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Abstract— An unified theory is proposed for putting to-
gether supervised learning and unsupervised learning (includ-
ing clustering, PCA-type selforganizing and topological map)
into one single frame. By this theory, different special cases
will automatically lead us to supervised learning for feedfor-
ward networks and for modular architecture of local experts,
to various types of unsupervised learning including data clus-
tering, PCA and k-principal components analysis (k-PCA),
minor component analysis (MCA) and k-minor components
analysis (k-MCA ), principal subspace analysis (PSA) and mi-
nor subspace analysis (MSA), as well as their extensions to
the localized versions (e.g., local PCA, local MCA, ..., etc.)
Furthermore, it is also shown that the theory can be extended
to cover self-organizing topological map.

I. INTRODUCTION

Supervised and unsupervised learnings are two major branches
in neural network learning. Each has been extensively stud-
ied. The readers are referred to [16] for a recent survey on
supervised learning and to [1] for a recent survey on unsu-
pervised learning.

Supervised and unsupervised learnings are developed from
different theories, and usually regarded being essentially dif-
ferent. Even for unsupervised learning itself, we have three
types: clustering, PCA-type selforganizing, and topological
map. They are also developed from different motivations and
based on different theories or heuristics, and considered to be
considerably different from each other too.

This paper proposes a so called Multisets Modeling Learn-
ing theory. It is an unified theory for putting together super-
vised learning and unsupervised learning (including cluster-
ing, PCA-type selforganizing and topological map) into one
single frame. Under this theory, a general set specified by a
given property is used as the representation form of a model
and a number of sets are used to represents multiple mod-
els. The error of a data point & to a model is defined as the
minimum one among the errors of # to every elements in the
model set. Given a data set, the purpose of learning is to
determine the property of each model set. We consider the
cases that each such property is specified by some paramet-
ric equation. In this case, the learning is to determine the
parameters of equation. By this theory, we are lead to su-
pervised learning for the conventional feedforward networks
[16) when the parametric equation is an explicit parametric
function, and particularly to supervised learning for modu-
lar architecture of local experts [4] when we have several sets
with each being specified by an explicit parametric function;
we are lead to unsupervised learning when the model sets
are specified by points, lines, hyperplanes, hypercurves, hy-
persurfaces, subspaces, and manifolds. Particularly, we get
center location for a point and clustering for several points;
we get the standard PCA for a line and its extension—/ocal
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PCA for several lines; we get MCA for a hyperplane and lo-
cal MCA for several hyperplanes; as well as we get k-PCA,
PSA, k-MCA, MSA for one subspace or linear manifold and
their localized extensions for several subspaces or linear man-
ifolds. Furthermore, we will also show that the theory can be
extended to cover self-organizing topological map[7].

IT.

We propose a very general representation for describing a
model. This representation is a set specified by

MULTISETS MODELING LEARNING THEORY

M(@) = (& p@), )
where p(&) denote a general predicate proposition, which can
be any of the following possibilities:

o It is described a single implicit function defined by F(&) =
0. That is, p(£) = true when Z is a root of the equation
F(&) = 0. F(&) can be either linear or nonlinear on D,
where D; is the domain of Z.

e It is described by an explicit function 7 f(g) with

#=[£t,7T. That is, p(£) = true when this & let

7= f(g) hold. Again, the f(g) is a general function,

which can be either linear or nonlinear.

It is described by an inequality F(£) > 0 or F(Z) < 0.

That is, p(£) = true when this inequality holds.

e It consists of a number of propositions p; (£), - - -, pr (&)
which are combined together by logic connectives A, v, —.
Each of these individual propositions can be either of
the above three cases. E.g., we can have p(&) = p; (%) A
p2(Z) V pg%f), with py(Z) described by F(£) = 0, p2(&)
by 7 = f(€) and p3(Z) by F(£) > 0.

e It can also be a proposition or a logic combination of
several propositions that are described by languages but
not by the above mathematical expressions.

The first two cases are equivalent to the models usually used
in the conventional studies of modeling problems. The last
three generalize the conventional descriptions of models. By
such generalizations, a model can also be an area or a volume
with any shape, a combination of areas or volumes, or even
be an arbitrary subset on the domain D,.

