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Abstract. A unified statistical learning approach called Bayesian Ying-
Yang (BYY) system and theoryhas been developed by the present author
in recent years. In a sister paper [1], this BYY system and theory has
been shown to function as a general theory for unsupervised learning and
its extension called semi-unsupervised learning, such that not only sev-
eral existing popular unsupervised learning approaches are included as
special cases, but also a number of new theories and models are provided
for unsupervised pattern recognition and cluster analysis, factorial en-
coding, data dimension reduction, and independent component analysis.
In this paper, the basic system and theory in [1] is further theoretically
justified and extended into a general system and theory with a gen-
eral implementation technique such that not only those results [1] are
kept as special cases still, but also it works for supervised learning and
temporal modeling on parameter learning, regularization, structural scale
or complexity selection, and architecture design. Particularly, temporal
modeling and regression based on Hidden Markov Model (HMM) and
the linear and nonlinear state space model are discussed in detail, with
an adaptive algorithm proposed for various specific variants of HMM
model and state space models. Moreover, the criteria for deciding the
number of hidden states in HMM and the order of state space are also
proposed. In another sister paper [2] of this proceeding, several specific
models and algorithms as well as model selection criteria will be given
for dependence reduction, data dimension reduction, independent com-
ponent analysis, supervised classification and regression. In addition, the

* Supported by the HK RGC Earmarked Grants CUHK250/94E and CUHK 339/96E
and by Ho Sin-Hang Education Endowment Fund for Project HSH 95/02. The basic
ideas of the BY'Y learning in my previous papers started the first year of my returning
to HK. As HK in transition to China, this work was in transition to its current shape.
The preliminary version of this paper and its sister papers [1, 2] are all completed
in the first month that HK returned to China and thus I formally returned to my
motherland as well. I would like to use this work as a memory of this historic event.



relation of the BY'Y learning system and theory to a number of existing
learning models and theories has been discussed in [1].

1 Basic Bayesian Ying-Yang System and Theory

As shown in Fig.1, the BYY system consists of seven components. The first four
components form the core. The other three surrounding components are added
for the purposes of supervised learning. The core itself functions as a general
framework for unsupervised learning, as shown in [1].

In this section, we understand the basic idea of the core. As shown in [1],
unsupervised perception tasks can be summarized into the problem of estimating
the joint distribution p(z,y) of the observable pattern # in the observable space
X and its representation pattern y in an invisible space Y. In the Bayesian
framework, we have two complementary representations p(z,y) = p(y|z)p(x)
and p(x,y) = p(x|ly)p(y). We use two sets of models My = {M,y,, M.} and
My = {M,,, My} to implement each of the two representations:

Py, = pary (2, y) = pagyy, (Y|2)pas, (), pagy = pasy (2,y) = paay, (2|y)pag, (y). - (1)

We call M, a Yang/(visible) model, which describes p(z) in the visible domain

X, and M, aYing /(invisible) model which describes p(y) in the invisible domain
Y. Also, we call the passage My, for the flow 2 — y a Yang/(male) passage
since it performs the task of transferring a pattern/(a real body) into a code/(a
seed). We call a passage M), for the flow y — x a Ying/(female) passage since
it performs the task of generating a pattern/(a real body) from a code/(a seed).
Together, we have a YANG machine M; to implement pyy, (z,y) and a YING
machine Ms to implement par, (,y). A pair of YING-YANG machines is called
a YING-YANG pair or a Bayesian YING-YANG system 2. Such a formalization
compliments to a famous Chinese ancient philosophy that every entity in the
universe wnvolves the interaction between YING and YANG.

The task of specifying a Ying-Yang system is called learning in a broad sense,
which consists of the following four levels of specifications:

Item 1.1 According to the nature of the perception task, the Representation
Domain Y and Its Complexity k are designed. For example, we have either
y € R® or a binary vector y = [y, y®]T 4l € {0,1}.

Item 1.2 Based on the given set of training samples, some previous knowl-
edge, assumption and heuristics, Architecture Design is made by specifying the
architectures of four components par, (), pm,,, (ylz), pm,,,(zly) and par, ().
First, with a given set D, = {z;}}*, from an original density p(z), pa, (=) is
fixed at some parametric or nonparametric empirical density estimation of p(z),

2 1t should be “Yin” in the Mainland Chinese spelling system. However, I prefer to use
“Ying” for the beauty of symmetry. Furthermore, strictly speaking we should use
P(u) to replace p(u) when the corresponding random variable w is discrete. However,
we simply use p(.) for both the cases. Readers may identify the difference according
to whether the involved variable is real or discrete.
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Fig. 1. The Bayesian YING-YANG System

e.g., pu,(¥) = pn, (x) given by a kernel estimate:

Pre(@) = o— S Kn(w— ), Kn,(r) = K (), 2)
N #Ds N N h z

;€D

with a prefixed kernel function K(.) and a prefixed smoothing parameter h,.
Next, for the other three components, each par, (a), ¢ € {x|y, ylz, y} can be
designed in two ways. One is called Free. It implies a totally unspecified den-
sity or probability function in the form p(a) without any constraint. Thus, it
is free to change such that it can be indirectly specified through other compo-
nents. The other is called Parameterized Architecture. It means that pas, (a),a €
{zly, ylz, y} is either a simple parametric density, e.g., a Gaussian par,, (z|y) =
G(x,my)y, Yy)y) with mean my), and variance matrix Xy, or a compounded
parametric density with some of its parameters defined by a complicated func-
tion with a given parametric architecture consisting of a number of elementary
units that are organized in a given structure. Taking a three layer perceptron as
an example, we have

kb
S(@, W) =[my,, - my, 1 my, =30 ws(@" W +wll)), (3)
=1

as My|, in PMy|I(3/|1‘) = Gy, my|x,0'21), with W = {wgi),wj”,w;}g}, s(u) is a
sigmoid function, and k® represents the scale or complexity of the parametric
architecture. Therefore, the design of a parameterized architecture consists of

(1) Specification of density function form p4(a), For example, we have
pm,, (yle) = Gy, S(z, W), o?1) for eq.(3);

(ii) Specification of one or several types of elementary units in a fixed basic
structure with a complexity k2. For example, it can be a simple sigmoid neuron
or a gaussian unit with k% ignored, or it can be a m,, given by eq.(3) with a
complexity k?;

(iii) Specification of a structure on how to organize those elementary units
into the architecture. For example, by the cascade organization of sigmoid neu-
rons, we can get a three layer perceptron eq.(3).



Item 1.3 We also need to select the set of scale parameters k = {k,, ¢,, {k2}}
with each element defined as above, which is called Structural Scale Selection or
Model Selection.

