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Abstract

It is shown that a particular case of the Bayesian Ying—Yang learning system and theory reduces to the maximum
likelihood learning of a finite mixture, from which we have obtained not only the EM algorithm for its parameter estimation
and its various approximate but fast algorithms for clustering in general cases (including Mahalanobis distance clustering or
elliptic clustering), but also criteria for the selection of the number of densities in a mixture, and the number k in the
conventional Mean Square Error clustering. Moreover, a Re-weighted EM algorithm is also proposed and shown to be more
robust in learning. Finally, experimental results are provided. © 1997 Elsevier Science B.V.
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1. Introduction

Given a data set D, = {x;}\,, the task of parti-
tioning D, into k clusters is a classical problem in
the literature of statistics and pattern recognition,
usually called cluster analysis (Jain and Dubes, 1988).
A well-known formulation of this task is to use k
vectors {m; }{_,, called centers or code-vectors to
represent the k clusters such that a sample x; is
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classified into the yth cluster when 1(y|x;) =1,
according to

1 if y=agmin,|lx, — m?,

(ylx) = 1
( ') 0 otherwise, @
with {m; }¥_, obtained by
Min(my)bzlEMSE,
1 N )
EMSE:N Y X Lyl )l —myl1°. (2)
y=1i=1

This formulation is called the Mean Square Error
(MSE) clustering analysis or vector quantization. It
is typicaly implemented by the well known k-means
algorithm or the LBG algorithm, which is a two-step
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iterative procedure, starting from an initial guess on
either {m }_; or {ICylx )Y ;:

k-means Alg.

Step 1:  update{1(yl xi)}iN=l by Eq. (1), then get
1 N
TN 2 1(ylIx),
i=1

1

Step 2:
P ayNi

update m, =

L% (3

Equivalently, many of the so-called competitive
learning algorithms in the literature of neura net-
works can be regarded as adaptive variants of the
above algorithm for MSE clustering (e.g., see the
Reference List in (Xu et al., 1993)).

The algorithms in this formulation al have two
serious limitations. The first one is that the number k
of clusters must be pre-known and fixed. E,
monotonically decreases with increasing k, and thus
cannot detect a correct k. However, a bad estimate
of k can cause serious problems as stated in (Xu et
al., 1993). To the best of our knowledge, the selec-
tion of a correct k remains an important open prob-
lem. There is no theoretical guide available for solv-
ing the problem, except for some heuristic tech-
niques, e.g., ISODATA (Duda and Hart, 1972) (Jain
and Dubes, 1988), and Rival Penalized Competitive
Learning (Xu et al., 1993). The other limitation is
that the formulation implies that samples come from
a mixture of k Gaussian densities with equal propor-
tion and equal variance o 2l, which can be clearly
seen in Section 5. This special case deviates from
many practical situations. In the literature, the so-
caled Mahalanobis distance clustering or elliptic
clustering attempts to overcome this limitation.

A unified statistical learning approach called
Bayesian Ying—Yang (BYY) system and theory has
been developed by the present author in recent years
(Xu, 1995, 1996, 1997ab,c). This theory functions
as a genera theory for both unsupervised and super-
vised learning for parameter learning, regularization,
structural scale or complexity selection, architecture
design and data sampling. For unsupervised learning
and its semi-unsupervised extension, as summarized
recently in (Xu, 1997a), the general theory can pro-
vide new theories for unsupervised pattern recogni-

tion and clustering analysis, factorial encoding, data
dimension reduction, and independent component
analysis, such that not only several existing popular
unsupervised learning approaches (e.g., finite mix-
ture with the EM agorithm, K-means clustering
algorithm, Helmholtz machine, principal component
anadysis (PCA) plus various extensions, Informax
and minimum mutual information approaches for
independent component analysis, ..., €tc.), are uni-
fied as special cases with new insights and several
new results, but also a number of new unsupervised
learning models are obtained, and a number of hard
model selection problems are solved, e.g., for sub-
gpace dimension in PCA related approaches, the
number of clusters or number of Gaussians in clus-
tering analysis, and the number of sources in ICA
related blind separation. For supervised learning, as
summarized recently in another paper (Xu, 1997b),
the genera theory can provide new theories for
supervised classification and regression based on
three-layer nets, mixtures-of-experts, and radial basis
function nets such that not only the existing ap-
proaches are unified as special cases with new in-
sights, but also new learning agorithms are obtained
and new selection criteria for the number of hidden
units and experts are developed.

