
International Journal of Neural Systems, Vol. 8, Nos. 5 & 6 (October/December, 1997) 517–534
c©World Scientific Publishing Company

ADAPTIVE RIVAL PENALIZED COMPETITIVE LEARNING
AND COMBINED LINEAR PREDICTOR MODEL FOR

FINANCIAL FORECAST AND INVESTMENT

YIU-MING CHEUNG, WAI-MAN LEUNG and LEI XU
Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Shatin, Hong Kong

Received 25 July 1996
Revised 18 September 1997
Accepted 4 November 1997

We propose a prediction model called Rival Penalized Competitive Learning (RPCL) and Combined Linear
Predictor method (CLP), which involves a set of local linear predictors such that a prediction is made by
the combination of some activated predictors through a gating network (Xu et al., 1994). Furthermore, we
present its improved variant named Adaptive RPCL-CLP that includes an adaptive learning mechanism
as well as a data pre-and-post processing scheme. We compare them with some existing models by
demonstrating their performance on two real-world financial time series — a China stock price and an
exchange-rate series of US Dollar (USD) versus Deutschmark (DEM). Experiments have shown that
Adaptive RPCL-CLP not only outperforms the other approaches with the smallest prediction error and
training costs, but also brings in considerable high profits in the trading simulation of foreign exchange
market.

1. Introduction

The classical statistical models such as MA and

ARMA cannot model a financial series satisfacto-

rily due to its non-stationarity and high-frequency

fluctuation. In the past, there has been consid-

erable interest in exploring the applications of ar-

tificial neural networks (ANNs) to financial series

prediction.2,4–7,10,11,14 An advantage of the ANN

based method is that it does not require us to pre-

define a particular nonlinear model. Alternatively,

these methods try to establish a functional relation-

ship between the input patterns and the outputs di-

rectly through an elaborate iterative learning scheme

without consideration of the specific properties of fi-

nancial data. But it usually results in large comput-

ing costs.
One feasible way is to use a set of linear systems

to model a nonlinear environment approximately.3

The basic idea is that we separate a global non-

linear environment into some small regions, in each

of which we regard it as a linear one modeled by

a linear system. In this paper, we propose such a

model called Rival Penalized Competitive Learning18

and Combined Linear Predictor method (RPCL-

CLP), whose implementation consists of two stages

— training stage followed by prediction stage. In the

training stage, RPCL-CLP constructs a set of Local

Linear Predictors (LLP) by regressing those input-

and-output pairs within each cluster respectively. In

the prediction stage, a prediction is made by combin-

ing some activated Local Linear Predictors through

a gating network (G.N.).17

Moreover, we propose its adaptive variant named

Adaptive RPCL-CLP, where a data pre-and-post

processing scheme is involved to eliminate some

common-factor effects. In the training stage, Adap-

tive RPCL-CLP is learned in the same way as RPCL-

CLP. However, in the prediction stage, the model

parameters are updated adaptively upon each pre-

diction made instead of being fixed in the origi-

nal RPCL-CLP. Furthermore, Adaptive RPCL-CLP

also combines the Random Walk model, which is

517

518 Y.-M. Cheung et al.

ideal to model a market with perfect efficiency,1 with

the prediction of triggered Local Linear Predictor via

winner-take-all through the gating network.15

We compare our proposed models with two pop-

ular time-delay recurrent networks: Elman Net2 and

Jordan Net5–8 as well as the classical MA(q) and

Random Walk models by demonstrating their per-

formance on two real-world time series — a China

stock price and an exchange-rate series of US Dollar

(USD) versus Deutschmark (DEM). Also, we design

a trading model with three various risk-level strate-

gies for the investment simulation in the foreign ex-

change market. Experimental results have shown

that Adaptive RPCL-CLP not only outperforms the

other models with the smallest prediction error and

training costs, but also brings in considerable high

profits under the trading model.
This paper is organized as follows: Section 2 in-

troduces the extraction of the input patterns and

desired outputs. Sections 3 and 4 describe the ar-

chitecture and implementations of RPCL-CLP and

Adaptive RPCL-CLP respectively. A trading model

with three various risk-level strategies is described in

Sec. 5 and computer experiments are given in Sec. 6.

We draw a conclusion in Sec. 7.

2. Extraction of Input Patterns

and Outputs

We separate a series {zt}N+S
t=1 into two parts:

{zt}N+1
t=1 (training series) and {zt}N+S

t=N+2 (testing se-

ries). The training set {(Z(t), U(t))}N+1−d
t=1 can

be extracted from the training series {zt}N+1
t=1 by

successively shifting a sliding window as shown in

Fig. 1, where we denote input pattern Z(t) = [zt,

zt+1, . . . , zt+d−1, zt+d] and desired output U(t) =

zt+d+1 at time t respectively. The testing set

{Z(t)}N+S−d
t=N−d+2 can be obtained in the same way,

where the desired targets are unknown.

