support, then this rate is O(n~2/C2«+ D1y ‘where h, sat-
isfies lim,_, ., h, = 0, lim,,., nh% - oo.

(B) IfE{|Y|*} <0, s>2+d/aand ¢ has com-
pact support, the expectation E{ekpr(Dy, fun)} will
drop below e§ = E{|Y; — f(X;)|?} in probability with
the rate O(n!"?/9)~[2a/Q2atd)]y

In particular, when f( x) has g-order of continuous
derivatives, then we also have

THEOREM 18. Let p(x) denote the probability density
of X. Assume | Y| < M and infyp(x) > 0. Assume that
¢(x) satisfies the following conditions:

(a) [ |¢| dx < oo and sup|$| < .

(b) ¢(x) = [14, H(x?), H(z) is radially sym-
metricand [ H(z) dz =1, [ zPH(z) dz =0, i = 1,

., q—1,0< [ |z]H(z)| dz < 0.

Then, as n - o, N > o with N = n,
E{ekpe(Dy, fun)} will drop below e} = E{|Y; —
S(X:)|?} in probability with the rate O(n~124/Qa+d1y
provided that all partial derivatives of f and p of orders
i, 1 < i< pexist and are square integrable.

4.6. Examples of Convergence Rates for Some
Specific Basis Functions

Let us now obtain the rates of pointwise convergences
on some examples to see how the rates vary according
to the types of the radial basis functions being used.
As shown in Krzyzak and Pawlak (1987), for certain
types of functions, including basis functions with com-
pact supports, Gaussian functions, and basis functions
with polynomial tails, the key parameter b,,, defined in

Theorems 5, 9, and 13, can be solved explicitly. Using

these solutions, we can obtain a number of useful in-

sights on the rates given in these theorems:
For all basis functions with compact support, we have

b, = hg. Let s = 2, then it follows that:

1. when 4, =n"",0 <7 < 1/d, in Theorems 5(A4),
9(A4), and 13(A4) the pointwise convergence rate
given becomes O(n~*/a*d)).

2. when h,=n"",0 <7 < 1/2d, in Theorems 5(B)
and 9(B) the pointwise convergence rate given be-
comes O(n 03¢/t d)Yog 1),

3. when b, =n"",0 <7 < 1/d, in Theorems 5(C),
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9(C), and 13(B) the pointwise convergence rate

given becomes O(n~*/?*dViog 1).

For Gaussian basis functions, we have b, = h%|In
h,|. Let s = 2, then it follows that:

1. when h, =n"",0 <7 < 1/d, in Theorems 5(A4),
9(A4), and 13(A4) the pointwise convergence rate
given becomes O[n~*"In n];

2. when 4, =n"",0 <7 < 1/2d, in Theorems 5(B)
and 9(B) the pointwise convergence rate given be-
comes O[n~*(In n)3/?];

3. when 4, =n"",0 <7 < 1/d, in Theorems 5(C),
9(C), and 13(B) the pointwise convergence rate
given becomes O[n~*"(In n)3/?].

For basis functions with polynomial tails [i.e., H(¢)
=1/t 9> 0], we have b, = hav/(etmtd) et =2,
it follows that:

1. when h, =n"",0 <7 < 1/d, in Theorems 5(A4),
9(A), and 13(A) the pointwise convergence rate
given becomes O(n~1/d(atntd)+ 2y,

2. when h, =n"7,0 <71 < 1/2d, in Theorems 5(B)
and 9(B) the pointwise convergence rate given be-
comes O(n—O.San/[d(a+n+d)+2aq] log n )’

3. when h,=n"",0 <7 < 1/d, in Theorems 5(C),
9(C), and 13(B) the pointwise convergence rate

given becomes O(n~/ld(trtd)+2anflg0 1),

Next we consider the pointwise convergence rates
given by these theorems for the special case that a =
1, d = 1. It follows that: (i) for the basis functions with
compact _support, the rates become O(n~!/3),
O(n~"%Vlog n), and O(n~""*log n), respectively; (ii)
for Gaussian functions, the rates become O(n~"ln n),
O[n~"(In n)*?], and O[n~"(In n)3?], respectively;
(iii) for basis functions with polynomial tails, when 7
= 1, the rates become O(n~'/%), O(n~""*Vlog n),
and O(n~"*VIn n), respectively, and when 7 = oo,
the rates become O(n~'/3), O(n~"/*Viogn), and
O(n~'*VIn n),respectively. We see that the heavier the
tail of the basis functions the slower the rate of conver-
gence. In fact, we can obtain a continuum of rates de-
pending upon the rate of decrease of the tail of the basis
functions. Therefore, to obtain a good convergence rate
we should prefer basis functions with compact support
or light tails.

S. SELECTION OF THE SIZE OF
RECEPTIVE FIELD

In practical applications, RBF nets of type-I or type-II
are commonly used because of their simplicity. That
is, the size o, = h, of the receptive field for an RBF net
is usually predefined externally. Naturally, there rises
a question: how can the parameter 4, be selected ap-
propriately? At present very little is known about the
appropriate selection of this parameter and in practice
the selection is usually based on heuristic strategies (Mel
& Omohundro, 1991). Intuitions and experimental
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experience have told us that either having A, too large
or too small will deteriorate the performances of RBF
nets. This suggests that the estimation error e.(f, f;)
or p}(f, f,) defined in eqn (17) may consist of two
components. One decreases with /4, and the other in-
creases with 4,,. To select 4,, we need to trade off be-
tween the two components to make the overall esti-
mation error minimized.

