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ABSTRACT
The main difficulty of financial APT analysis concerns iden-
tifying unambiguously the hidden statistical factors. Lack
of effective techniques to retrieve the true factors often leads
to inappropriate interpretation of the underlying factor struc-
ture. In literature, PCA and MLFA, assuming multivariate
Gaussian distributions, and ICA, assuming non-Gaussian
distributions, are used to extract factors and determine the
corresponding factor loadings. Recently, a new technique
called TFA is proposed in [1, 2] which seeks to solve the
problem of rotation indeterminacy encountered in conven-
tional factor analysis. In this paper we will focus on statisti-
cal tests and inference on the APT temporal factor loadings
recovered by TFA.

1. INTRODUCTION

Arbitrage Pricing Theory (APT) as an asset pricing model
has attracted considerable interest from practitioners in the
finance field since it was proposed by Ross [3] in 1976.
APT assumes returns being generated under anexact fac-
tor structurein which the residual component of returns not
explained by the factors is uncorrelated among securities.
As a result, various efforts have been devoted to recover the
factors and their loadings via Maximum Likelihood Factor
Analysis (MLFA). However, MLFA is well-known for the
rotation indeterminacy. Despite Roll and Ross [4] point out
that factor rotation has no effect on the rejection region for
APT, such indeterminacy and lack of unique identification
create great obstacles towards finding a reasonable and ap-
propriate economic interpretation to the results of APT anal-
ysis.

In view of the lack of uniqueness in MLFA solution,
Chamberlain and Rothschild [?] make an effort to relax the
original exact factor structure imposed on APT and propose
the so-calledapproximate factor structurewith an aim to
simplify the complication involved in factor analysis. The
major tradeoff with the original model is that the residual
component being no longer uncorrelated. In the same pa-
per, they also prove that ifk eigenvalues of the population

covariance matrix increase without bound as the number of
securities in the population increases, then the elements of
the correspondingk eigenvectors of the covariance matrix
can be used as factor sensitivities. Connor and Korajczyk
[6] further show that this conclusion holds for the sample
covariance matrix as well.

However, Shukla and Trzcinka [7] criticize this approach
on the ground that eigenvectors being used instead of sta-
tistical factor loadings in the returns-generating model for
a large economy, possibly with infinitely many assets, does
not necessarily imply that they can be used in a cross-sectional
model of security pricing in finite economies. The reason is
that PCA is very different from factor analysis in context of
finite number of securities. PCA is more constrained than
factor analysis for the application in APT because it tends
to overlook idiosyncratic risks.

In recent years, Back and Weigend [8] apply Indepen-
dent Component Analysis (ICA) to multivariate financial
time series to recover statistically independent non-Gaussian
distributed factors. It is well-known that ICA will exploit
higher-order statistics of the distribution to overcome the
problem of rotation indeterminacy. Although it is quite rea-
sonable and realistic to assume non-Gaussian distribution
of factors, the critical weakness of applying ICA for this
specific task arises from treating the noise or idiosyncratic
risks component as negligible. Obviously, this frequently
conflicts with the truth from both a theoretical and empiri-
cal point of view.

Recently, the development of Temporal Baysian Ying-
Yang (TBYY) Theory proposed in [1] leads to the inception
of a new factor analytic technique called Temporal Factor
Analysis (TFA). TFA can be seen as an extension to MLFA
with the distinct strength to overcome rotation indetermi-
nacy as well as to provide an appropriate answer to the num-
ber of hidden factors via its automatic model selection abil-
ity. As a result, it may serve as an alternative for traditional
APT analysis. In [?], we have applied TFA to determine the
factor number in real APT analysis using the same set of
data. In this paper, we will further our research on the Gaus-
sian factor loadings which is partially based on the findings
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in [?].
The rest of the paper is divided into five sections. Sec-

tion 2 reviews the original APT by Ross on which our anal-
ysis will be based. In Section 3, we will discuss the po-
tential benefits of applying the temporal factor model in the
APT analysis. Experiments and statistical tests results will
be presented in Section 4 & 5. Section 6 will be devoted to
concluding remarks.