Item 1.4 After the above three levels of specifications, the unspecified part
for each component par, (a), a € {x|y, y|lz, y} is aset §, of parameters in certain
domains. Putting them together, we get the parameter set @ = {0y, 0y|x, 0y },
which we call Parameter Learning. In the literature, this task is also often simply
called learning in a narrow sense.

Our basic theory 1s that the specifications of an entire Ying-Yang system
Py, PM, by €q.(1) in the above four levels best enhances the so called Ying- Yang
Harmony or Marry, through minimizing a harmony measure called separation
functional:

FS(M17M2) = Fs(leprQ) Z 07 FS(M17M2) = 07 Zf.f PMy, = PMa, (4)

which describes the harmonic degree of the Ying-Yang pair. Such a learning
theory is called Bayesian Ying-Yang (BYY) Learning Theory. As shown in [1],
this theory functions as a general theory for unsupervised learning and its semi-
unsupervised extension. One important feature i1s that it provides a new per-
spective, i.e., the interaction of learning on the complement Ying and Yang
structures, for tackling the learning and model selection problems on a training
set of finite samples with an improved generalization, as will be further addressed
in Sec.2, especially by Item 2.2 and Ttem 2.4.

Three categories of separation functionals, namely Convexr Divergence, L,
Divergence, and De-correlation Index, have been suggested [1]. Particularly, the
Conver Divergence is defined as 3

Feo(My, M2) = CV(pay l|par,),  Fo(Mz, Mi) = CV (par,||pa ), (5)

CV(pllg) = f(1) — /p(u)f(q(u)/p(u))du7 f(v) is strictly convex on (0, 4+00).

In this case, the BYY learning is called Bayesian Convex YING-YANG (BCYY)
learning. Particularly, when f(u) = Inu, eq.(5) becomes the well known Kullback
Divergence:

Feo(My, M2) = K L(par, |pary), or Fe(Mz, My) = K L(pa,||par, ),

. p(u)
kil = [ oo 28 ©
In this special case, the BY'Y learning is called Bayesian-Kullback YING-YANG
(BKYY) learning. It should be noted that the asymmetry feature of CV (p||q)
and K L(p||¢) and thus BCYY and BKYY learning have two different variants.
In papers [1, 2] and this paper, we focus on the case of Fs (M1, M2), KL(M;y, M2)
only. In [3], we will particularly discuss Fy (M2, M) and KL(Msz, My).

® For convenience, in this whole paper we adopt such a convention that (a) fu denotes
the integral operation when u is known to be a real ; (b) in general fu denotes either
the integral operation for a real u or the summation operation for a discrete u; (c)
we explicitly use Zu if u i1s already known to be discrete.



The above proposed basic form of the BYY system and theory is mainly for
unsupervised learning (i.e., knowing D, = {z;}),) and its semi-unsupervised
extension ( l.e., knowing a hybrid data set Dy = {Dy,, Dy} with D, , =
{a;, yz}f\;ll) However, for supervised learning, the above basic form covers only
the ordinary maximum likelihood learning by K L(Ma, M1)[5].

2 BYY Learning System and Theory

We further consider the complete system in Fig.1 with the last three components
joined in. One is the OQutput Action Space z € 7 with its distribution pas, (2).
The other is the Action Terminal (AT) described by a distribution par, |, (2|2, y)
for the mapping « — z that is modulated by the internal representation y. The
another one is the Coordination Terminal (CT) described by a distribution
pM,,,.. (ylz, z), which lets the invisible representation ¥ be in coordination with
the two visible spaces X, Z. Here, with respect to the invisible space Y, the model
leL(x,z) = pm,,, (z|z)pm.(z) for the joint X,Z forms a large Yang model;
while with respect to the visible output action space 7, the model PmE (z,y) =
v, (2, y) = pumy,, (2|y)pa, (y) for the joint X, Y forms a large Ying model. The
action terminal par, . (z|z,y) is the passage from the large Ying space to the
Yang space Z. The coordination terminal pas,,, . (y|z, 2) is the passage from the
large Yang space to the Ying space Y. Thus, we have another YING-YANG pair

Pz =Py (®,9:2) = pay . (yle, 2)par, (2]2)pa (2), (7)
Pyt =Py (®y,2) = puyy,  (Gle Yoy (2,y) = pa, (2l y)pag, (2ly)par, (v),

with the old Ying-Yang pair in eq.(1) to form an enlarged Ying-Yang system.

Therefore, in addition to specify the old Ying-Yang pair, we need also to spec-
ify the new Ying-Yang pair. First, leL(Z, z) is specified via D, , = {@;, z 1V,
such that pas, (z) = pa, () is still the same as before and par,, (2|2) = ps, (¢]7)
for a pair (z,2') € Dy ,:

Sa(z —2'), z 1s discrete, 1 forz=0
ph. (2]7) = { h‘liz K(Z;—ZZI)7 z is real, » da(z) = {07 for z # 0. (8)

So, only two new components pur,, . (ylz,z) and par,,, (z|z,y) need to join
the previously discussed core for being specified through Architecture Design,
Structural Scale Selection, and Parameter Learning.

Again, our basic theory is that all the specifications should best enhance the

Ying-Yang Harmony for both the Ying-Yang pairs, through minimizing:

Ftwo(Mlv M2) = FS(pM17PM2) + FS(levaMQL)v
Particularly, K Liwo(M1,M2) = KL(pum, |lpms,) + KL(leL ||pMQL)7
or K LuuoMa, My) = K Lpanallpsn,) + K Lygellpass). (9

It can be noticed that eq.(9) will degenerate into eq.(6) when z = » which
makes KL(pyr,pyr) = KL(pas,,pay) and K Lywo(My, M) = 2K L(My, Mz). In
other words, the extended BKYY learning indeed includes the basic BKYY



learning eq.(6) as a special case. For some other separation functionals, we also
have Fiwo(Mi, M2) = 2F (M1, M2) when z = z.