To study this issue more deeply, we concentrate on
the KRE estimator eqn (7)—a particular RBF net of
type-1. The following two theorems show that both e.(f,
g») and p%,(f, g,) can be divided into such two parts.

THEOREM 19. (Pointwise error.) Let p(x) denote the
probability density of X. Assume that E{Y?*} < o,
p(x) € C9, f(x) € CY, and [ |f@(x)| du(x) < oo,
where C9 is the set of all functions that have g-order
continuous derivatives. Also assume that K(x) satisfies
the following conditions :

(a) [ IK| dx< oo and sup|K| < 0.

(b) K(x) = \ H(x"), H(z) is radially sym-
metric ande(z) dz =1, [z2PH(z)dz=0,i=1,

- 1,0<[|z|9H(2)| dz < .
T hen letting h, > 0 and nh? - «o, we have

exfs &) = |gu(0) — f(0)] 0[712+B(x),,.,] (22)

Jfor all points of continuity of s*(x) = E{Y?|X = x},
®

where = means being equal to. . . in probability, and
A(x) = A1(x) + Ax(x), B(x) = B,(x) + By(x) with

Al(X) ['E_{'waz(t) d[] 2,

[ K2(t) dtyre
400 = [ p(x) ]
B0 = 1 5 [0 5262+ ptn 2L2]
S%(q—l 1 2 5 ";ﬁf,f) a(;;;ﬁ(_i)] [ =#e .
By(x) = :1 ﬁa;f((.-ﬁ) 29H(z) dz

(note: x =[x, ... x41").

THEOREM 20. (L, error.) Let p(x) denote the proba-
bility density of X. Assume |Y| < M and infgp(x) >
0. Assume that K(x) satisfies the following conditions :
(a) [ IK] dx< oo and sup|K| < o0.
(b) K(x) = \ H(xY), H(z) is radially sym-
metric andf H(z) dz =1, [z2PH(z)dz=0,i=1,
—1,0< [ |z|7H(z)| dz < 0.
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Letting h, > 0 and nh? = oo, we have
pb(s 80 = [ 1800 = 10012 duto)
- 0(—};;, + th") (23)

where U is a compact subset of R? provided that all
partial derivatives of R and p of orders i, 1 < i< p exist
and are square integrable. Here, C = C, + C, and D
= D, + D, with

2
C = 32M sz(t) dt, C, = (¢) dt,

_ D}(x)
"o p(x)

1 9p(x) 9f(x)

1(X) {q ? [f(x) dx (g p(x) ax(i)q

1 49 (x) 99 p(x)
,21 it(g— i) ZI D Gy DlaD ]fz"H(z)dz,

D 1 " a
D= [ 22N g, py(x)- [ aapf,ff,)] [z d.

The above theorems tell us that both the pointwise
and the L, estimation errors consist of two components.
One monotonically increases with 4, at the order of
O(h?) pointwisely or O(h29) in L,; the other compo-
nent reduces with 4, at the order of O(1/Vnh?) point-
wisely or O(1/nh¢) in L,. This is why the condition
that 4, = 0 and nh? - oo has appeared in many of
the previous theorems: it is to force the estimation errors
to tend to zero.

So, to minimize the overall estimation errors, we
need to trade off the two components. That is, we should
minimize the following functions with respect to #,:

G(h,) = 3—9-3 + B(x)h4, for pointwise error,
C q
n) = 21, for L, error. (24)

This minimization will give us that:
A(x)d

hy = O}| ————F=

quB(x)VZ

h, = O| Cd |G fi 2
= [(Zan) ], or L, error. (25)

2/(2g+d)
] } , for pointwise error,

As shown in Theorems 19 and 20, the accurate cal-
culation of the coefficients 4(x), B(x), C, D requires
knowledge of f(x), p(x) as well as some statistical
properties of Y. Thus, it is usually difficult to use eqn
(25) to accurately decide the optimal 4,. However, eqn
(25) can still be used to qualitatively guide the selection
of the receptive size of RBF nets of type-I and type-II,
given by eqn (6). We know that A, should be roughly
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of the order given by eqn (25). We know that the larger
the number of the basis functions used in a net the
better we can reduce the size of receptive field; on the
other hand, a receptive field of large size is best used
for a net with a small number of basis functions. More-
over, we know that the size is also closely related to the
smoothness g of the regression function and the di-
mension d of x, especially to their ratio. If the function
to be estimated increases its smoothness proportionally
to the dimensionality, that is, if we have a constant
ratio d/q, then when # is large enough, we can use
larger receptive field sizes for the smoother functions.
We will now point out that the above decomposition
of the estimation errors into two components is closely
related to the decomposition of the errors into its bias
and variation parts. The trade-off between these two
components is closely related to the well-known trade-
off between bias and variation in the statistics literature.
The bias-variation decomposition is given as follows:

ex(fa gn) = ]gn(x) _f(-x)l = Bx(hn) + Vx(hn)s
Bx(hn) = | E{gn(x)} _f(x)L
Vx(hn)= Ign(x)_E{gn(x)Ha (26)

P80 = [ 18400 = F00) 2 ) = B (k) + V2 (),
B(h) = [ 1E(8,00) ~ 7001 dut 0,
U

V2(h,) = fu | gn(x) = E{g4(x)}|? du(x), (27)

where B,(+), B?(-) are called bias terms, and V,(+),
V2(-) are called variation terms.

