- x)

International Journal of Neural Systems, Vol. 1, No. 3 (1990) 269-283

© World Scientific Publishing Company

ADDING LEARNED EXPECTATION INTO
THE LEARNING PROCEDURE OF SELF-ORGANIZING MAPS

Lei Xu
Department of Information Technology, Lappeenranta University of Technology,
Box 20, 53851 Lappeenranta, Finland
Permanent address: Dept. of Mathematics, Peking University, P.R. China

Received 27 November 1989
Revised 2 April 1990

The self-organizing topological map is generalized by adding a learned expectation to its learning
procedure, in order to improve its stability in nonstationary environments with unexpected inputs and
abnormal noise. Such a learned expectation is realized through a compatibility test which checks whether
an input is compatible with the earlier learned patterns on a map unit before the unit starts to adapt to the
input. The generalized map consists of multi-maps with a pipeline architecture, equipped with a parallel
search strategy which allows for the implementation of the learned expectation to be fulfilled without extra
computing costs. Computer experiments on several examples are given to show the characteristics of the

generalized map in comparison with the original

1. Introduction

As one of the most notable recent developments
in competitive learning, Kohonen’s self-organizing
topological map has been widely investigated in its
applications, theoretical analysis, extensions and
variations.!~3 Two variations were recently given.*>
One of them* made a modification on computing
speed and data representation by adding a “‘consci-
ence” to the competition. In the other variation,’
the ordering of data with different variances in each
dimension is improved by using accordingly weight-
ed distances, and better and faster approximations
of prominently structured density functions are
obtained by introducing the neighbourhoods speci-
fied by a minimal spanning tree.

As opposed to those approaches, it is suggested
in this paper that the maps be generalized by
including a learned (top-down like) expectation into
its learning procedure. The importance of top-down
expectation in human perception has been empha-
sized by Grossberg.® Particularly, in Grossberg’s
ART model'!>!? (another most notable development
in competitive learning), top-down expectation is
used for self-stabilizing adaptive pattern recognition
in real-time nonstationary input environments. In
this paper, a learned expectation, with a similar
function of top-down expectation in ART, is intro-
duced into topological maps by checking whether

map.

269

the present input is compatible with the previously
learned information of its best-matching unit, and if
not, by finding another candidate for the best
matching unit. This results in a generalized self-
organizing map which consists of multi-maps, with a
pipeline architecture equipped by a parallel search
strategy. With little extra computing costs, such a
generalized map not only can retain the properties
of the original map, but can also stabilize its learn-
ing in a nonstationary environment with unexpected
inputs and abnormal noise. Furthermore, its discri-
minative ability could be adjusted via an external
parameter to tune to different needs.

In Sec. 2, a brief comparative review is made on
the original Competitive Learning (CL), Adaptive
Resonance Theory (ART) and Self-Organizing Map
(SOM). Hereafter, an analysis is given to show that
SOM learning has inherited some constraints of CL,
and a new motivation is proposed for SOM to break
these constraints by using a learned expectation,
with a function similar to top-down expectation in
ART. Section 3 starts with a discussion on where
and how to add a learned expectation into the
learning procedure of SOM, and then the aspects
for practical implementation are investigated. Next,
a generalized SOM with an architecture of multi-
maps and parallel search is presented. Furthermore,
the characteristics of the generalized learning proce-

270 L. Xu

dure are analyzed. Finally in Sec. 4, several compu-
ter experiments on both the original SOM and the
generalized SOM are given to show the characteris-
tics of the generalized SOM.

2. CL, ART and SOM: From Review To New
Motivation

2.1. Competitive learning (CL)

CL model was first proposed by Malsburg® and
Grossberg,'® and has subsequently been further
analyzed and developed by a number of authors.

The basic principle of CL is briefly described by
the model given in Fig. 1(a). Layer L, consists of
n input units x;, X, . . ., X,, each x; takes value 0
or 1. Layer L, consists of M units z,, 25, . . ., 2,
each of which inhibits every other unit such that L,
is winner-takes-all, i.e. the unit receiving the largest
input obtains its maximum value 1 while all other
units are pushed to the minimum value 0. From
each x; to each z;, there is a weight w,; as shown in
Fig. 1(b). When an input pattern X (for conveni-
ence denoted by X = [x;, x3, . . ., x,,]°) appears on
L), each unit z; receives an input of sum

n
—_— _ t t __ t
n = 2 W;ix; = ij> m; = [wlj, BERIRYS wnj] 5
i=1

(1a)

and units 2;, 2;, . .., 2y compete with each other
to get activated, which results in

1
2 = 0

Then the weights adapt to the input X in the
following way

if pj=max {mp, k=1,..., M}

otherwise. (1b)

Zy 2
o o
Wiy

S]

1(a)

o]

. . Wi
in changing }\K

activated

. if 2, = 13
Amj={a(0 m;) if ;=1 (10)

0 ifzj=0

where a is a parameter representing the learning
rate, and 6 is the normalized input 6 = [x,, . . .,

xn]t/27=lxi'

2.2. Adaptive resonance theory (ART)

Grossberg!® has pointed out that although CL
and variants are useful in many situations, the
learning becomes unstable in response to a variety of
input environments, especially in a nonstationary
environment. To solve this kind of problem, he
proposed the ART model!"'? which could self-
stabilize its learning in response to arbitrary input
environments.

