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FURTHER RESULTS ON NONLINEARITY AND SEPARATION
CAPABILITY OF A LINEAR MIXTURE ICA METHOD AND LEARNED
PARAMETRIC MIXTURE ALGORITHM

Lei Xu ', Chi Chiu Cheung’, and Shun-ichi Amari *
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The Chinese University of Hong Kong, Shatin, NT, Hong Kong, PR.China
2. Frontier Research Program, RIKEN,
Hirosawa, 2-1, Wako-shi, Saitama, 351-01, Japan.

ABSTRACT

Further results on the nonlinearity and separation capabil-
ity of the classic maximum likelihood-information theo-
retic ICA method have been obtained. The idea of ‘loose
matching’ can be further addressed into a specific con-
jecture assertion that sources can be separated from oth-
ers as long as the kurtosis signs of the densities speci-
fied by the nonlinear transfer functions match the kurto-
sis signs of sources. Moreover, the previously proposed
learned parametric mixture algorithm has been simplified
with only two densities and their position parameters ad-
justed. Experiments are given to support this assertion
and the success of the simplified learned parametric mix-
ture algorithm.

1. INSTANTANEOUS LINEAR MIXTURE AND
MAXIMUM LIKELIHOOD-INFORMATION
THEORETIC ICA

We consider the most widely studied Instantaneous in-
vertible linear mixture ICA problem. That is, we have z
from k independent sources s(1), - - -, s(*) via a so called
mixing matrix k x k invertible matrix A with

r=A4s, A=laijl,i=1,---,d, j=1,-,n;
Es=0, s=[s(1),-~-,s(k)]T, ¢))

The objective is to find a so-called de-mixing matrix W
to get
y=Wz=WAs=Vs, V=WA, 2)

such that either y = s or y recovers s up to only constant
unknown scales and any permutation of indices.

This work was supported by HK RGC Earmarked Grants
CUHK250/94E, CUHK484/95E and CUHK 339/96E and by Ho Sin-
Hang Education Endowment Fund for Project HSH 95/02.
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We focus on a simply iterative model

wnew — Wold + T)AW,

(a) gradient :

W-T + ¢(y)T; ,

(b) natural gradient :’’

(I +oy" )W

#(v) = [br(wn), - du )] €))

The form with the choice (a) for AW can be equivalently
obtained in the terms of maximum likelihood learning
(ML) [7, 12}, information-maximization (INFORMAX) [10,
2] and minimum mutual information(MMI)

[11, as well as a special case of Bayesian-Kullback Ying-
Yang learning [19]. For simplicity, we call the above
€q.(3) Maximum Likelihood-Information Theoretic ICA
Method .

The choice (b) for AW, called the natural gradient
algorithm and proposed by [1], will produce an equiv-
alent result but with an improved convergence property.
Although the same iterative model is studied in these dif-
ferent references, their detail implementation algorithms
are actually different in the use of the nonlinear function
#(y), with successes on different special types of source
distributions. For examples, in [10, 2] a prefixed sigmoid
function s(r) is used, which is equivalent to specify a
fixed ¢;(y\)) via eq.(4). In this case, eq.(3) works for
the cases that all the sources are super-Gaussian (e.g.,
for human speech signals with highly peaked density [2])
but fails at least for some sub-Gaussian sources of [18].

N Ap(yl9)) /oyl
$;(yP) = WA
p(yV) =53V = ds(u?)

AW =

ay@ @

In [7, 11, ;(y"9)) is given via approximating the marginal
densities by fixed truncated Gram-Charlier series, it works
for the cases that all the sources are sub-Gaussian, but



fails at least for some sup-Gaussian sources [5]. In [12],
afixed ¢;(r) = —r? is used with success for an experi-
ment on uniform sources, where are sub-Gaussian. In [4],
experiments have also shown that the algorithm eq.(3)
works for the cases that all the sources are uniform or
gamma (both are sub-Gaussian), but fails for sources of
human speech signals (it is sup-Gaussian). Moreover, for
the special cases of two channels k = 2, ithas been math-
ematically proved that eq.(3) with ¢;(r) = ~r® works
for the cases that all the sources are sub-Gaussian, but
may fail for sources of sup-Gaussian in {4] too. The
need of optimizing the nonlinearity to the true source
densities was first addressed in [12], where ¢;(y)) =
— N Cinhn(yD) is used with hy(r) -+ -, Ay (r) be-
ing a set of bases, e.g. hn(r) = sign[r]|r|*~* and ¢;»
is estimated to minimize the covariance matrix of the es-
timation on W1, with efficiency of the estimator dis-
cussed. These existing efforts share a common point of
attempting directly or indirectly to approximate the un-
known source densities or equivalently the marginal den-
sities p(y\)).