3. RPCL-CLP Model

3.1. RPCL-CLP architecture

As shown in Fig. 2, the RPCL-CLP architecture

has four layers: Input Layer, Cluster Layer, Com-

bination Layer and Output Layer, where the in-

puts Z(t)′s and model outputs are embedded in the

t = 1

t = 2

t = 3

.........

t = N-d

a sliding window of size d+2

..........................

z1 z2 z3 zN+1
a time series { }zt t

N
=

+
1
1

•

•

•

•

..........................

Z(t) U(t)

Fig. 1. A sliding window scans through a training series {zt}N+1
t=1 to extract a set of input-output pairs {(Z(t), U(t)}N−dt=1 ,

where the dimension of input space is set at d+ 1.

Adaptive Rival Penalized Competitive Learning and . . . 519

Output Layer

Cluster Selector

G.N.

Combination Layer

Cluster Layer

C1
’ Cj

’ Ck
’.......

C1 Ci CM

Input Layer I

........

.........

W1 WM

........

........g1(t) gj(t)
gk(t)y1(t) yj(t) yk(t)

y(t)

Buffer with length d

zt zt+2 zt+d-2 zt+d-1 zt+dzt+1

Fig. 2. Architecture of RPCL-CLP model, where we use a buffer storing previous d input data points which form an
input pattern together with the current input data point zt+d.

CjLLPj

attached

Wj

Zj(τ) or Xj(τ)

CM

WM

LLPM

attachedW1C1LLP1

attached

Fig. 3. Internal structure of the cluster nodes. Each node Cj includes a cluster centroid W j and a group of input patterns
Zj(τ) (in RPCL-CLP) or Xj(τ) (in Adaptive RPCL-CLP), attached with a local linear predictor LLPj learned by least
square method.

Input Layer and Output Layer respectively. The

Cluster Layer consists of a set of cluster nodes,

each of which includes a cluster centroid and a

group of input patterns assigned by the unsuper-

vised learning approach in the training stage. Also,

as shown in Fig. 3 each cluster node is attached with

a Local Linear Predictors (LLP) by regressing those

input-output pairs within the cluster node. The

520 Y.-M. Cheung et al.

Combination Layer consists of those cluster nodes

selected by the Cluster Selector, where the at-

tached LLP’s are activated and their outputs yj(t)
′s

(j = 1, . . . , k) are combined by the gating network

(G.N.)17 to form y(t), i.e. the estimation of U(t).

3.2. Training stage of RPCL-CLP

The training of RPCL-CLP includes three steps:

(I) Creating Cluster Layer dynamically. (II) Build-

ing up Local Linear Predictors (LLP) for each cluster

node. (III) Training the gating network.

3.2.1. Creation of cluster layer

The procedure of building cluster layer consists of

two phases. In Phase 1, we set up a preliminary

Cluster Layer with K cluster nodes by Incremental

Clustering algorithm (IC), where we use a heuristic

algorithm to automatically control the ε (a threshold

value for creating a new cluster node). However, as

pointed out in Ref. 18, some of these resulted clus-

ter nodes centroids may not locate at the center of

the corresponding clusters. They may be either at

some boundary points between different clusters or

at points biased from some cluster centers. These

centroids may draw quite a large portion of sam-

ples from correct clusters to form some disturbing

groups that lead to an incorrect clustering results.

Hence, in Phase 2 we apply Rival Penalized Compet-

itive Learning (RPCL)18 to refine these initial cluster

nodes. The basic idea is that for each input pattern

not only the centroid W c which wins the competi-

tion is modified to adapt to the input, but also the

centroid W r of its rival is de-learned by a learning

rate smaller than that used by W c.

Specifically, the detailed algorithm is described

as follows:

Phase 1

We create an initial Cluster Layer by a modified

Incremental Clustering algorithm:

Step 1. Given a time series {zt}N+1
t=1 , we calculate

the covariance matrix Σ of the input pat-

terns {Z(t)}N+1−d
t=1 first.

Step 2. Let ε be the square root of the smallest ele-

ment in the main diagonal of Σ as a thresh-

old for creating a new cluster node.

Step 3. Let

W 1 = Z(1) (1)

where W 1 is the centroid of the first cluster

node C1.

Step 4. Assume that the jth cluster nodes have

been created dynamically and each Ci has

a centroid W i. Given a new input pattern

Z(t), we calculate the distance between it

and each cluster’s centroid by

di =
∥∥Z(t)−W i

∥∥ , where i = 1, 2, . . . , j.

(2)

to find out one with the minimum distance

dm. If dm ≤ ε, we assign Z(t) to this clus-

ter node Cm and update its centroid Wm

by

nnew
m = nold

m + 1 (3)

Wm
new = Wm

old +
1

nnew
m

(Z(t)−Wm
old) (4)

where nm is the number of input patterns

assigned to node Cm.

Otherwise, we create a new cluster node

Cj+1. Let

W j+1 = Z(t) (5)

This step is iterated until all data points

have been assigned.