With this model, a point & € D is said to satisfy the
model M(Z) if #; € M(&). If &; does not satisfy M(7), we
define the following error

(2)

e!(#F)= min |Z; - F|% p> 1
(£7) geml' 7% p>

for its discrepancy from M(Z), where [Z]? = :;1 |u;{9, for
@ =[ug, -, u..,]T. Specifically, when g = 2, we get the square
error (or sometime called distance) between the point #; and
the set M(%); when ¢ = 1, we get the L; error for #; from
M(Z). Both the errors are particularly useful in practice.

Given a data set Dy = {&1,---,Z£N}, the problem of our
learning is to specify p(£) in eq.(1) such that the sum

Z¢N=1 &) = Z;Nzl min gep & — 912

is minimized.
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In this paper, we concentrate on the cases that p(#) can
be determined by a set of parameters W. In thes cases, we
denote the model by M(#, W) and the learning problem be-
comes the problem of minimizing J? with respect to W:

N N
J9 = Z (&, W) = Z gea‘?(ii'l.w) [# - 9%, (3)
i=1 i=1

The further implementation of this minimization will depend
on the specific form of M(#, W) and will be discussed in the
following sections.

More generally, data D» may have several modes, or in the
other words, D, is a mixture of data from several different
objects or models. We propose to use a number of models
Mp (2, Wm),m = 1,--+, M to deal with these cases. The
learning problem is now specified by the minimization of the
mixture error with respective to parameters W, ---, Wyy:

Iy = Tty Tl om(@)eU(E Won)

= Z'A:=1 E?;l wm(i‘)mingGMm(fi:WM) |i’ - mq
s.t. an‘=1 wm(#;) = 1., where 1 > wm(F;) > 0 is a weight-
ing coefficient on the k-th model. It can be regarded as the
probability of #; generated from M (&, Wym). The set of
NM such coefficients wy(%i)’s are usually unknown to us,
and need to be determined through the above minimization.
As a result, the over-sized unknowns make the minimization
undetermined. To avoid this difficulty, we minimize a new
cost function

M N
Te= Y wm(@)et(, W)

m=1 =1

+ﬁ22wm(f.)lnwm(:3), s.t. Ewm(i’.)_l (@)

m=1 i=1

Where 3 is a given constant. The new term is to force wy (&)
close to either O or 1, and can also be interpreted as the
entropy of distribution wm (Z;) [3] (22] [9).

The interesting point is that this minimization can be im-
plemented by two iterative steps:

e With the parameters W,(,f) ,m=1,---, M fixed, consid-
ering the constraint Z,h:ﬂ wm(#i) =1 and by
Vwm(_.,‘.)J;{l = 0, we can get

e4(Zi, W) +A + Blnwm () +1) = 0, or

Wi (#)® = %e-—ﬂ““'(-‘fnw.(:)), 7= e=B1A-1

Furthermore, we have
ZM

m=1

and Z =1/ Eﬁ=1

1.-p" ez, W) oy

k M
ws")(‘?") = Zm=l Zz
e_p—l‘q(""wv(:)), which leads to

—B 9 (2, W)
THM mpmtenaw)

m=1

Wi (&) = (5)

¢ With the parameters ws,': ) (#i)'s fixed, the minimization
of qu with respect to Wy, m = 1,...,M can be de-
composed into each of the independent minimizations
with respect to Wy,

N
T W) = 3l @)e9(3, W), (6)
i=1
which are just the weighted version of eq.(3) and can be
solved in the same way as the single model case. The
result will give the updated W,(,:‘“),m =1,---,M.
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Given the initial W,(,?),m =1,---,M, we can repeatedly
implement the above two steps. The iteration will converge
to at least a local minimum of J;" as lons as the second

step let JE, (WD) < g8, (W), m = 1,-.., M with

I (W(k“)) # Ji (W(k)) for a number of iterations.
The reason is that each step is actually doing a descent search
( not gradient descent search) of Ji,. In the following sec-
tions, under the specific forms of Mm (2, Win) we will show
that this two step method is closely related to the well known
EM algorithm developed under the incomplete data theory[2)].

