1

Neural Networks, Vol. 5, pp. 441-457, 1992
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/92 $5.00 + .00
Copyright © 1992 Pergamon Press Ltd.

Modified Hebbian Learning for Curve and Surface Fitting

LEl XU'2* ERKKI OJA>, AND CHING Y. SUEN?

"Harvard Robotics Laboratory, Harvard University 2Centre for Pattern Recognition & Machine Intelligence, Concordia University
3Lappeenranta University of Technology, Department of Information Technology

(Received 15 March 1991; revised and accepted 11 November 1991)

Abstract—A linear neural unit with a modified anti-Hebbian learning rule is shown to be able to optimally fit curves,
surfaces, and hypersurfaces by adaptively extracting the minor component (i.e., the counterpart of principal component)
of the input data set. The learning rule is analyzed mathematically. The results of computer simulations are given
to illustrate that this neural fitting method considerably outperform the commonly used least square fitting method

in resisting both normal noise and outlier.

Keywords—Hebbian learning, Principal component analysis, Minor components, Curve and surface fitting, Total

" least square method, Stochastic approximation.

1. INTRODUCTION

For building a neural network, linear units are the sim-
plest ones. In spite of its apparent simplicity, a linear
unit is able to do some things which are quite nontrivial.
It has been found (Oja, 1982) that a simple linear unit
with an unsupervised constrained Hebbian learning
rule can extract the principal component from station-
ary input data. Later, Linsker (1986a, 1986b, 1986¢)
showed that in a layered feedforward network of linear
units with random inputs and Hebbian learning rule,
spatial opponent units, orientation selective units, and
orientation columns emerge in successive layers in a
way which resembles what is observed in the mam-
malian primary visual cortex.

Recently, there has been increasing interest in the
study of unsupervised learning networks consisting of
linear units. Several new developments have been made.
First, some neural-net models have been proposed to
extract k > 1 principal components or the principal
component subspaces (Foldiak, 1989; Oja, 1989; Rub-
ner & Tavan, 1989; Rubner & Schulten, 1990; Sanger,
1989) instead of the first principal component described
in an earlier work (Oja, 1982). Second, the learning
problem of optimizing the usual quadratic error func-
tion E of linear feedforward neural networks in au-

* On leave from Department-of Mathematics, Peking University,
Beijing, P. R. China From February 1989-May 1990, he was with
Lappeenranta University of Technology, Finland.

The work was supported partly by Tekes Grant 4196 under the
Finsoft Project of Finland, and partly by the Natural Sciences and
Engineering Research Council of Canada, and the National Networks
of Centres of Excellence program of Canada.

441

toassociation mode have been related to principal
component analysis and it has been shown that E of
such a network has no local minima (Baldi & Hornik,
1989; Chauvin, 1989). Third, neural networks for
principal components analysis have been extended to
neural networks for constrained principal analysis
which can avoid the undesirable redundant components
and noisy components (Kung, 1990; Kung & Dia-
mantaras, 1990). A good recent review on many of
these developments is given by (Baldi & Hornik, 1991).
All these results demonstrate the deep connection be-
tween linear neural nets, Hebbian learning, and the
well known principal component analysis (PCA) of
statistics.

The PCA approach originally appeared in multi-
variate statistics literature. Closely related to the Kar-
hunen-Loeve (K-L) transform, it has been widely
studied and used in signal processing and pattern rec-
ognition for data compression and feature extraction.
In PCA, the principal components (i.e., directions in
which the data have the largest variances) are regarded
as important while those components which have small
variances, for convenience called in the following the
minor components, are often regarded as unimportant
or noise. However, in some cases the minor components
are of the same importance as principal components,
e.g., they have been used in signal processing in the
Pisarenko method of spectral estimation (Karhunen,
1982).

In this paper, we will show that the minor compo-
nents can play an important role in a classical statistical
problem: curve or hypersurface fitting. The problem is
often encountered in many engineering applications as

442

well as cognitive perception problems (e.g., computer
vision). The conventional method for such tasks is the
usual Least Square (LS) fitting method. However, in
many cases, LS is suboptimal, and the optimal least
square method is the so called Total Least Square (TLS)
method. This paper will show that the problems of op-
timal fitting in TLS sense can be described as Minor
Components Analysis (MCA) problems and a linear
neural unit modified from the unit given in Oja (1982)
can solve the problems. Computer simulations show that
this neural fitting method outperform LS significantly.

2. OPTIMAL FITTING PROBLEMS

The problems of using a model of line (curve), plane
(surface), and hyperplane (hypersurface) to fit a given
data set are often encountered in many engineering
applications as well as in computer vision. Usually, the
LS method is used to solve such problems. For example,
given a set of data points D, = ({x{", x3), i =1, 2,
..., N}, the problem of having a line model x, = kx,
+ dto fit D, in the usual LS sense becomes the problem
of finding a pair of estimates k, d such that

Ez(i(, d) = ngldn {EZ(ka d)},

N . .
Exk,d)=3 ¢, =0 —kx"—d). (1)

i=1

Referring to Figure 1, there |¢;| is the absolute length
of a vertical bar from point p; = (xY), xé’)) to the fitted
line, and thus eqn (1) means “to minimize the sum of
the squared lengths of all the vertical bars.” In fact,
this implicitly contains an assumption that only the
measurements x$” contain errors while the measure-

" ments xf’) are accurate. However, in many cases such
as in image recognition and computer vision, all the
measurements contain a certain degree of errors. In
such cases, a line x, = kx, + d obtained in the usual
LS sense by eqn (1) is not optimal. The optimal way
should be to minimize “the sum of the squared lengths
of all the bars which are perpendicular to the estimated
line” (see Figure 1) (i.e., to minimize the sum of all
the squared distances r;’s from point p; to the estimated
line).

E,(k, d) = Min { E;(k, d)},
kd

N 0] (i)

| x2" — kxi’ —d|
E k,d = ’Z’ i:——.,—-—-——«-—w—-—,-' 2
2(k, d) Elr r Vit e (2)

This is the basic idea of the so called TLS method
(see e.g., Golub & Van Loan, 1983). In comparison
with the usual LS method, to obtain the solution of
TLS is generally quite burdensome. Equation (1) can
be reduced to a problem of solving linear equations,
while eqn (2) results in a problem of solving a third
order nonlinear equation of k. For the more general

L. Xu, E. Oja, and C. Y. Suen

X1

p1 denotes a data point

FIGURE 1. To fit a set of data points by a line, LS minimizes
the sum of the squared lengths of every vertical bar |e;|, while
TLS minimizes the sum of the squared length of every bar r,
which is perpendicular to the estimated line.

problems which involve a large number of variables,
the task becomes more complicated. This is probably
why TLS has not been as widely used as the usual LS
method although the basic idea of TLS was proposed
long ago (Pearson, 1901).

However, in the case of line or hyperplane fitting,
when the line or hyperplane models are expressed as

a X, + ayx; + ¢ =0, (3a)

ayx,+ax,+ ... +ax,+¢ =0, (3b)

where x;,i =1, ..., nare variables and ¢, is an arbitrary
constant, we will show that the problem of optimal fit-
ting in the TLS sense is not so intricate and its solution
can be obtained by a neural unit via adaptive learning,.
First, again let us take the problem of line fitting as an
example. For eqn (3a), the TLS fitting problem is to
minimize the following total least square error E

N |a (i)+ (i)
1 X1+ axx; + ool
E=Xri, rn=

S . (4a)
i=1 Vai + a3
Leta = [a;, a;]Tand x; = [x{”, x5"]. Then E can be
further expressed as
N (aTx; + ¢)? aTRa + 2cpa”e + ¢}
E= S =N a3
-1 a'a a’a

3

N l N
R = 2 xixiT’ =T z Xi» (4b)
N
where e, R are the mean vector and the autocorrelation
matrix of data set D,. From dE/da = 0, the critical
points of E should satisfy
a’Ra + 2coaTe + c3
a’a)

Ratce—Na=0, \= (4c)
In general, eqn (4c) is difficult to solve because it is a
third order matrix equation.