One key idea of ART is to introduce the mechan-
ism of learned top-down expectation into CL.
Roughly speaking, the idea is as follows:

In Fig. 2, after one of the units in layer L, (say
unit ¢) won the competition, i.e. 3, = 1, m, does
not immediately start to learn X unless the unit ¢ is
uncommitted (i.e. it never won in all the previous
competitions), otherwise, the unit ¢ sends out a
prototype pattern P° = [p§, . . ., p5]’ to match the
present input X under a given criterion (Fig. 2c).
The prototype pattern is learned from all the pre-
vious inputs which let this unit ¢ win. If a good
match between P and X is obtained, the weight m,
adapts to X (Fig. 2b). If a mismatch occurs, the
unit ¢ is forced to be inhibited at z, = 0 and another
winner-takes-all process occurs within all the other
units in layer L, (Fig. 2d). Then the new winner
repeats the same procedure as the early winners did,
until a good match is obtained or an uncommitted
unit is found or all units of layer L, have been used

up.

Zy Zy

X X2

1(b)

Fig. 1. Competitive learning. (a) A two-layer network. (b) Changing the weights connected to the winner.

Xy X2 X3 Xn

e o o 0 LI
Xy X2 X3 Xn

zg
©o o e :+++ 0 O O I
.« . Ly
Xy X3 X3 Xn
2(d)

Fig. 2. Top-down expectation in ART. (a) Unit ¢ wins
the competition. (b) Changing the weights connected to
unit ¢c. (c) 2, sends out a prototype P° to match X.
(d) Searching a new winner if P° mismatches X.

Adding Learned Expectation 271

The whole ART process is completed via the
interaction and coordination of several subsystems,
the details of which can be found in the original
papers.®!%11:12 What we are interested in is how the
learned top-down expectation mechanism can be
introduced into CL for self-stabilizing its learning in
a nonstationary environment.!!!?

2.3. Self-organizing map (SOM)

Based on the anatomical and physiological evi-
dence that in mammalian brains there exists a
Mexican-hat-like lateral interaction (Fig. 3a) be-
tween neuron units, Kohonen developed CL into his
SOM! in a way different from ART, i.e. introduc-
ing a topological neighbourhood mechanism into
CL.

We still take the 1-D case as in Fig. 1 to
conceptually explain the key idea behind SOM and
its connection with the original CL. In layer L, of
SOM, each unit laterally interacts with other units
in a form of Mexican hat (Fig. 3a), not as in CL
where each unit of layer L, inhibits all the other
units. As a result, when an input X appears on L,
and each unit z; receives an input 7; (see Eq. (1a)),
units 2y, 2, ..., 23 compete and also cooperate
with each other, the result is that the units within a
neighbourhood N, are activated (Fig. 3b) which re-
sults in the weights adapting to X in the following
way:

_Ja(6—m) if jeNg
A"’f'“{o ifjen, @
where N.={c—k, ..., c—1, ¢, c+1, ...,

¢+ k,}, k, is a constant integer, and unit ¢, which
is usually called the best matching unit, satisfies
N =max{mp, k=1,...,M}.

While for CL the learning occurs only on the
weights connected to the winning unit (i.e. the best
matching unit), the learning in the SOM occurs on
the weights connected to all the units within a
topological neighbourhood centred at the best
matching unit.

We should point out that in the usual imple-
mentation of SOM there are several additional
features!:

(1) As shown in Fig. 3c, layer L, is usually a
two-dimensional array, thus the topological neigh-
bourhood N, is also a 2-D area instead of a 1-D
interval.

272 L. Xu

3(a)

© 0o o o o o o
Nelil— o0 o o o o o] o
o]l]o[o o ool o
Nelts)— 0 |0 fo0o oco |of o
o|lo|o o o]o| o

t2 >ty ©o|o o o o of o
© 0o o o o o o

3(c)

Fig. 3. Self-organizing map. (a) Mexican-hat-like lateral interaction. (b) Changing the weights connected to all the
units in N.. (c) Topological neighbourhood which changes with time.

(2) The variables x; of input pattern X are con-
tinuous variables in the real domain R, instead of
only taking value 0, 1.

(3) To ensure that learning is stabilized, the
learning rate « and the neighbourhood N, (see
Fig. 3c) are both functions of time ¢: a(t) and N.(¢),
which monotonically decrease towards zero with
increasing t.

(4) Equations (la) (1b) and (2) are replaced by

X —m] = min{|X —mj, j=1,..., M} (3a)

N (1) = {a set of units topologically centred at
unit ¢}
(3b)
| (X - m)) if jeN;
Am; = {0 if j ¢ N.. (3¢)

The following summarizes the general procedure
of the SOM!:
step 1: For each input X, find the best-matching
unit ¢, with its weight vector m_. being the
best one to match X among all the m;,
according to a matching criterion such as
Eq. (3a) (or other variants).

step 2: Increase the match between X and the
weight vectors m; of units within a topolo-
gical neighbourhood N, of unit ¢ according
to Eq. (3¢).

2.4. Analysis on SOM learning and a new
motivation

As indicated in Sec. 2.3, SOM came from incor-
porating a topological neighbourhood mechanism
into CL: the winner-takes-all competing is replaced
by the Mexican-hat-like competing and cooperating.
This important development makes SOM more use-
ful than the original CL both theoretically (e.g. for
interpreting a variety of maps in the brain!) and for
practical applications.>* But, SOM still suffers from
the unstable learning problem of the original CL.

When an input X induces a neighbourhood N,
by Egs. (3a) and (3b), all the weights m; of the
units within N, will learn X. As a result, when X is
compatible with the knowledge previously stored in
these weights, the learning will refine these weights
to cover the new input without erasing the previous
useful knowledge. However, when X is considerably
different from what these weights learned earlier,
the adaption to X will at least partly wash away the

prior knowledge. This adaptability is useful at the
beginning, for rearranging the configuration of the
map and for jumping out of the local optimal
configurations. But if every unit keeps such adapta-
bility, the learning will become unstable and repeat
a cycle of adapting to the present input and forget-
ting the prior knowledge.