III. SUPERVISED LEARNING

For a supervised learning problem, & consists of two parts!
= [¢, 7, and the p(2) in eq.(1) is now specified by an explicit
functlon T=1f (€, W). Correspondingly, the set M (&, W) can
also been written as the Cartesian product
M@ W)= M(§) x M(7) = D¢ x M())
where D, is the domain of £, and
M(#) = {7: 7= f(€W),¥€ € D¢}

It follows from eq.(2) that .
4([€ M) = min perep 1671 - €701 = |7 - £(§ W)|o.

Given a data set (or called the training set) D, which is
now usually written m the set of input-output pairs D, =

Dig s = {I€7), - [En,7]}. The problem of eq.(3) now
becomes the minimization of the following J? with respect to
the parameters W

N
J7= Yl - FEWS, (7
i=1
Obviously, it is just the conventional least L, errorsupervised
learning. When ¢ = 2 and f(£, W) being a feedforward net-
work with input £, Backpropagation technique can be used
to implement this learning. In addition, all the other variants
of Backpropagation[16] can also be used to solve eq.(7).
Furthermore, for the cases that data comes from a mix-
ture of multiple models, we have that each of model sets
M (&, Wm),m = 1,---, M is specified by fm(é‘, Wmn),m =
+yM, and that the learning problem eq.(4) becomes the
problem of minimizing

M N
= Z Zwm(i'«)lﬁ.' ~ fm(EWm)?

m=1 i=1
+8 E Ewm(if‘)lnwm(i ), st Z wm(@)=1; (8)
m=1 i=1
and eqs.(5)(6) become
B i = fm (EWE) 8
M B -t (EWS)
m=1

N
Tt W) = 3 D (@) = fm (€, Wem)%,

=1

B2 =

(©)

(10)

This can be regarded as a generalization of supervised learn-
ing for a single network to a modular architecture consisting
of several networks. When ¢ = 2, this learning is a special
case of the supervised learning for adaptive mirtures of local
ezperts{4] [5] [6] [18]. In addition, eq.(10) also provides an al-
ternative extension of the adaptive miztures of local ezperts
from Ly error (G ian) to nonG ian Ly error.

!Strictly, we should write as & = [{ *,#7 *]T. Here we omit the

transposition for simplicity.



IV. UNSUPERVISED LEARNING: SINGLE MODEL

We consider the cases of model eq.(1) that p(&) is specified by
a point, a line, a hyperplane, a subspace, a linear manifold,
and show how the proposed theory perform various unsuper-
vised learning tasks including PCA, k-PCA, MCA, k-MCA,
PSA and MSA as well as new unsupervised learning tasks.

A. A point: location of mode

When p(£) is specified by a parametric point &. The learning
problem eq.(3) will become the simpliest case—the minimiza-
tion of J9 = 3 |# — &%

This is the simplest unsupervised learning task though it
is often ignored due to its simplicity. It learns the location of
the mode or center of data Dz When q = 2, it produces the
mean vector of Dy, ie., &= 3 Z

B. A line: PCA

First we consider the lines passing through the origin of the
coordinate system. In this case, any line can be represented
by a vector w. That is, p(Z) is specified by a vector & and
we have
M(&) = {&#: & = c, cis an arbitrary constant}

when g = 2, the error eq.(2) becomes

m‘lngeM(g‘W) |:f:',‘ - ’_lﬂ |:x: — 0w
and thus the learning problem eq.(3) becomes the minimiza-

tion of
N
= E |2 — D )2,

=1

l"l

thZ

(11)

This is actually the special case of the LMSER criterion pro-
posed in [13] [17] for a single linear neuron. From the studies
of [13] [17], we know that the minimization of J2 will let &
be the eigenvector of R that corresponds to the largest eigen-
value, where R = ZN 5.5 t is the correlation matrix of Z.
In addition, if conmdenng a vector o of unit length at the
beginning, we can also get
mingerm(zw) | — 4% =
and an equivalent version of eq.(11) by

N
to 12
= E | — 0@ 5«'||‘g|2=1a
i=1

It can be shown that this version performs in the same way
as eq.(11).