Phase 2

We adjust these initial cluster nodes centroids by

RPCL algorithm as follows:

Step 1. For each input pattern Z(t), let

ui(t) =


1, if i = c such that γc‖Z(t)−W c‖2 = minj γj‖Z(t)−W j‖2

−1, if i = r such that γr‖Z(t)−W r‖2 = minj 6=c γj‖Z(t)−W j‖2

0, otherwise

(6)

Adaptive Rival Penalized Competitive Learning and . . . 521

where 1 ≤ i, j ≤ K, and γj =
nj

ΣK
i=1

ni
. ni is the cumulative frequency of ui(t) = 1.

Step 2. Update the centroid W i and the cumulative frequency ni by

W i
new =


W i

old + αc(Z(t)−W i), if ui(t) = 1

W i
old − αr(Z(t)−W i), if ui(t) = −1

W i
old, otherwise

(7)

nnew
i =

{
nold
i + 1, if ui(t) = 1

nold
i , otherwise

(8)

where 0 ≤ αr � αc ≤ 1 are the learning rates for the winner and rival cluster nodes respectively (αr is
also called de-learning rate).

The RPCL algorithm can select an appropriate
number of cluster nodes automatically by gradually
driving extra cluster nodes’ centroids far away from
the distribution of the data set. Hence, we can re-
move those extra cluster nodes. In the sequel, as
shown in Fig. 2, a cluster layer with the remaining
M cluster nodes are produced.

3.2.2. Local linear predictors

We assume there exists a function relationship F
between Zi(τ) and Ui(τ), where Zi(τ) belongs to
node Ci and {Zi(τ), Ui(τ)} is an input-output pair.
Hence, by Taylor expansion the local linear predictor
attached with cluster node Ci can be represented by:

Ui(τ) ≈ F (W i) + Ai(Zi(τ) −W i)T (9)

where Ai is the first-order derivative of F (W i). Since
W i ≈ Z̄i, we have

F (W i) ≈ Ūi = Σnij=1

Ui(τ)

ni
(10)

Put Eq. (10) into Eq. (9), the LLPi in Eq. (9)
becomes

Ui(τ) ≈ Ūi +Ai(Zi(τ)−W i)T (11)

where the parameter Ai can be determined by the
Least Square method.

3.2.3. Combination of local linear
predictions by gating network

As shown in Fig. 2, a gating network is ap-
plied to combine the local linear predictions
y1(t), y2(t), . . . , yk(t) to form y(t) through

y(t) = Σkj=1gj(t)yj(t) (12)

where gj(t) = P (j|Z(t)) is the probability that Z(t)
belongs to jth selected cluster node. To estimate it
easily, we assume the probability density distribution
of Z(t) is the Gaussian:

P (Z(t)|mj) = (2π)−
d+1

2 (|Σj |)−
1
2

× exp

{
−

(Z(t)−mj)
TΣ−1

j (Z(t)−mj)

2

}
(13)

where mj and Σj are the jth Gaussian parameters.
By Bayes Rule, we can get

gj(t) =
αjP (Z(t)|mj)

ΣiαiP (Z(t)|mi)
(14)

where Σjαj = 1, αj ≥ 0 and 1 ≤ i, j ≤ k. The pa-
rameters Σj , mj and αj , are obtained by the single-
loop EM algorithm as given in Ref. 17. Here, we
briefly list the major steps as follows:

• Assume the prediction of each selected cluster nodes is described by the conditional density:

P (U(t)|Z(t), σ2
yj) = (2πσ2

yj)
− 1

2 exp

{
−

(U(t)− yj(t))2

2σ2
yj

}
(15)

where σ2
yj is the variance of the output of jth selected cluster node.

522 Y.-M. Cheung et al.

• Initialize mj , Σj and αj . For each iteration r, the following steps are done:

1. For each t, calculate P (Z(t)|mj) and P (U(t)|Z(t), σ2
yj) by Eq. (13) and Eq. (15) respectively.

2. Calculate:

h
(r)
j (U(t)|Z(t)) =

α
(r)
j P (Z(t)|m(r)

j)P (U(t)|Z(t), σ2
yj)

Σiα
(r)
i P (Z(t)|m(r)

i)P (U(t)|Z(t), σ2
yj)

mr+1
j =

1

Σth
(r)
j (U(t)|Z(t))

Σth
(r)
j (U(t)|Z(t))Z(t)

α
(r+1)
j =

1

N
Σth

(r)
j (U(t)|Z(t))

(16)

and

Σr+1
j =

1

Σth
(r)
j (U(t)|Z(t))

Σth
(r)
j (U(t)|Z(t))(Z(t) −mr+1

j)(Z(t)−mr+1
j)T

After some iterations of step 1 and step 2, these
parameters will converge.9,16 Then the gj(t)

′s are ob-
tained by putting these parameters into Eq. (13) and
Eq. (14).