In this paper, we show that a particular case of the
BYY learning system and theory reduces to the
maximum likelihood (ML) learning of a finite mix-
ture, especially Gaussian mixture, from which we
can get the EM algorithm and its variants for various
extensions of the MSE clustering and the k-mean
algorithm, with criteria for the selection of the num-
ber of densities or the number of clusters. Moreover,
a Re-weighted EM (REM) algorithm is also pro-
posed and shown to be more robust in learning.

2. BYY learning system and theory

The perception tasks can be summarized as the
problem of estimating the joint distribution p(x,y)
of the observable pattern x in the observable space
X and its representation pattern y in the representa
tion space Y, as shown in Fig. 1. In the Bayesian
framework, we have two complementary representa-
tions p(x,y) = p(ylx)p(x) and p(x,y) =
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Fig. 1. The joint input-representation spaces X, Y and the YING-YANG machine.

p(xly)p(y). We use two sets of models M, =
{MyxM,} and M, ={M,,,M,} to implement each
of the two representations:

Pu (X Y) =P, (YIX) Pu (X)),
Pu(X,Y) = (4)

Pu,,(XIY) Pu (Y)-
We cal M, a Yang/(visble) model, which de-
scribes p(x) in the visble domain X, and M, a
Ying 3 /(invisible) model which describes p(y) in
the invisible domain Y. Also, we cal the passage

M, for the flow x—y a Yang/(male) passage
since it performs the task of transferring a pattern/(a
real body) into a code/(a seed). We call a passage

M,,, for the flow y—x a Ying/(female) passage
since it performs the task of generating a pattern/(a
rea body) from a code/(a seed). Together, we have
a YANG machine M, to implement py,(x,y) and a
YING machine M, to implement pMz(x,y). A pair
of YING-YANG machinesis called a YING-YANG
pair or a Bayesan YING-YANG system. Such a
formalization compliments to a famous Chinese an-
cient philosophy that every entity in the universe
involves the interaction between YING and YANG.

The task of specifying a Ying—Yang system is
called learning in a broad sense, which consists of
the following four levels of specifications:

(a) Based on the nature of the perception task, the
Representation Domain Y and Its Complexity k are
designed. For example, we have ye[12,...,k],
with x mapped into one of k for the purpose of
clustering.

%1t should be ** Yin'* in the Mainland Chinese spelling system.
However, | prefer to use “* Ying'’' for the beauty of symmetry.

(b) Based on the given set of training samples,
some previous knowledge, assumption and heuris-
tics, Architecture Design is made by specifying the
architectures of four components py, (x), Pw, (y| X),
Pu, (xly) and py (y) First, with a given =& D, =
{x}I , from an ongmal density p°(x), pM(x) is
fixed to some parametric or honparametric empmcal
density estimation of p°(x), eg.,, py () =p,(x)
given by a kernel estimate (Devroye, 1987):

Mz

Kn(X—x;),

e - o)
©)

with a prefixed kernel function K(-) and a prefixed
smoothing parameter h. Next, for the other three
components, each py (@), a€{x|y,ylxy} can be
designed in two ways. One is called Free. It implies
a totally unspecified density or probability function
in the form p(a) without any constraint. Thus, it is
free to change such that it can be indirectly specified
through other components. The other is called Pa-
rameterized Architecture. It means that py (), a€
{xly,ylx,y} is either a simple parametric density,
eg., a Gaussan py, (ny) G(x,m,,,3,,,) with
mean m,, and variance matrix 3,y Or a com-
pounded parametric density with some of its parame-
ters defined by a complicated function with a given
parametric architecture consisting of a number of
elementary units that are organized in a given struc-
ture.

(c) We aso need to select the above complexity
k, as well as other scale or complexity parameters for
a complicated architecture. This task is called Sruc-
tural Scale Selection or Model Selection.

pn( X) =

ZII—\



1170 L. Xu / Pattern Recognition Letters 18 (1997) 1167-1178

(d) After the above three levels of specifications,
the unspecified part for each component py(a),
ac{xly,ylx,y} isaset 6, of parameters in certain
domains. Putting them together, we get the parame-
ter set @ ={4,,,0,,,,6,}, which we call Parameter
Learning.