Here, we use a special strategy for solving the equa-

Modified Hebbian Learning

tion. First, by taking expectation on both sides of eqn
(3b), we can obtain

co=—a’e, (5a)
which we substitute into eqn (4c¢) and simplify the
equation into
a’Za

aTa (Sb)

Za—Na=0, A=

where = = R — ee” is the covariance matrix of data set
D,.. So, we see that the TLS problem of eqn (4a) can
be reduced to the problem of finding the minimum
eigenvalue and its corresponding normalized eigenvec-
tor of matrix 2, or in other words, finding the first
minor component of data set D,.

It is not difficult to see that for plane and hyperplane
expressed by eqn $3b), ifweleta =[a,,as,...,a,)7
and x; = [x\?, x5”, ..., x{9], eqns (4b and c) and
eqns (5a and b) will also hold.

Generally speaking, the same technique applies to
curves and hypersurfaces expressed as

afi(x) + @ fa(x) + ...+ aufm(x) + ¢ =0,

X = [xl’ Xz,...,x,,]T, (6a)
where f;(x) is a function of x (e.g., quadratic curves)

ax? 4+ apxix + asx3 + asx, + asx, + o =0. (6b)

If we first transform each x; into f; = [f1(x;), f2(X),
.« o, [A(x:)]7, we can obtain the same equations as eqns
(4b and c¢) and eqns (5a and b) for the problems of
TLS hypersurface fitting.

3. NEURAL UNIT AS AN OPTIMAL
FITTING ANALYZER

Consider the linear neural unit shown in Figure 2 with
inputs x(t) = [£(2), ..., £.(2)]7, weights m(¢) =
[11(2), ..., ua(2)]7 and output

z(2) = 2 w0 (1) = m7(2)x(1), (7a)
i=1

it has been shown (Oja, 1982) that by using a con-
strained Hebbian learning rule as follows

pit+ 1) = (1) + (1) (2(DE(L) = 22(Dw1)) or
m(z+ 1) = m(2) + a(2)[2()x(2) — 22()m(2)], (7b)

the unit learns to function as a principal component
analyzer of the stationary input vector stream x(t), in
the sense that the weight vector m(¢) tends asymptot-
ically to the principal eigenvector of the input data cor-
relation matrix. In (7b), a() is a positive scalar gain
parameter that must be chosen in a suitable way.

Here, we still use the same linear unit, but change
eqn (7b) into a constrained anti-Hebbian learning rule
given either by

m(t+ 1) =m(t) — a()z()[x(2) — z(:)m(?)] (8a)

443
& ——1—0 [
&> —0 | K2
0
0
&n —0 | un

Y
FIGURE 2. A linear neural unit.

or its explicitly normalized version

m(t+1)=m(t) — at)z(t)| x(t) —

z(1)m(?)
mT(t)m(t)]' (80)

Then substituting eqn (7a) into the above equations
produces, respectively,

m(t+1)=m() — at)

X [x()xT()ym() = mT()x()xT(Hm()m(1)] (8¢c)
and
m(t+1)=m() — at)

m7(O)x()xT()m(1)
m(¢)Tm(¢)

X [x(t)xT(t)m(t) - m(?)].

(8d)

The techniques of stochastic approximation theory are
available for analyzing the learning rules of the type
given here (see Kushner & Clark 1978; Ljung 1977).
Without going rigorously into details, it can be shown
that if the distribution of x(¢) satisfies some not un-
realistic assumptions and the learning gain «(¢) is not
constant but allowed to decrease to zero in an appro-
priate way (e.g., proportionally to 1/¢), then eqn (8c)
and eqn (8d) can be approximated by the following
differential equations:

D — _ixxTOm(o) = mTOXOXTOmEOmO),
and
dm(t) _ _m7()x(6)x"()m(¢)

i x()xT()m(1) m(1)"m(1) m(t)].

444

Furthermore, assume that the input vector x(¢) stays
stationary throughout the learning period, and x(¢),
m(¢) are statistically independent, by taking averages
in the both sides of these two equations, we have the
corresponding averaging differential equations

f_‘%}t) = —Rm(t) + [m(:)"Rm(¢)]m(¢) (8¢)
am(t) m(2)TRm(¢)
~a - Rm(t)+————~—~—m(t)rm(t) m(t), (8f)

where R = E(xxT) is the autocorrelation matrix of
inputs. The approximations of eqn (8¢) to eqn (8¢c)
and eqn (8f) to eqn (8d) are in this sense that the
asymptotic paths of eqn (8¢) and eqn (8¢) (or eqn (8f)
and eqn (8d), respectively) are close with a large prob-
ability and eventually the solutions m(¢) of eqn (8c)
and eqn (8d) tend with probability one to the uniformly
asymptotically stable solutions of eqn (8¢) and eqn
(8f), respectively (see Oja, 1982; Oja & Karhunen,
1985 for details).

To study the asymptotic stability of eqns (8e, f) we
have from dm(z)/dt = 0 that

Rm(t) = [m()TRm(¢)]m(¢) and

m(1)"Rm(t)

R0 = () m(0)

m(?), (8g)
that is, all the eigenvectors of R are the fixed points of
eqns (8¢, f). By expanding m(¢) in terms of eigenvectors
in the way similar to (Oja, 1982; Oja & Karhunen,
1985), the following theorem can be proven.

THEOREM 1. Let R be positive semidefinite with the
minimum eigenvalue of multiplicity one, and let \pin
and cpin be the minimum eigenvalue and its correspon-
dent normalized eigenvector of R. If m(0)cpin # O,
then
1. For eqn (8e), asymptotically m(t) = n(t)Cmin With
n(t) a scalar function, in other words, m(t) has the
same direction as ¢piy. In the special case of Amin =
0, it holds lim,_,.,m(t) = (m(0)Cmin) Cmin-
2. Foregn (8f), it holds that
lim m(t) = cmin(or - cmin)

1=>00

lim m(t)TRm(1) = Apin = min {m"Rm}. 9)
-+ m
See the Appendix for the proof of the theorem.

From the results of Section 2 (e.g., eqns (4a) and
(5b)), one will see that the neural unit of Figure 2 with
learning equation either eqn (8a) or (8b) can be directly
used as an optimal TLS fitting analyzer if e = E(x) =
0 for input data set D,. In this case, eqn (5a) shows
that e = 0 results in ¢y, = 0, and it follows from eqn
(3b) and eqn (5b) that any vector which has the same
direction as ¢y, is a solution which minimizes the total
least square error of eqn (4a). Thus, we can take the
unit vector of the direction as the final solution (i.e.,
let a(¢) = m(z)/||m(¢)|). From the above theorem,

L. Xu, E. Oja, and C. Y. Suen

a(t) approaches the TLS solution as ¢ becomes large
enough.! Specifically, if eqn (8b) is used, after the sta-
bilization of the learning, when a new data point x is
input to the neural unit of Figure 2, the unit can also
automatically detect not only the distance between the
point and the fitted hyperplane simply through the
magnitude of the output | y|, but also which side of
the hypersurface the point is on through the sign of the
output sign|[y].

In the case that e = E(x) # 0, the above unit can
not be used directly. However, noticing that Z = R —
ee” = E[(x — e)(x — e)7], we see that a slight pre-
processing of subtracting e from each data point can
make all the above discussions remain true. The only
extra issue here is that the representation of the fitted
hyperplane needs not only the obtained final solution
a alone but also an accompanied parameter ¢, = —m’e
0.

4. COMPUTER SIMULATIONS
ON LINE FITTING

We generate a data set D, = {(x;,y;),i=1,...,500}
as shown in Figure 3(a). The problem is to use a pa-
rameterized line model (e.g., a,x + a,y = 1) to fit the
data set so that the right parameters a,, a, are solved.
On this pure data set, both the usual LS method and
our proposed neural method can give the perfect so-
lution, so this simple case is not of our interest here.
Instead, we consider the case when Gaussian noise is
added to D, given by

Xi=xitn, yi=yi+n, i=1...,500, (10a)

where E[n,, n,]7 = [0, 0]7, Cov[n,, n,] = 62L,x, and
Ix>isa 2 X 2 unit matrix. Figure 3(b) shows the noise-
disturbed data set D = {(x}, y}),i=1,...,500}
with noise variance ¢2 = 0.5. Computer simulations
are conducted on the noisy set, using both the LS
method and the above neural method.
For the LS method, we try both of the two possible
versions of parameterization:
1. Version LS1: we first use the LS method with pa-
rameterization y = kx + d (i.e., we get the solution
s = [k, d]7 of the normal equations as)

s=(XTXN)T'XTY, ¥ =[y,...