3.3. Prediction stage of RPCL-CLP

In this stage, the input patterns Z(t)′s come from
testing set and the desired outputs are unknown.

For each Z(t), the Cluster Selector will select k
cluster nodes such that the distance between their
centroids and Z(t) are the first k smallest ones. We
re-denote them by C′1, C

′
2, . . . , C

′
k as shown in Fig. 2.

Each of these k attached LLP’s gives a prediction de-
noted by yj(t) through

yj(t) = Ūj +Aj(Z(t)−W j)T , j = 1, 2, . . . , k .

(17)

With the gating network, we obtain the estimation
of U(t) by Eq. (12).

4. Adaptive RPCL-CLP Model

4.1. Data pre-and-post processing

In Adaptive RPCL-CLP, the involved data pre-and-
post processing scheme is specified as:

• Pre-processing xt = ln zt+1 − ln zt
• Post-processing ẑt+d+1 = zt+d × ey(t)

As a result, the training set and testing set given
in Sec. 2 are automatically transformed into new
training set {(X(t), Y (t))}N−dt=1 and new testing set
{X(t)}N+S−d−1

t=N−d+1 , where at time t we set the input
pattern X(t) = [xt, xt+1, . . . , xt+d−2, xt+d−1] and
the desired output Y (t) = xt+d respectively.

4.2. Architecture and implementation

As shown in Fig. 4, the architecture of Adaptive
RPCL-CLP is similar to RPCL-CLP except that:
(1) a data pre-and-post processing scheme is in-
volved; (2) the Cluster Selector chooses one node
only by winner-take-all rule to speed up the train-
ing process considerably; (3) the market efficiency
is also considered by combining nodes output ym(t)

with current input information xt+d−1 at time t.
The training procedure of Adaptive RPCL-CLP,

which is based on transformed training set, is sim-
ilar to RPCL-CLP with three steps mentioned in
Sec. 3.2. In the prediction stage, Adaptive RPCL-
CLP switches to the adaptive learning mode where
the parameters in cluster layer and gating network
are adaptively adjusted upon each prediction made.
In the following subsections, we will describe the
adaptive learning algorithm only.

4.2.1. Adaptive modification of local
linear predictors

In the prediction stage, when an input pattern X(t)
extracted from the transformed testing set is pre-
sented in the Input Layer II of Adaptive RPCL-CLP,
the Cluster Selector will find out a cluster node Cm
by winner-take-all rule that satisfies:

dm(t) = min
j
{dj = ‖X(t)−W j‖, j = 1, 2, . . . , M}

(18)
Hence, the attached LLP prediction of Y (t) is

ym(t) = Ȳm +Am(X(t)−Wm)T (19)

which is post-processed to become ẑt+d+1 by

ẑt+d+1 = zt+d × eym(t) (20)

Adaptive Rival Penalized Competitive Learning and . . . 523

Buffer with length d

 Cluster Selector

y(t)

Output Layer

G.N.

Cluster Layer

Cm

C1 Ci CM

Input Layer II

...........

xt xt+1 xt+2 xt+d-3 xt+d-2 xt+d-1............

W1 WM

g1(t)

g2(t)

ym(t)

zt+3 zt+d-2..........

 xt = ln(zt+1/zt)

o(t) = exp(y(t)) × zt+d

o zt t d() �= + +1

Input Layer I
zt zt+1 zt+2 zt+d-3 zt+d-1 zt+d

Fig. 4. Architecture of Adaptive RPCL-CLP model, where the cluster nodes C′is with attached local linear predictors
are adaptively learned in the prediction stage as well as the gating network.

As the model performance will degrade if the model

parameters are fixed, Adaptive RPCL-CLP adopts

an adaptive learning scheme where the parameters

of the working node Cm are updated adaptively by

the formula:

nnew
m = nold

m + 1

Ȳ new
m = Ȳ old

m + η(Y (t)− Ȳ old
m)

Wm
new = Wm

old + η(X(t)−Wm
old)

Anew
m = Aold

m −
1

2
η
∂ε2
t

∂Pm

= Aold
m − η[εt(W

m
new −X(t))] (21)

where η is a learning rate, and εt = (xt+d − ym(t)).

4.2.2. Adaptive gating network

Due to the efficiency of a market as stated in Ref. 1,

Random Walk model is useful which uses the cur-

rent data point xt+d−1 as the prediction of the next

point. That is,

x̂t+d = xt+d−1 (22)

In Fig. 4, we combine the local linear prediction ym(t)

with that of the Random Walk model by a gating

network which is implemented by a new adaptive EM

algorithm.15 The detailed algorithm is as follows:

1. At time t of prediction stage, an input pat-

tern X(t) is presented in the Input Layer II.