We use S, k, and 6, to denote respectively the architecture, structural scale,
and parameters of each component pyr, (a),a € {z|y, ylz, y, (ylz,z), 2|z, y)}.
Putting them together, we have the following parts to be specified:

S = {Suly+ Syle> Sy, Szle,ys Syls,z)s  for Architecture Design,

k= {kr,kzw,k2|$,kz,k2|$7y,kz|$72}, for Structural Scale Selection,

O = {041y, 041294, 9:12,y: 0y)2,-},  for Parameter Learning. (10)

It should be noticed that this is the most general notations. A part of these
parameters can be prespecified in many specific cases.
For BKYY learning, we also often use the following decompositions:

KLipanllpans) = Kl(pans |lpaca) — Hlpas, (2)), H(p) = — / p(u) I p(u)du,
[(l(pM1||pM2) =Hc (le ||PM2) - EPMI(-T) [H(pMylz(y|x):|7
Ha(pllq) = — / p(u)Ing(u)du, Eygulo(u)] = / plu)g(u)du,

KL(puellpaz) = Kl(pagzllpaz) = Hipasz (2,2)),
Kllparllpaz) = Heparllpare) = Bp g o) [H (g . (vl 2)]- (11)
1

Finally, we summarize the major roles of the BY'Y learning theory as follows:

Item 2.1 Parameter estimation or learning. That is, we determine

O =arg m@in F(©,5,k), given S and k fixed, (12)

where F (0,5, k) denotes Fi(par,, par,) for eq.(4) and Fryo (M7, M2) for eq.(9),
in the general cases, and denotes K L(pas, ||pas,) for eq.(6) and K Lyyo (M1, M2)
for eq.(9) for BKYY learning. For the latter case, K L(.||.) can also simply re-
placed by KI(.||.) given by eq.(11) since the terms H (par, (%)), H(pyrr (2, 2)) are
irrelevant to @, 5, k. '

Item 2.2 Structural scale selection, or model selection. We determine

. g k), )
k _mklnlC7 K_{].J(])_mklnj(k)L J(k)_{JQ(k) , given S
. He(phyllpar, ), for eq.(6),
N(k) = F(",k,9), (k)= {Hc(p;:;np;;), for eq.(9); (13)
1 2

where “*” denotes the case with the parameter ©* given by eq.(12) with
F (6,5, k) being the same as in eq.(12) too.

When k is small, the discrepancy of the learned Ying and Yang models can
not cancel and thus Jy (k) is high, as k increases to the best k*, both the Ying
and Yang models fit the samples well and the discrepancy of the learned two
becomes the minimum and thus .J; (k) reaches its minimum and then keeps this
minimum thereafter.

From eq.(11), we can also get

He(pwy |lpm,) = Kl(par ||parn) + Epy, (o) [H (P, (y]2)],



Hepaspllpacs) = Koz paeg) + By, (o [H o2y, (2] (1)

After ignoring the terms H (par, (¢)), H(leL (z,2)) that are irrelevant to @, S, k,
we see that Jo(k) is obtained from Jy (k) with an additional term — the condi-
tional entropy or the uncertain complexity of the passage from the Yang space
to Ying space. The more complicated the passage is, the larger the term. It is
small when k 1s small, but the discrepancy of the learned Ying and Yang models
will be large. When k 1s larger than the best k*, the discrepancy will keep at
its minimum and the complexity or the uncertainty due to the passage will be
increase as k. Thus, the minimization of Ja(k) select a model with the scale &*
that minimizes both the discrepancy due to an over-determined Ying-Yang pair
and the uncertainty due to a under-determined passage from Yang to Ying.

We can also further justify Jy(k), J2(k) more formally as follows.

We first consider the following two points:

(1) We use JP(k), JS(k) to denote the limit of Jy (k), Ja(k) by letting par, ()
to be replaced by p®(x, 02, k°) for F' = Fy(My, Ms) given by eq.(4) or PumE (z, %)

to be replaced by p°(z, 2,02 ,, k%) for F' = Fyyo(Mi1, M2) given by eq.(9), where

yrX,

comes from p°(x, 02, k°) with it structural scale being k° or the pair z, 2 comes

from p°(z, 2,0 ,,k°). This limit, i.e., the consistency of Ji(k), Ja(k), can be
reached as the sample number N — oo under the condition that the estimate
oy, (), Pur (z, ) are consistent ( e.g., given by eq.(2) and eq.(8) ) and that the
densities in the Ying and Yang parts satisfy some mild regular condition.

(2) We use Dy, to denote the domain of @5 = @ at k. We consider a class
of so called incremental architectures. That is, as the scale increases from k£ — 1
to k, from O = {Of_1, P} with & being not empty and also not a subset of
Or_1 we have Dy_1 C Dy since the case of &k — 1 can be regarded as a special
case of k where at least some parameters in @; are fixed at their specific values,
e.g., for a finite mixture p(xz, @) = Z?:l a;p(z]0;), discussed in [1], Dk_1 can
be regarded as a subset of D;, with one fixed a; = 0.

Based on the two points, we can prove that:

Theorem 2.1 For a Ying -Yang pair with incremental architecture, J? (k) >
J? (k) for k < k° and J{ (k) = J?(k°) for k > k°. Moreover, as k increases from 1
to k°, J{ (k) is monotonically non-increasing and reaches its minimum at J¢ (k).

Proof 07 or 67 , is only contained in Dy, k > k° and D1 C -+ C Dyoy C
Dy, thus the minimization eq.(12) is made on the domain that becomes bigger
and bigger until it contains 67 or 07 . after k > £°. Q.E.D.

The theorem justifies Ji(k) for the cases of a large sample number N. For
the case of finite samples, as £ > k° increases, both the Ying and Yang models
further enhance their fits to the finite samples since they have excess freedom,
Ji(k) may still decrease slowly as k passes k° and some modification can be
added to help the detection of £° (e.g., by hypothesis testing).

We further look into JZ (k). For k < k°, it is actually a measure that decreases

as the discrepancy between the pair pj , pjs, or the pair pj ., p},. reduces and
1 2
reaches its minimum at k = k with p3, = pj, or py,; . = py, - After & > k°, this
1 2
equality will keep and thus J2(k) actually becomes the entropy or the uncertain



complexity of pj,, or pj, .-
2

For an incremental architecture, from @) = {O.,P1} we see that pj, =

Ph, OF Py = Py means the fact that only @. is independently optimized
1 2

in eq.(12) and actually the parameters in @5 are dependently fixed at their
specific values by the parameters in @.. For the cases with k and k° produce
the equivalent performances, we like to select the smallest k° for saving the

complexity. For example, for a finite mixture p°(z, 62, k°) = 25;1 adp(x]67), we

have Z?:l a;p(xld;) = 25;1 afp(z]07) for k > k°, which can be true only when
for each j there is at least one 7 such that #; = 67 and for some j there are
more than one iy, -4, such that §;, = --- = 6; = 67 with Z;n:l a;, = af.
In this case, m moldes of a;,, p(x[0?) equivalently represents one a¢p(z|07), and
the cases for k, k° are equivalent. For some algorithms, the minimization eq.(12)
forces @, to take values independently on the whole domain Dy and deviate
from the correct value, resulting in J$ (k) > J$(k°) automatically. For example,
for the above finite mixture with the constraint «; = 1/k (e.g., using the well
known K-means algorithm for clustering on gaussian mixture) or even simply
each a; > 0, then we have Zle a;p(z|8;) # 25;1 agp(x|07) for k > k°, and
thus J9(k) > J9(k°). This property makes Ja(k) better in the case of finite
samples to alleviate the problem that J; (k) may decrease slowly as k passes k°.