XT=(x,l o x’SOO)
) I 1 /)’

?.V’SOO]T

and then transform s into
a=-k/d, a,= 1/d.

' When eqn (8a) is used, although it is shown in the Appendix
by eqn (A4) that the magnitude of m(?) tends either to zero or infinity
when Ay, > 0, here the magnitude of a(¢) stays at 1 because it is a
unit vector along the direction of m(z). When eqn (8b) is used, ac-
cording to eqn (9) we can also directly let a(¢) = m(¢) since in this
case the magnitude of m(¢) tends to the magnitude of cy;p.

Modified Hebbian Learning 445

The 500 Sample Points of A Line Segment: 0.25 x + 0.5 y =1, 0.0<x<5.0

2 Ll v T T \J T T ¥ A\

1.5¢ h
1t 4
>
2
s
g
oSt 1
all the points are densely
ok distributed on the line segment i
_0'5 2 - 1 e o A A e —d
0 0s 1 15 2 25 3 35 4.5 S
variable x
@
The 500 Sample Points After Disturbed by Gaussian Noises of Variances 0.5
4 v - v — Y T v
3t 4
2} ' g ;
> “ i ..
) TR Bl
.2 l - Y -
]
>
0 N . N . b i
-l- . 0. .-.u. ‘:.- " L. ". . B
2 1 . e " 2 - " n
-1 0 1 2 3 4 5 6 7
variable x

(b)

FIGURE 3. The data set used in line fitting simulations. (a) The 500 pure sample points come from the line segment by uniform
sampling; for clarity, only a portion of sample points are shown here. (b) The 500 noise-disturbed sample points obtained by using
Gaussian noise with variance o> = 0.5 in the way given by eqn [10a]. '

2. Version LS2: we obtain the solution a = [a,, a,]7 method, the simulations have been implemented in the
directly from parameterization q;x + a,y = 1 by following steps:
= T o = L 9500
a=(X"X)"'X™b, b=[L,...,1)7 : (_joinl,putfoom;?ns e=lenalla=sn2itxi. 6
= 3500 &i=1 Vi .
xp e x’soo) 2. Subtract the means from each data point, i.e., £
. — W o _
Vi Yoo —.X.i] en,f.z =Yi—e.
3. Initialize weight vector m = [y, u,]7 by a random
For our Neural Total Least Square (NTLS) fitting number from a uniform distribution on [0, 1] X

XT=(

446

[0, 1],and letx = [£}”, £5]7, j be a random integer
with equal probability being any integer of {1, 2,
...,500}.

4. Use learning rule (8a) to adaptively adjust m, i.e.,

m(t+ 1) =m(¢) — a(t)z(t)[x — z()m()], (10b)

where z(¢) = m(z)™x and a(?) is the learning rate.
5. Calculate the current solution a(z + 1) = [a,(¢ +
1), ay(t + 1)]7 by transforming equation [x, y]m
+c=0intoa,(t + 1)x+ ay(t+ 1)y =1,ie, let

a(t+ 1)=—m(+ 1)/co, co=m(t+ 1)Te. (10c)

Remarks. (a) In step (4), theoretically, the best selec-
tion of «(¢) should be that given by the Robbins-Monro
stochastic approximation procedure (Oja & Karhunen,
1985; Robbins & Monro, 1951). For simplicity, here
we just let « start at 0.01 and linearly reduce it to 0.0025
at the first 500 learning steps (i.e., ¢ from 1 to 500),
and hereafter keep it unchanged at 0.0025. The results
given here show that this simple selection already gives
acceptable results although some further improvement
could be expected by using a more sophisticated selec-
tion. Such improvements are introduced in the next
section. (b) One can also use learning rule (8b) in step
(4), i.e., to replace eqn (10b) by eqn (10d)

2m(t)
m7()m(¢)

m(t+1)=m(t) — a(t)z(t)| x —

]. (10d)

(c) If the parameterization a,x + a,y = 1 is used,
then in step (5) a(¢) given by eqn (10c) is not a unit
vector a(¢) = m(z)/||m(¢)| as discussed in Section 4.
Here, it follows from Theorem 1 that asymptotically
a(y) = ﬂ(t)cmin/n(t)eTcmin = KCmin Where k = 1 /eTcmin
is a constant. In other word, asymptotically, a(¢) is also
a stable TLS fitting solution.

The experimental results are given in Table 1 and
Figures 4(a-c). It can be seen from Table 1 and Figure
4(a) that NTLS gives the best result and LS1 gives the
worst. The fast learning process of NTLS is illustrated
in Figure 4(b). The learning process of the same prob-
lem but with different randomly chosen initial param-
eter estimates is shown in Figure 4(c). Its average so-

TABLE 1
The Solutions Obtained by Different Methods On The Noisy
Data Set. For NTLS, the Solution is Given in Two Ways: (a)
the Estimates of a,, a, at the 3,000-th (i.e., the last) Learning
Step, (b) the Average Value of a,, a, at the Steps Between
2,500 and 3,000 (see Figure 4b) Together with the

Correspondent Varianes
a, a2

Original 0.25 0.5

LS 0.2536 0.3465
LS2 0.2356 0.5607
NTLS (last) 0.2589 0.4832
NTLS (means) 0.2589 0.4833
NTLS (vars.) 0.36 X 107 0.324 x 1075

L. Xu, E. Oja, and C. Y. Suen

lution over the last 500 steps is a; = 0.2588, a, = 0.4834,
with variances 0.36 X 107¢ and 0.324 X 107°. The
solution at the last step is a; = 0.2588, a, = 0.4833.
They are almost the same as those given in Table 1.
From many trials with different initial estimates, we
have found that the initialization only has an influence
on the learning speed, but it has nearly no influence on
the converged results, as also indicated by Theorem 1.

It may be useful to indicate that here we have not
discussed how to terminate the learning process. There
are several ways to do it, e.g., to stop after a prespecified
number of steps or when the fluctuations fall within an
error bound.

S. IMPROVEMENT ON THE LEARNING
RATES OF NTLS LEARNING

Theorem 1 in the previous section only deals with the
asymptotic solutions of the learning rules (10b and
10d). It says nothing about finite-time behavior, es-
pecially, about the speed of learning, which is strongly
affected by the specific choice of the gain «. The theo-
retical correspondence between the discrete-time
learning algorithms and the continuous averaged dif-
ferential equations requires that the gain sequence a =
a(t) goes to zero. In practice, however, a large o gives
faster convergence. It turns out that in practice the
learning rule of eqn (10b), using constant or prespe-
cified gain «, may not behave well even after the insta-
bility of the norm of m(¢) is removed by using a(¢) =
m(?)/||m(z)| for the parameter vector. The learning
rate « should be quite small, otherwise the learning will
become unstable and diverge. This may bring some
problems (e.g., (a) a small learning rate gives a low
learning speed, (b) one should pay efforts on selecting
a suitable learning rate in order to prevent learning
divergence, (c) the degree of fluctuation and thus the
solution’s accuracy will also be affected by an inappro-
priately predefined learning rate).

The reason for this problem is given by the following
proposition (see the Appendix for the proof’):

PROPOSITION 1. In egn (10b), let
r=m(t+ 1)x|?/|m(t + 1)|*> and
r=m(t)x|*/|m(t).||?

