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Abstract� A uni�ed statistical learning approach called Bayesian Ying�
Yang �BYY� system and theory has been developed by the present author
in recent years	 In a sister paper 
��� this BYY system and theory has
been shown to function as a general theory for unsupervised learning and
its extension called semi�unsupervised learning� such that not only sev�
eral existing popular unsupervised learning approaches are included as
special cases� but also a number of new theories and models are provided
for unsupervised pattern recognition and cluster analysis� factorial en�
coding� data dimension reduction� and independent component analysis	
In this paper� the basic system and theory in 
�� is further theoretically
justi�ed and extended into a general system and theory with a gen�
eral implementation technique such that not only those results 
�� are
kept as special cases still� but also it works for supervised learning and
temporal modeling on parameter learning� regularization� structural scale
or complexity selection� and architecture design	 Particularly� temporal
modeling and regression based on Hidden Markov Model �HMM� and
the linear and nonlinear state space model are discussed in detail� with
an adaptive algorithm proposed for various speci�c variants of HMM
model and state space models	 Moreover� the criteria for deciding the
number of hidden states in HMM and the order of state space are also
proposed	 In another sister paper 
�� of this proceeding� several speci�c
models and algorithms as well as model selection criteria will be given
for dependence reduction� data dimension reduction� independent com�
ponent analysis� supervised classi�cation and regression	 In addition� the

� Supported by the HK RGC Earmarked Grants CUHK������E and CUHK ������E
and by Ho Sin�Hang Education Endowment Fund for Project HSH �����	 The basic
ideas of the BYY learning in my previous papers started the �rst year of my returning
to HK	 As HK in transition to China� this work was in transition to its current shape	
The preliminary version of this paper and its sister papers 
�� �� are all completed
in the �rst month that HK returned to China and thus I formally returned to my
motherland as well	 I would like to use this work as a memory of this historic event	



relation of the BYY learning system and theory to a number of existing
learning models and theories has been discussed in 
��	

� Basic Bayesian Ying�Yang System and Theory

As shown in Fig��� the BYY system consists of seven components� The 
rst four
components form the core� The other three surrounding components are added
for the purposes of supervised learning� The core itself functions as a general
framework for unsupervised learning� as shown in ����

In this section� we understand the basic idea of the core� As shown in ����
unsupervised perception tasks can be summarized into the problem of estimating
the joint distribution p�x� y� of the observable pattern x in the observable space
X and its representation pattern y in an invisible space Y � In the Bayesian
framework� we have two complementary representations p�x� y� � p�yjx�p�x�
and p�x� y� � p�xjy�p�y�� We use two sets of models M� � fMyjx�Mxg and
M� � fMxjy�Myg to implement each of the two representations�

pM�
� pM�

�x� y� � pMyjx
�yjx�pMx �x�� pM�

� pM�
�x� y� � pMxjy

�xjy�pMy �y�� ���

We call Mx a Yang��visible� model� which describes p�x� in the visible domain
X� andMy a Ying ��invisible� model which describes p�y� in the invisible domain
Y � Also� we call the passage Myjx for the �ow x � y a Yang��male� passage
since it performs the task of transferring a pattern��a real body� into a code��a
seed�� We call a passage Mxjy for the �ow y � x a Ying��female� passage since
it performs the task of generating a pattern��a real body� from a code��a seed��
Together� we have a YANG machine M� to implement pM�

�x� y� and a YING
machine M� to implement pM�

�x� y�� A pair of YING
YANG machines is called
a YING
YANG pair or a Bayesian YING
YANG system �� Such a formalization
compliments to a famous Chinese ancient philosophy that every entity in the
universe involves the interaction between YING and YANG�

The task of specifying a Ying
Yang system is called learning in a broad sense�
which consists of the following four levels of speci
cations�

Item ��� According to the nature of the perception task� the Representation
Domain Y and Its Complexity k are designed� For example� we have either
y � Rk or a binary vector y � �y���� � � � � y�k��T � y�j� � f�� �g�

Item ��� Based on the given set of training samples� some previous knowl

edge� assumption and heuristics� Architecture Design is made by specifying the
architectures of four components pMx

�x�� pMyjx
�yjx�� pMxjy

�xjy� and pMy
�y��

First� with a given set Dx � fxig
N
i�� from an original density p�x�� pMx

�x� is

xed at some parametric or nonparametric empirical density estimation of p�x��

� It should be �Yin� in the Mainland Chinese spelling system	 However� I prefer to use
�Ying� for the beauty of symmetry	 Furthermore� strictly speaking we should use
P �u� to replace p�u� when the corresponding random variable u is discrete	 However�
we simply use p��� for both the cases	 Readers may identify the di�erence according
to whether the involved variable is real or discrete	
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Fig� �� The Bayesian YING�YANG System

e�g�� pMx
�x� � phx �x� given by a kernel estimate�

phx �x� �
�

�Dx

X
xi�Dx

Khx�x� xi�� Khx �r� �
�

hdx
K�

r

hx
�� ���

with a pre
xed kernel function K��� and a pre
xed smoothing parameter hx�
Next� for the other three components� each pMa

�a�� a � fxjy� yjx� yg can be
designed in two ways� One is called Free� It implies a totally unspeci
ed den

sity or probability function in the form p�a� without any constraint� Thus� it
is free to change such that it can be indirectly speci
ed through other compo

nents� The other is called Parameterized Architecture� It means that pMa

�a�� a �
fxjy� yjx� yg is either a simple parametric density� e�g�� a Gaussian pMxjy

�xjy� �
G�x�mxjy� �xjy� with mean mxjy and variance matrix �xjy� or a compounded
parametric density with some of its parameters de
ned by a complicated func

tion with a given parametric architecture consisting of a number of elementary
units that are organized in a given structure� Taking a three layer perceptron as
an example� we have

S�x�W � � 
my�� � � � �mykr
�� myi � s�

kbX
j��

w
���
i�j s�x

TW
���
j �w

���
j�� ��� ���

as myjx in pMyjx
�yjx� � G�y�myjx� �

�I�� with W � fw
���
i�j �W

���
j � w

���
j��g� s�u� is a

sigmoid function� and kb represents the scale or complexity of the parametric
architecture� Therefore� the design of a parameterized architecture consists of

�i� Speci
cation of density function form pa�a�� For example� we have
pMyjx

�yjx� � G�y� S�x�W �� ��I� for eq�����
�ii� Speci
cation of one or several types of elementary units in a 
xed basic

structure with a complexity kba� For example� it can be a simple sigmoid neuron
or a gaussian unit with kba ignored� or it can be a myi given by eq���� with a
complexity kba�

�iii� Speci
cation of a structure on how to organize those elementary units
into the architecture� For example� by the cascade organization of sigmoid neu

rons� we can get a three layer perceptron eq�����



Item ��� We also need to select the set of scale parameters k � fkr� qr� fkbagg
with each element de
ned as above� which is called Structural Scale Selection or
Model Selection�

Item ��� After the above three levels of speci
cations� the unspeci
ed part
for each component pMa

�a�� a � fxjy� yjx� yg is a set �a of parameters in certain
domains� Putting them together� we get the parameter set � � f�xjy� �yjx� �yg�
which we call Parameter Learning� In the literature� this task is also often simply
called learning in a narrow sense�

Our basic theory is that the speci
cations of an entire Ying
Yang system
pM�

� pM�
by eq���� in the above four levels best enhances the so called Ying�Yang

Harmony or Marry� through minimizing a harmony measure called separation
functional�

Fs�M��M�� � Fs�pM�
� pM�

� � �� Fs�M��M�� � �� iff pM�
� pM�

� ���

which describes the harmonic degree of the Ying
Yang pair� Such a learning
theory is called Bayesian Ying�Yang �BYY� Learning Theory� As shown in ����
this theory functions as a general theory for unsupervised learning and its semi

unsupervised extension� One important feature is that it provides a new per

spective� i�e�� the interaction of learning on the complement Ying and Yang
structures� for tackling the learning and model selection problems on a training
set of 
nite samples with an improved generalization� as will be further addressed
in Sec��� especially by Item ��� and Item ����

Three categories of separation functionals� namely Convex Divergence� Lp
Divergence� and De�correlation Index� have been suggested ���� Particularly� the
Convex Divergence is de
ned as �

Fs�M��M�� � CV �pM�
jjpM�

�� Fs�M��M�� � CV �pM�
jjpM�

�� ���

CV �pjjq� � f����

Z
p�u�f�q�u��p�u��du� f�v� is strictly convex on ������	

In this case� the BYY learning is called Bayesian Convex YING
YANG �BCYY�
learning� Particularly� when f�u� � lnu� eq��	� becomes the well known Kullback
Divergence�

Fs�M��M�� � KL�pM�
jjpM�

�� or Fs�M��M�� � KL�pM�
jjpM�

��

KL�pjjq� �

Z
p�u� ln

p�u�

q�u�
du� ���

In this special case� the BYY learning is called Bayesian
Kullback YING
YANG
�BKYY� learning� It should be noted that the asymmetry feature of CV �pjjq�
and KL�pjjq� and thus BCYY and BKYY learning have two di�erent variants�
In papers ��� �� and this paper� we focus on the case of Fs�M��M���KL�M��M��
only� In ���� we will particularly discuss Fs�M��M�� and KL�M��M���

� For convenience� in this whole paper we adopt such a convention that �a�
R
u
denotes

the integral operation when u is known to be a real � �b� in general
R
u
denotes either

the integral operation for a real u or the summation operation for a discrete u� �c�
we explicitly use

P
u
if u is already known to be discrete	



The above proposed basic form of the BYY system and theory is mainly for
unsupervised learning �i�e�� knowing Dx � fxig

N
i��� and its semi
unsupervised

extension � i�e�� knowing a hybrid data set DH � fDx�y� Dxg with Dx�y �

fxi� yig
N �

i���� However� for supervised learning� the above basic form covers only
the ordinary maximum likelihood learning by KL�M��M���	��

� BYY Learning System and Theory

We further consider the complete system in Fig�� with the last three components
joined in� One is the Output Action Space z � Z with its distribution pMz

�z��
The other is the Action Terminal �AT� described by a distribution pMzjx�y

�zjx� y�
for the mapping x� z that is modulated by the internal representation y� The
another one is the Coordination Terminal �CT� described by a distribution
pMyjx�z

�yjx� z�� which lets the invisible representation Y be in coordination with
the two visible spaces X�Z� Here� with respect to the invisible space Y � the model
pML

�

�x� z� � pMzjx
�zjx�pMx

�x� for the joint X�Z forms a large Yang model�

while with respect to the visible output action space Z� the model pML
�

�x� y� �

pM�
�x� y� � pMxjy

�xjy�pMy
�y� for the joint X�Y forms a large Ying model� The

action terminal pMzjx�y
�zjx� y� is the passage from the large Ying space to the

Yang space Z� The coordination terminal pMyjx�z
�yjx� z� is the passage from the

large Yang space to the Ying space Y � Thus� we have another YING
YANG pair

pML
�

� pML
�

�x� y� z� � pMyjx�z
�yjx� z�pMzjx

�zjx�pMx�x�� ���

pML
�

� pML
�

�x� y� z� � pMzjx�y
�zjx�y�pML

�

�x� y� � pMzjx�y
�zjx�y�pMxjy

�xjy�pMy�y��

with the old Ying
Yang pair in eq���� to form an enlarged Ying
Yang system�
Therefore� in addition to specify the old Ying
Yang pair� we need also to spec


ify the new Ying
Yang pair� First� pML
�

�z� x� is speci
ed via Dx�z � fxi� zigNi��
such that pMx

�x� � phx �x� is still the same as before and pMzjx
�zjx� � phz �zjx�

for a pair �x� z�� � Dx�z�

phz �zjx� �

�
�d�z � z��� z is discrete�
�

h
dz
z

K� z�z
�

hz
�� z is real� � �d�z� �

n
� for z � ��
�� for z �� �	

���

So� only two new components pMyjx�z
�yjx� z� and pMzjx�y

�zjx� y� need to join
the previously discussed core for being speci
ed through Architecture Design�
Structural Scale Selection� and Parameter Learning�

Again� our basic theory is that all the speci
cations should best enhance the
Ying�Yang Harmony for both the Ying
Yang pairs� through minimizing�

Ftwo�M��M�� � Fs�pM�
� pM�

� � Fs�pML
�

� pML
�

��

Particularly� KLtwo�M��M�� � KL�pM�
jjpM�

� �KL�pML
�

jjpML
�

��

or KLtwo�M��M�� � KL�pM�
jjpM�

� �KL�pML
�

jjpML
�

�� ���

It can be noticed that eq���� will degenerate into eq���� when z � x which
makes KL�pML

�

� pML
�

� � KL�pM�
� pM�

� and KLtwo�M��M�� � �KL�M��M��� In

other words� the extended BKYY learning indeed includes the basic BKYY



learning eq���� as a special case� For some other separation functionals� we also
have Ftwo�M��M�� � �Fs�M��M�� when z � x�

We use Sa� ka and �a to denote respectively the architecture� structural scale�
and parameters of each component pMa

�a�� a � fxjy� yjx� y� �yjx� z�� zjx� y�g�
Putting them together� we have the following parts to be speci
ed�

S � fSxjy � Syjx� Sy� Szjx�y � Syjx�zg� for Architecture Design�

k � fkr � k
b
xjy � k

b
yjx� k

b
y� k

b
zjx�y � k

b
yjx�zg� for Structural Scale Selection�

� � f�xjy � �yjx� �y� �zjx�y � �yjx�zg� for Parameter Learning� ����

It should be noticed that this is the most general notations� A part of these
parameters can be prespeci
ed in many speci
c cases�

For BKYY learning� we also often use the following decompositions�

KL�pM�
jjpM�

� � Kl�pM�
jjpM�

��H�pMx�x��� H�p� � �

Z
p�u� ln p�u�du�

Kl�pM�
jjpM�

� � HC�pM�
jjpM�

�� EpMx
�x�
H�pMyjx

�yjx���

Hc�pjjq� � �

Z
p�u� ln q�u�du� Ep�u�
g�u�� �

Z
p�u�g�u�du�

KL�pML
�

jjpML
�

� � Kl�pML
�

jjpML
�

��H�pML
�

�z�x���

Kl�pML
�

jjpML
�

� � HC�pML
�

jjpML
�

��Ep
ML
�

�z�x�
H�pMyjx�z
�yjx� z��� ����

Finally� we summarize the major roles of the BYY learning theory as follows�

Item ��� Parameter estimation or learning� That is� we determine

�� � argmin
�

F ���S� k�� given S and k �xed� ����

where F ���S� k� denotes Fs�pM�
� pM�

� for eq���� and Ftwo�M��M�� for eq�����
in the general cases� and denotes KL�pM�

jjpM�
� for eq���� and KLtwo�M��M��

for eq���� for BKYY learning� For the latter case� KL��jj�� can also simply re

placed by Kl��jj�� given by eq����� since the terms H�pMx

�x��� H�pML
�

�z� x�� are
irrelevant to ��S� k�

Item ��� Structural scale selection� or model selection� We determine

k� � min
k
K� K � fj 
 J�j� � min

k
J�k�g� J�k� �

�
J��k��
J��k�

� given S�

J��k� � F ���� k� S�� J��k� �

�
HC�p

�
M�
jjp�M�

�� for eq	����
HC�p

�
ML

�

jjp�
ML

�

�� for eq	���� ����

where ��� denotes the case with the parameter �� given by eq����� with
F ���S� k� being the same as in eq����� too�

When k is small� the discrepancy of the learned Ying and Yang models can
not cancel and thus J��k� is high� as k increases to the best k�� both the Ying
and Yang models 
t the samples well and the discrepancy of the learned two
becomes the minimum and thus J��k� reaches its minimum and then keeps this
minimum thereafter�

From eq������ we can also get

HC�pM�
jjpM�

� � Kl�pM�
jjpM�

� � EpMx
�x�
H�pMyjx

�yjx���



HC�pML
�

jjpML
�

� � Kl�pML
�

jjpML
�

� �Ep
ML
�

�z�x�
H�pMyjx�z
�yjx� z��� ����

After ignoring the termsH�pMx
�x���H�pML

�

�z� x�� that are irrelevant to ��S� k�

we see that J��k� is obtained from J��k� with an additional term � the condi

tional entropy or the uncertain complexity of the passage from the Yang space
to Ying space� The more complicated the passage is� the larger the term� It is
small when k is small� but the discrepancy of the learned Ying and Yang models
will be large� When k is larger than the best k�� the discrepancy will keep at
its minimum and the complexity or the uncertainty due to the passage will be
increase as k� Thus� the minimization of J��k� select a model with the scale k�

that minimizes both the discrepancy due to an over
determined Ying
Yang pair
and the uncertainty due to a under
determined passage from Yang to Ying�

We can also further justify J��k�� J��k� more formally as follows�
We 
rst consider the following two points�
��� We use Jo� �k�� J

o
� �k� to denote the limit of J��k�� J��k� by letting pMx

�x�
to be replaced by po�x� �ox� k

o� for F � Fs�M��M�� given by eq���� or pML
�

�z� x�

to be replaced by po�x� z� �ox�z� k
o� for F � Ftwo�M��M�� given by eq����� where x

comes from po�x� �ox� k
o� with it structural scale being ko or the pair z� x comes

from po�x� z� �ox�z� k
o�� This limit� i�e�� the consistency of J��k�� J��k�� can be

reached as the sample number N � � under the condition that the estimate
pMx

�x�� pML
�

�z� x� are consistent � e�g�� given by eq���� and eq���� � and that the
densities in the Ying and Yang parts satisfy some mild regular condition�

��� We use Dk to denote the domain of �k � � at k� We consider a class
of so called incremental architectures� That is� as the scale increases from k � �
to k� from �k � f�k��� �kg with �k being not empty and also not a subset of
�k�� we have Dk�� � Dk since the case of k � � can be regarded as a special
case of k where at least some parameters in �k are 
xed at their speci
c values�
e�g�� for a 
nite mixture p�x��k� �

Pk

j���jp�xj�j�� discussed in ���� Dk�� can
be regarded as a subset of Dk with one 
xed �j � ��

Based on the two points� we can prove that�
Theorem ��� For a Ying 
Yang pair with incremental architecture� Jo� �k� �

Jo� �k
o� for k 	 ko and Jo� �k� � Jo� �k

o� for k � ko� Moreover� as k increases from �
to ko� Jo� �k� is monotonically non
increasing and reaches its minimum at Jo� �k

o��
Proof �ox or �ox�z is only contained in Dk� k � ko and D� � � � � � Dko�� �

Dko� thus the minimization eq����� is made on the domain that becomes bigger
and bigger until it contains �ox or �ox�z after k � ko� Q�E�D�

The theorem justi
es J��k� for the cases of a large sample number N � For
the case of 
nite samples� as k � ko increases� both the Ying and Yang models
further enhance their 
ts to the 
nite samples since they have excess freedom�
J��k� may still decrease slowly as k passes ko and some modi
cation can be
added to help the detection of ko �e�g�� by hypothesis testing��

We further look into Jo� �k�� For k 	 ko� it is actually a measure that decreases
as the discrepancy between the pair p�M�

� p�M�
or the pair p�

ML
�

� p�
ML

�

reduces and

reaches its minimumat k � ko with p�M�
� p�M�

or p�
ML

�

� p�
ML

�

� After k � ko� this

equality will keep and thus Jo� �k� actually becomes the entropy or the uncertain



complexity of p�M�
or p�

ML
�

�

For an incremental architecture� from �k � f�ko� �kg we see that p�M�
�

p�M�
or p�

ML
�

� p�
ML

�

means the fact that only �ko is independently optimized

in eq����� and actually the parameters in �k are dependently 
xed at their
speci
c values by the parameters in �ko� For the cases with k and ko produce
the equivalent performances� we like to select the smallest ko for saving the

complexity� For example� for a 
nite mixture po�x� �ox� k
o� �

Pko

j���
o
jp�xj�

o
j �� we

have
Pk

j���jp�xj�j� �
Pko

j���
o
jp�xj�

o
j � for k � ko� which can be true only when

for each j there is at least one i such that �i � �oj and for some j there are

more than one i�� � � � im such that �i� � � � � � �im � �oj with
Pm

r�� �ir � �oj �
In this case� m moldes of �imp�xj�

o
j � equivalently represents one �

o
jp�xj�

o
j �� and

the cases for k� ko are equivalent� For some algorithms� the minimization eq�����
forces �k to take values independently on the whole domain Dk and deviate
from the correct value� resulting in Jo� �k� � Jo� �k

o� automatically� For example�
for the above 
nite mixture with the constraint �j � �
k �e�g�� using the well
known K
means algorithm for clustering on gaussian mixture� or even simply

each �j � �� then we have
Pk

j���jp�xj�j� ��
Pko

j���
o
jp�xj�

o
j � for k � ko� and

thus Jo� �k� � Jo� �k
o�� This property makes J��k� better in the case of 
nite

samples to alleviate the problem that J��k� may decrease slowly as k passes ko�
Item ��� Architecture evaluation� Similar to eq������ we can also select