Item 2.3 Architecture evaluation. Similar to eq.(13), we can also select
a set of architecture § = {5 i=1,.--  N,} by i* = arg min; J(S) with

i x ali ; Heo(p, |1Phs,),  for eq.(6),
Ji(8Y) = F(e*, 8, L(s) = { He(ph o lIpte),  for eq.(9). (15)
1 2

Item 2.4 Regularization. The BYY learning theory can improve general-
izations from the following aspects:

(a) Given finite samples and a structural scale k that may be too large with
excess freedom. The key reason of poor generalization is that the modeling prob-
lem in such cases are under-determined with many models that can fit the finite
samples well but more uncertain to fit future samples. When only one model is
used for fitting the samples, the solution can be any one in an under-determined
domain and thus may be far from the desired one in this domain. Hence, it may
fit these samples well but perform poorly for a testing set; when we use both
the Ying and Yang models to fit these samples, each is still under-determined.
However, due to the complement structures of the two, each has a different under-
determined domain. The learning eq.(12) aims at minimizing the discrepancy of
the two that both fit these samples, therefore the under-determined domain re-
duces into the intersection of the original two under-determined domains, with
the true solution kept in this intersection since the Ying and Yang are equal
naturally at the true solution. This process equivalently regularizes the ill-posed
learning and thus improves the generalization.

(b) The generalization can also be improved by the selection criteria given
in Item 2.2 and Item 2.3.



(c) The generalization can also be obtained via selecting smooth parameters
hg, hy in estimating pas, (z) by eq.(2) and ps, (z|2) by eq.(8) according to

F(0* k*, S hy, he),
{hiv hz} =arg hmlil J(hm7 hz)7 J(hm7 hz) = Hc(p?\/fl ||p?\42)7 (16)
o He (PP )-

The above approaches are obviously different from the existing regularization
or generalization error up-bound methods (e.g., VC dimension ) that introduce
an extra penalty term to the original error cost for being minimized together.
They are also considerably different from the existing Bayesian approach that
introduce a priori density on the parameters, at least in the two aspects:

Item 2.5 The BYY system and theory only bases on the two complement
Bayesian representations, there is no use of a priori on the parameters. Instead,
a priori can be embedded via the designs of the two complement architectures.

Item 2.6 In addition, the two Bayesian representations may not be equal,
i.e., the Bayesian rule may not be exactly true but only approximately hold.
Therefore, our approach should not be confused with the existing Bayesian ap-
proach. It is a new type of Structural and Relazed Bayesian approach.

3 A General Technique for Implementation

Let F be either F (M1, M) in eq.(4) or Fyyo(Mr, Ms) in eq.(9). minyg, ar, F
can be implemented by alternatively repeating the following Step (a) and (b):

a. Fiz My = M3', M7 = argmin F; b. Fiz My = M{'*, M?°" = argmin F, (17)
M, M3

which guarantees to reduce F' until converged to one local minimum, where F
is the same as discussed in eq.(12) and Ttem 2.1.

For BKYY learning, the integral operations in computing KL or K! may be
simplified into some implementable forms. For example, for discrete y with the
design par,(y) = oy > 0, pMylz(y|x) = p(ylz) > 0, pley(x|y) = G(x,my, Yy), and
pu. (z) = pr.(z) by eq.(2), the above eq.(17) becomes the following Smoothed
EM algorithm for gaussian mixtures:

K
E Step:  get p*(y|vi) = a, Gz, my, X))/ ZozyG(x, My, 2y);
y=1

N N
1 * new 1 *
M Step: ay= N E p(ylz), my®” = — E P (ylzi)z:,
R

=1 X ~
new * new new\T
24 =h21d+%—N;p (o) (@i = mi=) @i —mi=) T (18)

which is actually a smoothed variant of the well known EM algorithm for gaus-
sian mixture, as discussed in details by [4]. Moreover, the number k can be se-
lected by Jy(k), Ja(k) with the same detailed formula given in [4]. Furthermore,
h can also be selected by eq.(16).



However, in the most general case, we will still encounter the implementation
difficulty for dealing with these integral operations. Here, we propose a general
stochastic sampling technique for implementation. First, we represent the sepa-
ration functional by the following general form:

F(M, M) = / Fiars aaay (w)du = / o) s foe sty (), () 20, (19

where p,(u) is a given known smooth density function, called Sampling Refer-
ence, e.g, if the integral is made on a compact support S, p,(u) can be a uniform
density on this S. Moreover, u is #, y for eq.(5) and eq.(6), #,y, z for eq.(9), and
Jiar, py(u) is the part to be integrated in the integrals of eq.(5), eq.(6), and

eq.(9). E.g.,

f{M17M2}(u) =

We make randomly sampling according p,(u) and get {u;},, then use the
empirical estimation p(u) = % Zi\;l d(u — u) in eq.(19) and get

N
1 1
F(My, M) = szf{MlvM2}(ut)7 (21)
t=1

which is a stochastic approximation of eq.(19).

Since we already have some samples, e.g, Dy = {&;}V |, Do, = {&, %},
We propose to use them in either one of the following two ways:

(a) Let par, () be given by eq.(2) and par, |, (2|2) by eq.(8) with hy # 0, h, #
0, and thus leL(Z, z) = pm.(%)pr,, (2]7). Then we directly use eq.(21).

(b) Let pr(u) = pr(y)par, (x) or pr(u) = pr(¥)pm,,, (2]7)par, (z), make ran-
domly sampling according to p,(y) and get {yt}i\il, then simplify eq.(21) into

N' N
1 1
F(Mh M2) = N Z Z Mf{Ml,MQ}(ym u-,—),

t=1 7=1
Pay, (l2)

pMylr(y|x) In Py, (@), (0] foru=w

f{M , M. }(y7u) = |z,z (22)
v ), . (ylz,z)In il (ol for u = (z,2).

yle,z

Plez)y(Z|-T72/)PM2L (zu)°

As long as N is large enough, we can implement minyg, ar, F (M1, Ms) via
the Alternative Minimization procedure eq.(17).
We can also simply adjust M7, Ms respectively by

Mlnew = Mlold - WGMl /pr(Ut)7 M2new = M2Old - nGM2/pT(ut)7 (23)

once we get a sample u, where Gy, , Gy, are the gradient descent direction of
Jiary py (ue) with respect to My, M at M M$' respectively. That is, we get
a so called adaptive algorithm for implementation.