It holds that v' > r if @ > a, = 2/|x[|?(1 — 2
lm(2)] 2cos0ym) and | cos bm| < 1/V2|lm(2) |, where
Oxm IS the angle between the directions of x and m(t).
During the learning process of using eqn (10b) on
a noisy data set, it is possible for some x to have a large
magnitude and a large angle with respect to the di-
rection of m(¢). In such a case o, < 1 is a small positive
number and |cos f,m| < 1/V2|m(2)|; it is then pos-
sible for o (which varies within the real interval (0, 1))
to be larger than «;. Since 7’ and r in fact give the
distances from x perpendicular to the present fitted hy-

Modified Hebbian Learning 447
The Results of Line Fitting On The Data Disturbed By Gaussian Noises
2 v T B ¥ - Y T T B T
Tl X solid - IDEAL, dotted . LS1
LSE L N " doidashed -, NTLS, dashed -- LS2 |
- LN .. P
1F B ,\‘\ N)
05t
(1] 3
_0'5 4 1 A 2 1
0 05 1 1.5 2 25
(@)
0 ‘The Leaming Curves For Fitting A Line: 0.25x + 0.5y =1) The Leaming Curves For Firting A Line: 0.25x + 0.5 y =1
.55 T ¥ v - v 1 v v v + ——y
a2
ost Ny
ll} S RSN S ST A Data Disturbed by Gaussian Noises of Variance 0.5
0.45 h
]
. 08
-2
i
g 0.6 .
al \ . a2
§- “\.’\\fwm -----------
2 b
S 04t
al
0.15 (’ it ™
02
0.1 Data Disturbed by Gaussian Noises of Variance 0.5
0.05 s : . 0 . . :
[} 500 1000 1500 2000 2500 3000 [} 500 1000 1500 2000 2500 3000
the learning steps the leamning steps
(b) (©)

FIGURE 4. The results of line fitting on the data set given in Figure

3(b). (a) The lines of the fitting results by LS1, LS2, and NTLS

are visualized in comparison with the ideal (i.e., original) line which is plotted as the solid line. (b) The learning process of NTLS:
during the first 500 learning steps, the estimates are rapidly modified from a random initial value to the right solution, and hereafter
they have only slight fluctuations. (c) Another learning process of the same problem but with different randomly chosen initial
estimates. It results in the converged values almost the same as those in (b).

perplane after and before a modification, it follows that
eqn (10b) may sometimes increase the estimation error
due to disturbance caused by noisy data. When this
disturbance is too large, it will make m(¢) deviate dras-
tically from the normal learning, which may result in
divergence or a increased learning time.

Similarly, for the learning eqn (10d) we have the
following proposition (see also the Appendix for the
proof):

PROPOSITION 2. In eqn (10d), let ¥', r be the same as
in Proposition 1. It holds that r' > r if a > o (x, m(t)),
where ap(X, m(t)) is a real number, depending on x,

m(t), which can take negative values or small positive
values smaller than 1.

This proposition indicates that for a noisy data set
the use of eqn (10d) may have problems similar to
what happens on the learning process eqn (10b), al-
though asymptotically the solution will be stable if «
goes slowly to zero.

To amend the above discussed problems, it is pos-

- sible to choose the gain sequence in a data-dependent
way to guarantee faster learning. Equation (11a) is given
as an improved version of eqn (10b) and eqn (11b) as
an improved version of eqn (10d):

448

m(t+ 1) =m(?) — aa,z(t)[x — z(t)m(?)]
zZ() =m()x, a,=1/[Ix|* - z*(1)|, (11a)

() - __zm@).
m(t+ 1) =m(z) aaaz(z)[x mT(t)m(t)]
z(1) = m(1)'x,
_ A 0)) _ 1
ca= (= Ty 12) = Tl zsinzog, - 12

Now the learning rate consists of two factors: one is «
which can still be chosen in a data-independent way
like in eqn (10b) and eqn (10d), and the other is
a, > 0 which is adaptively adjusted to suit the present
state and input.

Foreqn (11a)and eqn (11b), we can prove the theo-
rem given below (see the Appendix for the proof):

THEOREM 2. In egn (11a) or (11b), let p(a) = ¥'/r,
with r', r the same as in Proposition 1. For any input
sample x(t), p(a) monotonically decreases as o mono-
tonically increases from 0 to 1. Specifically, we also
have that p(a) monotonically decreases from 1 to 0 as
a monotonically increases from 0 to 1 for either the case
when eqn (11b) is used or the case when egn (11a) is
used and |cos Oym| < 1/|m(t)].

It follows from the theorem that either eqn (11a) or
eqn (11b) can guarantee error reduction for each
learning step as long as 0 < a < | and thus the problems
with eqns (10b, d) are avoided. At the same time, it is
now possible to modify the learning speed simply by
controlling one parameter « like in other learning rules,
e.g., the Kohonen learning rule (Kohonen, 1988).

Table 2 and Figure 5(a) show the simulation results
by using learning rule eqn (11a) in comparison with
those of eqn (10b). It can be seen that the learning by
eqn (11a) produced a better solution. Figures 5(b) and
(c) show the learning process with different random
initial values. They are quite similar to those in Figures
4(b) and (c), but with one different point here that we
use a much larger learning rate. We let « start at 0.1
and linearly reduce to 0.001 at the first 500 learning
steps and hereafter keep it unchanged at 0.001. If we

TABLE 2
A Comparison of Results Given by Learning Rule eqn (10b)
and eqn (11a). The Solutions are Listed
in the Same Way as in Table 1

81 a2
NTLS egn (10b)
last 0.2589 0.4832
means 0.2589 0.4833
variances 0.36 X 1076 0.324 X 1075
NTLS eqgn (11a)
last 0.2542 0.4988
means 0.2542 0.4989
variances 0.25 X 10°¢ 0.324 X 1075

L. Xu, E. Oja, and C. Y. Suen

use such a learning rate in Section 4, a rapid divergence
will occur.

For either the improved learning rule eqn (11a) or
eqn (11b), there is also one other very important ad-
vantage: they have the ability to resist the influence of
outlier noise. In contrast, the least square methods per-
form poorly in such situations. In the following, first
we show some results of computer simulations, and
then we try to reveal the reasons why the improved
learning has such an ability.

Instead of using the data set of Figure 3(b), we use
the data set with outlier given in Figure 6(a). Table 3
and Figures 6(b), (c) and (d) show the simulation re-
sults obtained from the data set by using LS1, LS2,
and NTLS with learning eqn (11a), respectively. From
these results, it can be seen that although both LS1 and
LS2 give quite poor solutions, our NTLS with the im-
proved learning rule produces a much better solution
indicating that the method does have a good outlier-
resistant ability.

There is a basic reason behind the fact that NTLS
with the improved learning equation could resist outlier
disturbances. It is just the adaptive learning rate o,:
For an outlier input, the value of ||x()]|?> — z2(¢)]
usually becomes quite large, thus «, becomes very
small, which forces the wrong modification to give the
current m a small change. Thus, the learning could
remain stable and the right solution could be retained.
Theoretically, this follows from the fact that the aver-
aged forms of eqns (11a and 11b) do not contain the
pure data correlation matrix E(xx”) but a modified
version that also depends on the form of «,. In the
modified matrix, the large magnitude deviations have
a smaller weight.

A nonlinear PCA-like unit that has even better out-
lier resistance has been recently proposed by (Oja,
Ogawa, & Wangviwattana, 1991).

