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Absiract—In this paper', an intelligent system is featured
Iy bt its abilities of interpreting what are observed via
discovering knvwledge about the world it survives, amd ils
problem solving skills of handling each isue encountered
in the world. Correspondingly, the abilitics and skills are
obtained by two types of learning via evidences or data from
the world. Duye to noises in observation and o finite size of
samples, learning s statistical in nature, which laces two key
challenges, One is finding appropriate mathematical repre-
seotations to spit various dependence structures underlying
world. The other is getting a good theory to guide learning
such that dependence structures are not only learned into
mathematical representations but alsn with an appropriate
complexity that matches the size of samples (i.e., learning
reliable strocinres of nnderlying world). This paper congists of
part parts. The first two parts snmmarize typical dependence
structures for tackling the challenpge ope amd typical learning
theories for tackling for tackling the challenge two. The third
part introdoees Hay esian Ying Yang (BY'Y) system as a general
framework that unifies typical dependence strnctures and
BYY barmony learning for the challenge two, with several
favorable features, To illustrate this BYY learning, in the
fourth part we [urther iotrodoce fundamentals of indepen-
dence subspaces and advaoces oblained from BYY harmony
learping on typical independenes subspaces, including PCA,
MCA, DCA, ICA, FA, TFA, NFA, BFA, LMSER, as well
as their temporal extensions. Finally, a concluding remork
5 made apd pew resulls of BYY learning in olher learning
areas are also bricfly listed.

I. STATISTICAL LEARNING FOR KNOWLEDGE
TMSCOVERY AND PROELEM SOLVING

A Irellisenr abilities and rwo ypes of leaiming

An intelligent system, which could be an individual or
a collection of men, animals, robots, agents, and other
intelligent bodics, survives in its world with neads of two
types of intellipent abilities.

As illustrated by the right path in Fig.1, Type-T consists
of abilitics of knowing “what’ or discovering its world,
ie, mining among data or information from thinge and
events it has encountered and discovering regulacities or
dependencies among data as its knowledge about the world,

Ulhe work deseribed in this paper was fully suppected by a prant
from the Beseawrch Grant Council of the Hong Kong SAR {project No:
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As iMustrated in Fig.2, the knowledge is obtained either
from a hoge volume of existing anthorized sources (e,
textbooks) or from pieces of uncertain evidences {or called
samples) that directly come from the world during the
activities, such as observalion, experiments, t:x[ﬂnmmm,
think, communication, and collaboration as shown in ig.3,
Actually those authorized sources were also obtained from
samples in past. Therafore, in ite natore, Typel abilities
are obtained via processes what we vsually call fearning,
during which the intelligent system graduvally senses its
wirld frinn sarmples and modifies itself to adapt the world,
Por thiz reason, we may also call an intellioent system
shortly by a learmer.
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Fig. 1. Twn Types of Intelligent Abiliny

As illustrated by the left path in Fig 1, Type-11 consists of
skills of problem solving, ie., skills of appropriately react
ing upon things and events that it is currently encountsring.
The reaction can be either just perceiving (e.g., identify,
recognize, etc) the things and events or forther making
feadback actions to satisfy cetain motivation {e.g., driving,
oparation, cooperalion, compelition, ele), as shown in Fig.4.
These reactions are featorad by rapid responses that demand
a fast implementation mechanism trained {or called learned)
from sanples during these activities, As illustrated in Fig. 2,
the skills of problem solving may also be obtained in help
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of reasoning, inference, optimization, based on the learner’s
Type-T knowledge, Thongh these processes are nol really
of learning, we always demand a fast implementation of
problem solving. For this purpose, we nesd a device that is
developed or learned during learning of Type 1l knowladge
from samples obtained in the same time of problem solving,

Tn a sumrmary, we have Type-T learning for discovering
world knowledge via mining invariant dependence under
lying a set of all samples and Type-II learning for problem
salving via building up input-response type dependence per
sample, az shown in Lig 3.

B, Three ingredients and wo challenges

Shown in Fig.t are three kev ingredients of learning.
One i gathering a set X = {z 1 | of sanples from the
world. ‘The other iz finding a learner’s architecture with
appropriate structures that is able to well accommodate
o deseribe dependence as discossed Fig.5. The third is a
learning principle or theory as well as an efficient learning
algorithm that implements the learning theory such that
dependence vnderlying the world are learned fom the set
of samples to the learnec’s architecturs.
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Fig. 4. Sklle of problem solving, (1) perception, (1) contrel.

Intrinsically, learning iz a procedure that inevitably bears
uncertainty. As illostrated in Fig.7(a), we considar a simpla
problem of leaming a line from samples. Conceptually,
a line can be learned usually by two samples. There is
uncertainty that we will fail when two samples are samea
as shown in Fig. T(b). If we get each sample randomly with
equal chance from any points on the line, the uncertainty
will reduce towards to zero as the mumber of samples
increases. In o practice, uncerlainty also comes rom noises
in gathering samples, quantization effects such that a lina
obtained from two points could be very bad as illustrated in
Fig.7{c). Again, as more samples are randomly samplad and
cach sarmple comes more equally from any points on the
line as illostrated in Uig. 7(d), thiz type of uncertaintizs will
also reduce. Moreover, to find a more conmplicated structure,
ancther uncerlainly comes from nol enough number of
samples as illustrated in Fig.7(e). Again, we expect that
more sarmples come and ecach sample comes with cqual
chance. In a summary, sample gathering iz a random sam
pling process and learning is featured by statistical nators
aiming at dependence stmctures with uneertainties redoced
or removed. Thus, we refer it by the term ‘statistical
learning”.

Strictly speaking, samples can be gathered in an active
way or passive way, a learner may particularly seek soms



RN
ke

IYFE N
Urmiming Skills ol Proldem Salving
via Deileling wpr tnpat-response

IYPE|
Wiseovering Workld Kow ledge
vig g invariand dependence

fype cleptial R Per s wndderlving o sei of all samples

~N

(_The World )

Fig. 5.

Two Types of Learning

Learning theory
(zoftware}

Leamer
{ hardware)

Sample
gathering
{world}

Fig. & HKey Ingredients of Learning

types of samples according to the learnee’s prior knowledge
or specific attention, and the lsarning in such a case is
sometimes referred as active leaming, Though the process
of such a learning could be mwch faster and has certain
advantage, it is also easv to bring a biased result. No
systemuatic effort has been made along this direction yet, in
spite of some efforts in the literatures. In the fields of statis-
tics, machim: learning, neural networks, pattern recognition
as well as recently in data mining and bicinformatics, most
of past existing stodies baze on samples that come from the
world in a passive way without any learnec’s interaction,
mamely, sarmples are regarded as coming from its world
randomly according to itz own underlving distribution. We
adopt this convention here too,

Ag to the other two ingredients in Fig.6, we are facing
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Fig. 7. Uncertwminty in samples and raodom sampling

the following two major challanges:

Challenge I: the learner’s hardware should be designed
nol only be able o accomupodate but also appropriately
match the interested dependsnce structures underlying the
world.

Cheadlenge IT: the complexity of the learner's hardware
should be appeopriately determined to match vsnally a finita
size of samples, namely those reliable dependence stroc-
tures nnderdying the sarmples for representing the underlying
world.

II. TOWARDS SOLVING CHALLENGE ]

As shown in Fig. 8, the first challenge we encounter is
that & learner’s architecture should be able to appropriately
represent dependence among data.
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Fig. 8. Key Challenge T: Learnar’s hardware appropriately represents
dependence amaong, data

Ao Early Efforis: General Purpose vs Specific Purpose

Started in the statistics lilerature, one carly ambilion is
to astimate the probabilistic distribotion underlving samples
since all the dependence structures can be derived from the
distribution.

As shown in Uig. 9, the most simple one is directly using
and memorizing the entire sample set as a representation
of the abserved waorld, which is cquivalent to the cropirical
denzity:

N .
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where d 15 the dimension of = and & = 013 a small munber.

Improvements have been further proposed by replacing
d(x — xe) with a smoothing keenel K p(x, z.) as follows:

(1)

3—".‘1.[1,']:) - f_j.;l' ;;DF:]_I{PE-(IJ Izj,

Hpl(e, o) is a keenel located at x., (44
which is vsvally called a pon-parameiric Parzen window
density estimate [31]. In the simplest case, Kz, ) is a
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hyper cubic of volume ~* with its center located at =, and
pr(n) becomes the widely used histogram estimate as a
smpothed version of equ.(1). The smoothness is controlled
by a given parameter k = (1 that iz vsvally called smoorhing
parameter. The other case is Kp(x, x.) = Clulz,, #21),
when: amd hercafler in this paper G(z|m, 2 denoles a
Ganssian density with mean vector m and covariance
matrix .

Theugh po() and p(=) tend to the distribation ander-
lying samples as N — oo, such a nonparameiric and non
structural density estimate works only when the dimension
d of r is not high. As d increases, the size N shovold
increase exponentially with < in order to maintain the
usefulness of pgu(z). Unfortunately, we often have a fnite
size . As a resull, the performance deteriorates drastically
when the dimension J becomes large, which iz usvally
referred as ‘curse of dimensionality”.
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Fig, 10.  General purpose affoet: (1) statistice egtimation (sammarizing
ensemble features of samples)

Instead of memorizing each individval sample, as shown
in Fig. 10, another early effort of general purpose is
extracting fealures or slalistics [rom an enlire ensemble
of samples. The most simple and vseful one is its mean
vector o= Fz, where and throughout this chapter the
notation Eiw) = Fu = FElu] denotes the expactation
of random variable w. This mean vector wp reflacts how
sarmples of = relate cach other in a sense of locating around
1, which is also called the first order dependence that
describes how each variable =% varies depending on its
mean p% = Ex(¥, Usually, having only the mean w is far
from enough. We also consider the 2nd order dependencies
between every pair of =(*), ... =@ je, oy = Bz
a2l — ply = 1,00 dd = 1,--+,d, which is
also written in a matrix £ = [#y;], called the covariance
matrix. Actually, it is equivalent to specifying a muoltivariate
Ganssian density with the mean g2 and the covariance matrix
Y. Still, having only dependancies up to the 2nd order is
not enough for many practical tasks. Naturally, we can
further consider dependencies vp to any higher order %
However, the nomber of parameters for representing thoss
dependancies increases exponentially with O(d*), and thus
the size NV of samples should increase exponentially with
thiz order to maintain the vsefulness of the estimations on
thess dependencies, which again lsads to a problem similar
Lo “curse of dimensionality”.

Another direction of early efforts is to consider specific
density in a parametric form, according Lo a specific domain
knowledge. In the statistics literature, there are tool boxes
of specific densities, e.g., a so called exponential family of
densitics. owever, at what situation to choose which spe-
cific paramefric density needs specific domain knowledge,
which are vsually not available to vs. This nature has mads
this direction not suitable for a learner who needs 2 mach
general learning ability to cover various simations that a
learner may encountsr.

EB. Efforts in Recent Decades: Seeking Dependence Struc-

Turex

It does not always nead and aleo is not always a
good choice to directly sesk the probabilistic distribution
underlying samples. Not only obtaining the distribution and
then getting dependence structures usually incurs expensive
computing cost, but also estimating distribotion is mora
vulnerable Lo a fnile sive of samples and easy (o be lead
to poor 2stimations.

Efforts in recent two decades or more have been made
on secking typical structures that are able to perform major
tasks we encounter, especially in the literatures of machina
learning and neural networks. Actually, a particular stroc-
ture inplicitly specifics a distribution and may be able to
describe a particular class of higher order dependancies.

A number of structures have been stodied, but in lack of a
systematic view. In the following, we aim at such a purposs



from the perspective of two tvpe learning as shown in
Fig.5. In general, dependence structures are accommodated
in a bi-directional architectore. However, special cases with
an one directional architecturs are also vseful in several
learning tasks.

I} Forward Architecture: We start at the special case
of Forward Archirecrure that only conziders ona directional
dependsnce as shown in Fig. 11, featured by a mapping © —
wviay = flx) or ply|=) that is implicitly described by an
apprapriale specific siracture.
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Fig. 13, pairawise smohires

One widely studicd type of such dependence structures
are Pair-wise striecriges, as shown in Fig. 12, which are vsed
to learn a dependence structure from © to y through a set
of known sample pairs T , = {z, vs ., under the name
of supervised lzarning.