4 BYY Supervised Learning Family

The BYY system given in Fig. 1 and eq.(10), in its nature, applies to various
tasks of @ — 2z association type, including classification, regression, function
approzvmation, control action, ..., etc. Supervised learning is used for learning
this # — z association. As shown by Fig. 1 and eq.(10), we have five components
to specify. There may be several choices for the specification of each one, which
create a family that consists of quite a number of variants. Here, we propose a
hierarchy to organize them and then concentrate on some of them for further
introduction.

Item 3.1 Bayesian Kullback Ying-Yang (BKYY) family and Bayesian Non-
Kullback Ying-Yang (BNKYY) family are obtained according to whether the
Kullback divergence 1s used as the separation functional.

Item 3.2 We further divide BKYY learning into two big branches, according
to whether pa,,  (y|z, 2) is free. If it is free such that it can be determined by
minag, ar, Frwo (M1, M>) without any constraint, we call that the coordination
terminal is of full capacity for coordination, and we call the corresponding BKYY
learning as Full Coordinated BK'Y'Y Learning; otherwise if par |, (y|z, z) comes
from some parametric family with certain constraints, we call the corresponding
learning as Constrained Coordinated BKY'Y Learning.

For the Full Coordinated BKYY Learning, we have the following theorem:

Theorem 3.1 With pu,, (ylz, 2) free, both minp,, - (vle,2) K L(ppellpagr)

,z

puy, o (Zl29)py, (2,y)
2

|,y
P, (2,2) !

Py (2, 2) = [ pary,, Glosypyr (o, y)dy = [ pw,,, (3lo,y)pa, (2ly)pa, (y)dy,

ming,, (o5 K Lewo(Mi, M2) = K L(pyp (2, 0)|lpary (2, 2)) + K L(pan | |par,)-

,z

and mianylr)z(yl.T,Z) I(LNUO(MM M2) ~ pMy|a:,z(y|x7 Z) =

This theorem basically tells us two points. One is that par, . (ylz, z) will be
fixed at the Bayesian posterior probability if 1t is free. The second is that after
pM,,,.. (ylz, 2) settled, the specification of the remaining parts in KLY (M, Ms)
only relates to a mixture joint density par,(z, 2).

Item 3.3 The BKYY learning can be also described in different types, ac-
cording to the relative status of the Ying pMé(x,y) = pu,,,(z|y)par, (y) and

Yang pyz(,y) = pum,,, (yl2)pu, (). If ming,, - (vle,2) K Lwo(My, M) gives

Puz(7,y) = pay, (ylo)pa, (v) = par, (€y)pag, (y) = Pz (e, y), (24)

or if we force it to hold, we have K L(par,||lpm,). We call it Fully Matched
BKYY learning. Otherwise, if we cannot have K L(par, ||pas,) = 0, it means that
Pumr (x,y) # Pur (z,y) and thus both parts actually impose constraints on each

other via min,,, o (Whe7) K Liwo(Mi1, M), we call it Partially Matched BKYY
yle

learning. Here, we show three examples with K L(par, ||par,) = 0. First, if the
data set D, comes from the true distribution

P (2,y,0%) = p°(yle, 8,,)p° (z,05) = p°(=ly, 05,)p° (v, 8,), (25)

and we exactly put par,, (z|y), pm,(y) and par,,, (ylz) on their counterparts
respectively. Second, pa,,, (z|y) and par,(y) are both free such that the Ying



model pM2L($, y) can freely follow any Yang model. Third, pa,, (ylz), pa, (v)
are free and F; N Fy # 0 , where F; is the set of all the functions represented
in the form p(y|z)/p(y), and Fs is the set of all the functions represented by
P, (z|y) /P, () with par, (x) prefixed and the structure of par, |, (#|y) prefixed.

Item 3.4 A parametric component is actually modeled by a physical device,
and a free component is indirectly defined through the physical devices for other
components, we call a BYY system a Yang based system when pley(a:|y) is free
and par,,, (y|z) is parametric, a Ying based system when pyy,, (|y) is parametric
and par,,, (ylz) is free, and a Ying-Yang Tuned system when py,, (2|y) and
pm,,, (y|z) both parametric. Furthermore, for a Fully Matched BKYY learning
, it follows from eq.(24) that Pur (z,y) is actually modeled by

_ | puy, (z|y)pam, (y), a Yingbased system,

Pk (@,y) = {PMy|z(y|x)PMz (z), a Yang based system. (26)
Item 3.5 We may classify the architectures of BKYY learning according to
the feature of the component pyr, |,  (z|z,y). One type is the special case that

o, (212, y) = pm,,, (z|y). The par,(x,2) given in Theorem 3.1 becomes

PMz(xvz)Z/PMz|y(Z|y)PM2L(l“7y)dy

v
B fy P, (z|y)pMI|y(x|y)pMy (y)dy, Ying based or Ying-Yang Tuned,

= 27
{fy pley(,z|y)pj\/1y|x(y|a:)pr(a:)dy7 Fully Matched Yang based, (27)

which links z, z via a cascade architecture © — y — z or * + y — z and thus
z, z are independent of each other when y is known. The architecture z — y — =
1s usually called Three-Layer Feedforward Net or Three Layer Perceptron. The
architecture x < y — z can be used as a hypothesis testing model with z, z
generated from the hypothesis y to be tested by the observed data. The other
type of architectures is that par,,  (z|z,y) # pum,,,(2|y), and par, (7, 2) is given
by Theorem 3.1. In this case, each par,,, (2|7, y) builds a direct link  — 2 itself
with the link gated via the internal variable y such that a weighted mixture
P, (2, z) is formed in Theorem 3.1 in a parallel architecture. This architecture
1s usually called Localized Architecture or Mixture of Fxperts.

The following theorems on eq.(9) and eq.(6) are helpful for further under-
standing the above discussed various BKYY supervised learning systems.

Theorem 3.2 When py, (y|z) is free, both ming,,  (yl2) K L(pa, ||pasy)
Pay ), (2l9)Pary (9)

PMQ(E)

[, gy, (@ly)pas, (y)dy, and ming,, (yle) Ko |lpar) = K L(pa, (€)||pas (2))-

E3

and miany|z(y|$) I(Ltwo(Ml, M2) = pMy|z(y|'r) = , with PM, (1‘) =

This theorem also tells us two points. One is that par,,, (y|z) will be fixed at
the Bayesian posterior probability if it is free. The second is that after par,, (y[z)
is settled in this way, the specification of the remaining parts in K L(par, ||pas,)
is the maximum likelihood learning of the mixture pay, ().