Roughly, the variations V,(+), V() correspond to
the components above that decrease with 4, with order
O(1/Vnh) pointwisely or O(1/nh?) in L,; the bias
corresponds to the components above that increases
with A, with order O(h?) pointwisely or O(h??)in L,.
Such a relation becomes precisely true for a special
kind of kernel estimator—-the Parzen window estimator
(9), as shown in the following theorem.

THEOREM 21. (Parzen window.) Let E{Y?} < 0. As-
sume that p(x) € CP? is the density function of X and
K(x) satisfies the following conditions:

(a) [ |K| dx < oo and sup|K| < co.

(b) K(x) = [14, H(x), H(z) is radially sym-
metric and [ H(z)dz =1, [ zPH(z)dz = 0, i = 1,

L q—1,0<[|z|9H(z)| dz < .

Let h, > 0, nh? > oo. Then for Parzen window
estimator (9), we have:

(A) For the pointwise error,

Vilhy) = | pa(x) — E{pu(x)}| = O[/ljh(—h)%]

By(h) = | E{pu(x)} — p(x)| < O[B(x)h]

L. Xu, A. Krzyzak, and A. Yuille

at x € Cp), where C(f) is the set of continuity points
of f9, and

Ax) = M;(x) [xwa,

d
B(x) =$ 5 L2 [ ap(z) d.

ax”
*i=1 i
Furthermore, the convergence rate of |p,(x) — p(x)|
is upper-bounded by O{[A(x)/Vnh?] + B(x)hi}
= O(n—q/(2q+d)).
(B) Let p(x) be square integrable. For the L, error,

(P) A
V2(hy) = | | pa(x) = Epa(x)|* dx = O(Z}Td)

(P)

B*(h) = | |E{pa(x)} = p(x)|* dx = O(Bh}?).

Furthermore, the convergence rate of [ | p.(x) — p(x)|?
dx is upper-bounded by O[(A/nh%) + Bh¥] =
O(n~2a/Cad]y g = [ K*(1) dt and B = [ B*(x) dx
with B(x) being the same as the one given in (A) pro-
vided that aqp(x)/aqu), i =1,...d are square in-
tegrable.

This theorem also justified the use of eqn (24) to
qualitatively guide the selection of 4, for designing a
special kind of KRE—Parzen window estimator, par-
ticularly for probabilistic neural networks (Specht,
1990).

6. CONCLUSIONS

By the connections we established between RBF nets
and KRE, we showed that the theoretical results about
KRE can be used as tools to obtain theoretical results
for RBF nets. We have presented upper bounds for the
convergence rates of the approximation error, proved
constructively the existence of a consistent estimator
for RBF nets, and also provided upper bounds for the
pointwise and L, convergence rates of the best consis-
tent estimator for RBF nets. Moreover, we have also
studied the problem of selecting the appropriate size
of the receptive field of the radial basis function and
the convergence of the empirical error obtained by the
least squares estimator for RBF nets. The results are
useful for further theoretical analysis of RBF nets as
well as for guiding the design of a RBF net in practice.
The remaining open problems are whether the com-
monly used least squares estimators for RBF nets of
type-I and type-II are consistent and whether it can get
a better convergence rate than those given in this paper.
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APPENDIX: THE PROOFS OF THEOREMS

In the following proofs, some background knowledge of probability
theory and nonparametric statistics are assumed to be known by
readers (Chow & Teicher, 1987; Devroye, 1981, 1987; Hoeffding,
1963).

Proof of Lemma 1. (A) E{ekpr(Y, fun)} = E{(1/N) ZX, |Y; —
fn,N(Xi)|2} = (I/N) 2N, E{|Y; - fn,N(Xi)lz} = E{|Y, —
JSun(X;)|%}. Similarly, we have E{ckre(Y, g,)| D%} = E{|Y; —
2.(X)|?| D5}
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Furthermore, we have

E{1Y; — g(X) 1’| DE} = E{1Y; — f(X;)|?| D§}
+2E{[Y; = fIXDIA(X) — 8.(X)]| D§}
+ E{1/(X:) = g(X) || DS}

When Dy, D¢ are independent, we have

E{[Y: = f(XD]f( X)) — g(X)]| D$}
= E{E{[Y; = f(X)IS( X)) - g.(X)]1 D%, X;}} = E{0} =0
E{Y; ~ fu(X) 1?1 D5} = E{1Y; - fu(X)|*} = €}
E{1f(X;) — g.(X)I?| D&}

= [ 0 - 80012 dut) = kst 8.