When v is real and p(y|z) is Gavssian, the optimal
function of f(x) to fit the set {z., 3}, is the ragres-
sion fiz) = Eiylr) in a maxiroom likelihood sense,
with various applications such as function fitting, control,
prediction, ele. A dependence relation is also considered
via intersecting the distribotion at a given level for thosa
association rules that are studied widely in the literature of
data mining [39], with details referred to Sec.22.2 in [102].
When each element of ¢ takes only 1 or [, the optimal
function of f{x) is one able to classify samples into one of
K classes with a minimnm classification rate, as encountered
in various pattern recognition tasks [30], [33]. In the past
two decade, f{x) has been widely implemented by neuoral
networks, c.g., as shown in Fig 13,
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Another popular type of Ferwarnd Architectare consists
of rransformarion srucrures, as shown in Fig 14, Instead
of knowing a set of sample pairs {z. % }{L,, we use a
parametric structire of ply|=) to transform observations of
1 either per each sample into its inner representation o or
collectively in term of p(z) by eql) or eq.2) into

= [plylz)p(z)u(dx) (3)

so that dependence structure among variables z (1) ... (&

are well extractad and represented by py|x). From proba-
bility theory, if = is mapped by f(=) inte a uniform distr-
bution ply) as shown in Uig.l4¢c), f(x) is the comwlated
distribution function (CDF) of « and thus fully describes
dependsnce structure among variables =Y, ... (9,
Hiowever, such a f{z) must be a nonlinear map that
is difficult to get. Usvally, a linear mapping f(z) is
considered. Under this Tinear constraint, the parpose is
changed into requiring that 4 should contain as least as
possible redundant information. Thuos, a natural choice is

() stratifying
[T ™). )

That is, the transform makes ¢ into ¢ with its components
being mutually independsnt. Specially, we are lead either
to the well known principal component analysis (PCA)
when samples of © coms from Gaussian as shown in

qly) =



Fig, 14,

transformation structure

Fig.14(a), or to a populacly stodied topic in the recent two
decades, namely independent component analysis (TCA),
when samples of = come from non(aussian as shown in
Fig.14(b).

2} Backward Architectere: The counterpart of Foi
ward Architecture is the Backward Architecture shown
in Fig.15, which describes dependsnce among variables
w1 ... gldd by allempling o reconstruct observations of
r from certain inner factors v via g(z|y) in an appropriate
parametric form, either collactively via

qlz) = fa(zly)e(w)uldy) (5)

or per each observation = via associating an inner reprasan
tation v via g(x|y)g(y) and then regarding = as generated
from y by a mapping ¢ @ v — = derived from g(=[y).
Conceptually, we can specily g(z|y) and ¢(y) via using
g(z) by 2q.5) to fit samples of T, e.g., in a sensa of the
maximom likelihood learning, it is computationally difficult
ter irmplement since the integral in eq3) usually can not be

analytically solved.
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One inplementable category of Backwerd Archirecrure
consists of Linear Latent structures, a5 shown in Fig. 16,

which are applicable to observations of ¢ that are reparded
as generated from

T = Ay + 2+ e, with det| AT 4] # 0, {8)

where the noise ¢ comss from Gaussian C(<|0, £.) and
is independent from a inner representation vector i with
dimension 1, namely, we have

¢lzly) = Glz| Ay + 1, Ze). (7
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Fig, 1&  Linear Latent structures

Similar to the sitwations in Fig.14, anv redundance be-
tween any pair ¥ and %) should be removed. In a
probabilistic sense, it means a distribution g(w) that satisfies
e (4. Specially, we are lead o the well known Factor
analysis (FA) for ¢(y) = G0, T) as shown in Fig.16(a),
which has been widely stodied and vsed in the literatora
of statistics and many other fields since 1956 [4], [69]. In
the past decade, stdies have also be made for the case that
each y'¥) comes from a Bernoulli distribution:

() —yhd)
gy =g (1-g)Y, (#)

under the name of binary factor analysis (BEA)Y or latent
trait model as shown in Fig.16(¢), which has also been
widely studied in several felds [114], [100, [1100, [108],
[105]. When v is real and ¢(»“)) is nonGavssian, the
integral in eq.35) still can not be analytically solved. In
recent years, such a difficull case has been also studied
under the name of independent factor analvsis |68], [7], or
nonGanssian factor allﬂlyxix (NFAY [118], [107], with two
types of implementing algorithms developed.

Cne other implementable category of Backward archi
tecture consists of Mivture structures, as shown in Fig.17,
which consider observations of = as coming randomly from
each of several distribotions, namely a finite mixtore as
follows [29], [77]1, [70]

kE
glx) = creg(x|s). ()
é=1
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One of widely studied case is Gavssian mixture with

glz|le) = Glz|me, Eg). {10}
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Fig 18, br-dimectional schitecture:

3} Bidivecrional Archirecrre: Both the forward archi
tecture and the backward architecturs are special cases of
a general case shown in Fig 18, For the pairwise struclures
in Fig.12, we can regard that dependence backwardly from
u o om is already given by T, ., while for the transform
structures in Fig. 14, we can also regard that the dependence
backwardly from « to ¢ iz also collectively specifisd by
a mapping from the specific ¢(y) to observations of =,
Muoreover, the Bachwaid Architectere in Fig.15 actually
also implies a forward stroctore as follows

plle) = L)

11
qlz) an

doring implementing the maximom likelihood (ML) learn
ing on g(x) by eq.(5). It is also called posterion disteibution
in a Bayesian senss,

Structures different from that given by 2q.{11) are also
used in a bidirectional architecture either under a learning
principle that s different from the ML learning or for
a purpose of learning regularization, as will be further
discussed in Seclll-E. For examples, given in Fig.19 ars
some bidirectional versions of the lalent struclures in
Fig.16. Also, given in Pig. 20 is an example of bi-diractional
architecture in Fig. 17,
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Fig. 19, Bi-directional Latent struchures
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As shown in Fig.21, a molor control task can also be
implemented from a bi-directional perspective. “The desired
position or trace of a movement is indicated by d, the robot
arm is intended Lo approach or follow d, the movement
mechanism with a noise disturbance iz considerad by
glx — dly) with ¢ being control signal. Moreover, p(y|x)
describes how control signal is generated with a noise
disturbance in consideration also,
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. Dependence Structures cioss Multi-Bodies
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Lixcept for the mixre structores in Fig 17, all the pra
discussed structures aim at describing dependence among
samples from an ong body world or more precisely depen-
dence structures within one body. As illostrated in Pig 25,
it is more likely for a learnsr to encounter a world with
meany bodies, while it is rare to encounter a pure one-bady
world. However, studies on dependance structures within an
ong body world are still vseful in a two-fold sense. First, it
dircetly works in the cases that samples from oor infenssted

body can be separated from others (eazily or in help of

some means). Second, its studies provide a foundation to
study dependence structures in a world of muolti-bodics,
Summarized in Fig.23 are typical dependence structures

within ona body. The details are referred to [100], [102).
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Fig, 22, Dependence structures among zamples from one body world

Muostrated  in Fig24(a), there  are  muli-bodies
A B C I E with each body having its own distribution
{e.g.. as illustrated in the figure for body A). Dependence
structures in this mmlti-body world consists of two parts.
One consists of those within each individual body like A,
which can be deseribed by those depemdence structures in
Fig.23. The other consists of dependence structhores cross
mwlii-bodies, as illostrated in Fig.24(b). Thiz part can ba
further divided qualitatively into topology structures and
quantitatively inte dependence structures among variables
across bodies (e.g., dependence between variable o from
body 17 and variable =g from body £ Variely of the two
types of dependence structires resulis in a huge nomber
of possible combinations to study.
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Fig 24. Dependence drctures among samples from o world of multi-
bedies

1} Dependence structures cross malti-bodies with a vis-
ible ropology: We say that a topology iz visible in a sense
that not only the topology across nwlti-bodies is known,
but alse which sample from which body is known, Shown
in Fig.25(a)&{b), one simple but widaly studied case iz that
multi-bodies are orderad on a diractional line segment and
boddy # is observed via a variable =, Thos, we have series
Ty, Te—1," -, Te—p. Which is vsvally called a waveform or
time series since ons typical example of this line topology is
timme. In this case, we need o consider not only dependence
structores among elements of . but also across times



Ty, Temq, ", Ti—p. enerally, it should be represented by
a stochastic process p(mq, T:—1, -+ -, Tr—p), Which again is
difficult to estimmate directly via empirical disiribotion,

The pair-wise structure in Fig.12 becomes now a tem-
poral regression y = Flm, Toq, o0, Teop)e The simplest
onga iz what iz called linear regression

¥
w=D agmiyt i, (1)
s=i)
where £. is a white noise with 2z, = 0 and
- - 1, u=0
FeieT =48t — =0, Sw=4" Y13
B g i |: Tj:f:'r (u’:l {01 T.!-}él:l.- { }

The transformation structure in Fig. 14 applies directly too,
specially when u iz a vector.

When iy = z+41, another typical example iz the follow
ing autorsgressive moving-average (ARMA) [55]

i q
~ -
Tr4l = 2 G4Tr—g + £ + 2 bigr—s.
Ee] j=1

which degenerates to the avtoregressive (AR) model when
¢ = 0. Forther considering the time-varying variance of =,
we can also gel ARCH, GARCT [15].
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Fig. 25, State space model and Hidden Markoy madel

Similar to the linear latent stroctores in Fig 16, temporal
relation can also be described by a backward architectors
in a strocture as shown in Fig.25.

Specifically, when =, is real, as shown in Fig.250a), we
have the well known state space model

e =Aw + g+, we= By + 5 (15}

which has been widely studisd in the literature of control
theory, Provided that A, F, 2 and the variances of &, and
£, are known, the task is to estimate u;, which is made
by eq.11) that is equivalent to the well known Ealman
filter [51]. Several years ago [113], [110], the state space
model iz revisited as an temporal extension of eq.(6)
under the name of temporal factor analvsis (TFA), with the
cormponents of 1y required o be vncorrelated while 4, E,
the variances of <, and £ are relaxed to be unknown.

When z. is discrete, as shown in Fig.25(b), we have the
well known hidden Markov models (HMM) and extensions,
which have been widely vsed in speech processing and
bioinformatics [76], [8]. Details are reforred to [100].
Muoreover, shown in Fig.25(c) and Fig.27 ane examples with
vizible topology of image, tree and graph.

fa)

(€} 2.Dlanice

Fig. 26. Lattice topology

Fig, 7.

Tree and graph topol opy

2} Dependence structures cioss multi-bodies with a in-
visible ropology: When the topology across muolti-bodies is
imvisible and which sample from which body is unknown,
we need both to recover the topology and (o classify
samples to its corresponding body. However, it is very
difficult to learn topology from samples. Corrently, only

two special cases have been studied.

One widely studied case is Mirture structires by eqd9),
where we only consider nudl ropology. That is, among the
information across multi-bodics, we ignore the topalogy
across multi-bodies. If we already knew the 1D information
of each sample, i.e., which sample from which body, the
problem degenerates to a problem of mining dependence
structure among each one body world, However, in many
applications, we do not known but need to recover the 1D
information.

Each body can be either a Ganssian as shown in Fig.17,
or a body with other structures as shown in Fig.28. Since
cach body Tocates at a different sile, we also call it Tocal
dependence structure,

The other widaly studied case is the well known topolog
ical map that is able to demonstrate an important topology
type, which is induced from concepts such as “similar’ and
‘near’, etc, via a spatial relation among bodies located in
the Evclidean space. Considering a regular J-dimensional
lattice topology, we attermpt o locate cach body on one
node of the lattice such that objects locating topologically
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near should be similar (o each other. A direet placement
of all the objects on soch a lattice, in help of a given
similarity measure to judge whether two objects are similar,
is compuiationally a harl combinatorial problem, Tnter-
estingly, thiz problem has bean hevristically implemented
approximately in help of a biclogical brain dynamics of
self-organization [67], featured by a Mexican hat type
interaction, namely, nearons in near neighborhood excite
each other with learning, while neurons far away inhibit
each other with de-learning.

Computationally, such a dvnamic process can be further
simplified by certain heuristic strategies. Ons widely used
is the well known Kohonen sell-organizing map [S8] that
implements a strategy of one member wins, a family sains
That is, as long as one member wing in the winner-
take-all competition, all the members of a Gamily will
gain regardless whether other members are strong or not,
As shown in Fig.29, with sach node on the lattice that
represents an body or class, a winner-take-all competition
iz made per sample to get the winner

In [108], we also get an alternative strategy of strongers
pain and then teaming together. That is, a mumber of
strongers in competition will be picked as winners who not
only gain lzarning but also are teamed together to becoms
neighbors, As experimmentally demonstrated in [22], this
strategy can speed up self-organization, especially at the

befors update after updats

@ B ths st wmner i

1 W e second winne: I

* O the third winnes L .

4 @ e foouth winner ' .
2 the Bh wmner

- - -

Fig 30, Srrongera gain and then teaming together

early stage of learning. Also, we can vee it at an early

stage and subsequently switching to the Kohonen map.
Surnmmarized in Fig.23 are typical depemndence stractures

within one body. The details are referred to [100], [102].
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D, Bayesian Ying Yang sysrem as g geneval framework

In fact, all the previovs introductions on tvpical depen
dence structurss have been made on a general framework
that ermphasizes to jointly consider a forward architecturs
and a baclward architecture, with the common innsr repre-
sentations subject to g(w) as a bridge. That is, these typical
dependence stmctures can also be summarized as special
cases of the bi-directional architecture shown in Fig.18.