In [19, 14, 15, 16, 17, 18], the effort on a quite differ-
ent direction has been made with a belief that although a
very good fit between the densities specified by ¢;(y())
via eq.(4) and the unknown source densities can produce
a separation performance, it is difficult and also not abso-
Iutely necessary, and that we may use densities g; (y(J))

with

0g;(y) /5y
i (y9)
to replace p(y")) in eq.(4) for “loosely matching” the
unknown marginal densities. This loose matching may
mean that g;(y)) differs from the unknown marginal
densities considerably and the choice of {g;(y;)} is much
wider than {py;(v;)}. In other words, we attempt to ex-
plore the relation between the nonlinearity and separation
capacity. Some results are obtained in [14, 15, 16, 17, 18]}
and an implementation algorithm that uses a learned para-
metric mixture for g;(y")) is proposed and shown by ex-
periments to work for sources of both sub-Gaussian and
sup-Gaussian as well as their mixtures. However, the spe-
cific relation between the nonlinearity and separation ca-
pacity is still not totally clear yet and the number of den-
sities needed in the learned parametric mixture is given
heuristically.

In this paper, a further step forward is reported. The
idea of ‘loose matching’ is further addressed into a spe-
cific conjecture assertion that a source can be separated
from others as long as its kurtosis sign is the same as the
kurtosis sign of one g;(y/)) and that all the k sources
can be separated when there is an one-to-one same-sign-
correspondence between the kurtosis signs of sources and
g;(¥9),j = 1,---,k. Moreover, from this assertion
we simplify the previously proposed learned parametric

¢;(y¥)) = (5)
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exp(— 2y .

(1) gi(y;) = (—37%(—,—;‘.—!;’@)4—) Super-Gaussian
(2) g;(y;) = (H—e:,%f%ﬁ-p Super-Gaussian
3) 9;(y;) = 7= exp(=v;/2) Gaussian
@) gi(y;) = ﬁexp( ~Y; 4/4) | Sub-Gaussian

95 (95) i (y;) kurtosis ty — 3

Case () —37; 12216

Case (2) | 1 — 2logsig(y;) 12

Case (3) —Y; 0

Case (4) —y? -0.8118

Table 1: Properties and separation capabilities of several
non-linearities.

mixture algorithm with only two densities and their po-
sition parameters adjusted. Experiments are provided to
demonstrate the resuits.

Before closing this section, it deserves to mention that
in the sense of asymptotic stability of an averaged equa-
tion the nonlinearity has been also analyzed by [3] and
[11], respectively in the connection of a non-Gaussian
criterion with ¢; (y"/)) used in their corresponding ICA
algorithms. It is interesting to further explore the rela-
tion between their studies and the conjecture on g; (¥9)
suggested in this paper for the ICA algorithm eq.(3).

2. LOOSELY MATCHING BETWEEN
NONLINEARITY AND SOURCE DENSITY

As shown in Tab.1, we consider the relation between the
kurtosis of sources and g;(y¥)),j = 1,---, k in typical
cases as follows:

(1) When the prefixed g;(y\/)) is super-gaussian, i.e.,
the standardized kurtosis is positive, the algorithm eq.(3)
works for sources of super-Gaussian, but fails for sources
of sub-Gaussian. For example, in [2] the fixed sigmoid

G — ds(y\)) _ 1
!IJ(IU( )) = o s(r)= i’
é(r) = 1~ 2logsig(r) (6
corresponds to a positive kurtosis 1.2 as shown in the sec-
ond column of Tab.1, and it reported in {2] that the algo-
rithm eq.(3) works for human speech signals with highly
peaked density (i.e., super-gaussian signals). However,
the experiments given in [18] has shown that it fails at
sub-gaussian sources (e.g., uniform density or gamma
density). For anotber example, when we use the fixed
nonlinearity as shown in the first column of Tab.1 with a
positive standardized kurtosis 1.2216, experiment in [5]



has shown that the algorithm eq.(3) works for the sources
of super-Gaussian, but fails for sources of sub-Gaussian.
(2) When the prefixed g;(y7)) is sub-gaussian, i.e.,
the kurtosis is negative, the algorithm eq.(3) works for
sources of sub-Gaussian, but fails for sources of super-
Gaussian. When we use the fixed nonlinearity as shown
in the third column of Tab.1 with its kurtosis —0.8118,
experiments have also shown that eq.(3) works for the
cases that all the sources are uniform or gamma (both are
sub-Gaussian), but fails for sources of speech signals (it
is sup-Gaussian) [18]. Also, for the case of two channels
k = 2, it has been mathematically proved that it works
for the cases that all the sources are sub-Gaussian, but
may fail for sources of sup-Gaussian in {4]. In [1], by
truncated Gram-Charlier series the following fixed

9;(v?)

