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A STUDY OF SEVERAL MODEL SELECTION CRITERIA FOR DETERMINING THE
NUMBER OF SIGNALS
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ABSTRACT

Addressing the problem of detecting the number of source

signals as selecting the hidden dimensionality of Factor Anal-

ysis (FA) model, we investigate several model selection cri-

teria via a new empirical analyzing tool that examines the

joint effect of signal-noise ratio (SNR) and sample size N on

the model selection performance. The contours of the model

selection accuracies visualize a three-region partition on the

space of SNR and N , and a diminishing marginal effect which

trades off SNR and N on the performance. Moreover, the

newly derived Variational Bayes algorithm and three variants

of Bayesian Ying-Yang (BYY) algorithms are more robust

against reducing SNR and N , where the BYY with priors’

hyperparameters updated is the best in general.

Index Terms— Number of signals, hidden dimensional-

ity, linear model, model selection, criteria

1. INTRODUCTION

It is an essential issue to detect the number of underlying

source signals in many signal processing problems such

as sensor array processing, the poles retrieval of a system

response, the direction of arrival estimation by a smart an-

tenna system, retrieving the overlapping echoes from radar

backscatter and so on (see e.g., [1]). The observed vector can

be modeled as a superposition of a finite number of underly-

ing source signals with an additive noise. The source signals

and noise vector sequence are assumed to be two independent

ergodic zero-mean Gaussian random processes. Moreover,

this issue can also be addressed as a model selection problem

of selecting the hidden dimensionality of Factor Analysis

(FA) [2] in its special case of Principal Component Analysis

(PCA) [3] under the Maximum Likelihood principle.

A classical approach to model selection is the two-stage

procedure, i.e., parameter learning is made on a set of can-

didate models, among which one is selected by a model se-

lection criterion. The existing criteria include Akaike’s Infor-

mation Criterion (AIC)[4], Bozdogan’s Consistent Akaike’s

∗ Corresponding author: Lei Xu. Email: lxu@cse.cuhk.edu.hk. The

work described in this paper was fully supported by a grant from the Research

Grant Council of the Hong Kong SAR (Project No: CUHK4177/07E).

Information Criterion (CAIC)[5], Hannan-Quinn informa-

tion criterion (HQC) [6], Schwarz’s Bayesian Information

Criterion (BIC)[7] (which coincides with Rissanen’s Mini-

mum Description Length (MDL)[8]), and recently developed

Minka’s criterion (MK)[9], Variational Bayes (VB) [10],

Bayesian Ying-Yang (BYY) harmony learning criterion[11].

Early from [1], AIC and MDL were introduced to deter-

mine the number of signals, and then it was followed by a lot

of researches such as [12], with emphasis on the asymptotic

properties of the criteria under certain assumptions. Follow-

ing the above track, this paper aims at a systematic investiga-

tion on those criteria via a new empirical analyzing tool that

examines the joint effect of the signal-noise ratio (SNR) and

sample size N rather than the effect of either SNR or N with

the other fixed in previous work, e.g., [13].

The adopted parameterization of FA is different from the

common one in e.g., [10]. The two forms are equivalent in

Maximum Likelihood learning, but different in model selec-

tion as pointed out in [14] under BYY. Actually, the adopted

form results in a better model selection ability under BYY and

VB with details in another working paper[15]. Here, we im-

plement the EM algorithm [3] for classical AIC etc. For VB,

we derive a new VBEM algorithm by imposing appropriate

priors on the unknown parameters. In addition to the existing

prior-free version (BYYo)[16], BYY is further implemented

by not only adopting the same priors (BYYp) as the VBEM

but also updating the hyperparameters of the priors (BYYph)

under the Hessian based second-order information conserva-

tion principle [16].