In the general form, as shown in Fig32, we actually
consider the joint distribution of the observation workd and
itz inner representation via the following the two types of
Bayesian decomposition:

(16)

In a compliment to the famovs Chinese ancient Ying Yang
philosophy, the decomposition of p(z,) coincides the
Yang concepl with a visible domain from p(z) reganded as
a Yang space and the forward pathway by p(ylz) as a Yang
pathway, Thus, p(x,v) is called Yang machine. Similarly,
glz, ) is called Ying machine with an invisible domain
from ¢ly) regarded as a Ying space and the backward

oz, u) = ply|z)p(z), ¢z, u) = ¢(z|wa(y),
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pathway by g(z|y) as a Ying pathway. Such a pair of Ying
Yang machines is called Bayesian Ying-Yang (BYY) system.
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Fig 33.

Least mean square error clustering

In the idealistic case, the joint density of =, ¢ should be
the same regardless in what kind of representation, ie.,

{17}

which can be regarded as an extension of the concept of de
terministic inverse function. Two functions = = gly), v =
Fim) are said to be motually the inverse of the other if
we have = = g(f(z) for all = € T, and v = Flglw))
for all y € D, where I, and 1), are correspondingly the
domains of ¢, y, respectively. On a set of samples of =,
= gly) and y = f(z) are motwally inmverse to each other
is equivalent to the case that 2q.(17) holds with w(x) by
eq(), g(zly) = d(= — gly)), plylz) = v — F(=)), and
gly) = p(x)/|f' ()], = = gly). In other words, the equality
by eq.(17) includes the conventional concept of functions
inverse as a special case,

It should be noticed that the inverse concept by aq.(17)
is vsvally very different from the conventional one. It
13 not simply a mutvally ioverse relation between plylx)
and ¢lx|y). As illostrated in Fig.33, in a conventional

Pl y) = plylz)p(z) = glz. ¥) = g(z|w)e(y),

least mean square error (MSLE) clustering, the dependence
structors for g(x|y) consists of mean vectors wig, - -+, g
from which we can obtain the boundary line segments in
Fig.33(a), i.e., the dependence structure for p(y|c). In a
conlrasl, we are nol able to delermine the mean veclors
wiy, -+ g from knowing the boundary line segments.
However, wea will bacome able to estimate the mean vectors
g, - g Irom the boundary line segments when we
also know piz) by eqql) or equivalently a set of samples
of . In other words, the inverse concept should also invalve

Actoally, the conventional inverss concept = = g flx))
is required to hold for every = € Dy uniformly, which
is an extreme case of p(z). In a probabilistic sense, p(x)
by 2q.(1) bears this uniform natore. Thos, the conventional
inverse concept and the inverse concept by eq.(17) meet
in this case, a& above discussed. Beyond this, the equality
by eq.(17) also holds in other cases, eg., with p(x) by
eq(1), the inverse concept by eq.(17) holds for any given
plylz) as long as ¢(y) = fplylz)p(z)dz and g(z|y) =
[#lzlz)/e(w)]p(x), and q(y) = p(x) /| /() = = gl).

‘Thiz inverse concept may also ba applied to the cases
that it does not hold directly on a set of samples of =,
with a given parametric ¢(=|y) amd p(=) by eq.(1). Tn thess
cases, we use g(z) by eq.(5) to fit a set of samples of = (or
equivalently eq.(1%), and then we indirectly use the obtained
gl=) as plz) in equ17), the equality will still hold when
#lylz) is given by 2q.(11%. In other words, this p(y|z) and
glx) by eq.(5) is an inverse of ¢(z|y) and ¢(y) in a Bavesian
SENSE.

However, the equality by 2q.(17) generally doss not hold,
because p(n) by equl) or eqq2) bases on only a finile
size of samples, and py|z), ¢(zly) and ¢(y) are subject
to this or that kind of constraints, In practice, ply|z) and
g(=ly) can become mutally inverse of cach other only
approximately in a Bayesian sense, or in an other sense.

The above discussed coupling between the Ying-Yang
machines not only further supports but also depicts our
belief that two types of intelligent abilities in Fig.1 and
their dependence stmictures, as well as the comespomding
two types of learning in Fig.5, are closelv coupled topether,
and thus should be modelled and investigated jointly and
syslematically,

With new insights and new results, a number of widely
studied dependance structures in literature can be summa
rized via special cases of the three architectures of BY'Y
system, as shown in Fig.34. Readers are further referred
L See 224 aml Sec.22.5 of [102], where a nmoch e
systematic view is given on various dependence structures.

In fact, simultancously building up models for both the
pathways © — v and y — 2 has bean widely adopted
as a fondamental sprit in various stodies of brain theory
and neoral networks, Typical efforts include Carpenter &
Grossberg’s ART theory [20] and Hinton and colleagues’
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Helmholtz machines and wake sleep learning [40], [28],
as shown in Fig.35, as well as Kawato's theory on cere-
bellum amd motor contrel [58]. Morcover, the LMSER
self organizing rule proposed in 1991 [1539] s also such
an effort. The basic sprit of the LMSER self-organization
has been further developed into the above discussed BY'Y
syetemin Fig32 as a general statistical learning perspective
for systematically understanding lzarning tasks of various
dependence structores with new insights, which is firstly
proposed in 1995 [130] and then systematically developed
in past vears. Readers are referred to recent systematical
sumnrreries in [108], [109], [105], [106&], [107], [100], [101],
[102], [103]). Beyond providing a vnified perspective, these
studies also lead to a new theory vnder the name of
BYY harmony learning for tacking the sccond challenge
of statistical learning.

ITT. TOWARDS S0OLVING CHALLENGEII

A Larse number low, paramerer leaming, and model se
fecrion

As shown in Fig. 9, the density estimation by 2g.(1) can
be regarded as memerizing NV samples, with take picces of
evidence per each pisce by 1/, It is supportad by the large
nomber law firstly obtained by Kolmogorov and Smirnov
in 1930%. That iz, the error of vsing the density estirnation
by 2q.(1) as the true density, where the sanples come, will

tend to zero as the sample size [V — oo, in a sense shown
in Fig. 36,

LICOES
wli)e P ) Pt -1,
P{sur{ pLElE pgiel] > r'} - I One picce of evidence,

Hukr i by 1060SF

expl 2] .‘.'Ej 1y enpf 2w T pioses of evidenee

{Kolmogerov & Smirnoy, 1930) tahe cach by S(Fe
e Gl i e _— N prces of evidenee
i h lar fex t
R TiRh Srmlar for hislogram tike £k by W
B o Gurse gf dimengign 11|

Fig. 36 The large mamber laws nonparameatric cass

Dirzctly given a parametric form p(z|#) or indirectly
via a backward structure by eq.(3), ag shown in Fig. 37,
estimating & by the moxinmm likelihood learning can
be regarded as taking /N pieces of evidence under the
constraint of p(-|8). T can be also regarded as using a
template p(-[¢) to match a set X of N samples. The
estimate #(.X) obtained in such a way will t2nd to the trus
value §y as N — 0, if the termplate happens to be the true
density form 5,(-|). according to the large number law
obtained doring the 50'5-60% of the past century.

Por the forward architecture in Fig. 11, the above state
ments on the ML learning applies directly to the pair
wise structores in Fig. 12. While for the transformation
stmietures in Fig 14, it can be regarded as using p(y) by
2q.(3) to match a desired target that satisfies aq.(4), instead
of matching between template and the sanpls X . Generally
speaking, both types of malching can be regard as using a
template to match the sample set X to minimize a cost
FIi#, X, from which we can get the large mumber Taw
similarly.

However, there is no an oracle who tells vs the tros
structore of form p,(-|#). To aveid this difficulty, wes
consider a farmily F of density function forms pl=|8,), 4 =
1, ---,k --- with each sharing a same configuration but
its stroctoral scale increasing with & soch that Py © P ©
s P -, where Py = {p(x]8,0|WE € ©4), with three
examples given in Fig.38. Frovide that there iz a k+ and
A(k*) such that p(=|@ + (k) is equal or close to the trus
distribution p,(=]8;). As a resull, we ane facing two tasks:
estimating ¢(%*) and to select an appropriate structoral
scale &+, The former is called parameter learming, and the
latler is called meodel selection.

B. Challenge [I, exisring approaches, and mwo step imple
meniation

We are nol able to collect enough sanmples either becavse
not a plenty of resources or becanse not an enough speed
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tor catch the dynamic changing of world, That is, what we
vzpally encounter is a finite momber &V of samples in A
and thus the large number law doss not apply. Even badly,
as shown in Fig. 39¢), the emor or a cost M4, .X) of
fitting a fOnile size of samples decreases monsonically as
% increases. That iz, it looks that lareer the £ is, the better
il 5.

Unfortonately, it iz not true. Az shown in Pig. 5%a),
there are one courve for the fitting error and the other curve
for the generalization error of its performances on new
sarmples that have nod been used for learning but from a
same vunderlving true distribotion. The two corves have a
same tendency as & increase at the beginning, which means
thal the mist-hiting error reduces as the learner’s stroctural
scale increases from a small one, At the one point &%,
the generalization error reaches its minimome As ko= &4
further increases, the generalization error increases while
the fitting =rror still reduces, In other words, we are unabls
tor select an appropriate &% according the Ating error that
we can ohserve. This can also be observed in Fig. 39(b)
where the fifting error becomes zero when & = 8 with each
sample as a closter, while it is obvious that there are only
two clusters in the hgore,

This observation may also be illustrated in help of Fig.

349(by. Given a finite size of training samples, a model is
illustrated by an ellipse with the scale of mods] indicated
by the elliptic area. The pumber of training samples that
remain uncovered by a model indicates the fiting error,
while the area oceupicd by neither samples or the black
shadow indicates where the model can generalize but dis
agra= with the true model, i.e., the gensralization smor. W
can observe that the Otting error redoces as the area of a
maodel increases, but after being laree enough to cover the
true model, the generalization error increases as the arsa
further increases. Similar observation can also be obtained
from the function fitting problem in Fig. 389(d).
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Fig. 3%, A hard problem : how to get the difference A (k) betwean the
error of Otting a finte size N of samples and the erroc on pew samples
from w zame underlying strachare

As shown in Fig. 40, we have to face another challenge,
that is, how to find an appropriate scale & namely, how
to let the complexity of the learner’s hardware to ba
appropriately determined to match a finite size of samples.
In other words, how to find a reliable dependence strocturs
vnderlving the samples for representing the vnderlving
world,

The challenge is actually very hard to tackle by jts nature,
This difficulty can be observed from Fig.39. The key point
is dircetly or indircetly estimate difference A(E). Though
the fitting error is already available doring making learning
on a given training set of samples, it needs a testing sat
of mew sammples Lo evaluate the learned model to get its
generalization error. The reality is that there iz only a finita
or small size of samples, which often is alrsady not encugh
even all of the samples are vsed for raining. Such dileuma
makes it doomad that a precise estimation of generalization
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error or thus Ak Is impossible. What we can do is o seek
a rough estimation or a bound as good as we are able to.

In the past 30 or 40 years, many efforts have been
muacde towards this challenge, both in the literature of
statistics vnder the name of model selection and in the
literatore of machine learning under the name of learning
theory, Typical results can be roughly summarized into the
following typical streams:

o lowards esrimaiing genevglizarion evror by experi-
ments  Studies of this type are mostly made onder
the name of cross validation (CV) [86], |87, [88],
[E1], by which generalization error is estimated in
help of experiments of making training amd lesting
via repeatedly dividing a same set of samples into a
different training and a different testing set.

+ Towards estimating bounds of general error via theo-
vericedd gnedysis A bound of A(ER) is estimated in help
of analyzing the relation between generalization erroc
and structural complexity of the model, One popular
example is the VO dimension based learning theory
[97].

o Towards minimizing information divergence  The
dizcrepancy betwesn the true model and the estimated
madel is minimized in help of Kullback-Leiber infor-
mation. Examples include Akaike information crite-
rion (AIC) [1], [21, [3] as well as its extensions AICH,
CAIC, etc, [89], [17], [18], [47], [21].

o Towards Oprimizing Bayesian inference  Secking an
optimal Bayesian posteriori inference in help of intro
ducing a prior and estimating the marginal distribution.
The typical exanmple is Bayesian inference criterion
(BICY [85], [55]), [71] and equivalently those stod
ies under the name of Mininwm Description Length
(MDL) [79], [80], [65], [66], [25], [41].

+ Towards the Ockham's principle The idea is to

minimize the sum of the description length for the
model and the description length for residuals that
the model fails (o represent. Typical exanples include
those studies vnder the name of mininom messags
Tength (MML) theory [93], [94], [95] and the name of
Minimum Degcription Length (MDL) [79], [80], [&5],
[66], [23]. [41].
Conceptoally, the first three all focus on the discrepancy
between the true model and the estimated mods]. The first
two both target al generalization error, while the third one
uses information instead of generalization error to measure
the discrepancy. Intersstingly, the last two are conceptoally
different bat actually lead to a same criterion after certain
mathematical deviation, which hints that optimal Bavesian
infersnce is reached by a parsimonious modsl. Fuorther
detailed discussions on the above approaches are neferred
to Sec. 25.2 in [1003].