Our basic theory is that the specifications of an
entire Ying—Yang system in the above four levels
best enhances the so-called Ying—Yang Harmony or
Marry, through minimizing a harmony measure
called separation functional:

Fs( erMz) =

Xly?

Fo( P, (Y1) P ()P, (XIY) P () > O,
F(M;,M,) = 0,if and only if
(x1y) Pu(Y), (6)

x|y

P, (YIX) Pu (X) = Pu

yIx

which describes the harmonic degree of the Ying—
Yang pair. Such alearning theory is called Bayesian
Ying—Yang (BYY) Learning Theory.

This miny, ,Fs can be implemented by an Al-
ternative Minimization iterative procedure:

Step1: Fix M, =M, get M = argminy, F;;

Step2:  Fix M; = M'¢, get MJ®" = argmin,, F,
(7)

which guarantees to reduce F, until it convergesto a
local minimum.

Three categories of separation functionals, namely
Convex Divergence, L, Divergence, and De-corre-
lation Index, have been suggested in (Xu, 1997c).
Particularly, the Convex Divergence is defined as

F(My,M;) = (1) = [ P (Y0 P ()

Pw,,(XIY) Pu (1Y)
Xf(pM (y|x)pr<x))dXdy’

yIx

(8)

where f(u) is strictly convex on (0, + «). The BYY
learning is called Bayesian Convex YING-YANG
(BCYY) learning. When f(1) = 0 and f(u) is twice
differentiable, Eq. (8) is equivalent to Csiszar gen-

eral divergence. Particularly, when f(u) =Inu, Eq.
(8) becomes the well-known Kullback Divergence:

KL(M,M,)
=[P (91X P ()

] Pu,,( Y1X) Py (X) .
Pu,,,( XIY) Pu (Y)

In this specia case, the BYY learning is called
Bayesian-Kullback YING-YANG (BKYY) learning.
As shown in (Xu, 1997a), the theory given by Eq.
(6) provides theoretical guides for parameter learn-
ing, regularization, structural scale or complexity
selection, architecture design and data sampling. In
this paper, we only consider the cases that the archi-
tecture has been pre-designed and a training set
D, = {x}} ; isgiven and that the remaining unspeci-
fied parts are the parameter set ® and the structura
scale k. In this case, we denote F(M,,M,) simply
by F(0,,k). With k fixed, we determine
0, = agming F( 6, .k), (10)
which is called parameter learning. Then, we do
structural scale selection by determining
k*=min.7, Z={j13(j)=minJy(k)},
Ji(K) =F(0y k). (11)
That is, to pick the smallest one among those values
of k that makes J,(k) reach its smallest value. In
other words, we select the simplest structural scale

when we have multiple choices.
We also have an aternative way for selecting k™,

k* =argmin{ J,(k),

dy. (9)

x|y

(k) = — fx Pu(xY)lo; 10y (xY)lo; dxdy,
(12)

where py (X, Y)le, , i = 1,2, denote the learned joint
densities given in Eg. (4) with the parameter O *
given by Eq. (10). This J,(k) is a kind of complex-
ity measure of the BY'Y system and is expected to be
the smallest for the least complicated system. Usu-
aly, J,(k) reaches its minimum for one value of k.
In most cases, the results of Eq. (11) and (Eq. (12))
are the same. However, each way has a different
feature, which will be discussed in the next section.
In fact, J,(k) isjust a part of J,(k).
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3. BKYY learning, finite mixture and number of
densities

3.1. BKYY learning, finite mixture and EM algorithm

Let y=1,....k, x€R* and py(x)=p(x)
given by Eq. (5), with other architectures being
P, (XIY) = p(x[6,) and *

K
pMy(y)=ay>0, Y a,=1,
y=1

Pu, (YIX) =p(ylx) >

K
N 0, Y p(ylx)=1.
y=1
(13)

That is, Pwm, (xI y) is parametric, Pw, (yI x) and
Pu (y) are free probability functions.
Putting the above design into Eq. (9), we get