When the mean # Eil Z; = 0, R becomes the covari-
ance matrix, then the above learnings perform PCA, a prob-
lem studied widely in the neural network literature [10][11]
{17] [21].

Next we consider the lines passing through any point @.
In this case, any such line can be represented by two vectors
@, @ such that

M(#) = {#: 2~ d = cW, cisan arbitrary constant}
and we have

minge pr(2,w) 1€ — §1° =
The eq.(11) will becomes

|& — ww z||‘ﬂ|,__1

(12)

N
=) I& - 3) - @ (@ - DP. (13)

=1

This minimization will lead to PCA even when we do not have
the mean # Z{il #; = 0. Here, the estimation of mean by
@ and the search of principal component by W are processed
simultaneously. Although we can also use the existing PCA

learning rules [10][11] [17] [21] to perform PCA in this case,
we need first to substruct the mean from each #; and then
start to learn the principal component by .

Similar to the case of obtaining eq.(12), we can also get an
equivalent version for eq.(13).

C. A hyperplane: MCA

First we consider the planes passing through the origin of the

coordinate system. In this case, p(&) is specified by a hyper-

plane i ‘Z = 0. When ¢ = 2, the error eq.(2) becomes
mingem(z,w) 18 — 91 = (7 *2)* /|0,

or minge(z,w) I8 — 917 = (@ '5)|2|3|’=1’

and the model problem eq.(3) becomes the minimization of

N
[CAED -
Z ral J? = Z(w H)lape  (14)
=1
From V3 J? = 0, we have
— gR -
Ri- 223 =0, or R - MZ =0, (15)

(g

where R is the correlation matrix of £. All the solutions of
eq.(15) are the eigenvectors of R. Also only the one corre-
sponding to the smallest eigenvalue make J? arrive it mini-
mum, and all the other solutions are the saddle points of J2.
When the mean % Z‘};l Z; = 0, R becomes the covariance
matrix, then this learning performs MCA [14] [12]). In fact,
this learning is similar to the MCA learning proposed by [14]
for curve and surface fitting. So the detail studies given in
[14] apply to here too.

For a hyperplane passing through any point @, it can be
represented by an equation (# — &) 0 = 0. For ¢ = 2, the

error eq.(2) becomes
. 3 t(z2—a]?
minge p(z,w) |2 - 91 = L—l',(;—,r‘L
or mingem(z,w) 18 — 912 = (@ '(& - )}y,
The eq.(14) will become

N
[@ (& ~ d))?
J? = Z —I—J—P—, or J? E[w (& - a)]ltﬂl’—l'
i=1
(16)
This learning will perform MCA even when % Zfix £i #0.

Now, the learning of mean by d and the search of minor
component by 1 are processed simultaneously. However, for
the rule given in [14] we need first to substruct the mean from
each #; and then start to learn the minor component by .

D. A subspace and a linear manifold: k-PCA,
PSA, k-MCA, and MCA

Assume that a subspace § is spanned by a set of unit length
orthogonal vectors @, -+, W, where these vectors are of
the same dimension as & Thus, we have WTW = [ for
W = [4y,-- -, Wx]). Let p(&) is specified by this subspace, i.e.,
M(®) = {Z:£€ S}

When ¢ = 2, the error eq.(2) actually represents the per-
pendicular distance of &; to S, which is given by |#; — P#;|2.
PZ; is the orthogonal projection of #; on S and

P=wWTwW)-'wT = wwT
is called the orthogonal projector to S. Thus, the error eq.(2)
becomes
mlngeM(g w) Ix. 17'2 |5 WWTfP
and thus the learning problem eq.(3) will become the mini-
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mization of

N
P =D - Wy

=1

(a7

From VywJ?2 = 0, we have RW — PRW + RW — RPW +
2WA = 0, where R is the correlation matrix of #. Since
P=WWT WTW = I, we further have
RW = W(2A - WTRW)

The solutions are the matrices of W that consists of eigen-
vectors of R. Also only the one corresponding to the &
largest eigenvalues make J2 arrive its minimum, and all the
other solutions are the saddle points of J2. When the mean
* Z‘Iil #; = 0, R becomes the covariance matrix, then the
above learning performs the analysis of the first k principal
components (shortly k-PCA).