To handle the problem externally, SOM lets the
learning rate «(t) slowly decrease with time from a
given initial value to zero, such that the adaptability
of the map is gradually switched off to force the
learning to stabilize. In a stationary environment,
every pattern will be repeatedly presented according
to a probability distribution. So, what is forgotten
one time still has a chance to be relearned next
time. If a(t) decreases slowly and the learning
procedure lasts long enough, the learning will be
gradually stabilized in response to the probability
distribution of inputs.! In a nonstationary environ-
ment, unexpected changes in the probabilities of
inputs, or in the deterministic sequence of inputs,
will unrecoverably erase the prior knowledge of the
map, and make it difficult to stabilize unless the
adaptability is shut off externally (e.g. let a(r) be
zero or stop the learning procedure). Even when the
map has already organized and converged in a
stationary environment, some unexpected noisy in-
puts will also disturb or destroy the map, as long as
the adaptability (i.e. the learning rate) is not frozen.

As is the case for CL, SOM needs an external
adjustment on the adaptability of the learning. The
adjustment is achieved through a teacher, externally
designing how to decrease the learning rate «(r)
and watching when to stop the learning. In a
stationary environment, a teacher can approximately
handle this task through slow learning. However, in
a nonstationary environment, a teacher cannot catch
up with those unexpected changes unless he is
omniscient. SOM is thus unable to work in the
nonstationary environment and not robust against
noise.

It is interesting to recall how ART solves the
stability problem. Instead of externally adjusting the
adaptability of the learning, ART uses a learned
top-down expectation to internally self-check
whether the present bottom-up input is appropriate
for the weights of the winner in L, to learn it. If
not, the interaction between the bottom-up input
and the top-down expectation will automatically
shut off (in help of other subsystems in ART) the
adaptability of the winner, and produces a new
winner. Our motivation has been to find a way to

Adding Learned Expectation 273

introduce both the top-down expectation mechanism
and the topological neighbourhood mechanism into
CL, to combine the advantages of SOM and ART.

There are two possible choices. One is to intro-
duce the topological neighbourhood to the ART
model, which we do not intend to discuss here. The
other one is to add to SOM a learned expectation
mechanism similar to the learned top-down mechan-
ism used in ART, so that learning could be self-
stabilized through checking whether the present best
matching unit should learn the input or a new best
matching unit should be found. This approach to
overcoming the limitations of SOM is discussed in
the following sections.

3. A Generalized SOM With Learned
Expectation

3.1. Adding learned expectation into the learning
procedure of SOM

As stated in Sec. 2.2, in ART, the top-down
expectation starts its action just after the competi-
tion of L, units produces a winner unit. Its function
is to check if the present input is compatible with
the previously learned code in the weights of the
winner, and thus to decide either to learn the input
by this winner or to find a new winner. That “an
input is compatible with a learned code on a unit”
means that the previously learned code will not be
considerably (according to some criterion) erased
after the unit learns the new input.

Similarly, in SOM, after an input X finds its best
matching unit ¢ in the 2D-lattice (which corresponds
to layer L, in Fig. 1), an expectation could be
introduced to check whether X is compatible with
the earlier learned pattern on unit ¢ and thus to
decide either to learn X by unit ¢ or to find a new
best matching unit. Since it relates the present X to
the previous knowledge of a specific unit, the ex-
pectation should not be nonspecific and primed
externally, but should be individual and learned
adaptively from the input patterns previously match-
ed to the unit. So we call it the learned expectation
of a unit, or simply the learned expectation. We
omit the term “top-down” as used in ART since
conventionally only the 2D-lattice is regarded as a
layer in the SOM case and it is still not necessary to
specify terminologies as “top-down” and ‘bottom-

b

up”.

274 L. Xu

Within the general procedure of SOM given in
Sec. 2.3, a learned expectation should be inserted
between step 1 and step 2. Specifically, the imple-
mentation of a learned expectation consists of three
parts:

(1) Call out a learned pattern from the best
matching unit, the pattern should be a prototype
which represents the previous knowledge of the
unit.

(2) Check whether the present input is compati-
ble with the learned prototype. The test depends on
two factors. One is the similarity between the input
and the prototype under a given criterion. The more
similar the input to the prototype, the less the prior
knowledge will be erased by adapting to the new
input. The other factor is the degree to which the
best matching unit has approached its stabilized
state. When the unit is far from its stabilized state,
its stored knowledge is not so reliable; the test
should be weak and should permit certain dissimi-
larity so that the unit is still sensitive to adapt to
new input patterns. As the unit becomes closer to
its stabilized state and its stored knowledge becomes
more reliable, the test should be tight and should
only permit high similarity, so that the unit can
learn the new subtle information contained in the
input pattern, but at the same time strongly resist
the input from erasing the previously learned code.

(3) Find a new best matching unit if the input is
not compatible with the learned pattern on the
present best matching unit.

The above three parts are repeated until a best
matching unit is uncommitted or is compatible with
the present input, or until all the units of the
2D-lattice have been tested (in this case, further
discussed in the next subsection, the input is re-
jected).

Now, we discuss the practical design aspects of
parts (1) and (2), but leave part (3) to Sec. 3.2.

Consider part (1): how to obtain the prototype
pattern stored on a unit. In ART, this pattern is
stored in its top-down LTM traces!? and learned
from those inputs which let the unit win the com-
petition in layer L,. It is interesting that the learn-
ing equation of the top-down LTM traces in ART!?
is quite similar to the SOM learning equation (3c).
The weight m; of unit j in SOM learned by Eq. (3¢c)
is just a kind of exponentially weighted mean of
those inputs which let the unit fall in the neighbour-
hood of a best matching unit. Thus, for simplicity,
we can directly regard the m; as the learned pro-
totype pattern of unit j.