As shown in Fig. 4, we need to combine ym(t)

with xt+d−1 as y(t). For simplicity, at time t,

we re-denote ym(t) as y
(t)
1 , xt+d−1 as y

(t)
2 , g1(t)

as g
(t+1)
1 and g2(t) as g

(t+1)
2 then we have:

y(t) =
2∑
i=1

g
(t+1)
i y

(t)
i (23)

2. To find g
(t+1)
i out, we assume that the con-

ditional probability distribution of Y (t) is the

Gaussian density:

P (Y (t)|m(t)
i , σ2(t)

i)

=
1

(2π)
1
2σ

(t)
i

exp

(
(Y (t)−m(t)

i)2

2σ
2(t)
i

)
(24)

where i = 1 and 2, m
(t)
i and σ2(t)

i are the mean

and variance of y
(t)
i respectively.

524 Y.-M. Cheung et al.

Then g
(t+1)
i can be obtained from:

g
(t+1)
i =

P (t)(i)P (Y (t)|m(t)
i , σ2(t)

i)
2∑
r=1

P (t)(r)P (Y (t)|m(t)
r , σ2(t)

r)

(25)

Simultaneously, we modify the parameters

m
(t)
i , σ2(t)

i and P (t)(i) to m
(t+1)
i , σ2(t+1)

i and

P (t+1)(i) respectively by:

h(i|Y (t))=
g

(t+1)
i −g(t)

i

t

P (t+1)(i)=P (t)(i)+h(i|Y (t))

αi=
P (t)(i)

P (t+1)(i)
and βi=

1

P (t+1)(i)

m
(t+1)
i =αim

(t)
i +βih(i|Y (t))Y (t)

σ2(t+1)
i =αiσ

2(t)
i +βih(i|Y (t))[Y (t)−m(t)

i]2

(26)

As pointed out in Ref. 15, we can get a better esti-

mate for g
(t)
i by using Eq. (23) again as long as a set

of the second latest values m
(t−1)
i , σ2(t−1)

i , P (t−1)(i)

are kept in memory, which is a key difference between

the adaptive EM algorithm given in Ref. 15 and the

incremental EM algorithm given in Ref. 12.

5. Trading Model

A trading system can regulate the trading activities

when the present information is provided. In real

life, its underlying mechanism may be far too com-

plicated. In this paper, we propose a simple system

comprising a prediction model and a trading model

as shown in Fig. 5.
The trading model applies one of three different

risk-level trading strategies, each of which has differ-

ent rules to determine when to buy a long (or short)

contract and balance the contract. Transaction costs

and interest gains are ignored for simplicity in the

implementation of our trading strategies. The three

trading strategies are specified as follows:

Strategy 1

1. At the beginning, given the current price zt
and the prediction ẑt+1 of the next price, an

trading indicator I(t) of the trading system

Inputs

 Trading Model

I(t)

Prediction
Model

zt zt+1 zt+2 zt+d-2 zt+d-1 zt+d.........

y(t)

Prediction Step

Trading Step

Fig. 5. Trading system with two steps: prediction
step followed by trading step. In prediction step,
the prediction model outputs y(t) — the estima-
tion of desired output U(t) when the input Z(t) =
[zt, zt+1, . . . , zt+d−1, zt+d] is available. In trading step,
the trading model will output a trading signal I(t) based
on y(t) and current information zt+d for the next trading
activity.

emits one of the three signals: −1, 0 and 1,

determined by

I(t) =


−1, if ẑt+1 − zt > 0

0, if ẑt+1 − zt = 0

1, otherwise

(27)

where I(t) = 1, 0 and −1 stand for the “buy

long,” “do nothing” and “buy short” signals

respectively.

2. After we have bought a long (short) contract,

we update the Gains by:

Gains(new) =Gains(old)

+

{
−diff, if long contract has been bought

diff, if short contract has been bought

(28)

where diff = zt+1 − zt. Simultaneously, the

profit R is determined by

R(new) = R(old) + Gains(new) (29)

Adaptive Rival Penalized Competitive Learning and . . . 525

Since we can predict the difference (ẑt+1 − zt)
when zt is available, if the predicted trend is

not good to hold the contract or the returns

have exceeded a pre-defined threshold value γ

(the desired profits in each transaction), we

have to determine whether we need to balance

the contract according to the decision Indica-

tor Id(t) below:

Id(t)=

{
1, if (R > γ) or (|ẑt+1−zt|>r×R)

0, otherwise

(30)

where Id(t) = 1 and 0 stand for “sell” and “do

nothing” signals respectively. r is a risk fac-

tor with 0 ≤ r ≤ 1 that is set at 0.5 in the

experiment.

3. If the transaction is not balanced, we go to

step (2). Otherwise, before returning to step

(1), we update the gained points (1 Point =

0.0001 DEM) according to the formula

Points(new) = Points(old) + 10000×Gains(new)

(31)

and reset the Gains to zero.