KL(M,M,)
P( YIX) pn( X)
p( X|9y)ay

=KL(O,,p(ylx)) + j;(ph( x) In p,(x) dx,

KL(Ox.p(yIx))

k
= X [p(yx)py(x)In
y=1"X

k
= [p()| L p(yIx)In p(ylx)|dx
X y=1
k
- X fP(Y|X) Pr( X) In p(x|0y)dx
y=1"X

K
- Y a,na, (14)
y=1

where 0, ={a, e}y .- We can equivalently just
consider m|n{p(ylx),0k}KL(@k,p( yI X)) since the sec-

4 Strictly speaking, we can only use p(-) to denote a density of
rea avariable. For discrete y, we should use a probability P(-) to
replace p(-). For convenience, we ill use p(-) to denote a
probability, but identified via y.

ond term in KL(M_,M,) is irrlevant to ©,. More-
over, by noticing that

KL(0P(¥1%)) = [ PuKL X

p(ylx)
p*(ylx)’

L(O) = [ pu(X)In p(x.0,) dx,

p( X|0y)ay
p(x,0y)
K

P(x.0) = X a,p(xXl6,), (15)
y=1

we further have Theorem 1.

—L(6y),

Z p(ylIx)In————

p(ylx) =

Theorem 1. BKYY learning under the above archi-
tecture design Eq. (13) is equivalent to obtaining
p*(ylx) by Eg. (15) and simultaneously getting
k*,0,. by either maximizing L(®,) or minimizing
KL(O,,p(ylx)) under the constraint p(yl|x) =
p*Cylx).

That is, the result k*,0, . obtained by BKYY
learning in this special case is equivalent to the
maximum log-likelihood (ML) solution of the finite
mixture p(x,®,) given by Eq. (15), based on p(x)
given by Eq. (5). In implementation, to avoid the
difficulty due to the integral operations in Eqgs. (14)
and (15), when N is large enough, we approximate
KL(O,,p(ylx)) and L(O,) by their limits as h— 0:

KL(Oy,p(ylx))
= —On( P(YIX))

—1§:§pwumnmm®)

N|
K
— Z aylnay,
y=1
1 N
L(@k)=N_¥4 Inp(x;,6y),
Nk
On(p(YIX)) = —% 2 2 p(ylIx)Inp(ylx).

i=1ly=1
(16)
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From which we can even more clearly see that
L(®,) is the likelihood function of p(x,0,) by Eq.
(15).

At afixed k, the parameter learning Eq. (10) can
be made by the ALTMIN, Eq. (7), as follows:

EM Algorithm
Estep: get p*(ylx )by Eq. (15),

1 N
and ayZN_Z P (ylIx);
i=1

N

M step: 6" = argmax,, 2 P (ylx)Inp(xl6,).
i-1

(17)

It is guaranteed to converge to a local maximum of
L(®,) since the ALTMIN, Eq. (7), is guaranteed to
converge to one local minimum. Actualy, it is ex-
actly the well-known EM algorithm (Dempster et al.,
1997). Here, we obtain it in a much simpler way,
with its convergence proved easily.

3.2. The selection of scale k

Based on Eg. (16), we can use Eg. (11) or Eq.
(12) for selecting the scale k — the number of
densities in a mixture, with

Jy(K) =KL(O,,p" (yIx)),

™Mz

X p(yIx)Inp(xl6,)

y=1

Z| -

Jo(k) =

Il
[N

I
M=

ay, In ay, (18)
1

y

where 0,7, p* (y|x) are the results of the parameter
learning, e.g., by the EM agorithm Eq. (17). In the
following, we provide some theorems for further
theoretical justification on the selection criteria Eq.
(18).

(b) middle degree

(c) high degree

-~ Emse .- Emse
K

iy ] FS

S )
4 SR AR

g

=

28] e S ; T S S ey S
(d) low degree (e) middle degree (f) high degree
Fig. 2. The curves of JP(k) **- =", J9(k) ““—"" and Eyge‘‘---"" with parameters estimated by the EM algorithm, on the data sets of five

elliptic Gaussians with three different degrees of overlap.
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Fig. 4. Comparison of the REM and EM algorithms. (a) A mixture of six elliptic Gaussians with each long axis along y-direction; (b) the
estimated means by REM ““ X", EM ** +"" versus the original *‘0'"; (c) The curves of J§(k) with parameters obtained by REM ‘‘---"", EM

‘=", respectively.
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Given aset D, = {x;}\; from an origina density
p°(x),
o
P°(X) =p°(x,0%) = ) alp(xl60), af >0,
y=1

kO

Y ap=1, (19)
y=1
and py (x)=p,(x) by Eq. (5), we can get the
following lemma.