Theorem 3.3  When pyy, (y) is free, miany(y) K Liwo(My, M) gives

Py (y) = 0.5(pasr (y) + pany (), with pas, () = [, pag,,p, (yl2)pas, (2)de and



leL(y) =/ ZpMylz)z(yLT,Z)leL (z,z)dzdz. For a Fully Matched BKYY, we have

P, (¥) = P, (¥) = pasz (9)-
Theorem 3.4  When py,, (#]y) and par, (y) are both free,

ming,,, )} K Liwo(My, M2) is reached at p,, (#|y)par, (v) =

I|y(x|y)pry
0.5(pasr (2,y) + pay ., (Wl )pace (0)), parz (@, y) = [ paa,,, . (ylo, 2)par (2, 0)dz.
Particularly, with P, (y) given by Theorem 3.3, for a Fully Matched BKYY
learning we have pley(x|y)pMy(y) =Pumt (z,y) = PMy|I(y|l“)PMI (x), with par, (y) =
Py (y) = Parz (v), pagy, (2ly) = pasz (2]y) = pary (ly), and pyz(aly)

= sz (2,9)/pase (9), par, (@]y) = pas,y, (y12)pa, () /pas, (9).

5 Temporal BKYY Modeling System and Theory

Given time series {@1, 29, -+, 27} and {y1,y2, -, yr}, it is not enough to con-
sider each pair (z, y) instantaneously as we did in the previous sections, since
the order of samples conveys important serial information. Although we can
simply make a temporal modeling by using a Time-Delay (TD) line as an input
vector, l.e. & = [X¢_1,&4—2, -, T¢—p), into the previous instantaneous model, it
will not meet well our need on nonstationary time series. In [6], BKYY learning
system and theory has been extended to act as a general system and theory
for temporal modeling, which not only includes and extends the existing major
temporal models, such as Hidden Markov Model (HMM), ARMA and AR mod-
els, but also provides some interesting new models. In this section, we will more
systematically summarize and develop the results given in [6].

Let Xp = {@1, 22, -, 27} and Ypr = {y1,y2, -, yr}, where each z;, y; can
be a real scalar, a vector, and a discrete number, depending on the specific
problem that we consider. In eq.(4), by replacing # in all its occurrences by Ap
and y in all its occurrences by Vr, we can directly use the previous BYY learning
system and theory as a general starting point for temporal modeling.

We consider the cases that Xp, Ypr have the p > 1, ¢ > 1 order Markov
property, and get

PMy yT HPMy yt|yt 1 Py, XTD)T HpMa:|y welye, & t 17 )

2y, (V| ¥r) = HpMylz yeloe, ViZH, X/20). (28)

where we use the notations:

L{t, T < 17

ut:{ulv"'vut}vutr:{uTv"'vut}v Z’{O:{@}vut‘r: ut'r:{(b} T;t

(29)

From putting these equations, we have

pu, ., (Vr|Xr)
pMzw(XTWT)PMy(yT)

[(l(Mh Mg) = / ylz(yT|/YT)pMz (./YT)I d./YTd\yT7 (30)



from which we may get various cases of the Temporal BKYY modeling system
and theory. Several such cases have been discussed in [6].
We focus on the most typical case that ¢ = 1,p = 0, that is

T
KI(M,y, Ms) :Z/Klt(Ml,M2|yt_1)pMy(yt_1)dyt_1, (31)
t=1

Py, (ye| e, ye—1)
pMz|pry(yt|yt—1)
g, (Te|ye, ye—1, Onr,, ),

gy, (Telye, Omay,, ) :

[(lt(M17M2|yt—1) :/pMyh;(yt'xﬁyt—l)pMz(-Tt|yt—1)h'l dl‘tdyt

pary (Ye) = /pMy(yt|yt—1)pMy(yt—1)dyt—17 PM,, = {

Y is the invisible state variable. The parametric par, (ye|y:—1) = (¥t |ye-1, Onr,)
describes the state transient, and the parametric pyr, , describes how z; 1s
generated from or related to the current and immediate pass states. While
pMylz(yt|xt, yr—1) describes the encoding or state discovery from the current

and the previous state y;_1. It can be either free or parametric. For the special
case that it is free, the minimization of KI(My, M3) and thus Kl (M1, Ma|y:—1)
will let it indirectly be specified by

Py, PMy (9tlye—1)

x|y

T ey Pty (Felyea) = [ s pag, (velye-n)dye,
KU(My, M2) = — [ par, (ze) Inpar,,, , (welye—1)dws, par, (elye—1) = par, (). (32)

In this case, the minimization of Kl (M, Ma|y:—1) is equivalent to the maxi-
mization of a weighted likelihood.

The minimization of K{(M;, M3) can be made by the Alternative Minimiza-
tion procedure eq.(17). However, here we should start at ¢ = 0 with par, (yo)
specified, update par, (ye—1) into par, (y:) by eq.(31) as a weight in the next
Kl (My, M2),t > 1. In some special case, we can directly deal the integral or
summation operations involved.

In analogue to getting eq.(22) and eq.(23), from eq.(31) we propose a general
adaptive algorithm based on stochastic approximation.

Given pyr,,, by eq.(31) and par,(yo) with a random sample yo. With a Sam-
pling Reference density p,(y:), starting from ¢ = 1 we repeat the following steps:

Step 0: Get an observation z;, randomly get one sample y; from p,(y:).

Step 1: With par,,, par, (ye|ye—1) fixed, for pMylz(yt|xt,yt_1) free, update it by
eq.(32); for pMylz(yt|xt, yi—1) = p(ye|ze, ye—1, @My|a:) parametric, update

@new — @old _ any(yt_l) akl(@JwylawN@Jw?ﬂ @Ma:|y)| rd
My|a: My|a: pr(ut) 8@My|a: @Myla::@g/[ylx7

p(yelze, ye—1,Om,,)

gy, (yelwe, ye—1) =

kl(Own, ., Om,, Onm,,, ) =pye|2e, ye—1,O0m,, ) ]In 33
( yl Y |y) ( t| ty Yt—1 y| ) PMI|yP(yt|yt—17@My) ( )
Step 2: With pMylz(yt|xt, yi—1) fixed, update
Py (yt—l)PM (ytlxt,yt_l)alan
@new — @old Y ylz x|y R 34
Moy My +n pr(ut) aeley |@]\/Iar|y=@J\/lfj;|y7 ( )

PMy(yt—l)PMy|z (yele, ye—1) Oln p(ye|ye—1, Ou,) |
—@old .
pr(ut) 0O, Ony =93,

O =05 +n



Step 3: Update par, (y:) by eq.(31).