a set of architecture S � fS�i�� i � �� � � � � Nsg by i� � argmini J�S�i�� with

J��S
�i�� � F ���� S�i��� J��S

�i�� �

�
HC�p

�
M�
jjp�M�

�� for eq	����
HC�p

�
ML

�

jjp�
ML

�

�� for eq	���	 ����

Item ��� Regularization� The BYY learning theory can improve general

izations from the following aspects�

�a� Given 
nite samples and a structural scale k that may be too large with
excess freedom� The key reason of poor generalization is that the modeling prob

lem in such cases are under
determined with many models that can 
t the 
nite
samples well but more uncertain to 
t future samples� When only one model is
used for 
tting the samples� the solution can be any one in an under
determined
domain and thus may be far from the desired one in this domain� Hence� it may

t these samples well but perform poorly for a testing set� when we use both
the Ying and Yang models to 
t these samples� each is still under
determined�
However� due to the complement structures of the two� each has a di�erent under

determined domain� The learning eq����� aims at minimizing the discrepancy of
the two that both 
t these samples� therefore the under
determined domain re

duces into the intersection of the original two under
determined domains� with
the true solution kept in this intersection since the Ying and Yang are equal
naturally at the true solution� This process equivalently regularizes the ill
posed
learning and thus improves the generalization�

�b� The generalization can also be improved by the selection criteria given
in Item ��� and Item ����



�c� The generalization can also be obtained via selecting smooth parameters
hx� hz in estimating pMx

�x� by eq���� and phz �zjx� by eq���� according to

fh�x� h
�
zg � arg min

hx �hz

J�hx� hz�� J�hx� hz� �

��
�
F ���� k�� S�i

��� hx� hz��
HC�p

�
M�
jjp�M�

��
HC�p

�
ML

�

jjp�
ML

�

��
����

The above approaches are obviously di�erent from the existing regularization
or generalization error up
bound methods �e�g�� VC dimension � that introduce
an extra penalty term to the original error cost for being minimized together�
They are also considerably di�erent from the existing Bayesian approach that
introduce a priori density on the parameters� at least in the two aspects�

Item ��� The BYY system and theory only bases on the two complement
Bayesian representations� there is no use of a priori on the parameters� Instead�
a priori can be embedded via the designs of the two complement architectures�

Item ��� In addition� the two Bayesian representations may not be equal�
i�e�� the Bayesian rule may not be exactly true but only approximately hold�
Therefore� our approach should not be confused with the existing Bayesian ap

proach� It is a new type of Structural and Relaxed Bayesian approach�

� A General Technique for Implementation

Let F be either Fs�M��M�� in eq���� or Ftwo�M��M�� in eq����� minM��M�
F

can be implemented by alternatively repeating the following Step �a� and �b��

a� F ix M� �Mold
� � Mnew

� � argmin
M�

F � b� F ix M� �Mold
� � Mnew

� � argmin
M�

F� ����

which guarantees to reduce F until converged to one local minimum� where F
is the same as discussed in eq����� and Item ����

For BKYY learning� the integral operations in computing KL or Kl may be
simpli
ed into some implementable forms� For example� for discrete y with the
design pMy �y� � �y � �� pMyjx

�yjx� � p�yjx� � �� pMxjy
�xjy� � G�x�my��y�� and

pMx�x� � phx �x� by eq����� the above eq����� becomes the following Smoothed
EM algorithm for gaussian mixtures�

E Step 
 get p��yjxi� � �yG�x�my��y��

kX
y��

�yG�x�my��y��

M Step 
 �y �
�

N

NX
i��

p��yjxi�� mnew
y �

�

�yN

NX
i��

p��yjxi�xi�

�new
y � h�Id �

�

�yN

NX
i��

p��yjxi��xi �mnew
y ��xi �mnew

y �T � ����

which is actually a smoothed variant of the well known EM algorithm for gaus

sian mixture� as discussed in details by ���� Moreover� the number k can be se

lected by J��k�� J��k� with the same detailed formula given in ���� Furthermore�
h can also be selected by eq������



However� in the most general case� we will still encounter the implementation
di�culty for dealing with these integral operations� Here� we propose a general
stochastic sampling technique for implementation� First� we represent the sepa

ration functional by the following general form�

F �M��M�� �

Z
u

ffM��M�g�u�du �

Z
u

pr�u�
�

pr�u�
ffM��M�g�u�du� pr�u� �� �� ����

where pr�u� is a given known smooth density function� called Sampling Refer�
ence� e�g� if the integral is made on a compact support S� pr�u� can be a uniform
density on this S� Moreover� u is x� y for eq��	� and eq����� x� y� z for eq����� and
ffM��M�g�u� is the part to be integrated in the integrals of eq��	�� eq����� and
eq����� E�g��

ffM��M�g�u� �

���
��
pMyjx

�yjx�pMx�x� ln
pMyjx

�yjx�pMx
�x�

pMxjy
�xjy�pMy

�y� �

pMyjx�z
�yjx� z�pML

�

�z� x� ln
pMyjx�z

�yjx�z�p
ML
�

�z�x�

pMzjx�y
�zjx�y�p

ML
�

�x�y� �
����

We make randomly sampling according pr�u� and get futg
N
t��� then use the

empirical estimation p�u� � �
N

PN

t�� ��u� ut� in eq����� and get

F �M��M�� �
�

N

NX
t��

�

pr�ut�
ffM��M�g�ut�� ����

which is a stochastic approximation of eq������
Since we already have some samples� e�g� Dx � fxigNi��� Dx�z � fxi� zigNi���

We propose to use them in either one of the following two ways�
�a� Let pMx

�x� be given by eq���� and pMzjx
�zjx� by eq���� with hx �� �� hz ��

�� and thus pML
�

�z� x� � pMx
�x�pMzjx

�zjx�� Then we directly use eq������

�b� Let pr�u� � pr�y�pMx
�x� or pr�u� � pr�y�pMzjx

�zjx�pMx
�x�� make ran


domly sampling according to pr�y� and get fytgN
�

t��� then simplify eq����� into

F �M��M�� �
�

N

N �X
t��

NX
���

�

pr�yt�
ffM��M�g�yt� u� ��

ffM��M�g�y� u� �

���
��
pMyjx

�yjx� ln
pMyjx

�yjx�

pMxjy
�xjy�pMy

�y� � for u � x

pMyjx�z
�yjx� z� ln

pMyjx�z
�yjx�z�

pMzjx�y
�zjx�y�p

ML
�

�x�y� � for u � �x�z�	
����

As long as N is large enough� we can implement minM��M�
F �M��M�� via

the Alternative Minimization procedure eq������
We can also simply adjust M��M� respectively by

Mnew
� � Mold

� � 	GM�
�pr�ut�� Mnew

� �Mold
� � 	GM�

�pr�ut�� ����

once we get a sample ut� where GM�
� GM�

are the gradient descent direction of
ffM��M�g�ut� with respect to M��M� at M old

� �M old
� respectively� That is� we get

a so called adaptive algorithm for implementation�



� BYY Supervised Learning Family

The BYY system given in Fig� � and eq������ in its nature� applies to various
tasks of x � z association type� including classi�cation� regression� function
approximation� control action� � � � � etc� Supervised learning is used for learning
this x� z association� As shown by Fig� � and eq������ we have 
ve components
to specify� There may be several choices for the speci
cation of each one� which
create a family that consists of quite a number of variants� Here� we propose a
hierarchy to organize them and then concentrate on some of them for further
introduction�

Item ��� Bayesian Kullback Ying�Yang �BKYY� family and Bayesian Non�
Kullback Ying�Yang �BNKYY� family are obtained according to whether the
Kullback divergence is used as the separation functional�

Item ���We further divide BKYY learning into two big branches� according
to whether pMyjx�z

�yjx� z� is free� If it is free such that it can be determined by
minM��M�

Ftwo�M��M�� without any constraint� we call that the coordination
terminal is of full capacity for coordination� and we call the corresponding BKYY
learning as Full Coordinated BKYY Learning� otherwise if pMyjx�z

�yjx� z� comes
from some parametric family with certain constraints� we call the corresponding
learning as Constrained Coordinated BKYY Learning�

For the Full Coordinated BKYY Learning� we have the following theorem�
Theorem ��� With pMyjx�z

�yjx� z� free� both minpMyjx�z
�yjx�z� KL�pML

�

jjpML
�

�

and minpMyjx�z
�yjx�z� KLtwo�M��M�� � pMyjx�z

�yjx� z� �
pMzjx�y

�zjx�y�p
ML
�

�x�y�

pM�
�x�z� �

pM�
�x� z� �

R
y
pMzjx�y

�zjx�y�pML
�

�x� y�dy �
R
y
pMzjx�y

�zjx�y�pMxjy
�xjy�pMy �y�dy�

minpMyjx�z
�yjx�z� KLtwo�M��M�� � KL�pML

�

�z� x�jjpM�
�x� z�� �KL�pM�

jjpM�
��

This theorem basically tells us two points� One is that pMyjx�z
�yjx� z� will be


xed at the Bayesian posterior probability if it is free� The second is that after
pMyjx�z

�yjx� z� settled� the speci
cation of the remaining parts in KLL�M��M��
only relates to a mixture joint density pM�

�x� z��
Item ��� The BKYY learning can be also described in di�erent types� ac


cording to the relative status of the Ying pML
�

�x� y� � pMxjy
�xjy�pMy

�y� and

Yang pML
�

�x� y� � pMyjx
�yjx�pMx

�x�� If minpMyjx�z
�yjx�z� KLtwo�M��M�� gives

pML
�

�x� y� � pMyjx
�yjx�pMx �x� � pMxjy

�xjy�pMy�y� � pML
�

�x�y�� ����

or if we force it to hold� we have KL�pM�
jjpM�

�� We call it Fully Matched
BKYY learning� Otherwise� if we cannot have KL�pM�

jjpM�
� � �� it means that

pML
�

�x� y� �� pML
�

�x� y� and thus both parts actually impose constraints on each

other via minpMyjx�z
�yjx�z� KLtwo�M��M��� we call it Partially Matched BKYY

learning� Here� we show three examples with KL�pM�
jjpM�

� � �� First� if the
data set Dx comes from the true distribution

po�x�y� �o� � po�yjx� �oyjx�p
o�x� �ox� � po�xjy� �oxjy�p

o�y� �oy�� ����

and we exactly put pMxjy
�xjy�� pMy

�y� and pMyjx
�yjx� on their counterparts

respectively� Second� pMxjy
�xjy� and pMy

�y� are both free such that the Ying



model pML
�

�x� y� can freely follow any Yang model� Third� pMyjx
�yjx�� pMy

�y�

are free and F� 	 F� �� 
 � where F� is the set of all the functions represented
in the form p�yjx�
p�y�� and F� is the set of all the functions represented by
pMxjy

�xjy�
pMx
�x� with pMx

�x� pre
xed and the structure of pMxjy
�xjy� pre
xed�

Item ��� A parametric component is actually modeled by a physical device�
and a free component is indirectly de
ned through the physical devices for other
components� we call a BYY system a Yang based system when pMxjy

�xjy� is free
and pMyjx

�yjx� is parametric� a Ying based system when pMxjy
�xjy� is parametric

and pMyjx
�yjx� is free� and a Ying�Yang Tuned system when pMxjy

�xjy� and
pMyjx

�yjx� both parametric� Furthermore� for a Fully Matched BKYY learning
� it follows from eq����� that pML

�

�x� y� is actually modeled by

pML
�

�x� y� �

�
pMxjy

�xjy�pMy �y�� a Ying based system�
pMyjx

�yjx�pMx�x�� a Yang based system	
����

Item ��� We may classify the architectures of BKYY learning according to
the feature of the component pMzjx�y

�zjx� y�� One type is the special case that
pMzjx�y

�zjx� y� � pMzjy
�zjy�� The pM�

�x� z� given in Theorem ��� becomes

pM�
�x� z� �

Z
y

pMzjy
�zjy�pML

�

�x� y�dy

�

�R
y
pMzjy

�zjy�pMxjy
�xjy�pMy �y�dy� Ying based or Ying�Yang Tuned�R

y
pMzjy

�zjy�pMyjx
�yjx�pMx �x�dy� Fully Matched Yang based�

����

which links x� z via a cascade architecture x� y � z or x� y � z and thus
x� z are independent of each other when y is known� The architecture x� y � z
is usually called Three�Layer Feedforward Net or Three Layer Perceptron� The
architecture x � y � z can be used as a hypothesis testing model with z� x
generated from the hypothesis y to be tested by the observed data� The other
type of architectures is that pMzjx�y

�zjx� y� �� pMzjy
�zjy�� and pM�

�x� z� is given
by Theorem ���� In this case� each pMzjx�y

�zjx� y� builds a direct link x� z itself
with the link gated via the internal variable y such that a weighted mixture
pM�

�x� z� is formed in Theorem ��� in a parallel architecture� This architecture
is usually called Localized Architecture or Mixture of Experts�

The following theorems on eq���� and eq���� are helpful for further under

standing the above discussed various BKYY supervised learning systems�

Theorem ��� When pMyjx
�yjx� is free� both minpMyjx

�yjx� KL�pM�
jjpM�

�

and minpMyjx
�yjx� KLtwo�M��M�� � pMyjx

�yjx� �
pMxjy

�xjy�pMy
�y�

pM�
�x� � with pM�

�x� �R
y
pMxjy

�xjy�pMy �y�dy� and minpMyjx
�yjx� KL�pM�

jjpM�
� � KL�pMx�x�jjpM�

�x��	

This theorem also tells us two points� One is that pMyjx
�yjx� will be 
xed at

the Bayesian posterior probability if it is free� The second is that after pMyjx
�yjx�

is settled in this way� the speci
cation of the remaining parts in KL�pM�
jjpM�

�
is the maximum likelihood learning of the mixture pM�

�x��
Theorem ��� When pMy

�y� is free� minpMy �y� KLtwo�M��M�� gives

pMy �y� � ����pML
�

�y� � pM�
�y��� with pM�

�y� �
R
x
pMyjx

�yjx�pMx�x�dx and



pML
�

�y� �
R
x�z

pMyjx�z
�yjx� z�pML

�

�z� x�dxdz� For a Fully Matched BKYY� we have

pMy
�y� � pM�

�y� � pML
�

�y��

Theorem ��� When pMxjy
�xjy� and pMy

�y� are both free�
minfpMxjy

�xjy��pMy �y�g KLtwo�M��M�� is reached at pMxjy
�xjy�pMy �y� �

����pML
�

�x�y� � pMyjx
�yjx�pMx�x��� pML

�

�x� y� �
R
z
pMyjx�z

�yjx� z�pML
�

�z�x�dz�

Particularly� with PM�
�y� given by Theorem ���� for a Fully Matched BKYY

learning we have pMxjy
�xjy�pMy�y� � pML

�

�x�y� � pMyjx
�yjx�pMx�x�� with pMy �y� �

pM�
�y� � pML

�

�y�� pMxjy
�xjy� � pML

�

�xjy� � pM�
�xjy�� and pML

�

�xjy�

� pML
�

�x� y��pML
�

�y�� pM�
�xjy� � pMyjx

�yjx�pMx�x��pM�
�y��

� Temporal BKYY Modeling System and Theory

Given time series fx�� x�� � � � � xTg and fy�� y�� � � � � yTg� it is not enough to con

sider each pair �xt� yt� instantaneously as we did in the previous sections� since
the order of samples conveys important serial information� Although we can
simply make a temporal modeling by using a Time
Delay �TD� line as an input
vector� i�e� x � �xt��� xt��� � � � � xt�p�� into the previous instantaneous model� it
will not meet well our need on nonstationary time series� In ���� BKYY learning
system and theory has been extended to act as a general system and theory
for temporal modeling� which not only includes and extends the existing major
temporal models� such as Hidden Markov Model �HMM�� ARMA and AR mod

els� but also provides some interesting new models� In this section� we will more
systematically summarize and develop the results given in ����

Let XT � fx�� x�� � � � � xTg and YT � fy�� y�� � � � � yTg� where each xt� yt can
be a real scalar� a vector� and a discrete number� depending on the speci
c
problem that we consider� In eq����� by replacing x in all its occurrences by XT
and y in all its occurrences by YT � we can directly use the previous BYY learning
system and theory as a general starting point for temporal modeling�

We consider the cases that XT � YT have the p � �� q � � order Markov
property� and get

pMy �YT � �

TY
t��

pMy �ytjY
t�q
t���� pMxjy

�XT jYT � �

TY
t��

pMxjy
�xtjyt�X

t�p
t�� �Y

t�q
t�� ��

pMyjx
�YT jXT � �

TY
t��

pMyjx
�ytjxt�Y

t�q
t�� �X

t�p
t�� �� ����

where we use the notations�

Ut � fu�� � � � � utg�U
�
t � fu� � � � � � utg� U� � f�g�U�

t �
n
Ut� 
 � ��
U�
t � f�g� 
 � t

� ����

From putting these equations� we have

Kl�M��M�� �

Z
pMyjx

�YT jXT �pMx �XT � ln
pMyjx

�YT jXT �

pMxjy
�XT jYT �pMy �YT �

dXTdYT � ����



from which we may get various cases of the Temporal BKYY modeling system
and theory� Several such cases have been discussed in ����

We focus on the most typical case that q � �� p � �� that is

Kl�M��M�� �

TX
t��

Z
Klt�M��M�jyt���pMy �yt���dyt��� ����

Klt�M��M�jyt��� �

Z
pMyjx

�ytjxt� yt���pMx�xtjyt��� ln
pMyjx

�ytjxt� yt���

pMxjy
pMy �ytjyt���

dxtdyt

pMy �yt� �

Z
pMy �ytjyt���pMy �yt���dyt��� pMxjy

�

�
pMxjy

�xtjyt� yt����Mxjy
��

pMxjy
�xtjyt��Mxjy

� �

yt is the invisible state variable� The parametric pMy
�ytjyt��� � p�ytjyt��� �My

�
describes the state transient� and the parametric pMxjy

describes how xt is
generated from or related to the current and immediate pass states� While
pMyjx

�ytjxt� yt��� describes the encoding or state discovery from the current xt
and the previous state yt��� It can be either free or parametric� For the special
case that it is free� the minimization of Kl�M��M�� and thus Klt�M��M�jyt���
will let it indirectly be speci
ed by

pMyjx
�ytjxt� yt��� �

pMxjy
pMy

�ytjyt���

pMxjy�y
�xtjyt���

� pMxjy�y
�xtjyt��� �

R
pMxjy

pMy �ytjyt���dyt�

Klt�M��M�� � �
R
pMx �xt� ln pMxjy�y

�xtjyt���dxt� pMx �xtjyt��� � pMx�xt�� ����

In this case� the minimization of Klt�M��M�jyt��� is equivalent to the maxi

mization of a weighted likelihood�

The minimization of Kl�M��M�� can be made by the Alternative Minimiza�
tion procedure eq������ However� here we should start at t � � with pMy

�y��
speci
ed� update pMy

�yt��� into pMy
�yt� by eq����� as a weight in the next

Klt�M��M��� t � �� In some special case� we can directly deal the integral or
summation operations involved�

In analogue to getting eq����� and eq������ from eq����� we propose a general
adaptive algorithm based on stochastic approximation�

Given pMxjy
by eq����� and pMy

�y�� with a random sample y�� With a Sam�
pling Reference density pr�yt�� starting from t � � we repeat the following steps�

Step �
 Get an observation xt� randomly get one sample yt from pr�yt�	
Step �
 With pMxjy

� pMy �ytjyt��� �xed� for pMyjx
�ytjxt� yt��� free� update it by

eq	����� for pMyjx
�ytjxt� yt��� � p�ytjxt� yt����Myjx

� parametric� update

�new
Myjx

� �old
Myjx

� 	
pMy �yt���

pr�ut�

�kl��Myjx
��My ��Mxjy

�

��Myjx

j�Myjx
��old

Myjx

�

kl��Myjx
� �My ��Mxjy

� � p�ytjxt� yt����Myjx
� ln

p�ytjxt� yt����Myjx
�

pMxjy
p�ytjyt����My �

����

Step �
 With pMyjx
�ytjxt� yt��� �xed� update

�new
Mxjy

� �old
Mxjy

� 	
pMy �yt���pMyjx

�ytjxt� yt���

pr�ut�

� ln pMxjy

��Mxjy

j�Mxjy
��old

Mxjy

� ����

�new
My

� �old
My

� 	
pMy �yt���pMyjx

�ytjxt� yt���

pr�ut�

� ln p�ytjyt����My �

��My

j�My
��old

My

�



Step �
 Update pMy �yt� by eq	����	

Note
 we can use an adpative choice pr�yt� � p�ytjyt����
old
My

� in the above	

After the above modeling� we can use �a� p�ytjyt��� �My
� and pMxjy

by eq�����
to predict xt at t� �� �b� pMyjx

�ytjxt� yt��� to encode or recognize xt into yt�
�c � pMyjx

�ytjxt� yt��� and pMxjy
to 
lter the current xt�

In the following� we further look into two typical examples�

Item ��� BYY Hidden Markov Model �HMM� and learning the	
ory When both xt� yt are discrete label� pMyjx