2. THE ARBITRAGE PRICING THEORY

The APT begins with the assumption that then×1 vector of
asset returns,̃Rt, is generated by a linear stochastic process
with k factors:

R̃t = R̄ + Aft + et (1)

whereft is thek × 1 vector of realizations ofk common
factors,A is then× k matrix of factor weights or loadings,
andet is an× 1 vector of asset-specific risks. It is assumed
that ft and et have zero expected values so thatR̄ is the
n × 1 vector of mean returns. It is usually assumed that
E(fifj) = 0, E(eiej) = 0 so that ifV is the variance-
covariance matrix of returns. It may be written as:

V = AA′ + Σ (2)

whereE(ee′) = Σ.
The model addresses how expected returns behave in

a market with no arbitrage opportunities and predicts that
an asset’s expected return is linearly related to the factor
loadings or

R̄ = Rf + Ap (3)

whereRf is a n × 1 vector of constants representing the
risk-free return, andp is k × 1 vector of risk premiums.

3. TEMPORAL FACTOR ANALYSIS

3.1. An Overview of TFA

Suppose the relationship between a stateyt ∈ <k and an
observationxt ∈ <d are described by the first-order state-
space equations as follows:

yt = Byt−1 + εt, (4)

xt = Ayt + et, t = 1, 2, . . . , N. (5)

whereεt andet are mutually independent zero-mean white
noises withE(εiεj) = Σεδij , E(eiej) = Σeδij , E(εiej) =
0, andδij is the Kronecker delta function:

δij =

{
1, if i = j,

0, otherwise.
(6)

We call εt driving noise upon the fact that it drives the
source process over time. Similarly,et is called measure-
ment noise because it happens to be there during measure-
ment. The above model is generally referred to as the TFA
model.

In the context of APT analysis, eq.(1) can be obtained
from eq.(5) by substituting (̃Rt − R̄) for xt andft for yt.
The only difference between the APT model and the TFA
model is the added eq.(4) for modelling temporal relation of
each factor. The added equation represents the factor series
y = {yt}T

t=1 in a multi-channel auto-regressive process,
driven by an i.i.d. noise series{εt}T

t=1 that are independent
of both yt−1 andet. Specifically, it is assumed thatεt is
Gaussian distributed. Moreover, TFA in [1, 2] is defined
such that thek sourcesy(1)

t , y
(2)
t , . . . , y

(k)
t in this state-space

model are statistically independent, i.e.,

p(yt | yt−1) =
k∏

j=1

p(y(j)
t | y(j)

t−1),

p(y0) =
k∏

j=1

p(y(j)
0 ), (7)

wherey0 is the initial state, andyt = [y(1)
t , y

(2)
t , . . . , y

(k)
t ]T .

The objective of TFA is to estimate the sequence ofyt’s with
unknown model parametersΘ = {A,B, Σε, Σe} through
available observations. For eq.(7), this constraint impliesB
is diagonal andεt is mutually independent in components.

In implementation, an adaptive algorithm has been sug-
gested. At each time unit, factor loadings are estimated by
cross-sectional regression and factor scores are estimated by
maximum likelihood learning. A simplified version of the
algorithm in [2] is shown below.

AssumeG(εt|0, I) andG(et|0, Σ).