Lemma 1. When p°(x), K(r) and p(x|6,) satisfy
some mild regularity condition, as Nh® - » and
h— 0, KL(O,,p(ylx)) given by Eq. (14) or Eq.
(16) tends to the following limit almost surely:

KL°(Oy.,p( yIx))

k
= [p°()| £ p(y1X)In p(ylx) | dx
X y=1

k
- X fp( yIx) p°(x) In p(x/6,) dx

y=1"X
k

- Y a/lna, (20)
y=1

The condition is quite mild and can be given in
several different forms. Here, we will not go into the
details. This lemma ensures the consistence of the
above approximation Eg. (16), and thus we are able
to get some insight in Eq. (18) as N is large enough.

Theorem 2. Given J,(k) by Eqg. (18) and p°(x) by
Eqg. (19) with p(x|6)), y=1,...,k° being linearly
independent. Also, for any @, thereis no 6, that
leads to a degenerate case p(x|6,) = 6(x — c,), with
¢, being a constant. Then, as Nh? - and h— 0
we have almost surely:

@ J(k°) < (k) for k<k® and J,(k®) = J,(k)
for k > k°;

(b) J,(k°) < Jy(k) for any k=+k° if and only if
there is no ©, with 6, # 6,+# --- # 6, such that
p(x,0,) = p°(x,0%).

Here, we omit the proof. The condition of Theo-
rem 2 is very mild. Particularly, it holds as long as
p(x6,), y=1,...,k° are linearly independent for
any 0, # 6,# --- # 0,. Theorem 2 justifies the use

of Eq. (18) as a criterion for the selection of k. When
N is large enough, as k increases we can calculate
J(k) until k* with J(k*)—J(k* + 1) =0. How-
ever, if N is small, J(k) may continue to decrease
slowly even after k > k°; in this case we can stop at
k* with J(k*) —J(k* + 1) < & with £> 0 being a
small threshold. Obvioudly, this & should be chosen
according to N. Theorem 2 also suggests an im-
provement on the EM algorithm Eq. (17), as will be
discussed in Section 6.

Theorem 3. Given J,(k) by Eq. (18), we define
O p°(yIx))

kO
=~ [p°(0)| X p°(y1x) In p°(ylx)| dx,
X y=1

a;’p( X'Oyo)
P°(X,0%)
Under the same conditions as in Theorem 2, we have

almost surely J,(k°) < J,(k) for any k# k° aslong
as J,(k) — J;(k®) > O(P°(ylx)) for k < k°.

P°(yIx) = (21)

This O p°(ylx)) describes the degree of overlap
between the component densities in p°(x) since
p°(y|x) describes the degree that x belongs to the
yth density. Theorem 3 says that as long as this
overlap is not too high, we will have J,(k) < J,(k°)
for any k= k°. That is, in this case, J,(k) can be
used, even when N is not large enough, as will be
shown by the experimental results in Figs. 2—4.

4. Gaussian mixture, clustering and number of
clusters®

4.1. Gaussian mixture, EM algorithm and number of
Gaussians

Particularly, for Gaussian p(x|6,) = G(x,m,, 3,)
the finite mixture p(x,0,) by Eqg. (15) becomes

® The basic results in this section were first obtained in (Xu,
1995), and then some further extensions and variants were given
in (Xu, 1996). In this section, those main results are systematically
summarized into a concise form with certain modifications. Due
to limited space, many details are till left to (Xu, 1995, 1996).
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Gaussian mixture. The M-step of the EM agorithm
Eqg. (17) has a more detailed form as follows:

1
MStep mr;/eW= a N i)xi'
N
Z;ew a Z x(ylxl)
x(xi—mgew)(xi—mgeW)T. (22)

Moreover, for special cases of X, (e.g., diagonal,
spherical shape, etc), the above updating equation
can be modified by incorporating the corresponding
constraints. For example, for the spherical shape
3,=0/l and 3, = o ?l, we have (noticing that d is
the dimension of x)

new

(o) - Z P (yIx)lIx; — mie|?,
(0_ new=% Z %p*(wxi)nxi_mr;/ewnz'

y=1i=1
(23)

Also, Theorems 1, 2 and 3 still hold. Here, the
degenerate case p(x|6,) = 8(x — m,) happens when
3, becomes singular. Moreover, G(x,m,,3,), y=

..k, are linearly independent when m, # m, #

- #m, only. This simplified property will be
used in Section 6 to improve the EM algorithm.