�ytjxt� yt��� is free and pMxjy
�

pMxjy
�xtjyt�� we have that YT is a hidden Markov chain and pMy

�ytjyt��� corre

sponds to a k� k Markov transfer probability matrix� From eq������ we see that
the minimization of Kl�M��M�� given by eq����� is equivalent to the maximum
likelihood learning on a HMM� Also� from eq����� and eq������ via the Alterna�
tive Minimization eq������ we can get the well known Baum algorithm for HMM�
Furthermore� we can get several new results for HMM as follows�

�a� The above stochastic approximation adaptive algorithm for HMM�
�b� Various extensions by di�erent choices� e�g�� xt is real� pMyjx

�ytjxt� yt���
is parametric� pMxjy

� pMxjy
�xtjyt� yt����

�c � The criteria for deciding the number k of hidden states by using eq�����
on eq������ i�e�� after getting ��

Mxjy
� ��

My
� p�Myjx

�ytjxt� yt���� and

p�Mx
�xtjyt��� �

R
p�ytjyt��� �

�
My

�pMxjy
j�Mxjy

���
Mxjy

dyt via learning� we have

J��k� � Kl�M��M��jf��
Mxjy

���
My

�p�
Myjx

�ytjxt�yt���g� J��k� � J��k�� ����

TX
t��

Z
pMy �yt���p

�
Myjx

�ytjxt� yt���p
�
Mx

�xtjyt��� ln p
�
Myjx

�ytjxt� yt���dxtdytdyt���

which can also be computed incrementally as t increases�
�d� Other types of extensions from eq����� or KL�M��M�� or eq��	��

Item ��� BYY State Space model and theory Considering

yt � E�yt����g� � et� xt � H�yt��h� � vt� with white noise et� vt� ����

where et is independent of yt��� vt is independent of yt� et� E��� �g��H��� �h� are
deterministic linear or nonlinear mappings�When they are linear� eq����� reduces
to the conventional linear state space model� In addition� pMyjx

�ytjxt� yt��� is
either free or given by the parametric model

yt � F �xt� yt����f � � nt� nt is independent of xt� yt��� et� vt� ����

where H��� �h� is a deterministic linear or nonlinear mapping�
From gaussians G�et� �� �e� � G�vt� �� �v� and G�nt� �� �n�� we have

pMyjx
�ytjxt� yt��� �

n
free�
G�yt� F �xt� yt����f ��n�

� �Myjx
� f�f ��ng�

pMy �ytjyt��� � G�yt� E�yt����e���e�� pMxjy
�xtjyt� � G�xt�H�yt��h���v��

�My � f�e��eg� �Mxjy
� f�v��vg� kl��Myjx

��My ��Mxjy
� �



G�yt� F �xt� yt����f ���n� ln
G�yt� F �xt� yt����f ���n�

G�xt�H�yt��h���v�G�yt� E�yt����e���e�
� ����

ln pMxjy
� ����
ln j�vj� �xt �H�yt��h��

T���
v �xt �H�yt��h��� � const�

ln pMy �ytjyt��� � ����
ln j�ej� �yt �E�yt����e��
T���

e �yt �E�yt����e��� � const�

In the special case that E��� �g��H��� �h� are linear and pMyjx
�ytjxt� yt��� is

free� by putting eq����� into eq����� and eq������ we can analytically solve the
integrals and get an accurate iterative algorithm by Alternative Minimization
eq������ which is closely related to the well known Kalman 
lter algorithm for
linear state space� Moreover� we also get several new results�

�a� Putting these conditions in eq����� and eq������ we have the above adap

tive algorithm for both linear and nonlinear state space models�

�b� Variants by parametric pMyjx
�ytjxt� yt��� or pMxjy

� pMxjy
�xtjyt� yt����

�c � The criteria for deciding the order k of the state space by the same one as
eq���	�� which can be simpli
ed considerably by inserting in the above eq������

� Temporal BKYY Regression System and Theory

For certain practical applications� we observe two time series fx�� x�� � � � � xTg and
fz�� z�� � � � � zTg� we are interested not only in modeling each of them but also in
their regression or mapping relationship� In these cases� we should consider the
general BYY learning system and theory discussed in Sec���

For simplicity� we consider the fully matched BKYY learning of the cases
given by eq����� and eq������ That is� KL�M��M�� � � and thus we have
KlL�M��M�� �

R
pMyjx�z

�YT jXT �ZT �pML
�

�XT �ZT � ln
pMyjx�z

�YT jXT �ZT �

pMzjx�y
�ZT jXT �YT �pML

�

�XT �YT �
dXT dYTdZT �

pML
�

�XT �YT � �

�
pMxjy

�XT jYT �pMy �YT �� a Ying based system�
pMyjx

�YT jXT �pMx �XT �� a Yang based system� ����

where we still use the assumption in eq������ and we assume that ZT has the
p � � order Markov property too� Generally speaking� from eq����� we may get
various cases of the Temporal BKYY regression system and theory� Also� we
can discard �

R
pMyjx�z

�YT jXT �ZT �pML
�

�XT �ZT � ln pMx
�XT �dXTdYTdZT for a

Yang based system� because it depends on only the training data�
We again focus on the typical case that q � �� p � �� that is

KlL�M��M�� �

TX
t��

Z
KlL�t��M��M��pMy �yt���dyt��� KlL�t��M��M��

�

Z
pMyjx�z

�ytjxt� zt� yt���pML
�

�xt� zt� ln
pMyjx�z

�ytjxt� zt� yt���

pMzjx�y
Tt�t��

dxtdztdyt�

pMzjx�y
�

�
pMzjx�y

�ztjxt� yt��
pMzjx�y

�ztjxt� yt� yt����
pMxjy

�

�
pMxjy

�xtjyt��
pMxjy

�xtjyt� yt���
�

Tt�t�� �

��
�
pMxjy

pMy �ytjyt���� a Ying based system�

pMyjx
� pMyjx

�

�
pMyjx

�ytjxt� ��
pMyjx

�ytjxt� yt����
a Yang based system	

����



Similar to Sec�	� we can use the Alternative Minimization procedure eq����� to
get an accurate implementation algorithm or to obtain a stochastic approxima

tion adaptive algorithm as in Sec�	�

In comparison with the model eq������ we have pMyjx�z
�ytjxt� zt� yt��� instead

of pMyjx
�ytjxt� yt��� describes encoding or state discovering from the current

xt� zt together and the previous state yt��� and we also have pMzjx�y
for the

mapping or regression from xt � zt under the status of yt or yt� yt��� Simi

larly� pMyjx�z

�ytjxt� zt� yt��� can be either free or parametric� When it is free� the
minimization of KlL�M��M�� lets it be indirectly speci
ed by

pMyjx�z
�ytjxt� zt� yt��� �

���
��

pMxjy
�xtjyt�yt���pMy

�ytjyt���

pMzjx�y�M�
�zt�xt �yt���

� a Ying based system�

pMxjy
�xtjyt�yt���pMyjx

�ytjxt�yt���

pMzjx�y�M�
�ztjxt �yt���

� a Yang based system�

pMzjx�y�M�
�zt� xt� yt��� �

Z
pMxjy

�xtjyt� yt���pMy �ytjyt���dyt� Ying�

pMzjx�y�M�
�ztjxt� yt��� �

Z
pMxjy

�xtjyt� yt���pMyjx
�ytjxt� yt���dyt� Yang� ����

KlL�t��M��M�� � �

Z
pML

�

�xt� zt�

�
ln pMzjx�y �M�

�zt� xt� yt���dztdxt� Ying �
ln pMzjx�y �M�

�ztjxt� yt���dztdxt� Yang	

From here� we may get the maximum likelihood learning for various generalized
state space model or HMM based regression� Moreover� we get various cases of
BKYY learning for them when pMyjx�z