1 1 5
—_ (D12 _ 2, ()10
C,e:p[ e (¥\7)) 8(:1 )

o 47 29
(g8 £ 2y ()8 — (a4
+ g+ V) - )

3 25, ¢ 14
i) =~ - 2+ S

+ Ty - By, ™

is used in the algorithm eq.(3). Although the func-
tion is quite complicated, as shown in [4], gj(y(j )) has a
negative standardized kurtosis and thus is sub-gaussian.
Therefore, experiments have shown that it indeed works
for the cases that all the sources are sub-Gaussian, but
fails at least for some sup-Gaussian sources.

In summary of the above experimental facts, we make
a conjecture assertion that a source can be separated
from others as long as there is one j with the kurtosis
sign of gj(y(j )} being the same as the the kurtosis signs
of source, or in other word, the product of the kurtosis of
source and the kurtosis of g; (y")) is positive. As a whole,
all the sources can be separated as long as there is an
one-to-one same-sign-correspondence between the kur-
tosis signs of k sources and the kurtosis signs of g;(y9)),
j = 1,---, k. That is, there is at least one way to pair
all the sources and {g;(y;)} such that for each pair the
source and gj(y(j )Y have a positive product in their kur-
tosis.

We are still seeking a mathematical proof for the above
conjecture assertion. In the rest of this paper, we support
it via another different angle by experiments again.

3. A SIMPLIFIED LEARNED PARAMETRIC
MIXTURE ALGORITHM

In order to let each g;(y\7)) loosely matching a source
density, we need to use a flexible density function form
for g; (/). For this purpose, a finite mixture of densities
is used in [14, 15, 16, 17, 18]. The finite mixture model
is a general tool for density estimation, which has been
widely used in the literature, e.g., see [6] as well as those

a4

in the Ref. List of {21, 20]. The special use in [14, 15,
16, 17, 18] is for forming a flexible parametric learnable
g;(y9) such that it can loosely match a source density.

It deserves to mention that the use of a mixture of lo-
gistic densities for modeling g;(y'¥)) has been previously
proposed in 1995 by the first author of the present pa-
per and implemented in a joint paper with his colleague
under the name of entropy maximization [9] as well as
in 1996 by .Pearlmutter and Parra [13] under the name
of maximum likelihood density estimation. However, it
should be noted that both the previous uses are different
from each other and also different from the one used in
[14, 15, 16]. First, the one * given in [14, 15, 16] is sug-
gested with a clear motivation obtained in April 1996: we
can use a flexibly adjusting density form to loosely match
a source density, instead of attempting to estimate as ac-
curately as possible a density by a finite mixture, which
is implicitly granted in [9] and [13]2. The significance
of this loosely matching motivation can be further un-
derstood in the rest of this paper. Second, there is some
detailed differences in the algorithms given in [9], [13]
and [14, 15, 16]. Third, the bias parameter of logistic
function used in [13] is modeled by an auto-regression
which is more general than simply using a constant in [9]
and [14, 15, 16]. Moreover, the learned parametric mix-
tures used in [14, 15, 16] includes other densities such as
gaussian and also the learning is implemented by the well
known EM algorithm, instead of gradient technique used
in {9] and [13].

For the convenience of comparing with the previous
results, here we just introduce the one used in [17, 18].
That is,

P;
9i(u) =D ogiauss),  wii = byily; — aji),
i=1
exp(vji)

i
a; =1, aj = =———,
; BT T i exp(ik)

where ¢(-) is some density function, p; is the number of
components in the mixture, a;; is the weight of the com-
ponent, b;; controls the variant of the 7t density and aj;
is the bias, or location of the center, of the j** density.
The density function is given by
q(uji) = bjih' (uj1), .
huss) = logsig(us) = ———————
(uji) = logsig(uji) = 7 )
exp(~u;:)
1+ exp(—=u;1))?