Moreover, since

DX —my)(x — my)T2>71

=tr[I]=d
by some derivation and ignoring some constant,
J,(k) and J,(k) become

JP(k) = —Oy(p"(ylx)) +33(Kk),
k k

J3(k) = Y ay, In\/IEy*I -y ay Inay, (24)
y=1 y=1

where Oy ( p(ylx)) is till the same as given in Eq.
(16). Also, J9(k) can be further simplified for spe-
cia cases of 3. For example, we have
k k
B(k)y=d) ayIng = Y o Ina,,
y=1 y=1
for 3, = o/

J§(k) =dIno ™ +Ink,

for 3, = o?land o, = 1/k. (25)

4.2. Hard-cut implementation, clustering algorithms
and number of clusters

The purpose of cluster analysis is to partition a
data set {x}/L, into non-overlapping regions R,,
y=1,...,k It is equivalent to consider the ideal
case that the data comes from a mixture of p(x|6,)
with a priori @, on the non-overlapping supports
R,CRY y=1,....k such that p(x|6,)=0if x is
not in R,, and then we can classify x € R, with full
certainty because we have p(y|x) =1 and p(j|x) =
0 for j #y. In this case, the classification of x to a
density and the partitioning of RY into non-overlap-
ping regions Ry, y=1,...,k ae equivaent in
probability 1. All the previous results still apply to
this special case. Moreover, we also smply have
J,(k) = J,(k) since Oy (p*(y/x)) =0.

However, in practice most of p(x|6,) are sup-
ported on overlapping regions. We often assign an x;
into one of non-overlapping regions by Bayesian
Decision y =argmax , p(y|x;), which is equivalent
to hard-cut or quantize p(y|x;) into

|(V|Xi)={ & p(xlei)' (26)
For a Gaussian mixture, Eq. (26) becomes

'(ylxi)={

1 if y=argmax;
0 otherwise.

1 if y=argmin,d(x|a,,m,3),

0 otherwise,

(27)
where d(x;|a,,m,,3,) is generally given by
d(xla,,m,3 )= —Ina,/3|

+0.5(x —m) 3, (x, —m,),
1 N
ay= = L1y, (28)
i=1

which can be further simplified for various special
cases of 3.

ICylx;) patitions the whole domain into Ry,
y=1,...,k, non-overlapping regions such that each
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region R, supports a hardcut density induced from
p(x,0,):

—p(x,@k) if xeR
q(x.Ry,0,) = ay g
0 otherwise,
witha = [ p(x,0,) dx. (29)
xe Ry

As a result, we have an induced finite mixture
expression p(x,0,) = X¥_, o} q(x,R,,0,) for clus-
tering purpose. For this mixture, theoretically we can
still get a J,(k) = J,(k) for selecting k. However, in
practice R, is usudly difficult to handle.

For simplicity, we directly use 1(y|x;) to replace
all the occurrences of p*(ylx) in J,(k) and the EM
algorithm obtained previoudly, which results in their
hardcut variants that can save the computing cost
significantly. For a Gaussian mixture, with 1(y|x;)
by Eq. (27) to replace p*(y|x) we can have:

(a) The hardcut EM Algorithm: its E-step consists
of getting 1(ylx;) by Eq. (27) and «, by Eq. (28);
and its M-step consists of simply Eg. (22) and Eq.
(23) with p*(y|x) replaced with I(y|x;) by Eq.
2.

(b) The hardcut J$r(k), which is simply J9(k)
given in Egs. (24) and (25) with p*(y|x) replaced
with 1(ylx;) by Eq. (27).