The above learning can have several variants. One variant
is obtained by assuming that the vectors that span S are not
a set of unit length orthogonal vectors, but a set of vectors
that only satisfies P = W(WTW)~1WT = WWT. In this
case, the problem of eq.(17) will become the unconstrained
minimization

N
J = Z |#; - wwTz2

=1

(18)

This is actually the special case of the LMSER proposed in
[13] [17]) for one layer linear network. From the studies of
[13] [17], we know that the minimization of this J; will let
W find the principal subspace spanned by the eigenvectors
corresponding to the k largest eigenvalues of the correlation
matrix R. When the mean % Z{ix & = 0, R becomes the
covariance matrix, then the above learning performs the PSA
problem studied in {11] [17] [21].

A more general variant is to let S spanned by a set of
any independent vectors. In this case, the projector P =
WWTW) 1WT # WWT and the problem of eq.(17) will
become the minimization of

N
J? = Z |7 - wwTw)-wTz?

=1

(19)

From Vy,J2 = 0, we can also show that the performance of
the learning is the same as the one given by eq.(17).

Furthermore, let us consider the cases that p(Z) is specified
by a linear manifold Spy = {§ : ¥ = £+ &, € S}, i.e,
M(2) = Spy. When g = 2, the error eq.(2) represents the
perpendicular distance of &; — & to S, which is given by |&; —
& — P(&; — @)|°. As a result, eq.(17) becomes

N
J2 = Z (I - WWT) & - ) yryye s (20)

i=1

This minimization of J, with respect to both W, & will lead
to PCA even when the mean # 211 #i # 0. The solving
of mean by @ and the search of principal components by W
are made in the same time.

Similarly, for the above linear manifold cases, eq.(18) and
eq.(19) will respectively become

N
J? = Z |# — & - wwT(z - d)],

=1
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N
2= jm—a- wwTw) T wT(z - a)

i=1

(21)

This minimization of these J, with respect to both W, & will
lead to PSA even when we have the mean -}3 Ef:l & #£0.
The solving of mean by & and the principal subspace by W
are made in the same time. Here, we do not need to first
substruct the mean from each #; and then start to learn the
principal subspace, as it was made in [11] [17] [21].

Finally, we consider the cases that p(®) is specified by the
orthogonal complement subspace 5 of S. When ¢ = 2, the
error eq.(2) is

mingen(z,w) 1 = 9 = 'WWT"BEVTWﬂ’
and eq.(17) becomes

N
T2 =Y WWTER

=1

(22)

Similar to the analysis of eq.(17), we will see that the min-
imization of eq.(22) will let W find the k eigenvectors cor-
responding to the k smallest eigenvalues of R. When the
% Zil #; = 0 and thus R becomes the covariance matrix,
the above learning performs the analysis of finding the first
k minor components (shortly k-MCA).

Similarly, eq.(18) will become

N N
2= wwTw) T W = Zf twwTw)'wTz

i=1 =1

(23)
The minimization of J; will let W find the minor subspace
spanned by the eigenvectors corresponding to the k smallest
eigenvalues of R. When -;7 Zil #; = 0 and R becomes the
covariance matrix, the learnings perform the Minor Subspace
Analysis (MSA).
- Furthermore, when p(£) is specified by a linear manifold
Sy ={7:9=2+a,& € 5}, eq.(21) and eq.(21) will become
N
=3 WWT@ - Dy

i=1

N
J? = Z wWWwTw)" w7 (2 - a)2

i=1

(29)

This minimization of these J with respect to both W, & will
lead to k-MCA or MSA even when the mean # Efv:l & #0.
The solving of mean by @ and the search of minor components
by W are made in the same time.

V. UNSUPERVISED LEARNING: MULTIPLE
MoDELs
We will consider the cases of model eq.(1) that p(&) is speci-
fied by a number of points, lines, hyperplanes, subspaces, and
linear manifolds, and show how the proposed theory perform
various unsupervised learning tasks including clustering, lo-

calized PCA localized MCA and localized PSA and MSA.