By varying a wide range of N and SNR in the empirical

analysis, we connect the contour of the same model selection

accuracy, and the contours actually define a family of model

selection performance indifference curves (a term borrowed

from economics) for each criterion. Then, we are able to re-

veal a diminishing marginal effect that the amount of SNR

(or N ) to trade for a unit of N (or SNR) increases if the per-

formance is kept unchanged, and also able to present a three-

region partition on the space of N and SNR, i.e., all methods

perform well/bad when SNR and N are too large/small re-

spectively, while within the region with moderate SNR and

N , the performances of these methods demonstrate diversity

clearly. Moreover, VB and three variants of BYY outperform

1966978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



the others in the region of diversity, while BYYph is the best

in general.

The rest of the paper is organized as follows. Section 2

formulates the problem of determining the number of signals

as estimating the hidden dimensionality of FA. Section 3 in-

troduces the two-stage procedure with several model selection

criteria whose behaviors are empirically analyzed in section 4

followed by the concluding remarks in section 5.

2. PROBLEM FORMULATION
In signal processing [1], a common model for the received

complex-valued signal vector x(t) from an array of n sensors

at time instance t, is x(t) = As(t) + e(t), where A is the

steering matrix with full column rank. The m-dimensional

source signal vector sequence {s(t)} is assumed to be a sta-

tionary and ergodic Gaussian random process with zero mean

and positive definite covariance matrix Σs. The noise se-

quence {e(t)} is assumed to be a stationary and ergodic Gaus-

sian vector process, independent of the source signals, with

zero mean and isotropic covariance matrix σ2
eIn, where In is

the n× n unit matrix. Determining the number of source sig-

nals based on an observed sequence {x(t)}N
t=1 is to estimate

the rank of AΣsAH in Σx|c = AΣsAH + σ2
eIn where Σx|c

is the population covariance matrix of the received data, and

the superscript “H” means the complex conjugate transpose.

On the other hand, a model called Factor Analysis (FA)

in machine learning [16, 3] and statistics [2], assumes an ob-

served real-valued n-dimensional random variable x as fol-

lows:⎧⎪⎪⎨
⎪⎪⎩

x = Uy + μ + e, Θm = {U,μ,Λ,Σe};
q(x|y) = G(x|Uy + μ,Σe), q(y) = G(y|0,Λ),
q(x|Θm) =

∫
p(x|y)p(y)dy = G(x|μ,Σx),

Λ = diag[λ1, . . . , λm],Σx = UΛUT + Σe,

(1)

where UT U = Im, and Σx is the population matrix of the

data and Σe = σ2
eIn which makes FA equivalent to PCA

under the maximum likelihood principle [3]. Estimating the

hidden dimensionality m is to determine the rank of UΛU in

Σx = UΛUT + σ2
eIn based on {xt}N

t=1.

The two rank estimation problems are equivalent in a

sense that they aim to estimate the (same) rank m in re-

spectively two similar sample covariance equations. Next,

we focus on the latter one, which is also widely used as a

dimensionality reduction technique for feature extraction.

3. MODEL SELECTION CRITERIA
The two-stage procedure performs parameter learning over

a set of candidate models among which one is selected by

a model selection criterion. Typical examples include the

classical AIC [4], BIC/MDL [7, 8], CAIC [5], HQC[6], and

recent Minka’s criterion (MK) [9] and VB [10], and BYY

[16, 17], as well as the difference of negative log-likelihood

(DNLL). They are briefly summarized in Tab.1.

criteria Stage-I Stage-II: m̂ = arg minm J(m)

DNLL J(m) = −L(Θ̂ML
m ) + L(Θ̂ML

m−1)

AIC J(m) = −L(Θ̂ML
m ) + dm

BIC EM alg. J(m) = −L(Θ̂ML
m ) + dm

2
ln N

CAIC J(m) = −L(Θ̂ML
m ) + dm

2
(ln N + 1)

HQC J(m) = −L(Θ̂ML
m ) + dm ln(ln N)

MK eig J(m) by equation (30) in [9].