In particular, for the special case of equa «, =
1/k and equal spherical shape 3, = o ?l, Eq. (27)
simplifies into Eq. (1) exactly, and the hardcut EM
Algorithm reduces into exactly the k-means algo-
rithm Eq. (3), after ignoring the updating on o2
since it is not needed in the MSE clustering.

Moreover, from Eg. (25) we can get J§n(k) for
selecting the k that is used in the k-means algorithm
Eqg. (3):

2 Euse

Jgn(k) =dIno* +Ink, = :
In(k) no n o N

with E,,qe given by Eq. (2). Moreover, we can even

simplify it into

Igr(k) = EREk. (31)
As shown in Fig. 3, athough E, s decreases

monotonically with increasing k, J$n(k) has a U-

shape with a clear minimum at the correct k° due to
the fact that In k increases monotonically with k.

(30)

Furthermore, for various special cases of 3 #
o 21, the hardcut EM Algorithm will become various
types of extensions of the k-means algorithm, includ-
ing those so called Weighted M SE clustering, Maha-
lanobis distance clustering or €elliptic clustering (Xu,
1996). Here we give them not only a unified form,
but also we give criteria for detecting the correct
number of clusters.

5. BCYY learning, finite mixture and REM algo-
rithm

Instead of using the Kullback divergence Eq. (9)
as F(M;,M,), we can also use the Convex Diver-
gence Eqg. (8) and get the corresponding learning
caled Bayesian Convex Ying—Yang (BCYY) learn-
ing. In this case, we cannot get an expanded form as
Eq. (14). However, we can till directly use ALT-
MIN, Eg. (7), for the minimization of F(M,M,),
and its first step will result in the E-step in the EM
agorithm Eqg. (17). With p*(y|x;) thus obtained put
into Eq. (8), L(®,) in Eq. (16) becomes

1 N
Li(0) = — X f(P(%,0,))

N2
1 N
— 2 f(eln p(xiv@k)). (32)
N
That is, argminy y F(M;,M,) is equivalent to
firstly obtaining p’(ylx) by Eq. (15) and then
getting k*,0,. by maximizing L,(®,). This is a
generalized ML learning procedure for a finite mix-
ture.

Moreover, the M-step in Eq. (17) or Eg. (22) will
become, respectively,

M step:  get 6, by solving

N din p(x6,)
Y w(y,x)———"=0;
i=1 do,
1 N
M step: M = — Y w(y,x) %,
ayN 23
N
Znew= Zw(y,xi)
g ay N7
X (X — M) (% — m';eW)T, (33)
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where w(y,x;) = f'( p(x;,0,))p(x;,0,)p*(ylx,)
and f'(u)=df(u)/du. Here, the origina weight
p*(ylx;) is reweighted into w(y,x;). We cal the
corresponding EM algorithm the Re-weighted EM
(REM) algorithm.

When f(u) is monotonically increasing for posi-
tive u, eg., f(u)=u?f, 0< B < 1. The effect is the
maximization of e”¢, ¢=1Inp(x,,0,). e’ is aso
monotonically increasing with £, and gives a larger
weight to larger values of ¢£. Thus, the maximization
of L;(®,) gives more weight to those samples with
large p(x;,0,). In other words, the learning relies
more on those samples around the modes of each
density, while the boundary samples are discounted.
Thus, the learning will give more robust estimations
in cases that data consists of multi-modes with out-
liers or high overlap between densities. The more
close the B isto 1, the more rapid e?¢ changes, the
more robust the learning will be.

6. Implementation and experiments

Severa improvements can be made on the imple-
mentation of the EM algorithm, its hardcut variants
and the selection of k. First, we can use RPCL (Xu
et al., 1993) to find an initial estimation of k, and
then finely search a best k* via Jy(k) or J,(k)
around k. Second, for each fixed k, before running
the EM algorithm or one of its hardcut variants, we
can run some heuristic clustering algorithm to get an
initialization. Third, during the running of the EM
algorithm or one of its hardcut variants, according to
Theorem 2 we can introduce in each iteration the
following two enhancements:

(1) Once we find that 3, becomes singular or
a,=0, we can simply remove the corresponding
p(x[6,).

(2) If there are two y, #y, such that 6, =6, or
very close to each other, we can simply remove the
corresponding p(x|6, ) and merge @y, + a, — «a, .