In addition to eqns (11a and 11b), some other mod-
ifications on the adaptive rate «, are possible, e.g., one
workable version of a, is

az = 1/x()|> (1tc)

For any version of ¢, given by anyone of eqns (11a,
b, c,), there is also some chance that the learning can
become unstable if ||x(7)[|2 — z2(¢) or ||x(¢)||? is near

TABLE 3
The Solutions by Different Methods On The Data Set With
Outlier. The Solutions are Listed in the Same Way

as in Table 1
a, a,

Original 0.25 0.5

LS1 0.2419 0.3922
LS2 0.2181 0.5797
NTLS (last) 0.2449 0.4922
NTLS (means) 0.2450 0.4917
NTLS (vars.) 0.2158 X 1077 0.2307 X 10°¢

Modified Hebbian Learning 449
07 The Leaming Curves For Firting A Line: 0.25x + 0.5y =1
The Compasison of Fitting Results of With and Without Adaptive Leaming Rate ' ' ' o T
solid - IDEAL
1.5 F . doited . Nommi;e i g’ .. ~
: = dashed- Adaptive .g
2 -]
(X1
Data Disturbed by Gaussian Noises of Variance 0.5
0 . 0.1
I Leamning rate is Adaptively Adjusted by Input Samples
% 500 1000 1500 2000 2500 3000
.0.50 05 1 15 2 25 the learning steps
(@) (b)
The Leaming Curves For Fitting A Line: 0.25x + 0.5y =1
I.2 Bl Y - Al T
1k Data Disturbed by Gaussian Noises of Variance 0.5]
Learning rate is Adaptively Adjusted by Input Samples
§ 0.8 B T
‘s
>
E o)
g ‘ Ela:‘\hf“-«, O et eeeeneeen
Y aa':.l
£ oaH¥]
al
02 pﬁw]
0 1 1 A 1 1
0 500 1000 1500 2000 2500 3000

the leaming steps

FIGURE 5. The results of line fitting by using learning equation eqn (11a) in comparison with eqn (10b). The same noisy data set
D', shown in Figure 3(b) is still used. (a) The lines of the fitting results by using eqn (11a) and eqn (10b): the dashed line is the
result of eqn (11a) which adaptively adjusts the learning rate a,, the dotted line is the result of eqn (10b), and the solid line is the
ideal (original) solution. (b) and (c) The learning processes with different random initial estimates. After 500 steps, the two

processes are almost the same.

zero, although the chance is very rare in practice. One
solution is to use the following a/, to replace a,:

oy, fa,=T;
ag = . (11d)
T, otherwise;

where T = 1 is a predefined threshold.

6. HIGH-ORDER NEURAL UNITS FOR
NONLINEAR SURFACE FITTING

High-order neural units have been advocated by Giles
and Maxwell (1987). Here we show that the unit of
Figure 2 can be generalized into a high-order unit for

fitting nonlinear curves and hypersurface which could
be expressed by eqn (6a), i.e.,
afi(x) + @ foa(x) ...+ aufu(X) + =0,

X = [xl, X2y e 9xn]Ty

where f;(x) is a function of x. For example, for poly-
nomial curves, f;(x) is a multiplicative combination of
the components of x below

fi(x) = x{xR2 ... x, with integers
riz0, j=1,...,n.
In the quadratic case

ax}+ axix + asx3 + ax; + asx; + ¢ =0,

450

The 500 Sample Points Containing Two Outlier Samp
10— T - v T —
outlier point 2
8+
6F
° * outlier point 1
L
.ﬂ
§
2 other 498 points are densely
distributed on the line segment
ot
0 2 4 6 8 10 12
variable x
(@)
The Results of Line Fitting On The Data With Two Outliers
2 v) v - v 4 v v
solid - IDEAL, dotted . LS1
Lsp dotdashed -, NTLS, dashed -- LS2
1F 2\
0.5f
of 4
_0.5 1 — " n 1 -
1] 05 1 15 2 2.5 3 35 4 45 5
(b)

L. Xu, E. Oja, and C. Y. Suen

The Leaming Curves For Fitting A Line: 0.25x + 0.5 y =1
v T ¥ T

0.6 S S S,
i
b 2
05 My [A5a™
/ | yreneeseee
LA
o 04
3
>
4
0.
g ’ W !
g 0.2}
Data Disturbed by Two Outlier Samples
0.1r
Leamning rate is Adaptively Adjusted by Input Samples
o L 1 D IO
0 500 1000 1500 2000 2500 3000
the learning steps
©
The Learning Curves For Fitting A Line: 0.25x + 0.5 y =1
1 . - v v e)
09} Data Disturbed by Two Outlier Samples |
o8t Leaming rate is Adaptively Adjusted by Input Samples
0.7
@
Q
3 06 _
5 Vi a2
g o.s-'\’f"-‘\" [
S04
S
03t al)
0.2 (\f 4
0.1+ 4
% 500 1000 1500 2000 2500 3000

the leaming steps

(d

FIGURE 6. The results of line fitting on the data set with outlier. (a) Two of the pure 500 sample points given in Figure 3(a) are
disturbed by two strong outlier noise points, while the other 498 points are still pure data. (b) The lines of the fitting results by LS1,
LS2, and NTLS are visualized in comparison with the original line. (c) and (d) The learning processes with different random initial
estimates. The learning rates are the same as those used in Figure 5(b). After about 1,000 learning steps, two learning processes
give almost the same converged solutions only with very slight fluctuations.

we have
Six) = x%, (X)) =x1x, fi(x)= x%,

Ja(x) =x1, f5(x) = x,.

In fact, a generalized high-order unit is just like that
given in Figure 2. The difference is that each weight
wi(2) is now regarded as a high-order connection and
each input is not the component of data vector x but
its high-order combination f;(x).

Let f=[f1(x),/2(x), ..., /[d(x)]7. We first calculate
e¢ = E(f), and if e is a zero vector, then the high-order
weight vector m(¢) = [u,(¢), ..., um(2)]7 could be
learned directly by eqn (8a) or eqn (8b) with x(¢) being
replaced by f. In the general case, by using the strategy
given in eqn (5a), we use f’' = f — e, to train the unit
by learning eqns (8a and b) (or eqns (10b and d)) as
well as their improved versions eqn (11a and b). After

m has reached its converged value m,, we take the so-
lution for parameters as [a;, a, ..., a,]7 = m, and
Co = —e{ m.

In the following, we give some simulation results to
illustrate the performance of our neural method. A data
set Dy = {(x;, ¥:, 2), i =1,...,993} comes from an
ellipsoid '

0.04x% 4+ 0.0625y2 + 0.1111z2 =1,

in a way given in Figure 7(a). Similar to line fitting
described in Sections 4 and 5, the problem is to use a
parameterized model (e.g., a;x? + a3 + a;z2 = 1)
to fit D, so that the right parameters a,, a,, a; are
solved. Again the fitting problem on the pure data set
is not our interest here since both the usual LS method
and our neural method can give the perfect solution.
Instead, we generate two noise-disturbed data sets as
follows:

Modified Hebbian Learning

Samples Are Distributed on The Surface 0.04x*x+0.0625y*y+0.1111z*z=1

\“‘\\\ \\“‘

’»\h\\\\\\

@)

The Data Set Disturbed by Gaussian Noises of Variance 0.3

Wy ‘ ‘g' \(/“»“a\’&\ﬁ,m‘{\‘\ 0

‘ "v Sl

.»/60/«{«) v‘(,4)“\, \Vw «y

/ LW ‘ (' \,AW
%

A

(b)

Ah“\

The Data Set With Six Outlier Points

FIGURE 7. The data set used in surface fitting simulations. (a)
993 data points of our data set are obtained by sampling the
ellipsoid in such a way that the sampling intervals on x — y
plane are uniform. Thus, each knot on the ellipsoid is a sample
point. (b) These irregular knots are the 993 noise-disturbed
sample points obtained by using Gaussian noise with variance

= 0.3 in the way given by eqn (12a). (c) Six of the pure 993
sample points given in (a) are disturbed by six randomly gen-
erated wild points.

1. Considering that in computer vision problems the
influence of noise on variables x, y can be neglected
usually, while the z variable has been contaminated
by noise much stronger than x, y, we add Gaussian
noise on D, as follows
zi=zitn, Xi=Xx, Vi=y,

i=1,...,993 (12a)

where E[n,] = 0, var[n,] =

451

2. We let some randomly generated noise points be

added to the points of the pure data set D, .

Figure 7(b) shows the data set generated from eqn
(12a) with noise variance ¢2 = 0.3. Figure 7(c) is the
result of using six randomly generated wild points to
disturb the pure data set D,. We denote both of
the above two noisy data sets by D', = {(x}, ¥}, z}),
i=1,...,993}. In the following, our simulations are
conducted on the two noisy sets by using LS method
and our NTLS, respectively.