• Step 1 Fix A, B andΣ, estimate the hidden factors
yt by

ŷt = [I + AT Σ−1A]−1(AT Σ−1x̄t + Bŷt−1),
εt = ŷt −Bŷt−1,

et = x̄t −Aŷt, (8)

• Step 2 Fix, ŷt, updateB, A and Σe by gradient
descent method as follows:

Bnew = Bold + ηdiag[εtŷ
T
t−1],

Anew = Aold + ηetŷ
T
t ,

Σnew = (1− η)Σold + ηete
T
t . (9)

3.2. Grounds and Benefits for Using TFA in APT Anal-
ysis

Firstly, we believe that temporal factors have Gaussian dis-
tributions. There is a consensus that the noisy component



in most econometric and statistical models being Gaussian
distributed. The rationale comes from the central limit the-
orem which implies that the compounding of a large num-
ber of unknown distributions will be approximately normal.
Secondly, we believe that factors recovered must be inde-
pendent of each other. Although economic factors are sel-
dom independent, it is helpful to discover statistically in-
dependent factors for the purpose of analysis because the
restriction of independence will rule out many possible so-
lutions which contain redundant elements. Furthermore,
economic interpretation of factors recovered can be easily
achieved by appropriate combination of those independent
factors. Thirdly, we believe there is significant temporal ef-
fects between factors. Eq.(4) of the TFA model is nothing
more than an AR(1) time series model. The reason why an
AR model of order more than 1 is not required can be at-
tributed to the weak form of Efficient Market Hypothesis
(EMH). Given the assumption of the weak form EMH is
valid, stock price today is conditionally independent of all
previous prices given the price of yesterday.

Compared with MLFA, TFA has at least two distinct
benefits. First, with the independence assumption in the
derivation, the recovered factors are assured to be statisti-
cally independent. Second, it has been shown in [2] that tak-
ing into account temporal relation effectively removes rota-
tion indeterminacy. As a result, the solution given by TFA
is unique. Theorem 3 in [1] illustrates this point. Moreover,
it should be noted that MLFA is a special case of the model
with B = 0 in eq.(4).

3.3. Testability of TFA

The TFA model retains virtually all statistical properties of
the original APT model. It is simply an extension of the
APT model because it additionally includes temporal rela-
tion between factors in the APT model. Apart from that,
there is no difference. Since the relationship betweenyt and
yt−1 described by the added equation is also linear, the en-
tire TFA model is a linear model with both the driving noise
εt and the measurement noiseet assumed to be Gaussian
distributed. Moreover, as both the returns and factors are
stationary and the factors is assumed to be uncorrelated with
idiosyncratic risks, we can safely conclude that the model is
testable, just like APT.

4. EXPERIMENTAL ILLUSTRATIONS VIA
HYPOTHETICAL DATA

In this experiment, we will assume artificial data being gen-
erated by a TFA model and demonstrate the ability of the
TFA algorithm to identify the hidden states or factors. As
discussed above, PCA, ICA and MLFA have been used in
APT analysis in the literature. Thus we will also compare

the results of TFA with them.
In this experiment, we let the observations{xt}T

t=1 be
generated by:

yt =




0.5 0 0
0 −0.2 0
0 0 0.6


 yt−1 + εt,

xt =




1.2 0.8 0.4
0.4 −1.1 0.6
1.5 0.5 1.0


 yt + et, 1 ≤ t ≤ N(10)

whereεt andet are distributed withG(ε|0, I) andG(et|0, .05I)
respectively.

The performance of each algorithm is measured by the
Mean Square Error(MSE) between the estimated stateŷ

(j)
t

and the true statey(j)
t . The formula to compute MSE is

given by:

MSE(y(j), ŷ(j)) =
1
N

N∑
t=1

(y(j)
t − ŷ

(j)
t )2, (11)

Snapshots of the results by PCA, ICA, MLFA and TFA
are shown respectively in Fig. 1(a)-(d).
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(a) Result by PCA
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(b) Result by ICA
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(c) Result by MLFA
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(d) Result by TFA

Fig. 1. Snapshots: ‘*’ denotes true value; ‘o’ denotes esti-
mated value.

The respective MSE values by PCA, ICA, MLFA and
TFA algorithm are as shown in Tab. 1 for comparison.