Consider part (2): how to realize the compatibil-
ity test. There are two problems to be solved. One
is how to know when a unit is close to its
stabilized state, which requires clarification of the
meaning of “the stabilized state of a unit”. Strictly
speaking, when the number of input patterns is
considerably larger than the number of the units in
the 2D-lattice, given a constant learning rate a # 0,
the weight m; of each unit j will never absolutely
converge to a constant vector. However, if inputs
are from a stationary probability distribution, it
could be argued (although without a strict proof)
that the location of every m; will reach a probabilis-
tic equilibrium: each m; is most probably to wander
randomly in the weight space within a limited
range, and the larger the value of a, the larger the
range. When a slowly dereases, such a range gra-
dually shrinks. After « finally reaches zero, each m;
is frozen at a fixed point. In this paper, the meaning
of “the stabilized state” varies according to cir-
cumstances; it means ‘“reached a probabilistic
equilibrium” when « is fixed at a value larger than
zero, or it means “stabilized at a fixed point” when
a decreases towards and finally reaches zero. For
the purpose of practical implementation, we use a
scalar measure for each unit j, denoted oj, to
describe the degree of stability. At each step, these
scalars are updated according to

aj

={(I—B)0j+BIIAm,-|| ifjeNs

o; ifj ¢ N..

There 0.5 = B =<1 is a parameter, and Am; is the
change in the value of m; during the last updating.
In effect, o; is a kind of exponentially weighted
mean of all the previous differences [Am,|. In
Eq. (3c), as (1) tends to zero, ||Am,| tends to zero
as the unit tends to its stabilized state, and o; tends
to zero. When a(t) does not tend to zero but to a
positive value, o; also becomes small in average, as
the unit is close to its stabilized state.

The other problem is what criterion to use for
the compatibility test. In accordance with Eq. (3a)
and for simplicity of computation, we use ||| to
measure the similarity between the present input X
and the learned expectation pattern m.. By taking
the measure o, into consideration, we use the fol-
lowing inequality as a criterion for the compatibility
test:

1 —
oflx — m| < 4—;1 o.. (5)

X is regarded as being compatible with m, if the
inequality holds. The parameter 0 < v <1 has
some similarity with the attentional vigilance para-
meter in ART!?: for v close to one the test is very
sensitive, only a small difference |x — m_|| can pass
the compatibility test. The opposite effect is
achieved if v is close to zero. Since it follows from
Eq. (3a) that Am_. = a[x — m_], checking whether
(5) holds is in fact checking whether the scalar
increment of the weight vector |[Am | by learning
the present input X is not larger than 4(1 — »)/v
times the weighted mean of all the previous incre-
ments. The closer the unit to its stabilized state, the
smaller o, is, thus the increment of the weight
vector Am_ by learning this X must be more strictly
constrained to be quite small to avoid erroneous
erasures.

3.2. The generalized SOM with multi-maps and
parallel search

Consider the case when an input is rejected by all
the units of the 2D-lattice, so that some input
patterns remain unlearned. A single lattice has a
limit capacity. The capacity could be extended by
using a number of lattices to construct a multi-map
architecture in which each lattice is a building
block. All the blocks are connected to form a pipe-
line (see Fig. 4(a)) and each block has its own clock
so that N (t) and a(t) decrease according to their
own time. A new pattern is presented to the first
block; if it is rejected, it goes to the second block,

. ., and so forth until it is accommodated (learned)
by some block, or it goes through and out of the
pipeline. More blocks could be appended to increase
the capacity, if needed.

In principle, both within a block and between
blocks, the process of an input flowing (i.e. sear-
ching a new best matching unit after one compati-
bility test fails) is sequential. One may thus think
that the computation time will increase considerably
due to the use of the learned expectation. However,
this is true only if the computation of Eq. (3a) and
Eq. (5) is repeated each time that a test on the
present best matching unit fails. In fact, Eq. (3a)
and Eq. (5) need not be re-computed: the computa-
tion for searching the best-matching unit is approx-
imately the same in both the original and the
generalized SOM. The reason is as follows:

Consider first one block. When an input comes,
the computation of searching the best matching unit
consists of three parts:

Adding Learned Expectation 275

(1) calculate its distance to all the units on the

2D-lattice: d; =X —mj, j=1, ..., M, (see
Eq. (3a)).
(2) make M comparisons (see Eq. (5)):
1 —
d,‘ <4 (V“)' g;
va

(where 4(1 — v)/va is constant to i), and then put
each unit j with its d; satisfying the inequality into a
set U¢ called the compatible subset.

(3) choose the unit ¢ with d, = min{d;, j eUc}
as the best matching unit. If U; is empty, among
the subset U, of those presently uncommitted units
in the lattice, choose the unitc with
d. = min{d;, j eU,}. If U, is also empty, send this
input to the subsequent block. It is not difficult to
see that the result of such a search process is
equivalent to a sequential search and for the best-
matching unit by repeatedly calculating Eq. (3a) and
Eq. (5).

The implementation of the original SOM also
requires the computation of point (1) above. The M
comparisons needed for deciding the smallest d,
require comparable computation to point (2) above.
So the only extra computation the generalized SOM
needs is point (3) above, and it is quite small since
Uc contains usually only a few units. In hardware
implementation and (see Fig. (4b)), each unit could
calculate d; and do its correspondent comparison in
parallel with all the other units. The result is that a
few units (i.e. those in Ug) are pre-activated, and
then the winner-takes-all occurs only among these
units. The computing speed of the generalized SOM
in parallel implementation may even be faster (at
least not slower) than that of the original SOM.

The search process between blocks can also be
implemented in a parallel way. In the pipeline of
Fig. 4b) when an input is rejected by one block,
the block can at the same time send it to the next
block and get a new input from the preceding
block: a systolic-like parallel computation could be
used here.