(B) By the definitions, ekpr(Dy, foy) is the minimum of

eknr( Dy, fo.n) With respect to all the parameters wi,c,i=1,
n and 2 simultaneously, while the kernel regression estimator (7) lS
a particular specified RBF net with all the parameters specified dlrectly
by G = Xi,w; =Y, i=1,...,n, 2 = hI without directly mini-
mrzmg eker(Dy, frn)- Thus, it is easy to see that epr( Dy, fiy) <
ekre( Dy, £,). When Dy, D§ are independent, by taking expectations
conditioning on D%, we have E {CRBF(ﬂN, )} < E{eKRE(ﬂN,
g,,)I:D‘} It further follows (A4) that E{ckpe(Dy, fon)} < €3 +
ekre(f, 84)-

(C) Because ckpe(Dy, f,x) is the minimum of ckar (D, fon)
with respect to all the parameters, and egpr( Dy, f 1 ») is the mini-
mum of ege(Dy, fon) With respect to only w;, i = 1, ..., n with
the previously determined specific values of T and ¢; = X,, i=1,

.., n, we have ekpe( Dy, fon) < ekoe( Dy, L x). Moreover, when
*D% = DY and when the same receptive field = = h2J are used for
the type-I RBF nets and KRE, the only difference between the specified
RBF nets of type-I given by eqn (6) and the KRE given by eqn (7)
is that for the former the weights w; are solved for by minimizing
eRB,.-( Dy, fan), and for the latter the weights w; simply take the values
gwen by Yi,i=1, , n. Therefore, we have epe(Dy, f1y) <
exre(Dy, g,,) Furthermore by taking expectations we have
E{CRBF(Z)N,ﬁ-,N)} = E{GKRE(:DN,gn)} E{|Y; — gn(X,)|*}, where

E{|Y: - gu«(X:)1*} = e§ + 2E{[Y; — f(X))]
X (X)) = gn(XD]} + E{1f(X:) — ga(X)]}.
When Dy, ? D% are independent conditioning on *D¥, we have

E{[Y: = f(X)DI(X) — g.(XD]}
= E{E{[Y: = f(XDIf(X}) - g.(X)1|*D, X} } = E{0} =0

E{I1(X) = g(X)1?} = ELE{1/(X) — £:(X,)|* D8} )
£ [ (0 - g0 du(x)
U
= E{ekre(f, 81)} -

In summary, we have E{ekpr(Dy, fin)} < E{cker(Dn, f14)} <
ef+ E{ekre(f,8,)}. ®

Proof of Theorem 1. For the special case that m = 1 (i.e., Y € R),
the proof of (D) is given in Theorem 2 of Greblicki, Krzyzak, and
Pawlak (1984), (E) follows from the proof of (C), the statements
(A4)-(C) will be proven below.

(4) Using the inequality from Krzyzak and Pawlak (1987, p.
163) we have

N
P{’B - m(x)

>tlsP{|N—m(x)| >e} +P{|D~1]>e¢}
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where e = t/(t + |m(x)| + 1) and

N =3 [¥, - f()1Ka(x = X)/RE{Ky(x — X)}

i=1

D=3 Ki(x— X)/nE{Ky(x — X)} - 1.

i=1

Let us use the truncation approach. Denote Y' =
YIgy<mays, Y=Y =Y, m(x) = E{Y'|X = x}, m"(x) =
m(x) — m'(x). Let N}, N, be N with Y replaced by Y’ and Y”,
respectively. We have

N
P”B - m(x)

> e} < P{|N' —m'(x)| >¢/2}

+ P{IN" = m"(x)| >¢/2} = A+ B.
Clearly,

e2/44 < var(N') + [EN' — m'(x)]?
= Eo'*(X)K3(x — X)/nE*K,(x — X)
+ [EY'Ku(x — X)/Eky(x — X) — m'(x)] = 4, + 4,

where o(x) = E{ Y2| X = x}. Using the same argument as in Krzyzak
and Pawlak (1987, p. 162) we get that 4, is not greater than

c(x)a(x)(nh9)*s=Vs for 1 <s<2,

c(x)oy(x)(nh?)! for 2<s,

where o4(x) = Eo*(X)Ky(x — X)/EK,(x — X) and c¢(x) is finite for
almost all x mod p. By Lemma 1 of Krzyzak and Pawlak (1987),
a°(x) = 0 as A = 0 mod u, we can easily see that 4, > 0 as h —
0. To conclude the proof of (4) notice

B <2/¢E|N" — m"(x)|
<2/e[oy(x) + E{Y*|X = x})(nh%)e"1/s 0

as h = 0 mod u (Krzyzak & Pawlak, 1987, p. 163).
(B) We will generalize the proof of (4). Let us start with the
inequality

P{IN = m(x)| > ¢} < P{|N— EN| > ¢/2}
+ P{|EN — m(x)| >¢/2} =4 + B.

We have by the result of Krzyzak (1986) EN — m(x) = E[m(X) —
m(x)1K,(x — X)/EK,(x — X) = 0 as & = 0 for almost all x mod
u, so B = 0 for n large enough. On the other hand, by Bennett’s
inequality (Bennett, 1962) and

YKiy(x — X)/EKy(x — X) < ¢;(x)h~¢
EY?K}(x — X)/E*K(x — X) < ¢)(x) oy (x)h ™
we have
A <2 exp[es(x)nhd]

where ¢, ¢,, and ¢; are finite for almost all x mod u (Krzyzak &
Pawlak, 1987, p. 164).