Based on the average MSE values, we can see that TFA
is good at preserving the original waveform than its coun-
terparts. The relatively small MSE values of ICA can be
explained by its ability to exploit higher than second or-
der statistical information in non-Gaussian distributed hid-
den factors. It should be noted that although the underlying



Table 1. Comparison of MSE values by PCA, ICA, MLFA
and TFA

Hidden State PCA ICA MLFA TFA

1 0.4151 1.1143 1.5089 0.0314
2 2.3006 0.1028 1.6965 0.0649
3 3.5759 1.3436 0.3502 0.1222

Average 2.0972 0.8536 1.1852 0.0728

distributions of the temporal factors are Gaussian when tak-
ing into account the temporal relation, they are in fact non-
Gaussian distributed if we treat all data being coming from
a particular distribution with no temporal relation. In other
words, the temporal information that TFA seeks to utilize
can be conceived to partially contribute to the higher order
statistical information in the overall distribution that ICA
makes use of to assist in the de-mixing process. As a result,
ICA performs better than MLFA and PCA. The relatively
large MSE values of MLFA and PCA are attributed to rota-
tion indeterminacy owing to their inability to extract higher
than second order statistical information from the factors.

5. HYPOTHESIS TESTS ON APT

Since TFA outperforms its counterparts, we will use TFA
to extract factors and loadings in real APT analysis. After
that, we will test the individual and joint significance of the
factor loadings. Previously, the test of significance of indi-
vidual factor loadings is not viable because of rotation in-
determinacy. Consequently it is not possible to test directly
whether a given factor is priced. However, the analysis by
TFA makes it possible to applyt-test on individual factor
loadings as it successfully overcomes this constraint. Be-
fore going further, certain considerations will precede our
analysis.

5.1. Data Considerations

We have carried out our analysis using past stock price and
return data of Hong Kong. Daily closing prices of 86 ac-
tively trading stocks covering the period from January 1,
1998 to December 31, 1999 are used. The number of trad-
ing days throughout this period is 522. These stocks can be
subdivided into three main categories according to differ-
ent indices they constitute. Of the 86 equities, 30 of them
belongs to the Hang Seng Index (HSI) constituents, 32 are
Hang Seng China-Affiliated Corporations Index (HSCCI)
constituents and the remaining 24 are Hang Seng China En-
terprises Index (HSCEI) constituents. We do not adopt ran-
dom sampling in the stock selection process so as to avoid

the small-firm effect. This is because there are lots of small-
sized listed companies in Hong Kong, many even very inac-
tive. Obviously this kind of stocks is not representative of
the whole market and including them will adversely affect
the validity of our analysis and tests.

Regarding the observation frequency, we has considered
using either daily or monthly equity returns. The potential
benefit associated with the use of daily data in the estimation
of variances and covariances is enormous. This is because
the more frequent the observation, the more precise the pa-
rameter estimates. Moreover, for equal number of daily and
monthly data points, the period spanned by daily data will
be much shorter. As a result, our analysis will be just fo-
cused on a small period and is therefore less susceptible to
large fluctuations such as structural break.

5.2. Data Preprocessing

Before carrying out the analysis, the stock prices must be
converted to stationary stock returns. The transformation
applied can be described in four steps as shown below.

Step 1 Transform the raw prices to returns by
Rt = pt−pt−1

pt−1
.

Step 2 Calculate the mean return̄R by 1
N

∑N
t=1 Rt.

Step 3 SubtractR̄ from Rt to get the zero-mean
return.

Step 4 Let the result of above transformation be the
adjusted returñRt.

5.3. Hypothesis and Test Statistics

In our setting, the factor structure of each security will be
represented by a distinct multiple linear regression equa-
tion. Test statistics will be computed on a security basis.
Consider thejth cross-sectional regressions of the form

R̃
(j)
t = R̄(j) + a

(j)
1 y

(j)
1t + a

(j)
2 y

(j)
2t + · · ·+ a

(j)
k y

(j)
kt (12)

where1 ≤ j ≤ p andp is the total number of securities.F -
test will be used for testing the joint significance of factor
loadings. The null hypothesis is that all factor loadings are
simultaneously zero. This implies that the alternate hypoth-
esis is
H1 : There exist nonzero constantsa1, a2, · · · , ak such that

R̃
(j)
t − R̄(j) = a

(j)
1 y

(j)
1t + a

(j)
2 y

(j)
2t + · · ·+ a

(j)
k y

(j)
kt

On the other hand,t-test will be used for testing the signif-
icance of individual risk premium coefficient. The degrees
of freedom isk andN − k − 1 for F -test while the degrees
of freedom fort-test isN − k − 1. We will examine the
results of both tests at levels of significance of both 5% and
10%.