Due to space I|m|ts, we only focus on demonsirat—
ing how the proposed criteria for selecting k work.
In Fig. 2, al the parameters in the mixture are
unknown, and the EM agorithm Eq. (22) was used
for solving the parameters of each Gaussian. We can
observe that E,qc decreases monotonicaly as k
increases, but both JP(k), J9(k) given by Eq. (24)
can detect the correct k* =5. JJ(k) has its mini-

mum at k* =5, while J2(k) flattens out at k* = 5.
In Fig. 3, the k-means algorithm was used for getting
the cluster centers. Again, E,,z decreases monoton-
icaly as k increases, but JJn(k) given by Eq. (30)
can detect the correct k* =9 at its minimum. Fig. 4
gives a comparison of the EM agorithm Eq. (22)
and the REM algorithm Eqg. (33). We can see that
REM gives a more accurate estimate of the mean
vectors. Moreover, from Fig. 4(c) we can success-
fully detect the correct k* = 6 by the curves J3(k)
by Eqg. (24) also.

7. Conclusions

We have obtained not only a unified form for
various extensions of the MSE clustering and the
k-means algorithm, but also criteria for selecting the
number of densities in a mixture and the number k
in the k-means algorithm. Moreover, a REM learn-
ing algorithm is given and shown to be more robust
than the EM algorithm.
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Discussion

Mao: | have a comment and a question. | agree with
you that the Ying—Yang machine is a very general
framework. | certainly see connections between the
minima description length model and the Ying—
Yang machine. For example, the logarithm of the
clustering criterion which you presented can be de-
composed into two terms. One is the encoding length
of the data, given the model, and the other is the
description length of the model itself. So in that case,
the minimal description length is a special case of
the Ying—Yang machine.

Now my question: you claim that you can auto-
matically determine the number of clusters for given
data. | guess this is true if you are looking for
Gaussian clusters. In general, for many data sets, the
concept of clusters is not well-defined. For example,
for many perceptua patterns you can have many
different ways to form clusters. If you apply your
Ying—Yang machine, you will end up with a certain
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number of clusters. But, depending on how you view
the data, you may have another number of clusters.
Do you have any comments on that?

Xu: First, your comment is correct. The minimal
description length is a special case of the Ying—Yang
machine. Concerning your question: in general you
areright, if you do not have a model for the clusters,
then it is difficult to detect the number of clusters. It
should be based on some probabilistic model. You
can use a finite mixture of any probability densities,
not necessarily Gaussian.

Nagy: How do you plan to generalize your theory?

Xu: | have already generalized. What | claim here
has already been done. | have severa conference
papers in the last three years. | aso have some
Journal papers which will appear soon, for instance
in a special issue on Computational Learning Theory
of ‘*Algorithmica’. So, what | claim here has al-
ready been done.

Nagy: What | ask is, where do you move from here?

Kanal: In other words, what is your next step? Are
you going to retire now?

Xu: What | presented here is just for perception and
pattern recognition. It is a level lower than the
graphical models that have been presented. Actually
this is a graph with two nodes. Ying—Yang may
generalize to some graphical model. In the modelling
of time series, in the linear case, Ying—Yang is
equivalent to a Kalman filter. But in the non-linear
case, it can only be used for one-dimensional prob-
lems. If you have atime series in two dimensions in
state space, that cannot be handled yet, but that
should be even more useful. It is also successfully
related to a hidden Markov model. | have a paper on
that in a Chinese & 1EEE joint conference, two years
ago. The hidden Markov model is o0.k. but for a more
general case it is not successful yet.

Mardia: The quantity J(k) which you use in your
mixtures seems to be a particular case of the Akaki
criterion.

Xu: Yes it looks like it. Because Akaki is aso
related to the Kullback divergence in the matching of

data to model densities. But the difference is that |
have two models. | have a Ying-model and a Yang-
model. But Akaki is more limited. It is originaly
used for the linear model in time series.

Mardia: The Akaki criterion is again a family of
goodness of fit criteria, so it is not a particular case.

Xu: Yes, it is aso of use in a neura network. But |
just mentioned that it is used for a model of a
mixture density, but not for two models. Ying—Yang
are two models which are marching together. It has
some relationship, it looks quite similar, but details
are different.
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