(C) The proof follows from Krzyzak and Pawlak (1987, p. 164)
except for the term | EN — m(x)|. For this term we have

EN — m(x) = Em(X)Ky(x — X)/EK)(x — X) — m(x) > 0
as h — 0 for almost all x mod u.

These proofs can be easily extended to the general case that m >
1 (i.e.,, Y € R™). By noticing that for g > 1,

(x) = 0|7 = 3 [RO(x) —

i=1

gi(x)| (A.1)
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for f(x) = [R™M(x), ..., R"(x)]" and g,(x) = [g{(x), ...,
£(x)]17. Because for each dimension i, | R®(x) — g(x)|9—> 0
as n — oo in probability | almost surely | completely, their sum |f(x)
— 8x(x)|? = 0 also as n = oo in probability | almost surely/com-
pletely. m

Proof of Theorem 2. Let Y' = YI; yj<py, Y = Y — Y'. We have

[ gn(x) — m(x)| <

K(x — X)/z Ka(x— X))

i=1

— m(1Kn(x ~ X)) | S Knlx - X))

i=1 i=1

=A+B+C

[Y’ = m'(x)]Ku(x — X;) 2 Ku(x — X;)

i=1 i=1

where m' corresponds to Y’ and M is a finite constant. The rest of
the proof is similar to the one given and is omitted. =

Proof of Theorem 3. Let us randomly choose a subset D, = {X;,
Y; } 7 among Dy. For the RBF nets (2), we simply let the parameters
¢;, w;’s of the estimator to be chosen be fixed at ¢; = X;, w; = Y;, i
=1,..., n, and let the receptive field be specified hyperspherically
with = = A21. Then we have an estimator that is same as the KRE
eqn (7). So for such an estimator with lim,., A, = 0, lim,.
nhé(n) - oo, it follows from Theorem 1(A) that it is pointwisely
consistent to f(x) in probability for almost all x(u) € R<.
Moreover, for such an estimator with lim,., h, = O,
lim,,., [n"1/$hd(n)/log n] = oo, it follows from Theorem 1(C)(E)
that it is pointwisely consistent to f( x) almost surely and completely,
respectively, for almost all x(x) ERY. m

Proof of Theorem 4. The proof is similar to the above one. Now we
use Theorem 2 instead of Theorem 1. ®

Proof of Theorem 5. For the special case that m = 1 (i.e.,, Y € R),
the proofs of (4)(B) are given by the proofs of Theorems 1 and 2 in
Krzyzak and Pawlak (1987). The proof of (C) is given in the proof
of Theorem 2 in Krzyzak (1986).

The proofs can also be extended to the general case with m > 1
(i.e., Y € R™). By noticing

efig) = Uf(x) - g0 = 3 |ROx) — g0(x)]  (A2)

i=1

for f(x) = [RV(x), ..., R™(x)]T and g,(x) = [gi"(x), ...,
2{™(x)]17 we can see that the convergence rate of e,(f, g,) will be
27, O[r(n)] = mO[r(n)], which is still the same order O[r(n)]
when the convergence rate of each | R(x) — g§’(x)| is O[r(n)].
Because each of the rates given in the above statements (4), (B), and
(C) holds for each | R®?(x) — g{?(x)| (i.e., the special case that m
= 1), by using the above arguments we can see that these statements
also hold for the general case that m > 1 (i.e., YER™). B

Proof of Theorem 6. Let us write

|60 =101 =|55]

where
N= é [Y: = f(X)1Ku(x — X; )/ nE{Ky(x — X)}
i=1

D= En: Ki(x— X))/ nE{Ky(x — X)} — 1.

i=1

Using similar arguments as those in Devroye and Krzyzak (1989, p.
74) and Krzyzak (1991, p. 495), we obtain
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AJ 1800 s de>
Q

=P[f (D]ZI) du>e}<P{fN2du>e/8}
P{LDzdp>e/8M].

(A) For the case that |Y| < M. Let us first consider the term
involving N. We have, by Chebyshev’s inequality,

P{Ldeu>c/8]S§E[J;N2dp}
——E[J. [Y - f(x))°Ki(x — X)/EZ{K:.(X X)}dﬂ(x)}

+—E{ f[Y — FO1Kn(xX — Xi)
i#j

X [Y, = f(01Ki(x - X) / B {Ky(x - X)} du(x)}
8+,
&

Here,

4AMk* AMPk*y

A= fE{K,,(x X)) = hd

where k* = sup|K| < oo by the regularity of K and vy < oo by the
covering argument of Devroye and Krzyzak (1989, p. 79). The con-
stant ¢ depends on d only. Moreover,

B=< fQ [E{LY = f(0)1Kn(x = X)}/E{K(x — X)}1* du.

Mimicking the proof of Lemma 6 of Krzyzak (1991, p. 495) we
obtain the following upper bound for B

5[ e [ s Jaun VD~ Sty di’
S (x) dp + F{K(x— X)) w(dx)
where s;, = hK*(8), and A, 4(x) = {y:Ku(x — y) > t}. By using
Schwartz’s inequality and following the treatment similar to that used
in Krzyzak (1991, p. 495), we can see that the second summand in
the formula above is bounded from above by

du(x)

f 8 fo { Fase V() = £(3) | ldy) }? dt
o E*{Ky(x — X)}
815 Fanuon LACX) = ()Pl dy) el A, ()] dt
SL EN{K(x - X))

SE{Ky(x — X)}[f(x) = f(X)]?
o E*{Ki(x — X)}

du(x)

du(x) < 4M2syh4.