A. Points: clustering

When p(#) is specified by parametric points &@;,---,&p. The
learning problem eq.(4) will become the minimization of

M N
T =)0 wm(@)IE - @ml?

m=1 i=1



(25)

+8 Z Zwm(a Ynwm (&), s.t. Z wm(@) = 1.

m=1 i=1

When g = 2, eq.(5) will become

M
—112. _=2(k)12 g1z —glk) 2
ws,’:)(ig) Y / E e~ IE=En 1T (26)

m=1
and the minimization of eq.(6) can be explicitly solved as

N

1
=~ ZWE,L‘) ().

=1

a®) (27)

Comparing the EM algorithm for clustering [20], we will
find that eq.(26) is just the E-step and eq.(27) is just the
M-step of the EM algorithm for clustering data points from
M Guassian distributions with equal prior probabilities and
given equal covariance £, = 0.581. As pointed out in [20],
the widely used K-means clustering algorithm works also un-
der this assumption, and the EM algorithm can even outper-
form the K-means algorithm. In other words, the learning
eq.(4) will perform data clustering well.

B. Lines: local PCA

When p(&) is specified by a set of lines that pass through
points @y, - -, @ps respectively. We have M models specified
as M (2, %m) = {f: £ — @m = cmWm, cm is an arbitrary
constant},form = 1,---,M. For g = 2, the learning problem
eq.(4) will become the minimization of

M N
= Zzwm(fl)l( i — @m) — Im B (Fi — dm)|?
=0 Z Zwm(z,)lnwm(r. s.t. Z wm (&) =

m=1 t=1

(28)

with eq.(5) becoming

—pg-1 _gledy _ g (R q (k) oo o(k)y 2
) (z) = —° pt(zi—al) —a ) (@) *(2i-all)))
™ Mgtz —a®)) —aR (@) 1z —alkd))z

Zm:l €
(29)

and the minimization of eq.(6) being explicitly solved such

that as,,) is given by eq.(27) but using the above w, )(z,)
~(k) .

and @y,  is the eigenvector of the matrix

N
1
Esr’:) = NZWs":)(x )(.Z' —a(k))(:i*' _-o(k])T m=1,---,N.

=1
(30)
corresponding to the largest eigenvalue.

The result of the two-step iteration will finally let each of
@1,---,8p converge to each center’s location of M clusters
of the data and each of 1, - - -, Wy converge to the principal
component of the corresponding clusters. Thus, we say that
this learning performs local PCA. Recently, different imple-
mentations of local PCA have been suggested by [19] [6][8]
and G.E.Hinton2.

2 Personal communication.
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C. Hyperplanes: local MCA

Now, we consider the cases that p(#) is specified by a set of
hyperplanes 0,5 (£ — @m) = 0. When g = 2, the learning
problem eq.(4) will become the minimization of

2 B pIIICEL s

-~ 5( )) ~(‘<)]2

(k)
m=1 i=1 | |2
(933 @ nn (@, ot E:wm(z‘c) R
m=1 i=1
with eq.(5) becoming
- k
(k) (. —A M (#i—a8N T a2 o) |2
wen' (£i) = )

e (G U TN IQIES

= &M
zm:l €

and the minimization of eq.(6) being explicitly solved such

that @ "( ) is given by eq.(27) but using the above wﬁ:) (£:), and
mﬁ,’," is the eigenvector corresponding to the smallest eigen-

value of the matrix Es,’f) given by eq.(30) but using the above
W ().

The result of the two-step iteration will finally let each of
@1, ,dp converge to each center's location of M clusters
and each of W, -+, Wy converge to the minor component of
the corresponding clusters. Thus, we say that this learning
performs local MCA, which is an extension to MCA[14]. One
application of this learning is to make piecewise fitting of
curves and hypersurfaces(14).