The LS method is implemented by parameterization
a;x* + a,y* + a3z% = 1, and the solution a = [a,, a,,
a;]7 is obtained by

a=XTxX)'x™, b=1[1,...,1]7

X\ ot Xoos
T _
XT={» - yos).
) !
2y "t Zoggs

The NTLS is implemented by the improved learning
rule eqn (11a), similar to that in Section 4. It consists
of the following steps:

1. Compute means e = ler, &, &3]17, e = 555 253
X2, e=g9; 22 vy and e = 9;3 23 z2.

2. Subtract the means from each data pomt ie., fi
=x?—e, [=y —eand [V =27 —e,.

3. Initialize weight vector m = [u,, uy, u3]7 by a ran-
dom number from a uniform distribution on [0, 1]
X [0, 1], and let £=[f, 7%, £$17, where j is
a random integer, with equal probability any integer
of {1,2,...,993}.

4. Adapt m by

m(t+ 1) =m(t) — ao,z(t)[f— z(£)m(2)], (12b)

where z(¢1) = m(¢)"f, o, = 1/|| £ || — z%(¢)|, and
o starts at 0.1 and linearly reduces to 0.001 at the
first 500 learning steps, after which it remains un-
changed at 0.001.

5. Calculate the current solution a(z + 1) = [a
(t+1),a(t+ 1), as(t + 1)]7 through transforming
equation [x2, y% z2]m + ¢, = 0 into a,(¢ + 1)x2
+ay(t+ D)y*+as(t+ 1)z% = 1, ie,

a(t+1)=—u(t+ 1)/ c,
a(t+1)=—u(+ 1)/c,
as(t+ 1) =—p3(t + 1)/co, co=m(t+ 1)Tes

Table 4 and Figures 8(a)-(f) show the results of
the experiment on the data set disturbed by strong
Gaussian noise (see Figure 7(b)). Table 4 already shows
that the solution of NTLS is better than that of LS, and
Figures 8(a)-(f) show visibly that in all the three di-
rections NTLS has obtained better results than the LS
method. Especially in the direction vertical to x and y
axis, respectively, NTLS outperform LS significantly.

Similarly, Table 5 and Figures 9(a)-(f) show the
results of the experiment on the data set disturbed by

452 L. Xu, E. Oja, and C. Y. Suen

‘The Comparison on Some Slices Made in Vertical of The x-Axis

The Comparison on Some Slices Made in Vertical of The y-Axis

g e

g g ey

solid - true data
dotted ... by NTLS |

z axis

z axis

35 (] Tas

@

The Comparison on Some Slices Made in Ventical of The x-Axis The Comparison on Some Slices Made in Vertical of The z-Axis

R SE————

[~ solid - true data

_doted . by LS]
solid - true data

dotted .. by NTLS

z axis
X axis

35] 10 15 20 25 30
y axis
)
as The Comparison on Some Slices Made in Vertical of The y-Axis The Comparison on Some Slices Made in Vertical of The z-Axis
.S~ oy v v v — e o — iy
40t

) .. doued . by NTLS]
solid - true data -

3} dotted .. by LS st
25 30
2l 25
2 .g
S 204
15+
15
1+
10+
05
sl
o
0 45
X axis y axis
© ®

FIGURE 8. The results of surface fitting on the data set given in Figure 7(b). To visualize the estimated ellipsoids by LS and NTLS,
we show some slices obtained by intersecting them along each of the directions vertical to x, y, z axis. (a), (¢), and (e) are those
slices of the result by NTLS intersected along the direction vertical to x, y, z axis, respectively, (b), (d), and (f) give those
counterparts of the result by LS.

TABLE 4
The Solutions by LS and NTLS On Surface Fitting With Gaussian Noise.
The Solutions are Listed also in the Same Way as in Table 1

a, az as
original 0.04 0.0625 0.1111
LS 0.0438 0.0686 0.0832
NTLS (last) 0.0383 0.0677 0.1023
NTLS (means) 0.038 0.0673 0.1029

NTLS (vars.) 0.115x 1077 0.1544 x 107® 0.1622 X 107®

Modified Hebbian Learning 453

The Comparison on Some Slices Made in Vertical of The x-Axis

‘The Comparison on Some Slices Made in Vertical of The y-Axis

¥ v ¥ v R
solid - true data J ”3‘&:23‘?5 ﬂ'ﬂs
dotted ... LS |]

z axis
z axis

C— T T I w0 as
X axis
(@

‘The Comparison on Some Slices Made in Vertical of The z-Axis

40f sobd-thiedata = ted . LSV
35+
0}
25H
E
: i
15+
10+
5t
o s 10 15 20 s~ 30 s 5 10 1S 20 25 0
y axis y axis
(b) (e)
‘The Comparison on Some Slices Made in Vertical of The y-Axis ‘The Comparison on Some Slices Made in Verti
5 v ¥ + . + v o v s ol et P a——
| solid - true data
45 dotted .. LS
35+
4t
ast %
3F 25
k] K]
25
3 P
2F
15
15
n 10t
05 st
0 o
(] 40 45 5 10 15 20 25 30
X axis y axis
(© (f)

FIGURE 9. The results of surface fitting on the data set given in Figure 7(c). Here (a), (b), (c), (d), (e), and (f) are, respectively,
the counterparts of Figs. 8(a), (b), (¢), (d), (e), and (f).

TABLE 5
The Solutions Obtained by LS and NTLS On Surface Fitting With Outlier.
The Solutions are Listed Again in the Same Way as in Table 1

ay as as]
original 0.04 0.0625 0.1111
LS 0.0516 0.0825 0.0432
NTLS (last) 0.0376 0.0603 0.1081
NTLS (means) 0.0377 0.0602 0.1081

NTLS (vars.) 0.592 X 107° 0.3428 x 10°® 0.214x 1078

454

L. Xu, E. Oja, and C. Y. Suen

The Learning Curves For Fitting A Surface: 0.04x*x+0.0625y*y+0.1111z*z =1

0.12 4
1]
£ 008 4
<
: r& a2
o ,,v." """"""""""""""""""""""""""""
g 0068 4 W :
v
5' i al
S 004 E
0.02 Data Disturbed by Gaussian Noises of Variance 0.3 i
. Leamning rate is Adaptively Adjusted by Input Samples
0 -
0 500 1000 1500 2000 2500 3000
the learning steps
(@)
The Learning Curves For Fitting A Surface: 0.04x*x+0.0625y*y+0.1111z*z =1
0. 12 T R Al T L
o1t a3 |
_“2 0.08 | §
s 2
é “l‘.*;f\;\"'\“'“ -- ~
<
g
-é’ al

0.02

Data Disturbed by Six Outlier Samples
Leamning rate is Adaptively Adjusted by Input Samples

L 1 1

1000

1500 2000

2500 3000

the learning steps

(b)

FIGURE 10. The learning processes of NTLS: (a) on the data set of Figure 7(b), some strong fluctuations could be observed at
the earlier steps, but they rapidly reduced within the first 100 steps. (b) on the data set of Figure 7(c), a rapid convergence is

observed.

outlier (see Figure 7(c)). From both Table 5 and Fig-
ures 9(a), (c), and (e), we see that the results by LS
are very poor in all the three directions due to the reason
that the least square method cannot resist outlier dis-
turbances. However, it follows from Table 5 and Figures
9(b), (d), and (f') that the estimated solution by NTLS
is quite good. It is obvious that NTLS can significantly
outperform LS in all the three directions. This again

verified that NTLS has the ability of resisting outlier
disturbances. v ,

Figure 10(a) and (b) show the learning process of
NTLS on the data set of Figure 7(b) and Figure 7(c),
respectively. We again see the advantage of the improved
learning rule through two obvious facts: (a) the learning
exhibited in Figure 10(a) can still stabilize rapidly al-
though at the earlier steps all the three weights oscillated

Modified Hebbian Learning

strongly; (b) the rapid convergence of the learning de-
picted in Figure 10(b) is obtained by a large learning
rate while the learning still remained stable.