Note: we can use an adpative choice p,(y:) = p(y¢|ye—1, @ﬁ/l[i) in the above.

After the above modeling, we can use (a) p(y:|y:—1, @, ) and par,,, by eq.(31)
to predict z¢ at t — 15 (b) par, |, (y¢|2e, ye—1) to encode or recognize z; into y;
(c) pMylz(yt|xt, yr—1) and pm,,, to filter the current z;.

In the following, we further look into two typical examples:

Item 4.1 BYY Hidden Markov Model (HMM) and learning the-
ory When both z, y; are discrete label, par, | (ye|2e, yr—1) is free and pyy,,, =
pley(xt|yt), we have that Vr is a hidden Markov chain and pas, (y¢|ys—1) corre-
sponds to a k x k Markov transfer probability matrix. From eq.(32), we see that
the minimization of K{(M7, M2) given by eq.(31) is equivalent to the maximum
likelihood learning on a HMM. Also, from eq.(32) and eq.(31), via the Alterna-
tive Minimization eq.(17), we can get the well known Baum algorithm for HMM.
Furthermore, we can get several new results for HMM as follows:

(a) The above stochastic approximation adaptive algorithm for HMM.

(b) Various extensions by different choices, e.g., z; is real, par, |, (ye|t, ye-1)
is parametric, pyr,,, = pm,,, (T |y, ye—1).

(¢ ) The criteria for deciding the number k of hidden states by using eq.(13)
on eq.(31), i.e., after getting @?sz’ O, p}‘wylx(yﬂxt, Yr—1), and

P, (@elye—1) = [ plyelye-1, @My)erlbeﬂy:@?wﬂydyt via learning, we have

Jl(k) = [Xrl(M17M2)|{@;ﬁV[ | JQ(k) = Jl(k) — (35)

y’@;ﬁ\/fy 7P?\/1ylz(3/t|$tyyt—1)}7
T

Z /pMy(yt—l)p;ﬂ\Jyw(yt'l‘h yt—l)p?\dz (.Tt|yt—1) lnp?\/[ylz (yt|-rt7 yt—l)dxtdytdyt_l.

t=1

which can also be computed incrementally as ¢ increases.
(d) Other types of extensions from eq.(28) or K L(Ms, M1) or eq.(5).
Item 4.2 BYY State Space model and theory Considering

ye = E(yi—1,04) + e¢, v = H(ys, On) + vy, with white noise ey, vy, (36)

where e, is independent of y;_1, v is independent of y;, e;. E(.,0,), H(., ) are
deterministic linear or nonlinear mappings. When they are linear, eq.(36) reduces
to the conventional linear state space model. In addition, par,,, (yt|ze, ye—1) is
either free or given by the parametric model

yy = F(x¢,yi—1,0f) + ne, ny 15 independent of x4, ye—1, €, . (37)

where H(.,0}) is a deterministic linear or nonlinear mapping.
From gaussians G(et, 0, Z¢) , G(vt, 0, Zy) and G(ne, 0, 2,), we have

_f free, _

PMy, (yelze, ye—1) = Clye, F(zt, yee1, 05)Z0) Ou,. ={0s, X.},
PMy(yt|yt—1) = G(ytv E(yt—lv 66)7 26)7 pMz|y('rt|yt) = G(xtv H(ytv @h)v Ev)v
6J\/Iy = {667 26}7 @ley = {@117 Ev}7 kl(@My|z7 6My7 @ley) =

yle



G(yt7 F(l‘t, Yt—1, @f)7 En)
G(l‘t, [’I(yt7 @h)7 E’U)G(yt7 E(yt—h 66)7 Ee) !

I par,, = ~0.500 | S| + (@0 = H(ye, ©4))" T (20 — H(yr, Or))] + const,
lany(yt|yt—1) = —0.5[ln |Ee| + (yt - E(yt—h@e))TEe_l(yt - E(yt_l, @e))] + const.

G(ye, F(zt,yt—1,0¢), Xn)In (38)

In the special case that E(.,0), H(.,Op) are linear and pur,,, (ye|ze, ye—1) is
free, by putting eq.(38) into eq.(32) and eq.(31), we can analytically solve the
integrals and get an accurate iterative algorithm by Alternative Minimization
eq.(17), which is closely related to the well known Kalman filter algorithm for
linear state space. Moreover, we also get several new results:

(a) Putting these conditions in eq.(33) and eq.(34), we have the above adap-
tive algorithm for both linear and nonlinear state space models.

(b) Variants by parametric par, | (vel@e, ye-1) or pa,,, = pa,, (Telye, ve—1).

(¢ ) The criteria for deciding the order k of the state space by the same one as
eq.(35), which can be simplified considerably by inserting in the above eq.(38).

6 Temporal BKYY Regression System and Theory

For certain practical applications, we observe two time series {@1, 2, -, 27} and
{z1, 22, -+, zr }, we are interested not only in modeling each of them but also in
their regression or mapping relationship. In these cases, we should consider the
general BYY learning system and theory discussed in Sec.3.

For simplicity, we consider the fully matched BKYY learning of the cases
given by eq.(26) and eq.(27). That is, KL(M;, M3) = 0 and thus we have
KUt (My, Ms) =

Py, (Yrl¥r, Zr)

(271X, Y7)p, 0 (X7, VT)
2

dXrdYrdZr,

bPar

S paryp, (V1| Xr, Zr)pye (Yr, 27) In

zle,y

prly(.X'T|yT)pJ\/1y())T)7 a Ying based system,

Pk (Xr,YVr) = {PMy|z(yT|XT)PMz (X1), a Yangbased system, (39)

where we still use the assumption in eq.(28), and we assume that Zp has the
p > 1 order Markov property too. Generally speaking, from eq.(39) we may get
various cases of the Temporal BKYY regression system and theory. Also, we
can discard —prylz)z()/ﬂXT,ZT)leL(XT,ZT)lanZ(XT)dXTddeZT for a
Yang based system, because it depends on only the training data.

We again focus on the typical case that ¢ = 1,p = 0, that is

T
Kl (My, M) = Z/KZL(t)(Ml,M2)pMy(yt_1)dyt_1, Kl (t)(M,y, Ms)
t=1

PMy s, . (yt|xt7 Zt, yt—l)

:/pMy|z)z(yt|fL't7Zt7yt—l)PMlL(l't7Zt)ln pMzh:)yTt,t—l dridzedyy,
_ PMz|z,y(Zt|$t7yt)7 _ PMZ|y($t|yt)7
P ey {pMz|I)y(Zt|xt7yt7yt—l)§ PMey = paryy, (#elye yemr)
plepry(yt|yt_1), a Ying based system,

Tt,t—l = (40)

_ ]3My|x(yt|l“t7)7
PMy|. PMy), = {pMy|a: (gelze, yer), a Yang based system.