Taking & = eh?, we get
B < [hK*(¢h?)]* f G?du + 4AM?*ye = e(f G*du + 4M27) ,

with [AK*(eh?)]% = &.

Collecting the results about 4, B, we see that the convergence rate
of [, N2 du(x) is O[max {(nh?)™", b,}] in probability.

Slmllarly we can also prove that the convergence rate of f 0 D?
du(x) is also O[ max {(nh?)~!, b,}] in probability.

More specifically, when K has compact support, hence b, = h2*
then the rate of L, convergence of e2(f, g,) becomes O(n‘”""z"“’")
in probability .
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(B) For the case that E{|Y|*} < o0, s > l. Let ¥ =
Y1y sy and R(x) = E{Y|X = x}. We then use a truncauon
argument [noticing the inequality (a + b + ¢)? < 4(a® + b% + ¢?)]

P{f [R,(x) — f(x)]2u(dx) > e} < P{f A du > e/12}
+P[fBzdu>e/12}+P{fC2du>e/12]

where

A=3 (Y - YDK(x - X)) | 2 Ki(x — X))

i=1 i=1

B= 3 [f(x) - ROIKnx — X)) | S Ki(x — X))
i=1 i=1

=3[V = RXO)IKu(x = X)) | 2 Ku(x = X)).

=1 i=1

where A2 = 0 a.s. for n large enough. Because P{A2 > c,e} = 0 as
n - oo for any sequence ¢, = 0, A will not affect the rate and need
not be considered further.

By Jensen’s inequality we have

B? < 3 [f(x) = R(X)PKy(x — Xi)/

2 K.(x = X)) = [f(x) - R(x)]*.
i=1

Furthermore, by Schwartz’s inequality we have

B* < [f(x)— R(x)]?
= (E{Y = P|X = x})?> < E{ Y yjomn| X = x}.

Using Hoélder’s inequality, we have

f B2 du < EY Iy 115,
< (E|Y[)**(P(|Y| > n'/*)02/ = BB
Moreover, by Chebyshev’s inequality we further have
BB < (E|Y|)Y(E|Y|*)""s/n'"s < E{| Y|*}/n's~2/s,

Using the results for the case (A4), we get

f C? du(x) = O(n**max {(nh?)™', b,}) in probability.

Combining the bounds we obtain the rate

max{n(zm 1 n2/sn—[2a/(2a+d)]} = n(2/:)—(2a/2a+d). n

Proof of Theorem 7. This proof is contained in the proof of
Theorem 19.

Proof of Theorem 8. This proof is contained in the proof of Theo-
rem 20.

Proof of Theorem 9. Similar to the proof of Theorem 3. Let us ran-
domly choose a subset D, = { X;, Y; } | t among Dy. For the RBF nets
(2), we simply let the parameters ¢;, w;’s of the estimator to be chosen
befixedatc, = X;,w; = Y;,i=1, , n, and let the receptive field
be specified hyperspherically with E h 2 I. Then, we have an estimator
Jan(X) € Fpn that is same as g,(x) € ¥, y—the one given by the
KRE eqn (7). So, f,~(x) converges to f(x) with the same rate as
g,,(x) Moreover, such a specific f, 5(x) may not be the best
f ¥ n(x). So the convergence rate of f ' n(x) will not be worse than
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the rate of g,(x). Therefore, from Theorem 5(A4)(B)(C) we can get
Theorem 9(A)(B)(C). ®m

Proof of Theorem 10, Theorem 11, and Theorem 12. The proofs are
similar to the one above. Now we need to use Theorem 6, Theorem
7, and Theorem 8, respectively, instead of using Theorem 5. ®

Proof of Theorem 13. Let us consider the special case that X is a
random variable with probability measure u(x) and Y = f( X). We
randomly choose a subset {X;}7 and form a set {X;, Y;|Y; =
f(X;)}}. For the RBF nets (2), we simply let the parameters ¢;, w;’s
of the estimator to be chosen to be fixedat ¢; = X;, w; = Y;, i =1,

., h, and let the receptive field be specified hyperspherically with

= h2I. Then we have an f,(x) € &, that is same as g,(x) € F,—
the one given by the KRE eqn (7). So, f,(x) converges to f( x) with
the same rate as g,(x). Moreover, such a specific f, may not be the
best /' *. So the convergence rate of f * will not be worse than the
rate of g,(x). So, from Theorem 5(A) we have Theorem 13(4), and
from Theorem 5(C) we have Theorem 13(B). m

Proof of Theorem 14. The proof is similar to the one above. Now we
use Theorem 6 instead of Theorem 5. ®

Proof of Theorem 15. Let p(x) = [du(x)/dx], then we use Theorem
7 and follow the similar line as in the proof of Theorem 13. =

Proof of Theorem 16. The proof is similar to the one above. Now we
use Theorem 8 instead of Theorem 7. ®