As shown in Fig.4l, all the above approachss have to
be implemented inoa two-stage way, thal is very computa-
tional extensive in implementation, since it nseds to repeat
parameter learning 8% (&) = argming FI(8, X) for a large
mumber of limes before becoming able Lo start selection on
one appropriate % under a criterion (0 (), %) obtained
by anvone of the above approaches. Thus, it is difficult to
apply these approaches Lo many practical uses, especially
in real time problems.

= Ennmerate & for a st of
candidate values, fived at
cach candidaie, make
Paviumeter lewming

Ak y=wgmin, F{ﬁ‘,x}

GG

Select the best one £% by

& =urgmin, G (£).E)

Fig 41, Two step implementation

. BYY harmony learning: (1) awcometic model selection

For those dependence structures that have been summa-
rized in Secl-T), as well as any new dependence strocturs
that can be summarizad in thiz wav, we can tackle tha
Challenge Il by a new theory called Ying Yang harmony
via the Bayesian Ying-Yang system az shown in Fig32
More precizely, the Ying Yang pair by eq.(16) is learned
coordinately such that the pair is matched in a compact
way as the Ying-Yang sign shown in Fig 42, In other words,
learning iz mades in a twofold sense that

o Best marching  the difference between the two

Bavesian representations in eq.(16) should be mini
mized.

+ Least complexiry  the resolled entire Bayesian Ying-

Yang (BY'Y) system should be of the least conplexity.
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We call it Bayesian Ying-Yang Harnmony Learning in con-
sideration of ¥ing Y¥ang harmony within Bayesian Ying-
Yang system

Mathematically, both besr marching and leasr complexiry
can be realized by implementing [130], [110], [108]

m e Hipllg), Higllg) =
Jelcip(z) In lglzlyda(e)] p{dc)e(dy)

where & consists of all the unknown paramelers in ply|=),

(18

Inzg,

glz|w), and ¢y) as well as p(z) (if any), whilz k is a set of

scale parameters of the inner representation . Specifically,
k consists of only & for the number of bodies ina mixtore
structure in Fig.17, and k consists of only the dimension m
of v in a linear latent structure in Fig.16. While for a local
dependence strocture in Fig 135, k consists of not only & but
also either v when y has a same dimension evervwhere or
{rrig} when y has a diffsrent dimension locally in each
buxdy, as shown in Fig43.

The task of determining ¢ is called paramerar leaming,
and the task of selacting K is called mode! selecrion since a
collection of specific BY'Y systens by eq.(16) with differ-
ent scale valves corresponds to a family of specific modals
that share a same system configuration but in different
scales. In addition, the term z, imposes regularization on
learning, which will be further discussad in Sec. III-E. In the
xim{:-h:m. case, we can sel oz, = 1 without regularization.

lor those previovsly discussed learning theories, para
meter leaming should be firstly made under a matching or
fitting principle {especially maximm likelihood principle),
which iz different from the principle underlving each of
these leaming theorizs. A salient difference of BYY har-
mony learning is that both paremrerer learning and model
selection are made underlying the same harmony principle.
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Fig 43, Parameter Lesrning with Automated Model Selection

This salient feamire makes it possible that model salection
can be made automatically during parameter lzarning.

More precisely, for the inner representation in Pig.A3,
best harmony will drive g to O if it is extra, which is
equivalent to reducing & into & —1. Alse, best harmony will
drive the variance of v to 0 if this dimension is extra,
which is equivalent to reducing o into w¢ — 1. In such
a way, as long as (he scale parameters in k oare initially
sef to be larger than their appropriate valves, k will ba
antomatically driven to their appropriate values k* during
meking parameter learning by mazxg H (9, k) al fxed k. Tt
iz 2asy to obsarve a significant reduction on the expensiva
computing cost of the two stage implementation in Fig.41,
due to a reduction from repeating parameler Tearning for a
large number of times into only implementing parameter
learning one tme This is very appealing to those real
applications that need fast inmplementation,
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In the literature of a small sample size based statistical
learning, it is well known that theoretical analysis is very
difficult to conduct a comparative study on performances of
different learning theories. Instead, this comparative study
can be made via experiments. To facilitate this COTTPArison,
BYY harmonv learning can also be made in a two stage
implementation.

Al the first stage, parameler learning can be made by
8t = argmaxg H(f, k) at a set of values of k with partial
parameters in ¢ fixed, eg.. oy = 1/k and the variance
of v is fixed at 1. Alternatively, parameter learning can
be mads by ming K L{p|¢), which leads to ply|z) given
by eq.(11} and forther becomes equivalent to ML lzarning
when p(=) is given by the empirical density equ(1).

At the second stage, model selection is made according
to the following BEYY criterion

min J(k), J(k) = ~H(0" k). (19)

Such a comparative study has been already made via
s0Mme experiments [45]. [46] on a Ganssian mixlure sire-
tore in Iig.17 and on a Gavssian factor analysis strocture in
Fig.16(a). Experiments are made not only on simulated data
sels of different xanp‘]:: sizes, noise variances, dala space
dimensions, and subepace dimensions, but also on two real
data sets from air pollution problem and sport track records,
respectively. Experiments have shown that BTC sutperforms
ATC, CAIC, amd CV while the BYY crileria are cither
comparable with or better than BIC.

D BYY harmony leaming: (I} relarions ro other ap
proaches

Denoting plu) = ply|=)p(s),
rewrita aq.(18) into

H(plle) = [p() In glu)u(dn) (20)

When Ilnz, = 1, the above appearance is the 2nd
part of Kullback information divergence K L{pll¢) =
Jo(u) In plu)p(du) — fp(u)ln g(u)p(du), which has been
studied in lileratures Tor several decades. T looks nol new
and thuz one mav ask why the so called Leasr complexiry
narure of aq.(18) has not been discovered before.

The reason lays that generally considering w(u), g(u) a5 a
whale is very different from considering them in a Bayesian
Ying Yang system. Considering plu), ¢(u) generally as
a whole, we encounter two possibilitics. One 8 plu) =
2 E:" L 8w —u,) given by an E*]Ipirical density. In this
case, [plu)lnglu)udu) = & Et o lnglug ) is exactly the
likelihood function that has been widely studied already.
The other possibility is that p(w) is free to be decided by
Hp||g), which leads to a simplest form

glu) = g(z|w)a(y), wecan

—Inz,.

maxy
plu) = d(u —¢), ¢is an arbitrary constant.

(21)

It 33 obwiowsly vseless and thus has not been further stodied
in the litzratures.

In a contrast, considering the Ying Yang pair p(u) =
plylz)p(z), alu) = ¢(z|y)qly) with p(z) given by eq.(1)
or e2) while ply|z) is eilher fres or in a stroctural
constraint, maximizing H (p|ly) pushes z(y|z) into a form
of least complexity while maximiving H(pllg) pushes
glzly)g(y) to fit samples via matching p(z) and also
become a least conplexity form via matching p(y|x) that is
pushed into a least complexity form. The details ane neferred
to [108], [109], [103]. This is why BY'Y harmony learning
2ot a modsl selection ability.

The appearance of {p(u)In g(u)u(de) may also lead to
Alkaike’s AIC criterion that appears similar too. What is the
difference ? In facl, Akaike's ATC enlerion is derived from
ot () ln gla) p(du) with p* (1) being the true density from
which a set of samples {u. }/L, comes. Also, this AIC only
provides a eriterion for inplementing model selection at the
2nd stage of implementation, made after the parameters in
g(wu) has been estimated via a ML learning. Actually, it not
only has no automatic model selection ability, but also can
not be veed for parameter learning.

While AIC, as well as those existing learning theo-
ries discussed in Sec.ll, considers p(u), ¢(u) generally
as a whole, BYY harmony learning considers plu) =
plul)p(n), lu) = gl=lw)e(y) in a Ying Yang architecture.
When p(z) iz given by eq.(1), ignorng In =, and assuming
N~ oo we have

Jolyle)p* () In [qlx]w)q(y)] wldz) w(dy), (22)

because plz) by equl) tends o the true density p* (=) as
N — oo. This Hip|g) can not be vsed for parameter
lzarning since we do not know p*(z). However, we may
use it to derive an improved model selection criteria to be
used in a two stage implementation. One possibility is to
[ Fe)

plylz) = 8(y — u(z)

Hpllg) =

), wlz) = &Tsfm;m[rx(rly)qliy}]- (23)

The other possibility uses p(y|x) given by eg.(11). More-
over, we can also consider the expectation £ [H(p|q)],
where X s a set of samples on which parameters in
q(z|y)g(y) are obtained.

Tt shoubd also be noted that BY'Y harmony based model
selection applies to the problems of mining dependenca
structores that can be described in a Ying Yang architectore.
There is problemes it does not apply while AIC is applicable,
e.g., determining the order p in 2q.(12). In this sense, the
applicable scope of AIC, as well as thoss existing learning
theories, is wider than that of the BY'Y harmaony learning,

The BYY harmony learning can also be understood
frovn the perspective of {11H.i||m1 informetion transfer. As
shown in lig.45, a learning problam can be regarded as
a problem that encodes information at the sending end,
transfers the codes via transmossion line, amd then decodes
the codes back to the original information. The principle is



that encoding approach should be optimal for information
transferring in a sensa that the total number encoding bits
15 mimirmzed, which has been widely studied in the past
decads vnder the name of Mininmm Description Length
(MDLY [79], [80], [65], [66], [25], [41]. As previously
dizcussed in Sec.lll, the existing implementing approaches
are actally equivalent to Bavesian inference criterion (BIC)
[85], [55], [71].

Transmission lines

| ]

[ coding ] ’ dicuding |

Tnpul Fistbern Kecamnstmct ion
£ # 1= transmiticd in advance
and known at receiver already
| .
pix1d) @ ——r - —
t E=v—x
x b o=—In p{e 1) birs per sample

Minimize b, +b, on aset of samples

Fig 45, TInformation transfer perspective and MDL principla

As shown in Fig45, MDL makes encoding directly on
sarmples of =, The total bils consist of two part. One is
encoding each residval part &. of each sample that the
model is unable to encode or fit, and this . monotonically
decreases as the seale parameter k increases. The other part
bg is encoding the parameter set ¢ of the model. This &
contains the information of k and increases as the scale
parameter k increases. The two parts trade off with an
optimal k*. However, the part &y is difficult to estimate
exactly and thus is roughly a much simplified tecm that
relates only to k but no to 8, such that model selection is
unable made during parameter learning.

As shown in Uig. 46, the BYY harmony learning can also
be viewed from an information transfer perspective. The
key difference is that the part by is replaced by b, = 5, b¥
that encodes the inner representation o of each sample
z. This by contains the information of K that is implied
within cach g, Moreover, b, is a term that not only closely
relates to @ bot also is moch easier to be estimated than bs.
Further datails are referrad to [101], [109], where relations
and key differences of BYY harmony learning have also
been dizcussed together with many existing learning from
approaches, including ML leaning, Information geometry,
Helwholtz machines, Variational approximation, Bit-back
based MDL, etc.
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Fig 45, BYY harmony kesrming from an information transfer perspective

E. Model selection ve leaming vegularizarion

Regularization [917] and miodel selection are two different
strategies for tackling the problem of a finite size of sam
ples. Model selection prefers a model of least complexity
for which a compacl inner representalion is atrmed  al,
such that extra representation space can be released. In
contrast, regularization is imposed on a model with a fixed
seale of representation space with its complexity Targer
than needed such that inner representation can spread as
uniformly as possible over the entire representation space
with a distribution that is as sinmple as possible, which thus
becomes equivalent to a model with a redoced complexity.

‘The harmony learning by aq.(18) attempts to compress
the representation space via the l=ast complexity that is
demonstrated by eq.(23) which is actually a winner-take-all
{WIA) competition. Thiz type of parameter learning aime
at a compact innar representation with an avtomatic modsl
selection by discanling extra representation space during
parameter learning. However, there iz no free lunch. Tha
WTA cperation by eq.(23) locally per sample will maks
learning become sensitive to the initialization of parameters
and the manner that samples are presented, resulting in
that samples ars over-aggregated in a small representation
space. Tt nsually leads tooa Tocal maximmm solotion for
2. 18}

With a soft competition by eq.{11) to replace the WTA
competition by £q.({23), the ML learning, or min K L{p||q),
with a B-archilecture and an erpirical density by eq.(1),
is repularized with a more spread inner representation that
improves the local maximom problem However, thers is no
free Tunch. Tt meakes the model selection ability considerably
weaken, especially on a small size of samplez. Thus, mak
ing mods] selection by eq.(19) is needed after parameter
learning. Instead of the two phase style, regolarization Lo
the WTA by 2q.(23) may also be imposad to the harmony



learning by aq.(18), such that avtomatic model selection
still occurs via either some external help or certain internal
mechanism.

Externally, we  ean combine  the  learning by
min K L{p|lg) with the learning by 2q.(18), by which we
get a spacirum of learning models. The details are referred
to Sec. 23.4.2 in [107], [103]. Another spectmm, that also
varies between midel seleetion ability and regularization
ability, can be obtained via internally replacing In(r) by a
family of convex functions for divergence measuring. Also,
two different forms of the lerm 7, = —1n 2, intrdoee two
other types of regularization on learning vnder the name
zaregularization. The details are referred 1o Sec.22.6.3 in
[10Z].