The learning procedure in one block of the
generalized SOM is summarized as follows:

put all the units in set U,, set all o; being a large
constant.
begin get new X, set U- = @;
for j=1,2,..., M;
calculate d; = | X — mj|;
if ad; < 41 — v)oj/v , then put unmit j
nto set Uc;

276 L. Xu

—

Data Flow

Block 1 ——— Block 2

—_———

Block n

Fig. 4(a)

Xi41

Uc —_pre-activated

. = Block 2
X

Block | sends out x; and
gets x;,1 atthe same time

Fig. 4(b)

Fig. 4. Multi-maps and parallel search. (a) A pipeline architecture. (b) (i) units in U and pre-activated in parallel,

(i) blocks work in systolic way.

endfor;
fUc=@and U, =9
then send out X;
else begin
if Uc # § then find ¢ with
d. = min{d;, j € Uc};
else find ¢ with
d. = min{d;, j € U,};
for each j € N (t)
begin
Am; = a(t)(X - m;);
if je U, then g, = d;;
else 0;:= (1 — B)o; + Bd;;
Uu = Uu - {]};
end;
endelse;
end.

Some Remarks:

(1) Although all o; are set at a large constant in
the very beginning, it is just for informing the
compatibility test which units are uncommitted and
thus need not be tested. Once a unit is updated, it is
immediately re-initialized by its first d;. An alterna-
tive way is to omit this re-initialization, which is in

effect equivalent to the way of running the original
SOM procedure for a while and then gradually
switching on the compatibility test as the initial o;
iIs exponentially forgotten by the forgetting
parameter 8 in Eq. (4).

(2) Equation (5) is designed for the case that « is
a constant value or reduces slowly. After one unit,
as well as its o}, has been updated, there will be a
certain time interval before the unit can become the
best-matching unit again. If o decreases sharply, the
present learning rate will be considerably smaller
than that of the last updating on the unit, while o;
remains unchanged during the interval. It follows
from Eq. (5) that the present compatibility test on
the unit will be much easier to pass, even though X
may be quite dissimilar to m.. This means that the
test does not follow the a’s change. A solution is to
replace Eq. (5) by:

1 —
allx ~m < 4— "o, ©)

where o, is the value of a(z) at the last updating on
this unit c.

(3) In some cases (as in subspace methods of
pattern recognition’), the magnitude differences of

patterns are not taken into consideration. The simi-
larity for finding the best-matching unit is best
measured by

X'm, X'm; .
TorTTy = maxyco—n, g=1, ..., M. 7a
X[[uxu i !] (72)

Accordingly, Eqgs. (4) and (5) are replaced by

T
Bo; + (1 — BY0.5 (1 + ”—'nl"—il-”'?-n’—ﬂ)
.=]]
% if je N (70)
T
0.5(1 + —"if—) > vo, (70)
llm) ||

where 0 < v < 1, and all the o; are initialized to zero
at the very beginning of the procedure. Here m/
denotes the weight vector obtained from updating the
present m;.

3.3. Adjustments on adaptability, stability,
discriminative ability

The two variable parameters N.(t) and a(f) in
the original SOM are controlled externally and they
decrease slowly with time. N,(z) controls the topolo-
gical organization of the map, and «a(¢) adjusts the
adaptability of the map. The choice of these para-
meters has already been discussed in Ref. 1 and
Ref. 8.

In the generalized SOM, two additional constant
parameters 0 < v < 1 and 0.5 < B = 1 are needed
for the compatibility test. It follows from Eq. (4)
that o; is actually a kind of exponential average of
variations in m;. When B = 1, it is just the most
recent variation (i.e. the scalar increment of ||Am,||
by learning the previous input). 8 is a weight factor
for using a few recent variations and these smooth
out the fluctuation of the last increment. As stated
in Sec. 3.1, the parameter v as a whole controls the
sensitivity of the compatibility test. The compatibil-
ity test, as a whole, adjusts the adaptability of the
map, similarly to a(z).

Although both a(t) and » adjust the adaptability
of the map, their functions are different. a(t) con-
trols the gain or magnitude of the adaptability of
every unit. The smaller the value, the smaller the
change is made on every unit by adapting to any
kind of inputs: a constraints “how much every unit

Adding Learned Expectation 277

can learn from an input”. For convenience, we call
it M-type constraint. The effect of « is nonspecific.
In contrast, v controls the scope of the adaptability
of each unit: the larger the value, the smaller the set
of inputs on which each unit concentrates its learn-
ing. Each unit j only has adaptability to learn a
small set of inputs specified by its prior weight m;:
v constraints “what kind of inputs each unit can
learn”. For convenience we call it S-type constraint.
The effect of v is specific for each unit, and is
governed by the prior knowledge of that unit.

Learning stability is achieved through constrain-
ing the adaptability. M-type constraints and S-type
constraints result in different kinds of stability. In
the original SOM, any incoming input will be
assigned to one unit by a winner-takes-all process.
Since there is no S-type constraint on adaptability,
the unit will learn it by a quantity controlled by
M-type constraint, regardless of whether the input is
considerably different from the prior knowledge of
the unit. As analyzed in Sec. 2.4, this results in a
repeated cycle of learning the present input and
forgetting that previously learned. Although the
cycle could be externally broken by gradually
switching of the adaptability through slowly reduc-
ing a(t), SOM becomes unstable in nonstationary
environments and unable to resist abnormal noise,
since the prior knowledge will be unrecoverably
erased by unexpected new inputs. For the general-
ized SOM in contrast, when an input is assigned to
a unit, the internal S-type constraint on the unit’s
adaptability will allow the unit to learn the input
only if it can refine the prior knowledge of the unit.
The input will otherwise be sent to another unit or
another block. An unexpected new input will thus
not disturb any unit which is incompatible with it.
Instead, it is learned by some unit which can learn
it, or sent to another block if the present block has
no unit which can learn it. As a result, the general-
ized SOM can work in nonstationary environments
and resist abnormal noise.