5.4. Number of Factors

Determining the appropriate number of factors is crucial to
APT analysis. Thanks to the automatic model selection abil-
ity of TFA, we can choose the correct number of factors by
enumeratingk incrementally and then select an appropriate
k via the following cost function:

min
k

J(k) =
1
2
[k ln(2π) + k + ln |Σ|] (13)

As one of our findings in [?] and shown in Fig. 2, the num-
ber of factors for the total of 86 securities is five and that for
the 30 HSI constituents is 4. Consequently, we will preset
the value ofk accordingly before applying TFA to discover
the temporal factors.
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86 Securities

Fig. 2. J(k) for real 30 HSI constituents and the total of 86
securities.

5.5. Empirical Results

After the discovery of Gaussian temporal factors, we subse-
quently go on to test the individual and joint significance of
factor loadings. We have performed the investigation using
two groups of securities. Group 1 consists of all 86 securi-
ties from all three indices while Group 2 is composed of 30
HSI constituents.

5.5.1. Results of Group 1 Securities

Partial results of 86 securities are shown in Tab. 2. Factors
affecting these 86 securities are considered market wide fac-
tors. We find that the factor loadings are jointly significant
at both 5% and 10% level of significance. Apart from few
exceptions, most factor loadings are individually significant
at such level of significance. The results are shown in Tab.
3.

In the absence of factor rotation, we can reasonably ex-
pect all factors found to be priced. From the results oft-test
shown in Tab. 3, only less than 15% of 86 securities are in-
significant atα = 5% while less than 5% of total securities
are insignificant atα = 10%. The results also provide sup-
port for our findings that the number of market wide factors
is most probably 5.

Table 2. Partial Results Showingp-Values oft-test andF -
test using 86 Securities

p-Value oft-test p-Value of
# a1 a2 a3 a4 a5 F -test

5 0.0000 0.0015 0.0000 0.0000 0.0964 0.0000
10 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
15 0.0963 0.0000 0.0171 0.0000 0.0000 0.0000
20 0.0205 0.0023 0.0601 0.0000 0.0683 0.0000
25 0.0505 0.0278 0.0000 0.0000 0.0000 0.0000
30 0.0241 0.0818 0.0060 0.0000 0.0000 0.0000
35 0.0361 0.0366 0.0570 0.0000 0.0000 0.0000
40 0.0232 0.0352 0.0414 0.0000 0.0000 0.0000
45 0.0000 0.0507 0.0153 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
55 0.0000 0.0000 0.0288 0.0002 0.0000 0.0000
60 0.0000 0.0049 0.0728 0.0027 0.0000 0.0000
65 0.0000 0.0355 0.1560 0.0482 0.0000 0.0000
70 0.0887 0.0437 0.0000 0.0000 0.0000 0.0000
75 0.0000 0.1994 0.0476 0.0232 0.0000 0.0000
80 0.0000 0.0403 0.0966 0.0268 0.0000 0.0000
85 0.0000 0.0198 0.0000 0.0000 0.0000 0.0000

Table 3. Number and Percentage of Total Securities (86)
Not Significant at 5% and 10% Level of Significance

α a1 a2 a3 a4 a5

5% 12 11 12 6 4
13.95% 12.79% 13.95% 6.98% 4.65%

10% 2 3 1 1 1
2.33% 3.49% 1.16% 1.16% 1.16%

5.5.2. Results of Group 2 Securities

Results are shown in Tab. 4 and 5 respectively. The results
are very similar to the results of Group 1. Major difference
arises from using 4 factors instead of 5 for HSI consituents.