Strategy 2

Strategy 2 is a variant of Strategy 1 with the

same procedure except that the formula in Eq. (29)

becomes:

R(new) = Gains(new) (32)

Strategy 3

Strategy 3 is also the same as Strategy 1 except

that

1. the trading indicator I(t) in Eq. (27) becomes:

I(t) =


−1, if (ẑt+1 − zt ≥ c)
0, if (|ẑt+1 − zt| ≥ c)
1, otherwise

(33)

2. the profit R is determined by Eq. (32) instead

of Eq. (29).

where c = (lmax− lmin)days no, l max(l min) is

the maximum (minimum) of zt in the last days no

days before testing.
Before closing this section, we want to point out

two things:

1. Among three trading strategies mentioned

above, Strategy 1 has the highest investment

risk, and Strategy 3 has the lowest.

2. If the prediction follows the Random Walk,

the above trading model can also work as long

as zt is replaced by zt−1.

6. Computer Experiments

6.1. Data sets and experimental purpose

Two real-world financial time series are used for fi-

nancial prediction. One is a China stock from De-

cember 21, 1990 to September 12, 1995. The training

data set (training set I) is the first 1100 data points

whereas the testing data set (testing set I) is the re-

maining 90 data points.

The other series is an exchange-rate series of US

Dollar (USD) versus Deutschmark (DEM), which

consists of 1778 daily closing prices from December

1, 1987 to November 30, 1993. As we only have the

data of DEM versus Hong Kong dollars (HKD) and

USD versus HKD, we transform these data to USD

versus DEM by the formula: 1 USD = (m/n) DEM,

where m is the rate of USD versus HKD and n is the

rate of DEM versus HKD. The training set (train-

ing set II) is the first 1679 data, and the testing set

(testing set II) is the following 99 data points.

There are two purposes in our experiments:

1. We compare the performance of Adaptive

RPCL-CLP and RPCL-CLP with some exist-

ing models namely Recurrent Networks (El-

man Net and Jordan Net), MA(q) model (q is

often set at 5 or 10 in practice) and Random

Walk model. We calculate the prediction error

and the profit gains in the trading simulation

of foreign exchange market, where we assume

at a time a trader can only hold at most one

long (or short) contract of USD versus DEM

valued 50,000 DEM with deposit of US$6500

(the lowest marginal deposit required by the

Hong Kong Financial Bureau).

2. We justify the efficacy of our data pre-and-

post processing scheme by comparing the re-

current nets with and without this scheme.

6.2. Experimental results

Figures 6–8 show the results of Adaptive RPCL-

CLP, RPCL-CLP, Elman Net and Jordan Net on

526 Y.-M. Cheung et al.

(a) (b)

Fig. 6. The prediction results on testing set I, (a) by Adaptive RPCL-CLP model; (b) by RPCL-CLP model.

(a) (b)

Fig. 7. Elman Net on testing set I, (a) without data pre-and-post processing scheme; (b) with data pre-and-post
processing scheme.

testing set I whereas Figs. 9–11 show their results

on testing set II. The parameters of Elman and Jor-

dan Nets trained by the back-propagation with mo-

mentum algorithm13 are adjusted by trial and error.

Tables 1 and 2 list the training costs and prediction

errors in terms of root mean square error (r.m.s.e.)

as well as the number of hidden nodes. Further-

more, Table 3 also lists the results of MA(q) models

as well as Random Walk model for testing set I and II

respectively.

Figures 12–17 show the simulation results in the

foreign exchange market, where the predictions of

the USD versus DEM series are given by the predic-

tion models mentioned above. The gains are calcu-

lated by the formula: 1 Point ∼= US$6.5. Tables 4–6

show the transaction times in the trading process

with the statistical time interval of 15 days.
In the experiments, we can observe the following

points:

1. The proposed Adaptive RPCL-CLP outper-

forms the existing models mentioned above

in terms of prediction error. There are three

reasons:

(a) The cluster nodes in Adaptive RPCL-CLP

separate the input space into a set of local

regions. At one time a local linear predic-

tor LLP in one of the regions is triggered

by the Cluster Selector. That is, those

Adaptive Rival Penalized Competitive Learning and . . . 527

(a) (b)

Fig. 8. Jordan Net on testing set I, (a) without data pre-and-post processing scheme; (b) with data pre-and-post
processing scheme.

(a) (b)

Fig. 9. The prediction results on testing set II, (a) by Adaptive RPCL-CLP model; (b) by RPCL-CLP model.

LLP’s can be regarded as local experts

which are gated by the Cluster Selector.

However, these existing models do not

have mixture-of-experts mechanism.

(b) Unlike Adaptive RPCL-CLP, the parame-

ters of Elman Net and Jordan Net cannot

be globally determined due to their high

non-linearity.

(c) The Adaptive RPCL-CLP applies an

adaptive learning scheme to adjust the

model parameters.

2. Data pre-and-post processing can consider-

ably improve the models performance as

shown in Figs. 7 and 8 and Figs. 10 and 11.

3. Using the same prediction model, our profit

gains are determined by the trading strategies.

As shown in Fig. 18, Strategy 1 whose trading

risk is the highest can obtain the largest prof-

its. Even in the same trading strategy, the risk

factor r also affects the profit gains as shown

in Fig. 19.