Proof of Theorem 17. It follows from Lemma 1 that E{e}ge(Dy,

fun)} < €3 + ekre(f; g,). Comparing eqns (16) and (17), we see

that ere(f, g,) is actually just the L, error p}(f, g,). Because €3 =
E{|Y; — f(X;)|?} is irrelevant to N and n, the change of
E {ekpe(Dy, fon)} is determined by p3(f, g,). From Theorem 6,
we know that asn = oo, N—=> co with N=n, (1)if |Y| =M < o0,
p3(f, &) converges to 0 in probability with rate O(max {(nh9)!,
b,}) or O(max{(nh?", b,}) if ¢ has compact support; (ii) E{| Y|*}
< o, §> 2+ d/a and ¢ has compact support, p%(f, g,) converges
to 0 in probability with rate O(n?/9)-2«/Catd)ly g

Proof of Theorem 18. The proof is similar to the one above. Now we
use Theorem 8 instead of Theorem 6. |

Proof of Theorem 19. In the proof we will use the followmg decom-
position (Krzyzak & Pawlak, 1987):

P{|g.(x) = f(x)] > e} = P{lan(x) — f(x)| > 8}
+ P{|bu(x) — 1] > 6}, (A.3)

where & = [¢/(e + |f(x)| + 1)]

1

an = nhgp(x) 2 YKh (.X X)
1
n nhgp(x) Z Kh,,(x X)
K, (x) = K(x/hy).

We have by Chebyshev’s inequality

P{a() ~ (0] > 8} =3 E{la() ~ ()]}

1

<< (E{lax(x) = E{a,(x)}|} + | E{aa(x)} = /(x)])

—_

— {var[a,(x)]'/? + bias}.

>

We first consider the variance

1

var[a,,(x)] —2717‘1;’—(—)

3 var (YK, (x - X))}
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nth (x )var{YlK,,n(x X))}

1
thp ) — E{Y*K}(x—X)}.

We will show that as 4, = 0
h—ldE{ YK}, (x — X)} = o3(x)p(x) f KXt)di  (A4)

at points of continuity of ¢%(x) and p(x), where o¢?(x) = E{Y?| X
=x}.
We have

hd[E{Y2}K2 (x—X) - a'z(x)p(x)sz(t) dt]

1
= 5| [ 1709909~ 220K~ ) ]

1 1
D+ — D= 11+1
hﬂj;x—yﬂsﬁ( ) he ux—yu>«s( )‘ ! !

By continuity of ¢2 and p we have:

|1l < sup [a*(¥)p(¥) = a2(x)p(x)]

foz(t)dt—»O as 0—>0.

By the properties of K we have:

II < 62(x)p(x) K?*(x) dx

1xXi1>8/

+ sup |K(x)|E{Y%*} >0 as h,—>0.
Lxll>5/ hn

We will now consider the bias term:
E{a,(x)} — f(x)

p(x)th{YKh(x X)} = f(x)

= i | O = () dy = 100

;(’)' f S(x+ ha))K)p(x + hyy) dy = £(x)

S 5 (790

[+ 2%

p( p(x) -
h -l pi :
+ 7 YTV (x) + o(hZ)][p(x) + 2 F (»TV.)'p(x)
! 2t

hj
+ 7 (»TV.)p(x) + O(h:’.)]K(y) dy — f(x)

- p(x)

where B(x) = {(1/¢!) 2, (f(X)[B"p(x)/axm"] + p(x)[8f(x)/
axD) + T (1/iN[1/(g— )] 24 1[a'f(X)/OX""llé‘”"’p(X)/
dxNa=nyy f z9H(z) dz with x = [x Do, x@)

By combining all the above formulae we sce that the convergence
rate of | a,(x) — f(x)| is O([4,(x)/Vnhd] + B,(x)h?) in probability
with 4,(x) = ([E{ Y?| X = x}/p(x)] [ K*() df)"/*. Next, we consider
the second term in eqn (A.3), that is, P{|b,(x) — 1| > §}.

Because | b,(x) — 1| = [1/p(x)]| p(x) — p(x)| with p,(x) being
the Parzen window estimator given by eqn (9), we know, from Theo-
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rem 21(A), that the convergence rate of 1/p(x)| p(x) — pa(x)| is
O{[A45(x)/Vnhg] + By(x)h%}; therefore our c_onclusion is proved.

In addition, by minimizing 0{[A(X)/V;/_l‘,f] + B(x)hi} with
respect to /,,, we will find this becomes O(n~%27+4), That is, we get
the proof for Theorem 7. W

Proof of Theorem 20. Let us use the decomposition

NT = Z[Y =[] K, (x = Xi)

nhﬁp( ) i

1

br= nhip(x) 2

Z Ky (x—X;)— 1.
Using the same approach as in the proof of Theorem 4, we have

P[f IRn(X)“f(x)lzdu>c}
Q

_ NT 2
_P[J;(DT+ 1) du>e}sP[LNT du>e/8}

+ P[f DT? du > e/SM} .
Q

Let us first consider the term involving N. We have, by Chebyshev’s
inequality:

PU NT? du(x) > e/S] < 8 EU NT? du(x)]
(2] €
nhzd [f [Y = f(x)]°KG, (x — X)/p (x) dn]

s ZE{f Y, — f(0)1K (x = X)X, = ()]

l+j

8
X Kip(x = X) / P) du] < i

XE{f [¥ — f()1K3(x — X)/p (X)du]

8 Ez{lf(X) SOONKx = X0}
he pA(x)

oo

=Z(I+1D).