Internally, regularization to the WTA by eq.(23) can be
imposed during the harmony leaming by equ(18) via a
constrained p(w|x) in a Bl architectore. Instead of letting
wlylz) free to be decided by eq.23), we consider a BI-
architecture with p(y|=) designed in a structure that will
not lead to the WTA by eq.(23). Specifically, a different
stncture. of ply|s) will lead to a regularization with a
different feature, which are shortly summarized under the
name Bl regularization [104].

When i takes discrete valoes, instead of the winner-Lake-
all, we can also consider “all the individvals of the winning
team share the all”, such that a local optimal problem can
be allevialed.

plylme) = aodly —we) + > aydly — ),
=1

Y = arg m;nfl@(mnlzrlqliyjla

24

17
. -

Qg = Ur:j _Urlk'” N \(’ Qg = L
=0

where a; = 0,7 = 0,1,---, s are pre-specifiad constants
for the sharing percentagas in the team, with oy being the
largest. One possible team consists of the first « largest
winnars of max[g(z: Jv)e(w])]. The another possible team
consists of the neighbors of the winner. The team may also
consist of individuals with certain qualification similar Lo
the winner.

When 3 takes real values, such a possible leam may
consists of an infinite members, 2.2, we consider

plylz) = Gluly(z), 3 T), with y(z) by eq.(23), (25)

for a given P?.é"", = [ that can be determined in cooperation

with a z,-regularization. Togather with p(=) = po_(z) by
2q.(2) and being put into eq.(18), we get

H(B,m) = = In 2g{ hay hy)+ .
& oty O ylyl), yT) Cllms, BET) I (g (ly) (y)] dudy

= & NI, gl (e a(ue)] + T [

= “BaBaT b=
& ln Qg ze

2 )
+hy | By T ly=w — N sglba, By e = pl(me),

Qyl=) = qlzlwlely), Qix) = qlulw{=hqlyi=)). {26)

In certain special cases, y(x) by eq.(23) may have an
analytic expression. Onea example is encounterad when both
glx|y) and ¢(y) are Gaussian, In this case, it follows from
(23} that

ylz) = Wz +m. (27

In such a case, making the above learning by equ(26) needs
Lo consider the dependence from = to ¢ as well as thoss
parameters o in y(=) in help of the chain nule. That is, when
we make derivatives of a function in a form #'{z, y(=|), &)
with respect to = and o, we should consider

By (o) o By (m]sh)
b v Ehf
where f = H—I%Pi denotes the partial derivative of

Flu, v, w) with respect to the part .

In general, 4(z) by 2q.(23) is obtained by an optimiza
tion, it is difficnlt to have an analytic expression. In this
case, we approximately consider 1, = w(z,) a8 a constant
in F(x,, v, &) by ignoring its dependsnce to = and <,
while cartain regularization is still in action ‘:‘Iia b, iy
Furthermore, we may consider to estimate a“"}fﬁ 1) and
En%ﬂ, via discrately getting samples around © and <.

One special case of eq.(26) iz considerad by Bqn.(24) in
[104]. Fusther ignoring the part of (y(x)), another spacial
case is considered by Eqn.(30y in [101]. Moreover, provious
studies on data smoothing regolarization are refarred to
Sec.2(B) in [110] and Sec.2.2.2 in [108], especially to a
quite systematic summary in [106].

In addition to =q.423), ancther possible team in the
case of y taking real valoes can consist of mencly sev-
eral members, called Comperirive experts. Considering to
approximate the deterministic mapping function that has to
be obtained by eq.023) via oplimization, we consider

Fa + 7y (28)

]

plylz) = Z:ﬂa(m:'""[y = F(® 8y s))s
13 :I=1

> o Bi(x) =1, fi(x) =0, or 1,
=1

(2%)

from which eq.{23) is simplified into

plylz) = dly —yiz)), v(x) = fj'fmj[zlﬂy|#¢'(x])1
i'lz) =arg u{f-x[quiwlyjltr(y]l]F_r:, (@] o5 )" 0

Muoreover, we can also consider eq.(25) with y(=) given
by aq.(30% and then put them into 2q.(26).

Another example is using ply|=) in g1}, especially
a Gavssian mixture when g(z|y) = &(z|w, Ey). which
was firstly proposed in [111] and has been further shown
in [64] that this type of reeularization actwally performs a
EPCL-like learning mechanism.



IV, INDEPENDENT SUBSPACE LEARNING AND
EXRTENSIONS

In many real problens, an intrinsic dependence structure
armng a seb of samples is usoally of a much lower dimen-
sional, especially for a small size of samples. Thus, pro
jection of samples from the high dimensional observation
space into a much Tower dimensional space or manifold is a
fundamental learning task. Tt has been widely studied in the
fieldz of pattern recognition, machine learning, and image
compression. A number of results have also been obtained
by vsing BYY harmony learning on solving problems in
this task.

A Fundamentals, linear projection, and least square erroy

l!?iffc:'-:nt choices on ingredicnts 2 difforent projections I ‘
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arthagonal
-+
fin=orthogonal

Ly

Blructores
in the subspace
e pendse

Vs

X-preservadion

Fig. 47.

Koy Ingredients aof subspace

1} Fundamenigis: As shown in Fig.47, a projection
task has three kev ingredients. One iz projection rule on
how to map a sample in the high dimensional space to
a low dimensional space. The olher is certain stmctoral
constraintz imposed on the subspace. Another is how the
low dimensional subspace is represented. It can be spanned
by a set of linear independent basis vectors aq,--- | ap.
As shown in FigdB, one sanple = can have two lypes
of projected representations. One is £ in the original high
dimensional space. The other is y = [5Y, ... 40"™|T | the
coordinates on the basis vectors ap, -« | . 1Wo types of
representations are related as follows:

"

£ = ZU--;H{” = Ay, A= [ay, - ,am), 313
d=1
where we have det[A"A] £ 0 since ay,--- ,an, are

linear independent. With this link, a projection rule can
be representad either within the original space in term a

A= Nafx)t vadnlt yagxi= ALy

-

X
Kepreseried
in the original space

¥ orepresents X

i thee sufspace

Fig 48, Relation between two types of projected representations

mapping © — % or a4 mapping © — y also in help of tha
representation of the subspace.

These ingredients are closely related and different
choices of their combinations will lead to different pro-
jections. The simplest projection rule iz mapping a sampla
1 into a point £ on the subspace such that the distanca
||, ¢ = = — i is shortest. This mapping = — £ is
linear. For a linear representation by eq.(31), the mapping
< —+ g is also linsar. When the structore of subspace is flat,
L., a subspace sq].'-mmxl by lincar basis veclors aq, -« G,
thus the shortest distance |=||* implies that the projection
direction © — = or equivalently the vector ¢ is orthogonal
Lo the subspace.

When the subspace is desceribed by non-linear basis
vectors ay(z), -, amiz), the structure of subspace is
curved. The shortest distancs ||¢||” projection rule results
in that * — £ and © — y may become nonlinear. Even for
a subspace spanned by linear basis vectors oy, - -, ap, the
shortast distance |2||* rule also leads to that = — & and
T — y mEy become nonlinear, when we consider either
or both of the structure underlving samples in the original
space and the structore of our interested distribution of .

The structures that we are interested can be considared
cither from a perspective of seeking a most effective
representation or a perspective of keeping certain natures
of sarmples in the original high dimensional space, which
leads to two streams of studies in the existing literatores.

One iz featured by linear bases ay,- -, 4m plus e
quiring a least redondance in the representation w, ie.,
components [ w7 are mutally independent.
We refer studies of this stream by the name of independenca
subspaces. This stream can be traced back to the 307-
50% of the past century on principal component analysis
{PCA) [42] and factor analysis in the literatore of statistics



6], [6%], the 6(0°s-80°: on various subspace analvsis in the
literature of signal processing, and the past two decades up
to now on adaplive PCA, independent cormponent analysis
(ICAGE]L, [, [128], [122], [124], [125], [12%], [11%],
and independent factor analysis in the literature of neoral
networks and machine learning [68], [7], [114], [107].

The other stream is feamred by a nonlinear projection
rule plus requiring preservation of cerfain nature among
sarmples in the original high dimensional space. The nature
can be distances or topology between samples. This stream
can also traced back to many previous efforts in the litera-
ture of statiztice vnder the name mudridimensional scaling
[27]. in the literatore of neural networks under the name of
tepelogical map [5T], [538], [14], amd a recent renaissance
182], [%3], [11].

Here we only focus on the stream of independence
subspace.

(3 by c)

Fig. 49,  Leasr square error projaction

2} Linear projection © — y (I}: Orthegonal © — % !
We start at consider the simplest case of linear projection
as shown in Fig.4% The subspace is spanned by only one
basis veclor @ We scek a lincar projection = — 3 =
wa, ¥ = o = on this subspace such that the residual or
errof « = ¢ — ¢ 15 minimized in the shortest distance sense,
e, ming 3, ||es 2 which leads 1o that

Sa = ':]"wmm [

(32}

where 5 iz the sample covariance matrix and Ay, is the
largest eigenvalue of .5, with the following nice propertiss:

{a) ||a|| = 1 and & is unique when A, is vnique.
(&) ¢ and ¥ are not correlated, ie.,
Z{:?m =0, or EleTy]=0.

(e ¢ is a Gaussian noise. 33}

That is, it leads principal componenr analvsis (PCA) [12]
with ¥ = oTz becoming the principal component,

Tn general, we consider a linear projection in the sub-
space by aq.31) in the shortest distance sense:

min Z;‘ leel, e =2 —%, y =47z, 34)

which leads to that a;1,-- -, ap span the same subspace
spannad by the first @ eigenvectors of & that correspond

to the first v lareest eigenvaluas. That iz, oy, --- , 2., 5pan
the principal subspace. The propetties (b) & (¢} in eq.(33)
hold, while {a) becomes

(o.1)
(a.2)

The subspace is unigque when the m-th largest
eigenvalue of 5 = the m + 1-th largest;
AA" = I but A is not uniqus, in a sense that
A = $ib, where the column vectors of & arc
the first m eigenvectors of 5, but 4 is an

arbitrary w = v orthogonal matrix. 35

Among the infinite nany solotions of A doe to an arbitrary
1, we may chooses the one o = [, ie,

selecting v+ eigenvectors of 5, corresponding to its
first rr: largest eigenvaloss, as the colomn vectors
of A. i36)

In this case, we have that

(d) the components of y = ATx become
uncorrelated, and the variance of each »%) is
one of the ri-th largest eigenvalos of 5. (37

In addition to the principal subspace, we also know tha
first wn principal components. The task is also referred to
m-PCA { or still PCA for sinmplicity).

As shown in Fig.4%a), minimizing ||c|” is equivalent
to maximizing ||y|]*, when & is perpendicular to y. This
happens when [l = 1. That is, %, os. jog.1 Zlsi]
also leads to PCA, which is actoally where the PCA first
came from. Similarly, from Fig.d%b) we also have such an
equivalence when 474 = I, that is, eq.(34) is equivalent
to

N e, = ATz
¢afﬁ§¢d45”%”’y T

38)

It Advances on Adamive PCA and MCA . In 1982,
Oja has mathematically proved that making a constrained
Hebbian learning adaptively (i.e., per sample) will maka
y = o' ¢ extract the first principal component [72]. This
wirk, which is now referred as Ofa rule, set up a con-
nection between PCA and nevral networks and trigeed
a lots of studies on implementing PCA related tasks via
adaptive learning in the literature of neural networcks for
two decades. In 1989 [73], Oja forther extended thiz Oja
rule by vsing ¥ = W to extract the principal subspace.
Hinwever, there is no proof on its global convergence though
itz local stability can be ensured via a mathematical analysis
similar to that in [72]. By that time, it was regardad as baing
difficult tao find a cost function from which the subspace rule
can be derived [9]. Moreover, the Oja subspace rule can not
realize eq.(37), ie., parforming m-PCA. Actually, by that
time there was no adaptive role available in the literatore
to perform m-PCA.



Sontions on these problems as well as further extensions
have also been obtained since 1991 by the present author
and colleagues, which are svnuparized as [ollows:

o In 1991, the present author derived a gradient descent
iterative algorithm for solving the problem eq.(34)
adaptively [144], [139], that is

A" = A% 4 Syl + dxay] ],
Ty = "qyf-:l E?-'- = l'-1.:!""4'{;-'-:!
OTy = Ty — Tp, Ot = 2 — &, 3%

which has been shown be able to get the same princi-
pal subspace via setling up its link (o the evolution
direction of Oja subspace mile. Moreover, in help
of this link, the global convergence of Oja subspace
learning was, fArstly in the Titerature, proved in [144],
[15%]. 1t was also pointed oot in [1349] that the Oja
subspace learning is actually an adaptive version of
the gradient ascent fow of eq.(38).

o Also in [144], [139], the weighting technique in the
Brocket flow [19], that implements the othogonal
analysis on the Stiefel manifold O(d, J), has been
modified to the Stiefel manifold O(d, m),m < 4
and thus be turned into an adaptive version such that
bath the Oja subspace rule and the above eq.(39) are
improved into

%t - WT'HE:- g"’t - WTWH‘I’.J

Wrnew — W-::Id + m(zﬂ‘-g _ 3!"!--'?:3‘,']:\ .
2= diag[dy, -, dmlte with d| > - > dm,
ar L,l,—’wr'wl _ wn[li

nel(znd — i) + (2 — G)rT ], (40)

which is the first result that can adaptively realize
2q.(37, ie, pecforming m PCA [139],

+ PCA is sensitive to outliers that will make the resulted
a quite considerably deviated [or the correct solution,
as shown in Fig.50(a). Adaptive learning algorithms
have been developed in [134] for implementing robuost
PCA and robust principal subspace in resistance of
abnormal distorbances, as shown in Fig.S0(b).