The S-type constraint on the adaptability in the
generalized SOM allows the learning to be stabilized
even when «(t) remains constant or does not vanish
to zero. The reason is that the S-type constraint
only allows a unit to adapt to an input within a class
consisting of similar patterns. Even if the unit
adapts to the input with a high learning rate «(t),
the learned pattern is still within the class. Conse-
quently, the generalized SOM has less requirements
on how to prearrange a(t) and its reduction sche-
dule. If the S-type constraint is strong enough, the

278 L. Xu

learning could even be stabilized without «(z). It
follows from Egs. (4) and (5) that

1 -
Oj+1 < (l - 3)0']‘ + 4 T BO’j = qO'j (8)

where ¢=(1 - 8) +4(1 — v)B/v. For 0.8<
v<1, ¢<1 and lim; ,.0;=0. Thus for any
a value (see Eq. (5)), the learning on every unit can
be stabilized to learn only the pattern which is
almost identical to that previously learned. Since
g=1-A-4(1 - v)B/v, B has no influence on
the stability of learning but on the stabilizing speed.

Another interesting thing is that although the
S-type constraint is internal and specific to each
unit, the parameter » supplies an external interface
to adjust its strength. As a result, the discriminative
ability of every unit is adjustable to the needs of the
outside world. The higher the value of », the
smaller the range of patterns that a unit can adapt
to, so that only quite similar patterns could reach a
given unit of the resulting map through winner-
takes-all. Each unit has fine discriminative ability.
In contrast, a lower v value permits a large range of
patterns for a unit to adapt to, so that each unit has
coarse discriminative ability.

It should be pointed out that the learning stabil-
ity and the discriminative ability of the learned map
are coupled together; they are just two outcomes of
the S-type constraint on the adaptability. For a
special case, if v — 0, the S-type constraint is totally
removed, and the generalized SOM reduces to the
original SOM. In using Eq. (5) the interval [0.8, 1)
represents the strong S-type constraints; the interval
[0.5, 0.8) represents the usual S-type constraints,
equivalent to allowing the increment to adapt to the
present input to be between one to four times the
weighted mean of the previous increments; and the
interval (0.0, 0.5) represents the weaker S-type con-
straint under which the generalized SOM behaves
rather close to the original SOM.

4. Simulation Results

Computer simulations were conducted for both
the original SOM and the generalized SOM. Four
examples are given in this section to illustrate the
characteristics of the generalized SOM.

In these examples, the components of the weight
vectors are initialized by 0.45 + 0.1x, x being a
random number from a uniform distribution on the
[0.0, 1.0) interval. The parameters N.(z) are de-

creased in the way of Ref. 8 for both the original
and the generalized SOM. During the first n, steps,
the radius r of N.(t) decreases from r, (generally
including the majority of units in the map) to one
(including the best matching unit and its 8 ncigh-
bours) linearly with time; thereafter r stays at the
value of one. As for the parameter @, we simply
take it as a constant, i.e. let a = 0.1, for the
following reasons:

(1) There are a variety of possibilities for choos-
ing the schedule for the parameter «a(t). Outcomes
of the simulations are difficult to attribute to the
compatibility test or the schedule a(t).

(2) For the original SOM, simulations performed
reducing «(t) in the usual way,® lead to results
similar to those obtained with fixed a = 0.1. SOM
can already stabilize quite well with @ = 0.1 if there
are no unexpected inputs.

(3) Here our main interest is to observe if an
organized map could be washed out by unexpected
inputs. In the original SOM this could not be
avoided for any given choice of a(t) unless there is
an omniscient supervisor who knows when unex-
pected inputs come and externally shuts off the
learning.

In all the figures for the following examples, the
ordinals at the bottom of every box (e.g. 250)
express that the map is obtained from presenting
input samples during such time interval.

Example 1: The input data are shown in Fig. 5
and Fig. 6. mr pattern samples come from class C;,
a 2D-uniform distribution with mean (-0.5, 0.5)
and variance 0.4 and other my pattern samples from
class C;, a 2D-uniform distribution with mean
(1.5, 0.5) and variance 0.4. As shown in Fig. 5, an
input sequence x, is formed as follows: m samples
of C, are sequentially presented as inputs to train
the map. Then m; samples of C, are presented
sequentially. The m-th sample of C, is followed by
the Ist sample of C, in a new repeated circle. In
this example, m = 500.

For ¢t < 500 such input sequence could be re-
garded as a stationary sequence, so we can observe
the behaviour of both SOMs in a stationary environ-
ment. For ¢t > 500, the whole sequence should be
regarded as a nonstationary sequence, since its sta-
tistical properties change at t = 500, ¢t = 1000, . . .,
t = 2500, (e.g. for t> 500, E(x,) # constant,
E(x,x,.,) is not independent of f). At t= 500,
1000, ..., t= 2500, the new inputs can be re-
garded as ‘“‘unexpected inputs”, since there is an
abrupt change into another class. The behaviour of

class

Adding Learned Expectation 279

b
-

mr ZmT

l
I T

3mT 4mT

Fig. 5. The input patterns come alternatively from two classes every my step.

both SOMs in a nonstationary environment can thus
be observed.

The parameters of N, are ro = 3 and n; = 400
for both SOMs. Figure 6(a) is the result of the
original SOM with a 6 X 6 map. For the first two
boxes, we see that the map gradually adapts to
inputs of C; during the first 500 samples, and has
nearly well stabilized. However, after 250 samples of
C, at t = 750, most of the previously learned map
has been erased by adapting to C,, and at ¢t = 1000
nearly all the units have relearned the patterns of
C,. Hereafter, due to inputs again from C,;, the
map relearns C; and gradually forgets C, until
t = 1500 at which nearly all previously learned
information about C, has been forgotten. Such an
adapting and forgetting cycle is repeated every 500
steps, and the learning cannot be stabilized.