4. Random Walk model can forecast the two

financial series well with fairly small r.m.s.e.

7. Conclusion

As shown by our experiments on the financial predic-

tion and trading simulation, Adaptive RPCL-CLP

528 Y.-M. Cheung et al.

(a) (b)

Fig. 10. Elman Net on testing set II, (a) without data pre-and-post processing scheme; (b) with data pre-and-post
processing scheme.

(a) (b)

Fig. 11. Jordan Net on testing set II, (a) without data pre-and-post processing scheme; (b) with data pre-and-post
processing scheme.

Table 1. The results of Adaptive RPCL-CLP with RPCL-CLP, Elman Net and Jordan Net on
data set I.

Models Flops (Training Set I) No. of Hidden Nodes (Testing Set I)

Adaptive RPCL-CLP 4.100× 106 73 0.0790

RPCL-CLP 5.260× 106 21 0.1787

Elman Net1 1.736 × 1010 40 0.2557

Elman Net2 8.706× 109 40 0.1726

Jordan Net1 5.276× 109 40 1.0899

Jordan Net2 8.792× 109 40 0.2004

Note: Data set I consists of training set I and testing set I. Elman1 denotes the Elman net
without data pre-and-post processing scheme, Elman2 denotes the Elman net with data pre-and-
post processing scheme, Jordan1 and Jordan2 are denoted in the similar way. Training costs are
measured in terms of flops in MATLAB.

Adaptive Rival Penalized Competitive Learning and . . . 529

Table 2. The results of Adaptive RPCL-CLP with RPCL-CLP, Elman Net and Jordan Net on data set II.

Models Flops (Training Set II) No. of Hidden Nodes r.m.s.e. (Testing Set II)

Adaptive RPCL-CLP 8.789 × 106 120 0.0053

RPCL-CLP 1.235 × 107 8 0.0205

Elman Net1 1.356× 1010 40 0.0378

Elman Net2 3.984 × 109 20 0.0230

Jordan Net1 1.751× 1010 45 0.0265

Jordan Net2 1.396× 1010 40 0.0111

Note: Data set II consists of training set II and testing set II.

Table 3. The prediction errors of MA(q) and Random Walk models on
testing set I and II.

r.m.s.e. (Testing Set I) r.m.s.e. (Testing Set II)

Random Walk 0.1423 0.0098

MA(5) 0.2566 0.0144

MA(10) 0.3248 0.0203

Fig. 12. Profits from different prediction models with trading strategy 1.

530 Y.-M. Cheung et al.

Fig. 13. Profits from different prediction models with trading strategy 2.

Fig. 14. Profits from different prediction models with trading strategy 3.

Adaptive Rival Penalized Competitive Learning and . . . 531

Fig. 15. Profits from different prediction models with trading strategy 1.

Fig. 16. Profits from different prediction models with trading strategy 2.

532 Y.-M. Cheung et al.

Fig. 17. Profits from different prediction models with trading strategy 3.

Table 4. The transaction times under trading strategy 1 with r = 0.5
and γ = 0.1.

Days

Models 15 30 45 60 75 90 99

Adaptive RPCL-CLP 1 3 18 33 48 63 72

RPCL-CLP 1 3 11 11 11 11 12

Elman Net1 1 1 4 5 13 15 16

Elman Net2 8 17 22 34 41 51 58

Jordan Net1 9 15 21 27 38 49 58

Jordan Net2 7 11 20 31 37 43 44

MA(5) 3 7 11 17 21 31 36

MA(10) 3 3 7 13 15 23 28

Random Walk 1 3 10 11 13 13 14

Table 5. The transaction times under trading strategy 2 with r = 0.5
and γ = 0.1.

Days

Models 15 30 45 60 75 90 99

Adaptive RPCL-CLP 1 3 17 17 21 21 22

RPCL-CLP 1 3 3 3 3 3 4

Elman Net1 1 1 4 5 13 13 14

Elman Net2 8 17 22 29 37 47 54

Jordan Net1 9 15 21 27 37 37 38

Jordan Net2 7 11 17 21 21 29 30

MA(5) 7 11 15 19 21 31 36

MA(10) 3 3 5 7 9 17 18

Random Walk 1 3 13 25 29 29 30

Adaptive Rival Penalized Competitive Learning and . . . 533

Table 6. The transaction times under trading strategy 3 with r = 0.5
and γ = 0.1.

Days

Models 15 30 45 60 75 90 99

Adaptive RPCL-CLP 1 2 13 13 17 17 18

RPCL-CLP 1 3 3 3 3 3 4

Elman Net1 1 1 4 5 13 13 14

Elman Net2 8 15 20 26 33 41 44

Jordan Net1 9 13 19 25 33 33 34

Jordan Net2 7 11 17 21 21 26 28

MA(5) 7 11 15 19 21 25 30

MA(10) 3 3 5 7 9 11 12

Random Walk 1 3 15 23 25 25 26

Fig. 18. Profits from Adaptive RPCL-CLP with different trading strategies.