�ytjxt� zt� yt��� is parametric�
It is interesting to observe that for both the cases that pMyjx�z

�ytjxt� zt� yt���
is free and parametric� we have�

�a� In a Yang based system� the transient from yt�� to yt is controlled by
pMyjx

depending on xt� Particularly� for a cascade structure pMzjx�y
�ztjxt� yt�

yt��� � pMzjx�y
�ztjyt� yt���� we actually get a general recurrent feed
forward

BYY system� which not only includes the conventional three layer recurrent
net as special case� but also provides new recurrent models� For pMzjx�y

�ztjxt�
yt� yt��� �� pMzjx�y

�ztjyt� yt���� we get a model of recurrent mixture of experts�
�a� In a Ying based system� for a cascade structure� pMzjx�y

�ztjxt� yt� yt��� �
pMzjx�y

�ztjyt� yt��� and pMxjy
�xtjyt� yt��� describes how the observation xt� zt

are coordinately generated from the hidden states� For pMzjx�y
�ztjxt� yt� yt��� ��

pMzjx�y
�ztjyt� yt���� we get a general recurrent alternative mixture expert model�

with the mapping by multiple experts gated by pMxjy
�xtjyt� yt���pMy

�ytjyt����

References

�	 Xu� L	� �Bayesian Ying�Yang System and Theory as A Uni�ed Statistical Learning
Approach
 �I� Unsupervised and Semi�Unsupervised Learning�� Invited paper� S	
Amari and N	 Kassabov eds	� Brain�like Computing and Intelligent Information
Systems� ����� Springer�Verlag� pp�������	

�	 Xu� L	� �Bayesian Ying�Yang System and Theory as A Uni�ed Statistical Learning
Approach
 �III� Models and Algorithms for ICA� Supervised Learning Networks and
Temporal Processing�� in the same proceedings� pp�����	 	



�	 Xu� L	� �Bayesian Ying�Yang System and Theory as A Uni�ed Statistical Learning
Approach
 �IV� The Ying Dominated Theory� Models and Algorithms�� to appear	

�	 Xu� L	� �Bayesian Ying�Yang Machine� Clustering and Number of Clusters�� Pattern
Recognition Letters� in press� ����	

�	 Xu� L	� �YING�YANG Machine
 a Bayesian�Kullback scheme for uni�ed learnings
and new results on vector quantization�� Keynote talk� Proc� Intl Conf� on Neural
Information Processing �ICONIP���� Oct �� � Nov	 �� pp�������������	

�	 Xu� L	� �YING�YANG Machine for Temporal Signals�� Keynote talk� Proc IEEE
Intl� Conf� Neural Networks � Signal Processing� Nanjing� Dec	������ Vol	 I� pp����
���������	

Appendix
 Proofs of Theorems

Proof of Theorem ��� Since pMyjx�z
�yjx� z� is irrelevant to KL�M��M��� we have

that minpMyjx�z
�yjx�z� KLtwo�M��M�� is equivalent to minpMyjx�z

�yjx�z� KLL�M��M��	

From eq	���� KLL�M��M�� �
R
pML

�

�z� x�KL�pMyjx�z
�yjx� z�jjpM�

�yjx� z��dxdz�

KL�pML
�

�z�x�jjpM�
�x� z��� pM�

�yjx� z� �
pMzjx�y

�zjx�y�p
ML
�

�x�y�

pM�
�x�z� � with pM�

�x� z� given

by Theorem �	�	

Proof of Theorem ��� Since pMyjx
�yjx� is irrelevant to KLL�M��M���

minpMyjx
�yjx� KLtwo�M��M�� is equivalent to minpMyjx

�yjx� KL�M��M��	 Via eq	����

KL�M��M�� �
R
x
pMx �x�KL�pMyjx

�yjx�jjpM�
�yjx��dx�KL�pMx�x�jjpM�

�x���

with pM�
�yjx� �

pMxjy
�xjy�pMy

�y�

pM�
�x� and pM�

�x� given by Theorem �	�	 The second term

is irrelevant to pMyjx
�yjx�� thus the �rst term is minimized at pMyjx

�yjx� � pM�
�yjx�	

Proof of Theorem ��� From eq	��� and eq	���� in KLtwo�M��M�� the part relevant
to pMy �y� is T � �

R
pMyjx�z

�yjx�z�pML
�

�z�x� ln pMy �y�dxdydz �
R
pMyjx

�yjx�pMx �x�

ln pMy �y�dxdy � �
R
y
pML

�

�y� ln pMy �y�dy�
R
y
pM�

�y� ln pMy �y�dy� where pML
�

�y� and

pM�
�y� are given in Theorem �	�	 Furthermore� the minimization of T with respect to

pMy �y� will not be a�ected when we add into T the following terms

T �
R
y

p
ML
�

�y��pM�
�y�

� ln
p
ML
�

�y��pM�
�y�

� dy �
R
y

p
ML
�

�y��pM�
�y�

� ln
p
ML
�

�y��pM�
�y�

�pMy
�y� dy�

that are irrelevant to pMy �y�	 This T reaches its minimum at pMy �y� � ����pML
�

�y�

�pM�
�y��	 For a Fully Matched BKYY learning� by integrating both sides of eq	�����

we have pMy �y� � pM�
�y� and thus pML

�

�y� � �pMy �y�� pM�
�y� � pMy �y� too	

Proof of Theorem ��� Similar to the proof of Theorem �	�� we can get that in
KLtwo�M��M�� the part that is relevant to pMxjy

�xjy�� pMy �y� is T � �
R
x�y

pML
�

�x� y�

ln 
pMxjy
�xjy�pMy�y��dxdy �

R
x�y

pMyjx
�yjx�pMx�x� ln 
pMxjy

�xjy�pMy �y��dxdy�

T �
R
x�y

p
ML
�

�x�y��pMyjx
�yjx�pMx

�x�

� ln
p
ML
�

�x�y��pMyjx
�yjx�pMx

�x�

� dxdy

�
R
x�y

p
ML
�

�x�y��pMyjx
�yjx�pMx

�x�

�
ln

p
ML
�

�x�y��pMyjx
�yjx�pMx

�x�

�pMxjy
�xjy�pMy

�y�
dxdy	 Thus� we get the

�rst equation in Theorem �	�	 Particularly� for a Fully Matched BKYY learning� we
have pMxjy

�xjy�pMy �y� � pMyjx
�yjx�pMx�x� given by eq	���� and thus we get the �rst

equation in Theorem �	�	 From Theorem �	�� we have pMy �y� � pM�
�y� � pML

�

�y� and

then use them to divide each terms in that �rst equation� we get the rest of Theorem
�	� proved	