Figure 6(b) is the result of the generalized SOM
of two blocks with parameters 8 = 0.6, v = 0.6.
Each block is a 6 X 6 map. During the first 500
steps, the first two boxes show results similar to
those of Fig. 6(a): the map of the 1st block gradual-
ly adapts to inputs of C, and has well stabilized at
t = 500, while the map of the 2nd block (located at
the centre with initial values) has learned nearly
nothing since almost all the inputs have been
absorbed by the 1st block and need not be sent to
the 2nd block. As the samples of C, are presented
as inputs, they are incompatible with the map
previously learned by the 1st block; they are re-
jected by the compatibility test and sent to the 2nd
block. As a result, the prior knowledge of C, is well
retained. The map of the 2nd block gradually adapts
to the C, samples (see 3rd and 4th boxes), and the
learning has been nearly well stabilized at ¢ = 1000.
After ¢ > 1000, input samples come from C,, C,
alternatively every 500 steps. Due to the compatibil-
ity test, these samples only refine the map which

previously learned patterns of their own class. As a
result, the learning has no cycle of adapting-and-
forgetting and has nearly well stabilized just after
1000 steps.

In Fig. 6(b) two 6 X 6 maps are used, but only
one 6 X 6 map is used in Fig. 6(a). One may
wonder if the original SOM can get results similar
to those of Fig. 6(b) by using two 6 X 6 maps. The
answer is negative, since for each input there is not
mechanism for deciding which map should learn it.
Each sample is simultaneously presented to both
maps, which results in two maps with similar be-
haviour, as shown in Fig. 6(c) (where the dashed
lines represent one map and the solid lines represent
the other map).

Example 2: This example 1is similar to
example 1, but with my = 100. The parameters of
N(t) are ro = 3 and n; = 200 for both SOMs.

280 L. Xu

Fig. 6. Example 1: pattern samples are input in the way
of Fig. 5, with my = 500. (a) When the origin SOM was
used,the learning of each 500-step-cycle erased what had
been learned in the earlier 500-step-cycle, and the map
could not be stabilized. (b) When the generalized SOM
with two maps was used, 8 = 0.6, v = 0.6. There is no
learning-and-forgetting cycle and the maps of both
blocks have been nearly well stabilized at ¢ = 1000.
(c) When the original SOM with two maps was used. The
two maps have similar behaviour. The dashed lines repre-
sent one map, the solid lines represent the other map.

Figure 7(a) is the result of the original SOM. As
in example 1, the patterns learned within the first
100 steps have been nearly erased during the second
100 steps. After ¢ = 200, since m is short, before
the previously learned C, (or C,) has been totally
washed away by adapting to the samples of C, (or
C,), the samples of C, (or C,) are presented again.
In comparison with Fig. 6(a), we see two points:

(1) In learning with the original SOM, there
exists an unstable cycle of adapting to the present
inputs and forgetting the prior knowledge.

(2) The unstable effect of such a cycle becomes
weaker when the interval m, becomes smaller, since
in this case patterns could be relearned before they
are totally erased.

Figure 7(b) is the result of the generalized SOM
with two blocks and parameters 8 = 0.6, v = 0.7.
Similar to Fig. 6(b), there is no unstable cycle of
adapting-and-forgetting, and the maps of both
blocks have been nearly well stabilized after
t = 500.

The above two examples show that the original
SOM exhibits unstable learning in a nonstationary
environment. In contrast, the generalized SOM can
stabilize its learning via the compatibility test. In
the next example, we will show the behaviour of
both SOMs when some unexpected noise is intro-
duced to an already stabilized map.

Example 3: As shown in Fig. 8, 800 samples
from class C,, a 2D-uniform distribution with
mean (0.5, 0.5) and variance 0.7, form a stationary
sequence to train the maps of both SOMs. The N,
parameters of both SOMs are ry = 3, n;, = 400. The
original SOM has a 6 X 6 map, and the generalized
SOM with B8 = 0.6, v = 0.5 has two blocks, with a
6 X 6 map each. As shown in Fig. 8(a) and
Fig. 8(b), after training by the 800 samples, both
the map of the original SOM and the map of the 1st
block of the generalized SOM have been nearly well
stabilized, and the map of the 2nd block of the
generalized SOM has learned nothing and still re-
mains at the centre of the box. Other 100 samples
from class C;, a 2D-uniform distribution with
mean (2.0, 2.0) and variance 0.05, are presented as
abnormal noisy samples to disturb the two stabilized
maps. As shown in Figs. 8(a) and 8(b), the earlier
learned map of the original SOM, after being dis-
turbed by the 100 noisy samples, has been erased by
25%, while for the generalized SOM, the map of the
Ist block has been kept intact and the noisy samples
have been absorbed by some units of the 2nd block.

Adding Learned Expectation 281

Fig. 7. Example 2: pattern samples are input again in the
way of Fig. 5, but with my = 100. (a) When the original
SOM was used, the unstable cycle of learning-and-
forgetting still exists, but it becomes weaker since the
interval mr is smaller.(b) When the generalized SOM with
two maps was used, 8 = 0.6, v =0.7. There is no
learning-and-forgetting cycle, and the maps of both blocks
have been nearly well stabilized at : = 500.