« Performing PCA learning in the cases that some cle-
ments of ¢ are missing for certain samples [132]. For
gach of such sample = = [z,, =], the missing part =,
is recovered via the regression &, = E(x.|x.), which
can be computed from the covariance mairix *.

4} PCA vy Minor Component Analysis (MOCA): As
shown in Lig. 50, when = iz kept to be perpendicular to
y o equivalently when A" A = [ is kept, it is also
meaningful to considering a dual problem, i.e., maximizing
l=||I* or minimizing ||/||%, which leads to a subspace that is
the orthogonal complementary subspace, with a switching
from sceking the part of largest cigenvaloes to the part of
smallest eigenvalues. Thus, the term ‘principal” is switched

Héamsparrﬂdtym
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Fig 50, Kobust PCA
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to ‘minoc”, that is, we have Minor Componenr Angiysis
{MCA) [144], [142].

Since 1991 the present author and colleagues have made
the following contributions;

+ Uzing its complementary subspace will be a more

compact representation when the subspace dimension
for deseribing a set of samples is larger than 0.5,
eg., a3 illustrated in Fig 50, when d —m = |, linding
a’r by MCA is equivalent to find the norm dirsction
of a hyperplane that best fits a set of samples with
the average of the distances of all the samples o
the hyperplane being minimized. For this reason, we
proposed, Orstly in the literature, the so called duoal
subepace pattern recognition approach that vses both
PCA and MCA to get subspaces for pattern classes
[144].

Thovgh finding minor components has also been stud
ied before 1992, 2.g., in the Pisarenko method of spec-
tral estimation [53], the name MCA was introduced
to the field of nevral networks fiestly in [142], where
an adaptive MCA algorithm is proposed and applied
Lo the tetal least square Gtting of a d-1 dimensional
hyvperplane.

Also, nonlinsarity has been introduced into the Heb-
bian learning not only via controlling the learning step
size in an adaptive MCA buot also via considering high
order Hebbian learning in fitting a <-1 dimensional
surface via transforming each nonlinear term | [, =77,
with z, being an indicator taking either 0 or 1, into a



new variable v, [142]. A complementary idea was also
suggested in [112], [107] for using PCA to fitting a
1-dirpensional nonlinear corve. Generally, a subspace
obtained via PCA is used for fitting a nonlinear surface
of less than 0.54 dimension, while the subspace ob-
tained via MCA iz vsed for fitting a nonlinear surface
of larger than 0.54 [142].

« Conceptually, the Hebbian my7 is related to PCA
and the anti Hebbian —zy” is related to MCA. This
think tempted a quite number of studies either on
investigating what will happen by simply changing
the zign of learning for those existing PCA learning
rules or on searching a unified vpdating rule that
can implement PCA amd MCA by simply changing
the sign of learning [23]. Unfortunately, these efforts
turned out few positive results. Actually, recalling our
above discussion that swilching from PCA o MCA
is meaningful only when AT A4 = T is implicitly or
explicitly satisfied, thus it is not well motivated to
simply stody changing the sign of learning, as been
pointad out in [107]. With A" A = I in consideration,
a general formulation, that enables to implement PCA
and MCA by simply changing a sign, can be casily
obtained [107].

Moreover, methods for making PCA with good pedor-
mancs under abnormal disturbance or missing data can be
dircetly adepted for MCA. Also, the dimension = for PCA
can be directly used to get the dimension d — wn for its
{:Ii}]']':q:}ll'.-!!!i:]’!l}lr}-' H'Ilhﬁl]:i[‘.l'u

B. Linear projection © — g (II}); Nonorthogonal © — ¢

It follows from eq.(51) and aq.(34) that we can rewrite
r =I+e = Ay + e Forther considering the case E'v # g,
wioare lead tooa same format of eg(6). Precisely, we
are lead to a special case of the linear latent structurs as
shown in Fig.(16)(a). Specifically, the coordinate veclors in
a subspace act as a linear generative path, the representation
y of the projection © on these coordinates act as inner
factors stemming from which £ s geoerated. Also, the
projection residval or error < iz regarded as observation
noises added to © and thus we finally observe .

However, y obtained via minimizing 3, ||e:||* doss
not satisfy eq.(4) avtomatically. It follows from =q.(35)
that asking ¥ = A7 to satisfy equ4) is an additional
requirement that needs an extra measurs to ensure. When
x:im{:-]:::; of = come from a Ganssian distribution, such a
measure exists for the problam in FigA9, e.g., by eq.3a).
We call such a subspace by the name of principal subspace.
This midivates us o further consider a subspace with ils
satisfving eq.(4) and call it independence subspace. In the
special case that v = A"« satisfies q.(37) or aquivalently
e in a second order sense, we call iU de-correlared
subspace.

It has been further shown that minimizing 5 [l ||, & =
x — AATz in Fig49 plos 2q.036) is actually lead to a
solution 4 that is equivalent o the solotion 4 of the ML
lzarning on g(x) by eq.(3) via the linzar latent structors
in Fig.16 and eq.(7) at the special case of (x| ADy, 21
with ATA = I, D = diag[dy, - - , dm].

The above connections motivate that not only those linsar
latent struciures in Figd16) can be undersiood from a
subepace perspective, but also independence subspaces can
be further investigated via these linsar latent stroctores from
the perspective of BYY system and harmony Tearning.

1} Facror Analvsis (FA): It has been widely studied and
used in the literature of statistics and many other fislds since
1956 [6], [69], and can be regarded as an extension of the
previons principal subspace, by considering = coming from
a Gaussian C'(2]0, 2.) in a general case. In this cass, the
project = — £ s still linear but its direction is no longer
orthogonal to the subspace. As a result, the properties in
2q.(33) and 23.(35) do not satisfy. To make the problem
meaningfol and solvable, we have to additionally imposs
not only the satisfaction of the property (b) in eq.i33), but
also that 3 comes from C(g|0, I). As a result, we consider
the following maodel

q(z|y) = G(z|dw, Be), gly) = Gly)0, 1),

thee unknowns can be learned via a ML learning on g(=)
by eq.(%), namealy Giz|w, 447 +X.), which can be jmple
meznted by the EM algorithm [83].

{41)

Tig, 52, Factor analyvsiz moa bi-dircctonal view

Forther insights can be obtained from the perspective
of BYY system in Fig.32. As previously stated already,
the ML learning on gi=) by equ(53) is cquivalent to the
best matching learning min & L(p||¢) between the Ying
Yang paic by 2q.(16), as shown in Fig.4l, with p(y|z)
antomatically determined as given by eq11) In such a
sense, factor analyeis in a bacloward architecture as shown
in Figlofa) is equivalent to making factor analysis via a
bi-directional architectore as shown in Fig 532(a). From (s
perspective, one adaptive EM algorithm is developed in



Sec.4.2.3 in [114)] and also a variant algocithm iz developed
in eqn.i32) of [116].

Moreover, we also observe the following intzresting
nalures:

(¢) the forward path is linsar v = Wiz

with = and = uncorrelated,

u) +e,

(f) ple) = GlelD, Te), W = ‘1T[ 447 + Z)7,
Be=1—-AT(AA" + E)77
(9) El")=Wsw?* + %, 41

where 5 iz the sample co-variance matrix, as the sample
size N — 0, both & and AA™ 4+ 2, tend to the trus co-
variance malrix of =, and thns E(yg,ﬂTj = WaWT+7, —
I. Tn erder word, the forward path v = Wiz — p) + =
maps samples of = into ¢ that satisfies the pre-specified
assomption g(y) = Clyl0,I) as N — 0. However, when
N is a hnite or small size, nol only the satisfaction of
G0, I) doss not hold, but also the satistaction of eq.(4)
also no longer holds.

It iz interesting to further observe the special case

of eg.(7) at Ul:u;|ziﬂy1031] with ATA = [0 =
diagldy, --- .duw). In this ease, the ML learning on
Gzl AD® AT + #20) with A4 = 1.0 =
diagldy, --- , dp) 12ads to that &3, - - - |, dZ, and the columns

of A are the st o eigenvalues amd the cormesponding
eigenvectors of 5. Not only the solotion A4 is, as dis
cussad previously, equivalent to that obtained by min-
imizing 57, |lec]®, ¢ = = — 44Tz plos eq.(36), but
also vy = Wir — g) + £ maps sanmples of =, similar to
the map ¥ = ATz, into y that satisfies eq.(4) without
N — 0, though this may not satisfy g(y) = &0, I
Thiz point can be observed from 2q.(42) that not only we
have (AD2AT 4 021~ = o721 — AleD2 + I)~1 A7)
and ¥, = T — AT(AAT + 5,714 = T =TI, where
Il = o, *[I — (2D % 4+ I)'] is diagonal, but also we
have W = AT(AAT + 2.)7 " = TTAY and WSWT =
11AT 5 ALl = 11AIL where A = AT 5 4 is adiagonal matrix
consisting of the first o eigenvalues of 5.

When E # o2 I, however, the FA model suffers a serious
indeterminacy problem due to two tvpes of indaterminacy:

s Fotation indeterminacy, i.e., b_.z,rg,r' P = Ey'y ™ =1 and
AT AT = AAT forany ' = ¢y, T = I
o additive indeterminacy, ie., AAT +5 = 4/AT 47
for any ' such that AA"' + 0= AAT and T/ =
= remaing o be nonnegative definile.
De to the indeterminacy, the ML lezarning or equivalently
the best matching learning min K L{p|l¢) has an infinite
number of solutions. Considering the singular value de-
cormpsilion

A=¢Dy", 9Ty =1 $¢=1,

D = diagldy, -, dm], {43}

we can observe that the FA model by eq.(41) is actually

equivalent to the following model:

¢lzly) = Glz — gld Dy, E.), ¢lu) = Gy|0,I),

in the sense of the ML lzarning on () by eq.(3).

At a given subspace dimension s, the behavior of the
BYY harmony learning is same as the ML lzarning on g(x)
by e (5) asynpltically as N — so. However, for a linile
N and a unknown i, a salient featorz of BY'Y harmony
learning is able to determine an appropriate .

For a twa stage implementation of learning, BY'Y criteria
are obtained from eq.(1%) for selecting m, as summarizad in
Tabh.2 of [107]. RLx:L:nl]}', An im[rmvui BYY crilerion is also
derived in [44] by considering the role of yla) =W+
in AT PLRAE)], L, in Eqn.(24) of [104], which is a
special case of eq.26)

Muoreover, adaptive algorithins have been developed for
implementing learning, with an appropriate + determined
automatically during learning. One is considering eq.(44)
by ilerating

(@) w=|T+D¢Futen| 1D¢5TF' Yz, —_u))
(b) fm =1; — $Du, g = ¢ e

'd;mm — dl_‘.'.'\hi } T.I(l'.]‘@ d).l.\ldql’ d;:.hlr.il':l
prew — Ua{d | 'J'In'b.i'i-ﬂ-ff’[_l,"zbz LO{H’- —ld'lt.ﬁd]

T

{44)

,“- " _I“.'.'\Id ‘I"fj"-a.l.:.
E0 = (1= n)ES + el
This  learning  defermines om0 via minimizing
mC(y0,I) = ¢ + 05|y[* and thus indirectly

pushing ) 2 { and thus d,) of an extra dimension to 0.
It aleo provides an alternative algorithm for implementing
m-PCA when =, = o2/,

It can also be further observed that eq.(44) can be turned

into the following equivalent mdel:
qlzly) = Clz Be), qly) =

in the senge of the ML learning. In thiz caze, maximiz-
ing In G(y|0, D*) or equivalently minimizing In|D|* +
0.5y D%y tends to push ¢ * with a small d, toward
zero and thus o, becomes even smaller, which speed up to
push d; of an extra dimension to 00 The implementation
can be made by iterating

(a) o= [T+ 57 4 D 78 (e — o),

(b) e =20 =, g4 = E2¢ “lenrs,
update g, ¥, pt as in eg.(45),
DE new DE old +5’j'd'iﬂ§'[5¢'ty;,r]-

wldu, Cilylo, %), (46)

A7)
In the case of a small size of samples, taking the point
of aq.(28) in consideration, we can combine (a)fib) in
2q.(47) together and get an algorithm that vpdate A, £, 25,
Lo increase (c.g., along the gradient ascend dircction)
[ln Gy — gl dw, Be) +In G0, D)), i48)
sty = [+ £, D E Nz — ).