7. CONCLUSIONS

For data or pattern representation, it is conventionally
regarded that principal components are important
while minor components are mostly noise. However,
this paper has shown that cases exist in which the minor
components have the same importance as principal
components. We have shown that the fitting problems
could be solved in the TLS sense by extracting the mi-
nor component of data set and that a linear neural unit
with modified anti-Hebbian learning can adaptively
fulfill such a task. In other words, a simple neural unit
could act as an optimal fitting analyzer which can out-
perform the least square method significantly. The re-
sults of computer simulations demonstrated that our
method can provide a new tool for adaptively solving
the classical optimal fitting (or modelling) problem.

REFERENCES

Baldi, P., & Hornik, K. (1989). Neural networks and principal com-
ponent analysis: Learning from examples without local minima.
Neural Networks, 2, 52-58.

Baldi, P., & Hornik, K. (1991). Back-propagation and unsupervised
learning in linear networks. In Y. Chauvin and D. E. Rumelhart
(Eds.), Back propagation: Theory, architectures and applications.
Erlbaum Associates.

Chauvin, Y. (1989). Principal component analysis by gradient descent
on a constrained linear Hebbian cell. Proceedings of IEEE Inter-
national Conference on Neural Networks, (Vol I, pp. 373-380).
New York: IEEE Press.

Foldiak, P. (1989). Adaptive network for optimal linear feature ex-
traction. Proceedings of IEEE International Conference on Neural
networks, Washington D.C. (Vol I, pp. 401-405). New York: IEEE
Press.

Giles, C. L., & Maxwell, T. (1987). Learning, invariance, and gen-
eralization in high order neural networks. Applied Optics, 26,
4972-4978.

Golub, G., & Van Loan, C. (1983). Matrix computations. Baltimore,
MBD: Johns Hopkins University Press.

Karhunen, J. (1982). On the recursive estimation of the eigenvectors
of correlation type matrices. Lic. Tech. Thesis, Helsinki University
of Technology.

Kohonen, T. (1988). Self-organization and associative memory. Berlin:
Springer-Verlag.

Kung, S. Y. (1990). Constrained principal component analysis via
an orthogonal learning network. Proceedings of 1990 IEEE In-
ternational Symposium on Circuits and Systems, New Orleans,
LA (Vol. 1, pp. 138-140). New York: IEEE Press.

Kung, S. Y., & Diamantaras, K. I. (1990). A neural networks learning
algorithm for adaptive principal component extraction (APEX).
Proceedings of 1990 IEEE ASSP Conference (pp. 861-864). New
York: IEEE Press.

Kushner, H., & Clark, D. (1978). Stochastic approximation methods
Jor constrained and unconstrained systems. New York: Springer-
Verlag.

Linsker, E. (1986a). From basic network principles to neural archi-
tecture: Emergence of spatial opponent cells. Proceedings of the
National Academy of Sciences USA, 83, 7508-7512.

Linsker, E. (1986b). From basic network principles to neural archi-

455

tecture: Emergence of orientation selective cells. Proceedings of
the National Academy of Sciences USA, 83, 8390-8394.

Linsker, E. (1986¢). From basic network principles to neural archi-
tecture: Emergence of orientation columns. Proceedings of the
National Academy of Sciences USA, 83, 8779-8783.

Ljung, L. (1977). Analysis of recursive stochastic algorithms. JEEE
Transactions of Automatic Control, 22, 551-575.

Oja, E. (1982). A simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology, 16, 267-273.

Oja, E. (1989). Neural networks, principal components, and sub-
spaces. International Journal of Neural Systems, 1, 61-68.

Oja, E., & Karhunen, J. (1985). On stochastic approximation of
eigenvectors and eigenvalues of the expectation of a random matrix.
Journal of Mathematics Analysis and Applications, 106, 69-84.

Oja, E., Ogawa, H., & Wangviwattana, J. (1991). Learning in non-
linear constrained Hebbian networks. Proceedings of the Inter-
national Conference on Artificial Neural Networks. Helsinki, Fin-
land (pp. 385-390) Amsterdam: North-Holland.

Pearson, K. (1901). On lines and planes of closest fit to points in
space. Phil. Mag., 2, 559-572.

Robbins, H., & Monro, S. (1951). A stochastic approximation
method. Ann. Math. Statist., 22, 400-407.

Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-
component analysis. Europhysics Letters, 10, 693-689.

Rubner, J., & Schulten, K. (1990). Development of feature detectors
by self-organization. Biological Cybernetics, 62, 193-199.

Sanger, T. D. (1980). Optimal unsupervised learning in a single-layer
linear feed forward neural network. Neural Networks, 2, 459-473.

APPENDIX
1. The Proof of Part (1) of Theorem 1

Following the technique used by one of the authors to prove Lemma
2 in (Oja & Karhunen, 1985, p. 73), let ¢;, A; denote the unit eigen-
vectors and eigenvalues of matrix R and assume that the smallest
eigenvalue A, is strictly smaller than the other eigenvalues. Express
the solution m(¢) as

m(s) = X n(0)c, (A1)
i=1

which is always possible since the eigenvectors of a symmetrical matrix
form an orthonormal basis. Then (8e) yields

dni/dt = = Nm; + (m(8)"Rm(1))7;. (A2)

If 7,(0) = 0, then 7,(¢) must be zero for all ¢; this implies that if
1,(0) # 0, then 5,(¢) is nonzero for all ¢. Therefore, we may define
$i(2) = mi(2)/na(t) and get directly from (A2) the equation

dii()/dt = (A = N)$§i(0), (A3)

which shows that all §(¢), i # n, tend to zero as t = oo0.
Therefore, asymptotically

m(t) = n,(1)cn, (A4)
and for 7,(¢), eqn (A2) yields
dna(t)/dt = Na(ma(1) = na(2)). (AS)

This shows directly that if \, = 0, then 7,(t) = 1,(0) for all ¢,
and m(t) tends to 7,(0)c, = (m(0)”¢,)c,. .QED.

(Note: If 0 < A, eqn (A5) also shows that |5,(¢)| tends to either
zero (if |1,(0)| < 1) or infinity (if |9,(0)| > 1), and the point 7,(¢)
= 1 is a unstable fixed point.)

2. The Proof of Part (2) of Theorem 1

Let A = —R and substitute it into eqn (8f), which gives eqn (11) of
(Oja & Karhunen, 1985, p. 73). Because 4 is a symmetric matrix,
the conclusion of Theorem 1 (Oja & Karhunen, 1985, p. 73) directly
applies. .QED.

456

3. The Proof of Proposition 1

For ' = |m(z + 1)™x(2)|%/|m(¢ + 1)||2 and r = |m(+)Tx(2)|?/
[lm(¢)||2, the task is to show p(a) = r'/r > 1 under the conditions
that

2

Ix() 121 = 2[lm(2) || *c08%0m)

and

oa>op =

1
|cOS Oy | < =~

V2Im(n)]
By eqn (10b), we have
m(t + D7x(1) = z(O[1 = a(lIx(D) > = 2%(1))]
lm(z+ DI? = Im() 1> = 2az*(6)(1 = [m(1)[1?)
+ a2 ([Ix()I? = 22%(1) + 22 (1) Im(2) 1 *].
Denote
g=Ix(OI* = 22(1), p=Im@®)% u=2z), (A6)
and we can rewrite p(«) into

p(1 - aq)®
p—2au(l — p)+ a®u(q — u+ up)’

pla) = (A7)

Therefore
pla)> 1 e p(l —aq)?>p—2au(l — p) + a®u(q — u + up)
= a(g’p — uqg+ u* — u?p) — 2a(pg — u + up) >0

- a(a -2 q—zb‘f—q 1;;{*:2“5 iji)
X (q*p — ug+ u*— u*p)>0. (A8)
By substituting eqn (A6) into eqn. (A8) and noticing that
z(1) = m()"x(2) = Ix(0) llm(1) cos Oxm,
we see that p(a) > 1 is equivalent to
2
TIOIP(= 20m() 1 cosm)
X Ax(O) I*Im(2) | %sin0m(1 = 2lm(2) | %c08°04m) > 0. (A9)

Since o takes values in the interval (0, 1), we see that this inequality
holds only when .