Similar to Sec.5, we can use the Alternative Minimization procedure eq.(17) to
get an accurate implementation algorithm or to obtain a stochastic approxima-
tion adaptive algorithm as in Sec.5.

In comparison with the model eq.(31), we have par . (yt|2t, 2, ye—1) instead
of pMylz(yt|xt,yt_1) describes encoding or state discovering from the current
¢,z together and the previous state y,—1, and we also have par, |,  for the
mapping or regression from z; — z; under the status of y; or y;, y—1. Simi-
larly, par,, . (¥ |t, 2, ye—1) can be either free or parametric. When it is free, the
minimization of Klg (M, Ms) lets it be indirectly specified by

PM, |y (#tlye,yr—1)pary (Wilyi—1)

a Ying based system,

Mo (26,7, Yt —1) ’
(wtlzt,ye—1)

PM e,y

pMyIz,z(yt|xt’Zt’yt_l) = PMIly(‘Ttlytyyt—l)PM

ylz

, a Yang based system;

PM, | Mo (Ztl2eue-1)
pMz|z,y7M2(Zt7‘rt7yt—1) = /PMZ|y($t|yt7yt—l)PMy(yt|yt—1)dyt, Ying,
M, M (Ze|Te, Y1) :/pMz|y(1‘t|yt7yt—l)pMy|z(yt|l‘t7yt—l)dyt7 Yang; (41)

M2(2t7$t,yt_1)dztdl‘t, Ying s
My (2t|Te, ye—1)dzedzy,  Yang.

Inpas,
Inpas,

KIL(t)(My, My) = _/leL (%Zt){ -

oy
From here, we may get the maximum likelihood learning for various generalized
state space model or HMM based regression. Moreover, we get various cases of
BKYY learning for them when pas,,,  (yt|t, 2¢, ye—1) is parametric.

It is interesting to observe that for both the cases that pas,,, (ye|e, 26, Yr—1)
1s free and parametric, we have:

(a) In a Yang based system, the transient from g _1 to y; is controlled by
pum,,, depending on x;. Particularly, for a cascade structure plez)y(zt|xt,yt,
Yi-1) = pwm,,., (#t|yt, ye—1), we actually get a general recurrent feed-forward
BYY system, which not only includes the conventional three layer recurrent
net as special case, but also provides new recurrent models. For plez)y(zt|xt,
Y, Ye—1) F P, ., (2t|Yt, ye—1), we get a model of recurrent mixture of experts.

(a) In a Ying based system, for a cascade structure, par,,  (2¢|ze, ye, r—1) =
plez)y(zt|yt,yt_1) and pley(xt|yt,yt_1) describes how the observation =z, z
are coordinately generated from the hidden states. For par,,, , (2¢|ze, e, yr-1) #
plez)y(zt |4, ye—1), we get a general recurrent alternative mixture expert model,

with the mapping by multiple experts gated by par,,, (zelye, ye—1)par, (e lye-1).
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Appendix: Proofs of Theorems

Proof of Theorem 3.1  Since pu,,, . (y|z,2) is irrelevant to K L(M1, Mz), we have

that min,, e (W157) K Lywo(M1, Ma) is equivalent to mlan (yla2) K LL(M17 Ms).
From eq.(9), [X LE(My, My) = prlL (z,2)K L(pMylz)z(y|x,z)||pM2(y|x,z))dxdz—|—

Plez)y(Z|myy)PM2L (z,u)

KL(leL (z,2)||pass (=, 2)), pars (ylz,2) = ., with pas,(z,2) given

by Theorem 3.1.

Proof of Theorem 3.2  Since pu, |, (y|z) is irrelevant to KLY (M, M>),

mian (wlo) K Lywo(My, M) is equivalent to mianylz(mm) K L(M, My). Via eq.(6),
BL Mth = [ pa, () K L(par,,, (yl2)|Ipas, (yle))do + K L(par, (¢)]pas, (),

. Py, (@ Iy)pM (v)
with par, (ylz) = 'l}MQ(m) -

is irrelevant to pMle(y|l‘)7 thus the first term is minimized at pMylz(y|x) = par, (y|z).

Proof of Theorem 3.3 From eq.(9) and eq.(6), in K Lywo( M1, M2) the part relevant
to par, (y) is T = — pry|z,z(y|x7Z)leL (2 ) In par, (y)dedydz — [ pur,, (y])par. (2)
In pas, (y)dedy = —f pML y) Inpar, (y)dy — f par, (y) Inpa, (y)dy, where Purr (y) and
pu, (y) are given in Theorem 3.3. Furthermore, the minimization of 7" with respect to

par, (y) will not be affected when we add into 7' the following terms
PML +PM1 (v)  ppr(W)tpn (v) ParL (W) +Pny (¥) P (W)+Par (9)
T+ f In —— dy = fy L In 12PMy(y) dy,
that are 1rrelevant to par,(y). This T' reaches its minimum at pas,(y) = 0.5(pM1L (y)
+pur (y)). For a Fully Matched BKYY learning, by integrating both sides of eq.(24),

we have pur, (y) = par, (y) and thus Pk (y) = 2pa, (y) — pay (y) = pur, (y) too.

P, (2,2)

and par, () given by Theorem 3.2. The second term

Proof of Theorem 3.4 Similar to the proof of Theorem 3.3, we can get that in

K Lywo(My, M) the part that is relevant to pley(x|y),pMy(y) isT =~/ o Pt (z,y)
In[par,, (xly)pa, (Wldody — [ pu,, (yle)par, (2) In [par,, (21y)par, (y)]dody,
P (@) +pnm  (Wl)pn, (@) pyn(@y)+pum  (912)par, (2)
T+ fm y My M;' " In My M;' ¥ dxdy
DL (r,y)+pMy|I(y|$)pMz (#)  pPyr (Eyy)+pMy|I(y|$)pMz($)
= fm,y 1 . In —1 o Gmar, ) dzdy. Thus, we get the

first equation in Theorem 3.2. Particularly, for a Fully Matched BKYY learning, we

have pley(x|y)pMy(y) = pMylz(y|x)pMz () given by eq.(24) and thus we get the first

equation in Theorem 3.4. From Theorem 3.3, we have par, (y) = par, (y) = pyrz (y) and
1

then use them to divide each terms in that first equation, we get the rest of Theorem

3.4 proved.