2} Independenr Componenr Anafysis ({CA) The rota
tion indeterminacy can be removed on samples of x that
coplains more structures. One possibility is that samples
are gensrated from nonGanssian factors of y that satisfies
e 4. Dhie o implementing difficulty in the case & 55 0,
most stodies in the literamire for past two decades have
been made in a nwch simplified case with ¢ = 0, ie,
r = Ay In this case, we know that there exisis al least
one 4 such that it follows from eq.31) that © = =
An identity mapping can reach this. That is, we want
= Jdy = AWz with AW = I, That is, the problem
of minimizing projection error becomes finding the inverse
of a unknown A. Given a y satisfying eq4) and with at
muxst one of conmponents is gaussian, any permutation TT and
constant scaling ' of components will give a +' = 1Dy
that still satisfies eq.(4) [92]. In other words, v = W
that satisfies cq.(4) leads to AW = TID, i, the inverse
of A4 iz found vp to a pernmitation and constant scaling.
Thus, the problem becomes getting a linear projection
y = Wz as shown in Pig.14(b) such that the cormmponents of
y become component-wise independent, which have been
extensively studied in the past two decades under the name
of independent component analysis (TCA) [S00, [26].

Although 1CA has been studied from different perspec
tivas, such as the minimuom muatoal informeation (MM [12],
[5] amd maximm likelihoed (ML) [36], all the approsches
are equivalent to maximizing the following cost

L(W) =In|W| + L,(W),

roSTIe 1 =N =y aldl T
y=1Dy dr")= 2. 8,60 | m,.0})
avl=[T. 4+ il t.l‘lfll'n:,ql'ln" il glvl= n:llq[r"'} 15 PONgINSSIn

1 ! ]
poix)=dly- ) s )= R 4s) i}z v 9= rﬂ.x Al
I . I ’

p,lx)= l iﬁﬂx x) pJ.ﬂ:%idix—x.}

(a) (b

Fig. 53,  Independent component analysis from a bi-directional
view

As shown in Fig.33(a), the ICA probleam can also be
viewed from the perspective of BYY system in Fig.32.
Mt only we observed that the ML learning on g(z) by
eq.(3), the best matching learning min X L(p||g) betwaen
the Ying-Yang pair by eq.{16), and BYY harmony lsarning
are all equivalent; but also we obtained several new resulls
as follows:

« B4 iz forther extended into [126]. [115], [63],

[7E].

L{W) =051 |WWT| + L, (W),
or L(W)= ‘r-'&'(W:';.-.J.. W ois a full rank:59)

for the cases of m <0 d Moreover, eq.(49) amd eq.(50)
have bean forther extended with In(+) replacad by a
generalized convex function () that has been shown
1:xlu:ri||l:rll.'d“}' Loy b rmowe robuost Lo oatlicrs [126].
As shown in Fig.53(b), sach model pdf g(x©)) is
suggasted to be a flaxibly adjustable dansity that is
learned together with W, with the help of either
a mixture of sigmoid functions that learns the co
muolative distribution function (odf) of each sourcs
[128], [124], [125]. [126] or a mooxtore of paramelric
pdis [122], [11%], and a so-called learned parametric
mixture based ICA (LPMICA)Y algorithm is derived,
with successfiul resulls on sources that can be either
subgavssian or supergavssian, as well as any com
bination of both types. The mixtore model was also
adopted in the [CA algorithm by [74], although it did
not explicitly target at separating the mixed sub- and
Sllpﬂ[gﬂ.IJESiﬂﬂ SOUICSS.

It has also been found that a emde estimate of cach
source pdf or odf may already be enovgh for source
separation. For instances, a simple sigmoid fonction
such as tanh(z) seems o work well on the super-
ganssian sources [12], and a mixture of only two or
three gaussians may be cnoogh already [118] for the
mixed sub- and supergavssian sources. This leads to
the so-called one-bit-matching conjecturs [119], which
states thal all the sources can be sepamaled as Tong
as there i3 an one-lo-one same sign- comespondence
between the kuriosiz szigng of all sovrce pdfs and
the kurtosis signs of all model pdfs. In past vears,
thiz conjecture has alse been implicitly supported by
several other ICA stodies [37], [35], [539], [96]. In [24],
a mathematical analysis was given for the case in-
volving only two subgavssian sources. In 4], stability
of an ICA algorithm at the correct separation points
was also studied via its relation to the nonlinearity
H) = dlng(u™))/dy), but without touching
the circumstance under which the sources can be
separated.

In [60], the one hit-matching conjectore on nooltiple
sources has been proved mathematically in a weak
sense. When only sources” skewness and kortosis are
considered with E's = Dand Fes” = T, and the modzl
pdf's skewness is designed as zero, it is further proved
that the one-bit-matching conjecture is true when the
global maxinwm of eq. (4% with respect to W is
reached. However, this proof still can not support the
successes of many existing iterative ICA aleorithne
that typically implement gradient based local szarch



and thus vsvally comverge to ons of local optimal
solutions.

+ Recently in [99], a new mathematical proof is oblained
in a strong sense that the conjecture is also true when
anyone of Tocal optimal solutions is reached, in help
of investigating a convex concave programming on a
polvhedral-set. Theorems have also been provided not
only on partial separation of sources when there is a
partial matching betwean the kortosis signs, but also
on an interesting duality with super-gavssian sources
separated via maximization and sub-gaossian sources
separated via minimization. Moreover, a corollary is a
obtained to confirm the symmetric orthogonalization
implementation of the korlosis exireme approach for
separating muoltiple sources in parallal, which works
empirically but still in a lack of mathematical proof
[48].

There are some sindies on determining the mumber m of
independent components in the literature. Strictly speaking,
this issue 15 Invial for TCA when & = 0, since the dimension
of y iz the nomber of nonzero eipenvalues of the sample
covariance matrix 5. However, all the eigenvalues of 5 will
be monzero when there @5 a noise s, which is beyond the
scope of 1CA and will be discossed in the next subsaction.

Also, it deserves to mention that there is a widespread
misunderstanding in the current TCA literature that TCA is
a generalized counterpart of PCA [26]. Precisely, it is not
true since indeterminacy on scalings makes meaningless to
make a selection according to variances of the components
of &. A generalized counterpart of PCA should take ¢ == 0
in consideration. One exanple i the previons FA, while
other examples will be alzo discossed later.

As pointed in [107], ICA is actually an generalized
counterpart of De-correlating analysis (DCA), L.e., a linear
mapping v = Wz from z to y with it componenis
being nutually independent in the 2nd orders or called de-
corrzlated. One particolar case is becoming 7 = Eyy™ =
WEzz"W?, as shown in Fig.14(a), which is referred as
a whilening transform. Moreover, it follows from [ =
WEzzTWT that I = WEz2TWT, W = ¢W for any
Wowith W Ezz" WY = [, In othar words, W is subjact to
an indeterminacy of an orthogonal matrix.

A generalized counterpart of whitening transform, with
the above rotation indeterminacy removed, is a particular
case of ICA as shown in Pig.l4ic). If = i mapped into
a uniform distribotion, f(x) is the comulated distribution
function {CDF) of = and we get an estimate on the density
of © as follows [107].

o) = (W@ W @)%, Wiz = 212
In implementation, f(x) can be a weighted sum of sigmoid

functions. Al the end of Seed of [107], extension has also
been made to the case that the dimension J of = is larger

{51)

than the dimension m of 4.

3} Temporal de-correlaring analysis (I DCA) and Tem
paval Facter Analysis (TFA) - A generalized counterpart, of
DCA, with the rotation indeterminacy removed, is called
Temporal DCA (T-DCA) by considering temporal relation
within ohservations in a sense that temporal observations
of =, is mapped stll by a lincar mapping into a temporal
model of y, with ite components muotwally de-correlated
at every time. E.g., in the simplest case, we consider the
lincar mapping 1, = Wy together with the following linear
temporal model

te = Byp1 + 50, (52)

whers =, is a white noise with Fz, = 0 and Ez,cl =
At —7), and B iz a diagonal matrix with each diagonal
element |b;| < 1 to ensure the stability of the above
Ist order AR model. It follows from eq.(32) that A =
EAE + T and thus B = T — A=1, as well as it follows
from Wz, = BWux,_y + g that WE[z,z] |W7T =
EWE[zy 17 1]TWT = BA and thos Wﬁ[m,,mf_ljw
is also diagonal. That is, ¥ should make both E[z,z ,]
and E[z._yz. ] become diagonal sinwltanzously. Except
the degensrated case that =, x, 4 are Lid. (in this cass
E =0}, there will be a unigue and non-othogonal W that
can maks this simmltansovs diagonalization. That is, thera
will be no indeterminacy of a rotation matrix for a T-DCA.
Moreover, learning on eq.i32) can be made adaptively per
sample as follows:

£y = W‘Ig —Byg_]_? W = wdd +‘i';|EgI§1?
B = B 4 ndiagleal ). (53)

Also, the above 1st order AR on 3 can be exiended 1o a

higher order AR.
Choice (@): gly, [ )=, ol 142)

Choice (b) : gly, )= nT..‘f{"ﬁ "}
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Cne other generalized counterpart of PCA, that takes
¢ % 0 in consideration, is a temporal extension of FA,
called temporal FA (TEA). When there is certain termporal
relation among samples of ©, as shown in Fig.34, we can
cormespondingly use a tenmporal structore, e, eqJqS52), Lo
describe v, Again due to a scaling indeterminacy Ay, =
Ay, with ' = Dy, we consider Gavssian Gz |Bwe_y, I),
whene B o= diaglby, -+ be) with cach | < 1, that
iz, factor analysis is extended into the temporal modal by
2q.(15), which is proposed firstly in [113], [110] under the
name of temporal factor analysis (TFA). Here, we rewrite
it below:

(54)

whene y, & are motually independent, 3, & are moto-
ally independent, the components of i are uncorrelated.
Morsover, A, B, the covariance matrix =, of < are all
unknown.

In this TFA model, a rotation g,r; = g will lead to
Glul|pBe¢T ol I) with #5847 = B’ no longer diagonal.
Thus, the + channels are no longer independent. In other
winds, the rotation indeterminacy of FA has disappeared in
TEA due to considering the lincar and frst order temporal
relation w = Dy + 5. Moreover, samples of = are
described by Clxs|p, AhAT + Z,) with Elpyd] = A
The additive indeterminacy between the two parts 44, AT
and X can be redoced or removed by the structore A, =
EA 1B+ T

As shown in Fig.54, the problem of this TFA model can
also be regarded as setting up a temporal independence
subspace. That iz, projecting a time series z; into a repre
sentation , in a subspace such that =, is represented by
several temporal components in this subspace. As shown
in ig. 4%, the linear representation £, = Ay, and the error
£, = 1, — T, only depend on the corrent timea £. As shown
in Fig.54, termporal information is transferred via the past
valoe i,y in either of the following two choices:

Ty = Aty + p + g, the = By + e

(o) qlole—1)
(5) ff(yz)—fﬁ*('mlm-ﬂq(yz_ﬂdyc_i. (35)

As shown in Fig.54, the situation is basically same as
the previovsly discussad factor analysis for the choice (b).
The only difference is that Elyu;| = A, varies with ¢.
For the choice (&), regarding By = 14 as the mean, we
can rewrite Ny | Dy, I) into Gy |, I), the learning
problem is also similar to FA, except that we nead to
additionally consider the Tearning on F.

Further details aboot TFA are refarrad to [113], [1107],
especially to [107], [100], where several results abont
implementing THA learning can be found, including:

+ Adaptive learning algorithuns for both tvpes by eq.(35),

with the dimension rn determined aotomatically;

o Criteria for selecting » in a two stage implementation
of learning;

« Relation to the Ealman [ltering and svstem identif
cation in the state space by 2q.{54);

o Applications in medelling hnancial market.

. Beyond linear pimjection m — y: NFA, BFA, and
LMSER

Another generalized counterpart of PCA iz considering
that samples of © are not from Gavssian and but generated
via x = Ay 4 g¢ #£ 0 from ¢ by eq.4) with each
g(»*¥)) being nonGavssian. A rotation v = Ju with
¢ # [ will make motoally independent components of
become coupled. Tn other words, the rotation indeterminacy
dizappears. This point can also be observed from that
we can also get extra constraint equations by considering
higher order statistics on both the sides of eq.(6), in addition
to the constraint & = AAT 4+ I, only for the case of IA
model. Moreover, the extra equations may also make the
additive indeterminacy removed.