Y

Next we have

4M2 K3, (x = y)p(y)
hzd 2(.X)

_AM? [ KX(y)p(x + hy)
" ahd f p(x) dx dy

S p(x) dx dy

2 M 2
< hd f KX(0)p(x + hay) dx dy = f KX() dy.

Applying the results of the proofs of the bias part in Theorem 19 to
11, we have

=L EZ{[f(X) S(0)1K(x — X)}
72d
h? p(x)

Xfw( [ s b =10
X K)o + hoy) dy)? d

2”f D,(x) dx + o(h?9).

dx
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Let us now consider the term involving DT, we have

P{LDT2 du > c/8M] Ss—ME[f DT? dy]
& (%]

M L[t v 1T
r E[L[nz[pu)hd’“"(" X IH d"]

i=1

- E[ f [—-——-—K""(x _X) ]zp(x) dx}
Q

ne p(x)hd
8M Kn(x=X) [ EKnlx=X)

i %E{fo[ p(x)hd 1][ p(x)hd l]p(x) dx]
8M K (x— X)) 1

< = E[L[——l’-————hﬁ p(x)] 00 dx]
8M ([E{K,(x~X)} _ gL

= L[ ne "‘x)} Ptk

-3 (I+1I).
&
Next

1 N a2 PO
Ithzdfo(K;,"(x y) — hip(x)) 200) dx dy

L a2 POt By)
e i fQ (KG9 ~ htp? 2702 a dy

a4 K*(p)p(x + huy)
<l [P ey

+ f L h2p(x)p(x + h,y) dx dy} -

q
U;Kz(t) dt + hﬁ"]

nhic

q
nhic

LKz(t) d.

We conclude the proof by considering 7I. From the results of
proofs of the bias part in Theorem 21 we have

_ ([E{Kax—X)} : 1
o fa[ hg p(x)] p(x)dx

- Y
= [ Ko ey —po e

— e [ D3 4
"o p(x) T

Therefore, our conclusion is proved.

In addition, by minimizing O[4(x)/ V;lh—ﬂ] + B(x)h%) with re-
spect to /,, we will find this become O(n~129/(2¢+))) That is, we get
the proof for Theorem 8. m

Proof of Theorem 21.
(1) Proof of (4). (i) for V,(h,), by Chebyshev’s inequality, for
any 6 > 0 we have

P{p.() = E{pu(0)}] > 6} < 5 varlpu(0]2 (AS)

L. Xu, A. Krzyzak, and A. Yuille

we further have

var[p,(x)]
1 - X; 1 -x
=n2h3:’§m["(x hg"')}sn'h%?E{Kz(xhn )] > (A8

1 -X 1 - Tl
h—gE[KZ(" - )] [ K5 pordy brx=y=ho

=fK2(t)p(x— hyt) dt —>
p(x) f K*(t)dt, as h,—>0 (A7)
at points of continuity of p(x) (see the proof of Theorem 19. By
combining all the above formulae, we have that the convergence rate
of | pu(x) = E{pa(x)}| is O[A(x)/Vnhd] in probability.
(ii) For B,(h,), we have

E{pu(x)} — p(x)
1 X 1 -
= p,E‘K(%—)} - p(x)= Efp(y)K(%;X) dy - p(x)

= [ pc+ h)KG) dy - o) (A8)

g-1 hf, .
= f [p(x) + 2 0TV p(x)
=1 b

q
+ g_;_t (yTVx)qp(x) + o(hd) |[K(y) dy - p(x)

= hiB(x) + o(h})

{ by using the condition (b) about K(x)}. (A.9)
(iii) By minimizing G(h,) = B.(h,) + Vi(h,) with respect to
hy, we get h, = n~1//Ca* )] Then substituting into G(h,) and recalling
eqn (26), we see that the rate of | p,(x) — p(x)| is upper-bounded
by O(n_["/(z"+d)]).
(2) Proof of (B). (i) for V2(h,),

p[f VZ(hn)dxw] <3 E [ 1500~ E(p, 00} 12
— 2 [ Var(pu(x)) ax
11 1 —-X
Sznhme{Kz(x-r)}dx'

By the approximation of identity properties (Wheeden & Zyg-
mund, 1977, Theorem 9.6, p. 148) we obtain that as h, — 0,

;Tl;{ E[KZ(XZX)}dx—»fKZ(t) dr.

(ii) For B%(h,), it follows from eqn (A.9) that

B(h) = [ (E(p,(0) - p()? de

= f [A4B(x) + o(hd)]* dx = [h2¥B + o(h2%)] (A.10)

where B = [ B?(x) dx.

(iii) By minimizing G(h,) = B%(h,) + V2(h,) with respect to
hn, We get h, = n~[1/@2+)] again_ Putting it into G(k,), and recalling
eqn (27), we see that the rate of [ | p,(x) — p(x)|? dx is upper-
bounded by O(n~[29/2e+d)y g