VB VBEM J(m) = −F(p̂U, p̂ν , p̂φ, p̂Y , m)

BYY eq.(2) J(m) = −H(p‖q,Θ∗
m, Ξ∗) + 1

2
dm

Table 1. The two-stage procedures for several criteria are

given, where L(Θ̂ML
m ) = maxΘm ln q(XN |Θm) is the max-

imized log-likelihood of data set XN , and dm = nm + 1 −
m(m−1)

2 is the number of free parameters in FA. In Stage-I,

the “EM alg.” denotes the Expectation Maximization (EM)

algorithm for FA; the “eig” means estimating the sample

eigenvalues for MK; the F(p̂U, p̂ν , p̂φ, p̂Y ,m) is the resulted

variational lower bound by VBEM; the H(p‖q,Θ∗
m, Ξ∗) is

the resulted harmony functional by implementing eq.(2).

One difficulty in Bayesian model selection is to com-

pute the marginal likelihood which incorporates priors on

the parameters and involves a high dimensional integra-

tion. To approximate the marginal likelihood, Minka [9]

proposed a criterion (MK) via Laplace approximation. Vari-

ational Bayes (VB) [10] is another way to approximate the

(log) marginal likelihood with a lower bound by means of

the variational methods. Since no VB algorithm exists for

FA by eq.(1), we derive one in this paper by adopting a

uniform prior over the Stiefel manifold used in [9] for U,

i.e., q(U) = 2−m
∏

i Γ(n−i+1
2 )π−n−i+1

2 , the commonly

used Gamma density as priors for the precision parame-

ters, i.e., q(ν|aν , bν) =
∏m

i=1 Γ(νi|aν
i , bν

i ), q(ϕ|aϕ, bϕ) =
Γ(ϕ|aϕ, bϕ), with ν = Λ−1 and ϕ = (σ2

e)−1. Then, the

VBEM algorithm implements max{pU,pν ,pϕ,pY } F for each

candidate scale m, and F is the variational lower bound:

F =
∫

pUpνpϕpY ln
[
q(XN , Y |Θ)q(Θ|Ξ)

pUpνpϕpY

]
dY dU dν dϕ,

where the posterior is constrained to be in a factorized form of

pUpνpϕpY , and q(XN , Y |Θ) =
∏

t q(xt|yt)q(yt) is given

by eq.(1), and q(Θ|Ξ) = q(U) q(ν|aν , bν)q(ϕ|aϕ, bϕ).
Firstly proposed in [11] and systematically developed

over a decade [16, 17], Bayesian Ying-Yang (BYY) harmony

learning theory is a general statistical learning framework

that can handle both parameter learning and model selec-

tion under a best harmony principle. Given in [16, 17], the

general two-stage procedure of BYY harmony learning is

summarized in Tab.1, and the Stage-I is to implement

I(a): Θ(τ)
m = arg max /incrΘm

H(p‖q,Θm, Ξ(τ−1)),
I(b): Ξ(τ) = arg max /incrΞ{H(p‖q,Θ(τ)

m , Ξ) + 1
2d(Ξ)},

d(Ξ) = −dm + (Θ(τ−1)
m − Θ(τ)

m )Ω(Θ(τ−1)
m − Θ(τ)

m ), (2)

where Ω = ∇2
ΘΘT H(p‖q,Θ(τ)

m , Ξ). Specifically the har-
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band (%) very good not good

80 ∼ 100 most criteria DNLL, AIC

40 ∼ 80 BYY,VB BIC,CAIC,DNLL

0 ∼ 40 BYY,VB the rest criteria

low SNR VB {7 red ∗} the rest criteria get

{1.5, 2.0} BYY {8 red ∗ = 1(BYYo)+ fewer than 3 red ∗
3(BYYp)+4(BYYph)}

small N BYYph gets most red ∗ the rest criteria

<= 75 get few red ∗
Table 2. The comparisons are based on (1) the band area

between the specified contour lines (%) (the bigger and closer

to left corner, the better), (2) the number of red asterisk (∗)

(the more, the better).

mony functional for FA by eq.(1) is

H(p‖q,Θm, Ξ) =
∏

t lnG(xt|0, Σx)
+N ln

√
(2πe)n|Σy|x| + dr(W̃ ) + ln q(Θ|Ξ),

(3)

where dr(W̃ ) = −Tr[ΔT
W (Σy|x)−1ΔW SN ] will vanish as

the difference ΔW = W̃ − W converges to zero, i.e. the

free parameter W̃ converges to W = ΛUΣ−1
x , with Σy|x =

Λ−1 + UT Σ−1
e U and Σx given in eq.(1).