Fig. 19. Profits from Adaptive RPCL-CLP with different risk factors.

534 Y.-M. Cheung et al.

is superior to RPCL-CLP, Elman net, Jordan net,

MA(q) and Random Walk models in terms of pre-

diction errors as well as profit gains. Furthermore,

Adaptive RPCL-CLP is trained much faster than El-

man and Jordan nets.

In this paper, we also found that a data pre-and-

post processing scheme can considerably improve the

model’s performance. However, to design a more

powerful scheme, further studies are still required.

Acknowledgments

We are very grateful to Ms. Zhi-hong Lai for fruit-

ful discussion on the trading system in Sec. 5 and

providing us with the experimental data.

This work was supported by the HK RBC Ear-

marked Grants CUHK 250/94E, CUHK 484/95E

and by Ho-Sin-Hang Education Endowment Fund for

Project HSH 95/02.

References

1. P. Cootner 1964, The Random Character of Stock
Market Prices (MIT Press, Cambridge, Mass).

2. J. L. Elman 1990, “Finding structure in time,” Cog-
nitive Science 14, 179–211.

3. D. Farmer and J. J. Sidorowich 1987, “Predicting
chaotic time series,” Phys. Rev. Lett. 59(8), 845–848.

4. N. A. Gershenfeld and A. S. Weigend 1993, “The fu-
ture of time series: Learning and understanding,” in
Time Series Prediction: Forecasting the Future and
Understanding the Past, eds. A. S. Weigend and N.
A. Gershenfeld (SFI Studies in the Sciences of Com-
plexity, Addison-Wesley), pp. 1–70.

5. M. I. Jordan 1986, “Attractor dynamics and par-
allelism in a connectionist sequential machine,” in
Proc. Eighth Ann. Conf. Cognitive Science Society,
Amherst 1986, (Erlbaum, Hillsdale), pp. 531–546.

6. M. I. Jordan 1988, “Supervised learning and systems
with excess degrees of freedom,” COINS Technical
Report 88–27, Massachusetts Institute of Technology.

7. M. I. Jordan 1989, “Serial order: A parallel, dis-
tributed processing approach,” in Advances in Con-
nectionist Theory: Speech, eds. J. L. Elman and D.
E. Rumelhart (Erlbaum, Hillsdale).

8. A. M. I. Jordan and R. A. Jacobs 1990, “Learning
to control an unstable system with forward mod-
elling,” Advances in Neural Information Processing
2, ed. D. Touretzky (Morgan Kaufmann, San Ma-
teo), pp. 324–331.

9. M. I. Jordan and L. Xu 1995, “Convergence results
for EM approach to mixtures of experts architec-
tures,” Neural Networks 8(9), 1409–1431.

10. A. Lapedes and R. Farber 1987, “Nonlinear signal
prediction using neural networks: Prediction and sys-
tem modelling,” preprint, Los Alamos National Lab-
oratory LA-UR-87-2662.

11. M. C. Mozer 1993, “Neural net architectures for tem-
poral sequence processing,” in Time Series Predic-
tion: Forecasting the Future and Understanding the
Past, eds. A. S. Weigend and N. A. Gershenfeld
(SFI Studies in the Sciences of Complexity, Addison-
Wesley), pp. 243–265.

12. R. N. Neal and G. E. Hinton 1993, “A new view of the
EM algorithm that justifies incremental and other
variants,” CS Department, University of Toronto,
pre-print.

13. D. Plaut, S. Nowlan and G. Hinton 1986, “Exper-
iment on learning by back propagation,” Technical
Report CMU-CS-86-126, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA.

14. E. A. Wan 1993, “Time series prediction by using
a connectionist network with delay lines,” in Time
Series Prediction: Forecasting the Future and Under-
standing the Past, eds. A. S. Weigend and N. A. Ger-
shenfeld (SFI Studies in the Sciences of Complexity,
Addison-Wesley), pp. 195–207.

15. L. Xu 1995, “YING-YANG machine: A Bayesian-
Kullback scheme for unified learnings and new results
on vector quantization,” Invited Paper, Proc. Int.
Conf. Neural Information Processing (ICONIP’95),
Beijing, China, Vol. 2, pp. 977–988.

16. L. Xu, M. I. Jordan 1996, “On convergence prop-
erties of the EM algorithm for Gaussian mixtures,”
Neural Comput. 8(1), 129–151.

17. L. Xu, M. I. Jordan and G. E. Hinton 1994, “A mod-
ified gating network for the mixtures of experts ar-
chitecture,” in Proc. World Cong. Neural Networks
2, 405–410.

18. L. Xu, A. Krzyzak and E. Oja 1993, “Rival pe-
nalized competitive learning for clustering analysis,
RBF net, and curve detection,” IEEE Trans. Neural
Networks 4, 636–648.