Fig. 8. Example 3: The 800 samples of C, are input to
train the maps of both SOMs, then 100 abnormal noise
samples are primed to disturb the learned maps of both
SOMs. (a) For the original SOM, the earlier learned map
has been erased by 25% after the presentation of 100
abnormal noise samples. (b) For the generalized SOM
with two maps, B = 0.6, v = 0.5, during the 800 input
samples, the map of the 2nd block has learned nothing
and still remains at the centre of the box. The 100
abnormal noise samples have no effect on the map of the
Ist block; they are absorbed by some units of the 2nd
block.

282 L. Xu

Example 4: In this example, we show that the
discriminative ability of the generalized SOM can be
adjusted via the parameter v. As shown in Fig. 9,
100 samples are generated in such a way that
50 samples come from class C,, a 2D-normal dis-
tribution with mean (—0.5,0.5) and variance 0.3
and they are followed by 50 other samples from
class C, a 2D-normal distribution with
mean (1.5, 0.5) and variance 0.3. The 100 samples
are presented repeatedly to train the maps of the
generalized SOM with parameters 8 = 0.6, ry = 3,
n; = 400. In Fig. 9, the two top boxes are the
results with » = 0.77 and the two bottom boxes are
results with v = 0.6. For the two top boxes, the
maps of both blocks are used to represent all the
samples, each unit responds to only a few samples,
and the fine discriminative ability is obtained. For
the two bottom boxes, only the map of the 1st block
is used to represent all the samples and the map of
the 2nd block is still at the centre of the box. Thus
each unit of the map of the Ist block will respond to
approximately two times as many samples as in the
former case and a rougher discriminative ability is
obtained.

Fig. 9. 100 samples are generated in such a way that
50 samples come from class C,, and they are followed by
other 50 samples from C,. The 100 samples are repeated
to train the maps of the generalized SOM with
parameters 3 = 0.6, ro = 3, n; = 400. The two top boxes
are the results with » = 0.77; the maps of both blocks are
used to represent all the samples. The two bottom boxes
are the results with » = 0.6; only the map of the 1st block
is used to represent all the samples and the map of the
2nd block is still at the centre of the box.

5. Summary

The conventional competitive learning method
has some constraints. One is that it cannot stabilize
its learning in a nonstationary environment because
of a cycle of learning-and-forgetting. The original
self-organizing map inherited this constraint, which
makes it difficult to extend the original map for use
in nonstationary environments, since the learning-
and-forgetting cycle will destabilize its learning
when unexpected inputs and abnormal noise appear.
As with the top-down expectation of ART, a learned
expectation is added to the learning procedure of
self-organizing maps to improve its learning in a
nonstationary environment. Such a learning expecta-
tion has been realized through the compatibility
test, which checks whether an input is compatible
with the prior knowledge on a map unit before the
unit starts to adapt to it. The compatibility test is
based on the similarity between the input and the
learned weights of the unit, as well as how near the
unit is to its stabilized state. Instead of externally
and nonspecifically adjusting the adaptability of ev-
ery unit in the original map, the compatibility test
adjusts the adaptability of each unit internally and
specifically according to the previously learned pat-
terns. As a result, the unstable cycle of learning-
and-forgetting can be avoided and the generalized
map can stabilize its learning in an environment
with unexpected inputs and abnormal noise. The
compatibility test also supplies an external para-
meter for adjusting the discriminative ability to
different needs.

The generalized map consists of multi-maps with
a pipeline architecture equipped with a parallel
search strategy, so that the learned expectation can
be implemented with nearly no extra computing
costs in comparison with the original map.

Several comparative experiments have been made
between the original and the generalized map. As
shown in the examples given in this paper, the
preliminary results confirm the expected features of
the generalized map. Future work includes experi-
ments on more complex input data, investigating
how the parameter v affects performance, as
well as organizing multi-maps into a hierarchical
architecture.

Acknowledgments

The work was supported by Tekes Grant
4196/1988 under the Finsoft project. The author
wishes to thank Prof. E. Oja for discussion and

support. Thanks also go to J. Lampinen for his help
with the author’s work on C language programming
and computer simulations. The author would also
like to thank the referees for their helpful comments
and for editing the manuscript.

References

1. T. Kohonen, Self-Organization and Associative
Memory, Springer, Berlin, 1988.

2. Self-Organization Section, Proc. IJCNN ’89,

3.

Washington, D.C., 1989.
Self-Organization Section, Proc. IEEE ICNN °88,
San Diego, 1988.

. D. De Sieno, “Adding a conscience to competitive

learning”, Proc. 1988 IEEE ICNN, Vol. I, San
Diego, California, July 1988, 117-124.

. J. Kangas et al., “Variants of self-organizing maps”,

Proc. 1989 IFCNN, Vol. 11, Washington D.C., June
1989, 517-522.

10.

11.

12.

. T. Kohonen,

Adding Learned Expectation 283

S. Grossberg, ‘“Nonlinear neural networks: princples,
mechanisms and architectures”, Neural Networks
(1988) 17-61.

. E. Oja, Subspace Methods of Pattern Recognition, RSP

and J. Wiley, 1983.

“Competitive learning and self-
organization”, Proc. Nordic Symp. Neural Computing,
Espoo, Finland, April 1989.

. C. von der Malsburg, ‘Self-organization of orientation

sensitive cells in the striate cortex”, Kybernetik 14
(1973) 85-100.

S. Grossberg, ‘“Adaptive pattern classification and
universal recording, I: parallel development and cod-
ing of neural feature detectors”, Biol. Cybern. 23
(1976) 121-134.

S. Grossberg, ‘“Adaptive pattern classification and
universal recording, II: feedback, expectations, olfac-
tion, and illusions” Biol. Cybern. 23 (1976) 187-202.
G. A. Carpenter and S. Grossberg, “A massively
parallel architecture for a self-organizing neural pat-
tern recognition machine”, Computer Vision, Graphics,
and Image Processing 37 (1987) 54-115.