As shown in Fig.55, each nonGaussian density ¢(y"))
imposes certain structure on each coondinate of the sub-
space, which makes the subspace becomes corved. Thug,
the projection = — & and the projection = —+ w both
become nonlinear. This makes the problem of jointly set-
ting up this subspace and fOnding such a projection very
difficult. ‘The integral in eq.3) becomes not analytically
tractable, and thus p(y|=) by eq.011) is alse not analytically
computable. A straight forward way iz an approximation
method such as a Monte Carlo random sampling approach
[114]. However, the computation is nsually very involved,
Az aresult, it is very difficolt to make the ML learning, and
thus this problem has been seldom studied in past decades.
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Fig. 35, ML learmng by an EM algorithm

As shown in Fig.55, an approach that can maks ML
learning on eqd6) was Orstly proposed in [68]. Echoing
[122], they considersd the independsnce product eq.(4)



with each g¢(»'¥)) modelled by a Gavssian mixturs. A
key difference is that they dealt with the prodoct of
Gavssian rixtures via inroducing a sel of random variable
W) 4 =1,--. ,m such that each =) stochastically takss
a munber amoeng {1, --- .0y} oand each momber indicates
a component in the jth mixture. Thue, it follows from
glyg) =3 (20} 2(# z) that the product of rn sununations
in eq.(4) i equivaleotly exchanged inle a swmmation of
[1; 7 products. As a result, the integral on getting ¢(x)
becomes a summation of ]_[j_ ny analytically computable
integrals on Gavssians, which results in that =) becomes
a mixtore of [[ », Gavssians. or this reason, they were
able to implement a ML learning by an EM algorithm A
sarme resull has been also published in [7] under the name
of independent factor analvsis. A serious problem of their
work [68], [7] is that a summation of ]_j_'r ny terms has to
be computed al each step of such an EM algorithme The
complexity increases exponentially with the nomber m of
factors, ie, O(n™) with n = max; n,.
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Fig. 55, MNonGanssian factor analysis (NEA)

Tn help of BYY harmony learning by equ.(18), the prob-
lem has been also stodied vnder the name of nonGaussian
factor analysis (NFAj [110], [107]. As shown in Fig.56, the
difficolty of making the integral over v in the whole domain
™ have been turned into the problem of a nonlinear
optimization solved by an iterative algodthm that scarches
within the domain 7™ in a trace that iz venally within a
subspace of noch lower dimension. It has been experimen-
tally shown that its cormputing complexity increase with m
linsarly.

Moreover, not only criteria have been obtained for select
ing m, but also an adaptive algorithm has been proposed
under the name of uncorrelated NEA, such that the subspace
dimension can be determined automatically during learning,
Tn help of the SVT) by equq43), the problem is tumed into
[107]:

':Il:z |£I':| - E'-;[Il"ﬁy + Hy EE)) qu?T-';i' ; I)

qly) = |Dlaylg), E =Dy, 4 =1, (56)
where g, (£) is a paramelric model that satisfies cq.(4). It
still falls in the paradigm of the conventional factor analysis

[6%] and thus we call it uncorrelated NEA by which £, acts
as the recoverad independsnt factors though y; is not. That
15, T; — £ perforne an independence mapping that takes
in consideration of the noise ;. The details are referrad to
[107]. In Seel. 4.2 of [101], this approach has been further
extended to also avtomatically determining the number of
Gaussians in every mixture 3, 8,,C(e |y, EYAN

We can further combine the sitvations when both sam
ples of = are not from Gavesian and there is temporal
relation among samples of «, such that not only rotation
indeterminacy and additive indelerminacy can be removed
but also dependence structures among samples of « can be
better deseribed, One exarmple of such a combination is
considering eq.(54) with Gavssian (z,|0, I') replaced by a
nonGaussian density for describing =, in a way similar to
the above case for 3. The details are referred 1o [100].

When each +') is a binary number that comes from
a Bernoulli distribution by eq.i8), eq.(6) has besn studied
under the name of binary factor analysis (BFA) or Tatent
trait model, which has also been widely studisd in several
felds [114], [10], [110], [108], [105]. Since y° = Fy
for any I # I will lzst 4" go bayond binary vector, the
rotation indsterminacy and scaling indeterminacy have been
removed. Morcover, in addition o the constraint 5 —
AAAT + E, with A = diaglgi (1 —g1), -+, gml1 = gm)].
we can also get the constraint equations by considering
higher order statistics on both the sides of eq.(G), such that
the additive indeterminacy can also be removed, cspecially
when 2. = o2I. As shown in Fig.16(c), the BFA structure
deseribes samples of = via a mixture of Ganssian densities
with their centers located on the vertices of a projected
polvhedra. Details are referred to [104].

The mapping ©, — 1 in the cases of NIA and BUA
is implemented by an nonlingar optimization that has to
be solved iteratively, which actually wastes the major part
of computing cost becanse each mapping =, — ¥, has 1o
be performead per sample via an nonlingar optimization. To
save the computing cost and also to dircetly implement
T, — 43, We ask whether it iz able to alzo learn a parameiric
model f(x). It has been shown in [107] that a differsntiabls

sigmaoid Tunction
Fw) = s(Wx +0), 5(w) = [s@®), -, sly™)T. (57)

is a reasonable choice and that a sigmoid nonlineanty is
a necessary condition for surpassing noise in observation
during mapping = inlo independent components.

With fix) by eq.(57) in the bi-directional version of BFA
shown in Fig.1%c), we are lead Lo

min ﬁ Efi1||'l"r — As(Wry + ) — pl®,

AW e (58)

which is referred as auto-association learning via thres
layer net and can be trained in the same way as raining
a three layver net by the Back-propagation tachnique [84].



It was experimentally demonstrated that the sigmoid layer
s{ Wy + ¢) makes feature extraction [16], though by that
time it was pol poticed that it is related o independent
factor analysis.

Particularly, for a W = AT eq(58) becomes

min gy Socy 7 — W7 s(Weo)

which is actoally the LMSER lzarning that was proposed in
1991 as an nonlinear exlension of PCA [139]. Though the
role of v = W) was originally interpreted as extracting
features, it has been further experimentally demonstrated
that the LMSER learning performs [CA with its perfor
mance superior to a nonlinear Hebbian lzarning [34]. Also,
it hias been successfully used on implementing a binary TCA
with noise [146]. Here we see that both LMSER and auto
association learning atterpt to perform both a specific 1CA
that maps = into a vniform density and a specific NFA that
fits = via independent factors from a uniform density, with
observation noise in consideration. It thus also confirmed
the abwwve mentioned experimental observation in [54] and
uncoverad the reason why LMSLER learning is more robuost
to noise than the nonlinear Hebbian leaming does.

Furthermere, the least square learning on a conventional
three laver forward networks can also be revisited via
modifying the auto-association learning by eq.(38).

From the perspective of BYY system in Fig.32 with
glzly) = GlzlAw, B amd gly) by eqdd) amd eq.8),
extensions of BFA, auto-association, LMSER, and three
Tayer net have been obtained from the BYY harmony
learning by eq.(18), with not only criteria for selecting m
and adaptive learning algorithms for making learning with
e determined automatically. Details are further referred 1o
[1G4], [107], [105]. Moreover, termporal extension of BUA,
LMSER, and three layer net have also been developed into

variants of hidden Markov models [100].
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V. CONCLUDING REMARKS

Fundamentals of statistical learning for knowledge dis-
covery and problem zolving have been discossed. Tyvp
ical dependence structures for Challenge one and typi-
cal learning theories for Challenge two have been both
surveved. Moreover, fundamentals and advantages of the
BYY harmony learning have also bean introdvced. We
observe that the BYY system provides a unified framework
for varions dependence structuores and the BYY harmony
learning provides a promising tool for solving Challengs
two for learning on a finile size of samples with model
selection made antomatically during learning.

As discussed in Sec.Il, dependence structures vary from
simple ones 1o more sophisticated ones, along three diree-
tions as shown in Pig 57.

One is from a low dimension space to a high dimension
space in order o extend the scope of the world of our ob-
servation. To effectively describing dependence structurss

Multi-strmctures

High dimensions

Fig 57. Three directions

in a high dimenzion space, one major solution consists of
various independence subspaces. Summarized in Sec. IV ars
advances obtained from BYY harmony Tearning on typical
independence subspaces.

One is from considering one body only to consider-
ing multi-bocdies. Tgnoring any qualitative relation, many
studies and applications have besn made in the fialds of
statistical learning and pattern recognition via the mivmre
structures by eq.(9). These structures can also be viewed
frem the BYY system perspective, in either a backward
architectore as shown in Fig.17 or a bi-directional architec
ture as shown in Fig.20. In the past 15 vears, in help of
BYY harmony learning, a mmber of advances have been
obtained on mixturs stroctures and extensions, which ars
summarized as follows:

+ Mixture of density-structures  One of widely stud-
ied case is Gaussian mixture with eq.(10), with the
following typical resulis

— The ML learning on Gaussian mixtirs is im-
plemented by the well known EM algorithim.
EBefore the early 90%, there was a widespread
misunderstanding on the EM algorithm Tn [141],
[129]. the first mathematical link betwean the EM
algorithm and the gradient based algorithms has
been sel up, with three major advantages clearly
stated. Thos, this widespread misunderstanding is
clarified, which acts as a major stinmlate that is
responsible for the popuolarity of the EM algo-
rithm in the nevral networks literature in the past
decads, Also, readers are referrad to Sec.22.9.1{a)
and Sec.22.9.2(1) in [102] for a summary on a
number of further results on the EM algorithm.

— The least m=an square eccor (MSE) clustering, as
sherwn in Fig.33, can be regarded as a special
case of a ML learning on a Gaussian mixtors
with each 2, = ¢2]. This MSE clustering is
inmplemented by the well known K-MEANS al-
gorithm or its various adaptive variants under



the name of competitive learning. However, they
have to be inplemented with a pre-specifisd k.
Firstly proposed in [140], [137], rival penalized
competitive learning (RPCL) opened a new era of
competitive learning stdies, with an appropriate
mimber % avtomatically determined. Morsover,
not only RPCL learning has besn extendad to the
s called ellipse clustering with 2. # -:7,32 I, bul
also itz link to BYY harmony learning has be
set up from several aspects [117], [111], [108].
Further resolts are referred to S2c.22.9.1(a) and
Sec.22.9.2(adn [102] as well as Sec.23.7.5 in
[103].

- Tsing the BYY harmony learning on various
cases of Ganssian mixtors [111], [108], [106], not
only criteria have been derived for selacting & in
a bwo stage implementation, but alse adaptive al-
gorithms have bean developed soch that an appro
priatz k can be determined automatically during
learning. Readers are referred to Sec.22.9.14a) and
Sec.23.7.3 in [103] for a summary.

— Jointly considering various independsnce spacss
in SeedV and the mixlure stroctures by eq.(9),
we have also get mixtures of varions independent
subspaces, e.g., as shown in Fig.28, Readers are
referred to Sec.22.9.1(b) in [102].

+ Mixiure of shape-structures In many real prob

lems, especially in the computer vision field, as shown

in Fig.28, cach individual structuore is featred by a

shape. The task of finding mwltiple shapes is vsvally

called object detection, for which we have the follow-
ing resolis:

— This type of tasks has been tackled by the well
known Hough transform [43], [49]. However, its
computing cost is huge while the performance
acouracy 15 rather low, Tn [145], a new approach
was proposed under the name of randomized
Huongh transform (RHT) that replaces the diverg-
ing mapping of Hovgh transform with a new
combined mechanism of random sampling and
converging mapping, with significantly inproved
performances[138], [32]. After developments over
a decade, it has already become an important re-
search branch of Hough transform studies. Read-
ers are further ceferred to [9%].

— The performances of Hough transform degenerats
significantly under strong noise, partially obsery-
able objects, and a large amount of objects. In
[135], [131], a nwlti-set modelling method has
been proposed, with high suecess detection rate
in sitwations of strong noise, partially observable
objects, and a large amount of objects. Readers
are referred to [106], [61], [62] for [urther results.

— In [98], a unified problem solving paradigm

has besn developed to combins the advantages
of RHT bassd techniques, learning based ap-
proaches, and evidence corpbination,

+ Combination of multiple decision and inference
Started from the research area of handwritien charscler
recognition at the end of 8(Fs, the problem of multiple
classifier combination got an ever increasing att2ntion.
Also, in the neoral networks literature at the bagin-
ning of ¥0's, lopics of combining multiple decisions
or inferances have also atfracted an ever increasing
attention. Listad below are typical resolts obtainad:

— In [143], an early systematic stdv has been
made on several solving methods for mwltiple
classifisr combination as well as its applications in
character recognition, which is now widely cited.

— In [136]. a number of results have been obtained
on statistical consistency, convergence rates and
receptive leld size for REF nets that were among
earliest major results obtained in the literatore of
REF nets.

— An alternative model of mixture of experts has
been proposed, fsatured by being easily imple-
mented by the EM algorithm [133], which is also
turther applied to replace the existing suboptimal
two stage algorithm for RBL nets learning [115].
The mumbsr of basis functions are determined
via cither BYY harmony learning or rval penal-
ized competitive learning, Readers are referred to
Sec.22.9.0(d) in [102] for a brief summary.

‘The third direction in Fig.57 is from being ignorance of
to taking in consideration of topological relations among
nulti-bodies. As discussed in SeclIl-C, the simplest and
alse most widely studied one s a directional linear topol-
ogy, or aquivalently temporal relation. Resuliz on temporal
extensions of independent subspaces have also been dis-
cossed in Sec. IV. Readers are referred to Sec.22.9.1(1) in
[102] for a further summary. Another important topology
relation is topological map, which has already discussed in
Secll-C.2
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