5.6. Significance of the Results to Finance

It has been a common consensus in the finance literature
[4, ?] that the number of factors is between three and five.
However, the assertion has no theoretical support yet and
empirical results have not provided a concrete answer to
the problem owing to the various difficulties and indetermi-
nacies in financial APT analysis discussed above. Conse-
quently, the determination of factor number is purely based
on heuristic approaches. Intuitively, we do not expect the
factor number to change with the number of securities used
under a stable market structure, nor do we expect the num-
ber of factors to be one because both theoretically and em-
pirically the APT model is superior to the one-factor CAPM
model. Interestingly, the factor number determined via the



Table 4. Results Showingp-Values oft-test andF -test on
30 HSI Constituents

p-Value oft-test p-Value of
# a1 a2 a3 a4 F -test

1 0.0001 0.0047 0.0013 0.0000 0.0000
2 0.0000 0.0000 0.0143 0.0774 0.0000
3 0.0098 0.0624 0.0000 0.0000 0.0000
4 0.1443 0.0003 0.0000 0.0000 0.0000
5 0.0097 0.0487 0.0002 0.0000 0.0000
6 0.0000 0.0000 0.0029 0.0093 0.0000
7 0.0336 0.0445 0.0007 0.0000 0.0000
8 0.0255 0.0554 0.0000 0.0000 0.0000
9 0.0146 0.0000 0.0000 0.0000 0.0000
10 0.0947 0.0739 0.0001 0.0000 0.0000
11 0.0063 0.0148 0.0001 0.0000 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000
13 0.0820 0.0001 0.0442 0.0000 0.0000
14 0.0048 0.0000 0.0000 0.0379 0.0000
15 0.0082 0.0231 0.0828 0.0000 0.0000
16 0.0000 0.0000 0.0000 0.0000 0.0000
17 0.0000 0.0000 0.0983 0.0657 0.0000
18 0.0000 0.0000 0.0000 0.0000 0.0000
19 0.0887 0.0011 0.0064 0.0000 0.0000
20 0.0000 0.0174 0.0000 0.0000 0.0000
21 0.0000 0.0000 0.0000 0.0000 0.0000
22 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0000 0.0300 0.0005 0.0000 0.0000
24 0.0000 0.0036 0.0000 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.0000 0.0000
26 0.0000 0.0000 0.0000 0.0683 0.0000
27 0.0041 0.0461 0.0058 0.0000 0.0000
28 0.0000 0.0002 0.0534 0.0000 0.0000
29 0.0000 0.0696 0.0000 0.0000 0.0000
30 0.0000 0.0978 0.1084 0.0000 0.0000

cost functionJ(k) and the TFA technique in [?] is found
to be consistent with the assertion. Moreover, the results
of tests on factor loadings shown in this paper provide as-
surance to the factor number determined in [?]. All these
results lead us to suspect that actual priced factors may be
a linear or nonlinear mixture of the independent Gaussian
factors discovered via TFA. Of course, further research is
required to discover the hidden relationship.

6. CONCLUSION

In this paper we have compared the effectiveness of differ-
ent techniques to preserve waveforms in the context of fac-
tor analysis and blind source separation. Our results show
that TFA can not only overcome rotation indeterminacy, but
also provide a solution to determine the number of factors
via its automatic model selection ability. These make it a
desired candidate for the task of real APT analysis. Our ex-

Table 5. Number and Percentage of Total Securities (30)
Not Significant at 5% and 10% Level of Significance

α a1 a2 a3 a4

5% 4 5 4 3
13.33% 16.67% 13.33% 10%

10% 1 0 1 0
3.33% 0% 3.33% 0%

perimental results using real stock data and the subsequent
statistical tests demonstrate that the factors discovered are
most likely priced and this also provide support for the num-
ber of factors determined usingJ(k) in [?].
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