D. Linear manifolds: local PSA and MSA

When p(Z) is specified by a set of linear manifolds. i.e.,

M (&, Wi, @m) ={§:9=+&Z€Sm},m=1,--- M
with Sm, being a subspace specified by Wy, = [@im, - -+, ¥, m]-
For g = 2, the error eq.(2) becomes

eUFi, Wi, 8m) = |8i — @m — W WI(&i — @m)|?.
Putting it into eq.(4), the learning problem becomes the min-
imization of

M N
JY = Z Ewm(z‘gﬂ(a’:,‘ = Bm) = Wi W, (& — @m)|?

m—l I—l

+ﬁ22wm (#) Inwm(), s-t. Zwm(f.)=1 (33)

m=1 i=1
with eq.(5) becoming

=B N(E -2l =W W) Hai—al)P

SM_empti(@—al) =W WD) a2
(34)
and the minimization of eq.(6) being explicitly solved such
that such that &%) is given by eq.(27) but using the above
) (2;) and W) = OR with R being any km x km rotation
matrix and the the column vectors of ® consisting of the
eigenvectors corresponding to the first kmn largest eigenvalues

of E$,.) given by €q.(30) but using the above w(k)(a:,').

The result of the two-step iteration will finally let each of
@,-+,&p converge to each center’s location of M clusters
and each Wy, find the principal subspace of the corresponding
clusters. Thus, we say that this learning performs local PSA,
which is an extension to PSA [11] [17] [21].

Furthermore, considering the cases that p(Z) is specified
by a set of linear manifolds My (&, W, @m,) = {7: ¥ = £+

w2 =



a,2€Sm}ym= -, M with Sy, denoting the orthogonal
complement subspace of the above Sm. For ¢ = 2, the error
¢q.(2) becomes

e9(Zi, Wi, 8m) = |&i — @m — W W2 (2 — dm)l?,
and the learning problem eq.(4) becomes the minimization of

M N
T =3 om@) W (W Wen) T W = )

m-l ;=1

= Z Zwm(z?‘)lnwm(i.), s.t. Z Wm(fl) =1. (35)

m=1 i=1

It can be implemented by the two iterative steps eq.(5) and
eq.(6). Finally, each of &;,--+,@x converge to each cen-
ter's location of M clusters and Wy, = ®R with R being
any km X km rotation matrix and the column vectors of
& consisting of the eigenvectors corresponding to the first
km largest eigenvalues of the covariance matrix of the cor-
responding clusters. In other words, Wm found the minor
subspace of the corresponding clusters. Thus, we say that
this learning performs local MSA, which is an extension to
MSA[21].

V1. SELF-ORGANIZING MAPS

Another type of widely studied unsupervised learning is topo-
logically preserved self-organizing map{7]{?]. In the following,
we will show that the proposed model eq.(4) can also be ex-
tended to generating this map.

Let us to consider the case for clustering given by eq.(25).
An one dimensional self-organizing map can be generated by
modifying eq.(25) as follows

M N
Ty= Y ) wm(@)E - dnl?

m=1 i=1
M-1

+6 Z Zwm(f.)ln wm (%) + 7 Z [Zm41 —Em]?  (36)

m=1 ¢=1

with s.t. Em -1 wm(#;) = 1, where v > 0 is a given param-
eter. &1, -,dp are ordered sequentially in a line structure,
and the thlrd term e is to force the parameters of two topo-
logically nearby neurons are also close to each other.
Furthermoreif we reorderdy, - -+, @ in to an array &;;,1 =
< Mi,i=1,-.-,M;, and also modify eq.(36) into

M, My

Ji = Z ZZwmr(:E,)lf. — Bmr|?

m=1 r=1 ;—
M, Mj

+8 Z Zz W (i) In Wy ()4

m=1 r=1 i{=1
M; -1 M3—-1

Y Y Y Mmirir = Gmrl? + Emras = Imrl] (37)

m=1 r=1

with s.t. E::;x zM’ wmr(#i) = 1. We can also get a two
dimensional self—orgamzmg map.
Similarly, the idea can also be applied to other cases. For

example, we can modify eq.(28) into

M N
JY = E Zwm(ei)|(e; — &) - BB (& = Em)P

m=1 i=1

320

+8 Z Z wm (i) Inwm (F;) + ’7[2 |Zm+1 — Em|?

m=1 l—l
by et
i [Bmt1/2|18m

to get an one dimensional self-organizing map, where pairs
(&1,%1), -+, (@a1,Was) are ordered sequentially in a line struc-
ture. In the same way as eq.(36), we can also turn eq.(28)
into a model for a two dimensional self-organizing map.

F]’” Zwm(a?.)—l (38)
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