Ignoring priors by letting q(Θ|Ξ) = 1, BYY (denoted as

“BYYo”) still possesses a good model selection ability[16].

By eq.(2), we further implement BYY (denoted as “BYYp”)

by adopting the same priors as used in VB, so that ln q(Θ|Ξ)
in eq.(3) plays a role of regularization. By I(b) in eq.(2), the

hyperparameters are updated in BYY (named “BYYph”) to

further increase the harmony functional. All BYY algorithms

are implemented by the gradient method.

4. EMPIRICAL ANALYSIS
Empirical analysis is based on a series of controlled exper-

iments by varying a wide range of the sample size N ∈
{25, 50, 75, 100, 200, 400, 800}, SNR γo = λm∗

σ2
e

+ 1 ∈
{1.2, 1.5, 2, 2.5, 3, 3.5, 4, 8, 16}, where λi = . . . = λm∗ = 1,

and n,m∗ (i.e., dim(x), dim(y)) are respectively fixed at

15, 5 due to the space limit. For each of 102 independent

runs, the two-stage procedure for every criterion is made on

the set of candidate models M = {1, . . . , 9} based on a data

set XN randomly generated according to a chosen setting for

N, γo. We report the percentages of the successful selections,

i.e., m̂ = m∗, in the form of contour maps in Fig.1.

The contour maps define a family of model selection

indifference curves that visualize the performance over the

space of SNR and N . The performances decrease as N and

SNR reduce. Also, it can be observed from Fig.1 that (1)

a three-region partition, i.e., all criteria perform well/bad

when SNR and N are large/too small, while the region with

moderate SNR and N differentiates those criteria well; (2) a

diminishing marginal effect, i.e., the amount of SNR (or N )

to trade for a unit loss of N (or SNR) increases as moving

down an indifference curve.

Detailed observations from Fig.1,2 are listed in Tab.3. VB

and three variants of BYY are relatively more robust than

the other criteria against reducing the sample size and SNR,

where BYYph performs the best in general.

All methods are also evaluated on a real world dataset

Pendigits1 (16 attributes, 10 classes, 10992 instances). Sim-

ilarly, we vary the training sample size N . The classifica-

tion results basically coincide with the model selection per-

formance on synthetic data.

% N = 16 N = 30 N = 100

AIC 56.46 ± 6.20 88.91 ± 1.72 96.61 ± 0.39
BIC 56.46 ± 6.19 87.72 ± 1.92 96.64 ± 0.40
HQC 56.46 ± 6.20 88.51 ± 1.59 96.62 ± 0.31
CAIC 48.34 ± 12.7 87.63 ± 1.62 96.63 ± 0.33
DNLL 79.18 ± 9.01 86.48 ± 1.71 91.26 ± 0.58
VB 87.02 ± 2.45 93.86 ± 1.31 96.19 ± 0.31
BYYph 88.57 ± 1.04 94.15 ± 0.33 96.29 ± 0.16

Table 3. Classification accuracies mean±stdev of 102 runs.

5. CONCLUSION
Based on the problem of determining the number of underly-

ing source signals, we have investigated the relative strengths

and weaknesses of not only the classical AIC, BIC/MDL,

CAIC, HQC, but also recently developed Minka’s criterion,

VB and BYY. We derive a new VB algorithm for FA by im-

posing appropriate priors, which are also adopted in BYY for

further implementations. The investigation is made via a new

empirical analyzing tool featured by model selection indiffer-

ence curves which reveal a three-region partition and a dimin-

ishing marginal effect. Moreover, the BYY with the priors’

hyperparaemters updated is the best in general.
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