11n fact, the basic idea of the methods given in [14, 15, 16] was first
proposed in April 1996 during a two weeks visit of the first author to the
third author’s Lab and presented in a formal seminar in RIKEN, Japan
in that period.

2Acma\lly. in {13], the use of a mixture of logistic densities was not
discussed in its regular text part, but adopted directly in its Appendix A
for its simulation in Sec.4.

(8)

R (uji) = (O]



The gradient algorithm is used to adapt parameters as
follows:

A o (1]) Eb,kh (i (B — 3,

Abji o m_;){h (uﬁ) + b (uji)usi},
NUSIRE SNV

? 'hzj;)g;(%)g:i:;),( -

q'(u5) = %,

b3(5;) = Z aibiid (us1) (10)

where 4;; is the Kroniker delta function. The above are
updated together with the learning eq.(3).

In {17, 18], the experiments demonstrated that the al-
gorithm with mixture of densities with p; = 7 can ap-
proximate the marginal densities ‘quite well’ and per-
form separation in all experiments tried. In those exper-
iments, samples were mixed from the bi-modal beta dis-
tribution 3(0.5, 0.5) in [-0.5,0.5], uniformly distribution
in [-1,1] and a permuted speech signal, with the first two
being sub-gaussian and the last one being super-gaussian.
However, th algorithm in [2] works well for the permuted
speech signal, but fails for the bi-modal beta distribution
6(0.5,0.5) in [-0.5,0.5] and the uniformly distribution in
[-1,1]; while the algorithm in [1] works well for the bi-
modal beta distribution 3(0.5,0.5) in [-0.5,0.5] and the
uniformly distribution in [-1,1], but fails for the permuted
speech signal.

In {17, 18], the number of components p; = 7 was ar-
bitrarily chosen. From the conjecture statement given in
Sec.2, we can easily see that it is able to change the kur-
tosis sign of g;(y;) = 0. 552 q(usi), uji = yj — aji
from positive to negative by just adjusting the position
parameter a;;. Therefore, if the the conjecture statement
given in Sec.2 is true, this simple mixture should be al-
ready enough for our purpose. That is, we can set p; = 2,
a = 0.5,bj; = 1. Thus, the algorithm eq. (10) is simpli-
fied into AaJ, —7—50 5¢"(u;;). We have tried it on
all the experiments made in [17, 18] with successes.

In the following we introduce one example of three
channel mixture. The first is an artificially generated bi-
modal symmetric 3(0.5, 0.5) distributed i.i.d. source, the
second is an artificially generated uniform(-0.5,0.5) dis-
tributed ii.d. source, the third one is a permuted speech
signal. The mixing matrix used is:

1 06 03
=08 1 03
04 09 1

After the system has stabilized, a snapshot of V' and a

11
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are:
10.2583  0.0205 —-0.1169
V =| —-0.0085 5.0408 —0.0813 |,
—0.0132 -0.0095 9.3977
—3.3378 3.3657
a=| —2.4460 2.4672} 12)

0.0241 0.0241

From this V, we see that three channels have been
successfully separated with signal/noise ratio being around
1000. Some detailed experiment results are given in Fig.1.
The first row given are the densities (histograms) of the
three sources. The second row given are the obtained
{g;(y;)}, which are far from the densities (histograms)
except that their kurtosis signs are the same as those given
in the first row. This fact actually provides a further sup-
port of our conjecture assertion made in Sec.2. The third
row given are the CDF functions s(y;) = [*7_ g;(v;)dy;
and the last row given are the histograms of the nonlin-
ear transformation z; = s(y;) as did in [2], which are
again quite different from the histograms of the first row,
although they are roughly similar in their configurations.

4. CONCLUSIONS

An interesting conjecture assertion has been proposed.
According to this assertion, a source can be separated
from others as long as there is one j such that the prod-
uct of the kurtosis of source and the kurtosis of g;(y\/))
is positive. As a whole, all the sources can be separated
as long as there at least one way to pair all the sources
and {g;(y;)} such that for each pair the corresponding
source and g;(y")) have a positive product in their kur-
tosis. This assertion has not only been supported by sev-
eral experiments on the typically used g;(y; ) but also ap-
plied to simplify the previous proposed learned paramet-
ric mixture algorithm significantly, which is again veri-
fied by experimental successes. This latter fact also pro-
vides a further support for the proposed conjecture asser-
tion. Currently, further work is still undergoing on seek-
ing a mathematical proof of this conjecture assertion.
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Figure 1: The experiment result of the proposed algorithm with mixture of two densities.