2
Ix()I(1 = 2[lm(2) || 2c08%0 xm)
(1 = 2lm(2)]|%c0s?0ym) > 0.
Therefore, from eqn (A9), it follows that

and

o> o

pla)> 1= a>a, and |cos Oy] <§ﬁ;l(7ﬂi .
.QED.
4. The Proof of Proposition 2
By eqn (10d), we now have
2
m(:+ D)7x(1) = z(t)[l - a(Ix(e)1%2 - Fnzviz(tt)#)]

Im(z+)17 = Im() 1> + o?2%(2) A%,
where A2 = ||x(t) — z(¢)m(¢)/|m(¢)| 2| If we denote

EAUN
Im(e) 2

then from ¥ = |m(s + 1)™x(2)|%/|lm(¢ + 1)||>and r = |m(¢)x(2)|?/
[lm(2) |2, we have

q=(||x(t)u2—) p=ImI% u=z1), (AI0)

L. Xu, E. Oja, and C. Y. Suen

_p(1-ag)’

o) = (Al1)

Therefore
p(a)> 1 p(l —ag)?>p+ a?u?
= a?(g*p — uA?) - 2apg >0
2pg
> S
(¢°p — ud?)
(since the learning rate « is positive). (A12)

Denote a;, = a,(x(2), m(t)) = 2pq/(q*p — uA?). Next we show that
it is possible for apy <0 or0 < ap <y < 1.

First, it follows from eqn (A10) that
pa = Ix(@) 12 Im(e) 1% = 2%(2) = Ix(2) || >l m(2) | *$in 0 > O.

WEe see that a;, < 0 is equivalent to A(q, p, u) < 0 with the notation
A(q, p, u) = ¢*p — uA® Further recalling that
z(ym(1) || ? 22(1)
=|x()| —-2—75
Im(0) I L

+zX(t)=q—u/p+u,

A= ” x(1) —

we have A(q, p, u) = g*p — ug + u*(1/p — 1), and due to p =
lm(z)]|? > 0, it is a concave parabola with respect to g. It is easy to
show that when

p=Im@®|*> %, (A13)

the equation A(q, p, u) = 0 has two roots ¢, = u(1 + V4—p-:??;)/2p
and ¢, = u(1 — Vdp — 3)/2p, thus A(q, p, u) < 0 when

z2(1)
lm(2) |2

Second, 0 < oy < ¥ < 1 is equivalent to A(q, p, u) > 0 and B(q,
p, u) > 0, where B(q, p, u) = yA(q, p, u) — 2qp = ypg* — (yu +
2p)q — yu?(1/p — 1). Again, B(q, p, u) is a concave parabola with
respect to g. If B(q, p, u) = 0 has no root, any g value makes B(q,
p, u) > 0; if B(q, p, u) = 0 has two roots ¢, < ¢,, B(q, p, u) > 0
when either

@<qg=|x(0))*~ = x()]%in%bm < q1. (Al4)

g<4q or g>¢q. (A1S)

Because either eqns (A13, A14) or eqn (A15) could be true for
an arbitrary input sample x(z), we have proved that it is possible for
ap < 0or0 < a, <4y <1, and together with eqn. (A12), we have
proved Proposition 2. .QED.

5. The Proof of Theorem 2

First we prove the case of using eqn (11a). Since the only difference
between eqn (10b) and eqn (11a) is that « in eqn (10b) is replaced
by aa, in eqn (11a), eqn (A7) yields the form

_ p(1 — aa,g)? ~
ple) P — 2aa,u(l — p) + a*au(qg — u + up) (A16)

Its derivative is given by
p'(a) = A(a)/B(a), B(a)=[p- 2aau(l - p)
+ a??u(qg— u+ up)]*>0

Ala) = =2a,p(1 — a0,g)C(a) = =2|lm(1) [*(1 - aa,q)C(a)
C(a) = qlp — 2aa,u(1 = p)] + [-u(1 — p)

+ aau(qg — u + up)] + aa,qu(l — p). [Al7]
C(a) is a monotonically increasing function with respect to « since
C'(a) = as[~2u(l = p)g + u(q — u + up) + qu(1 — p)]

= a,(upq — u* + u’p),

Modified Hebbian Learning

and from eqn (A6) and eqn (11a) it follows that
C'(a) = a2 () (Ix(0) [*lm(2) |1* = 2%(2))
= a 22(1) Ix(1) | *|lm(2) | *sin’g
Furthermore, due to
C(a=0) = pg—u(l - p) = |x(0) | *Im(2) |2
= 22() = lIx() | *Im(2) | *sin*fxm > O,

we can also see that C(a) > 0 for any a = 0.
In addition, from eqn (11a) and eqn (A6), we have o, = | 1/4g].
It follows from eqn (A17) that if g > 0, then

Ala) = =2a,m(0)[*(1 = a)C(a),
and if g < 0, then
A(a) = —2a,m(0)|*(1 + a)C(a).

In both cases, A(a) < 0 (and thus p’'(a) < 0) when a € (0, 1) (i.e.,
o(a) is a monotonic decreasing function of « on [0, 1]).
Specifically, if ¢ = |Ix($)[|2(1 — ||m(z)*cos®bym) > O (ie.,
[cos Oxm| < 1/]lm(2)]), then by eqn (A16) we have p(a = 0) = 1
and p(a = 1) =0.
Second we prove the case of using eqn (1 1b). Similarly, replacing
aineqn (All) by aa,, we have for eqn (11b)

o) = atadual” (AI8)

Its derivative is now given by
o'(a) = A(a)/B(a), B(a)=(p+ a?aiur?)?=0
Ala) = =2a,m(0)|1*(1 = aaq)C(a)
C(a) = q[p + a?2uA?] + 2uA’aa,(] — aa,q). (A19)
We further have
C'(a) = 2uM’a,(1 — aa,q).
In addition, from eqn (11b) and eqn (A10), we have «, = 1 /g, thus
C'(a) =2uA?l/q(1 — a) >0,

when « € (0, 1) because 1 > 0, ¢ > 0, A% > 0 according to eqn
(A10). Therefore, in the interval [0, 1], C(«a) is a monotonically
increasing function with respect to . Due to

457

C(a = 0) = pg = [x()|*Im(2)* — (1)
= Ix()1*Im(2) | *sin*fm > O

we can also infer that C(a) > 0 for any « € [0, 1].
Furthermore, by putting o, = 1 /g into A(a), we have

A(a) = “2a,lm()|1*(1 = a)C(a) <0,

when a € [0, 1](i.e., p(a) is a monotonic decreasing function of «
on [0, 1]), and by eqn (A18) we have p(a = 0) = 1 and p(a = 1)
=0. .QED.

6. An Additional Analysis on eqn (11a)

By taking the conditional expectation of the right hand side of the
equation over x, keeping m(?) fixed, we can get the corresponding
averaged continuous-time equation:

dm(t)/dt = —R(m(t))m(¢)
+ [m()TR(m())m(1)]m(r), (A20)
where
R(m(1)) = E{a,(x, m(2))xx"m(z)}. (A21)
Assume that a,(x, m(¢)) > O for all m(¢), and

lim a,(x, m(?)) = 1/x7x. (A22)
m(1)—~0

(Note: these conditions on «, are valid for the cases of eqns (11a),
(1lc),and (11d).)

Then it further holds that R(m(¢)) tends to R, = E{xxT/x"x}
ifm(z) = 0.

Now eqn (A20) gives id|lm(z)||2/dt = m(r)TR(m(t))m(z)
(Im(2)]|> = 1). Due to [A21] it holds that m(z)"R(m(¢))m(¢) is
positive for all m(z) # 0, and it follows that if [m(0)| < I, then
[lm(z) | will tend to zero as t = oo. This in turn implies that R(m(¢))
will tend to R, and asymptotically eqn (A20) becomes

dm(t)/dt = —Rm(?) + [m()TRm(1)Im(z), (A23)

which can be analyzed exactly in the same way as that used in this
Appendix for proving Part (1) of Theorem 1. We then know that
m(¢) will asymptotically have the direction of the minor eigenvector
of matrix R,.

