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Abstract

In this paper', we extend Bayesian-Kullback YING-
YANG (BKYY) learning into a much broader Bayesian
Ying-Yang (BYY) learning System via using different sep-
aration functionals instead of using only Kullback Diver-
gence, and elaborate the power of BY'Y learning as a gen-
eral learning theory for parameter learning, scale selection,
structure evaluation, regularization and sampling design,
with its relations to several existing learning methods and its
developments in the past years briefly summarized. Then,
we present several new results on BY'Y learning. First, im-
proved criteria are proposed for selecting number of den-
sities on finite mizture and gaussian mixtures, for select-
ing number of clusters in MSFE clustering and for selecting
subspace dimension in PCA related methods. Second, im-
proved criteria are proposed for selecting number of expert
nets in mizture of experts and its alternative model and se-
lecting number of basis functions in RBF nets. Third, three
categories of Non-Kullback separation functionals namely
Convex divergence, L, divergence and Decorrelation indes,
are suggested for BYY learning as alternatives for those
learning models based on Kullback divergence, with some
interesting properties discussed. As examples, the EM al-
gorithms for finite mixture, mixture of experts and its alter-
natiwe model are derived with Convex divergence.

1. BYY Learning System and Theory
1.1 BYY Learning System

The learning problems by an information processing sys-
tem can be summarized into the problem of estimating joint
distribution p(z,y) of the observable pattern z in the ob-
servable space X and its representation patter y in the rep-
resentation space Y. We call a passage M, |, for the flow
like + — y a Yang/(male) passage since it performs the
task of transferring a pattern/(a real body) into a code/(a
seed). We call a passage M), for the flow y — z as a
Ying/(female) passage it performs the task of generating
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a pattern/(a real body) from a code/(a seed). M,|, and
Mg, are complement to each other and together imple-
ment an entire circle *+ — y — x. Interestingly, under
the Bayesian framework, we also have two representations
p(z,y) = p(y|lz)p(x) and p(z,y) = p(z|y)p(y). We use a
Yang/(visible) model M, representing p(z) (i.e., model-
ing the space X), and we use a Ying/(invisible) model M,
representing p(y) (i.e., modeling the space Y). Moreover,
M|, is represented by pMylz(y|x) and Mg, by pley(x|y).
Together, we have a YANG machine M; = {M,,, M.}
to implement par, (z,y) = pMylz(y|x)pMz(x) and a YING
machine M, = {My,, My} to implement pa,(z,y) =
pley(x|y)pMy(y). A pair of YING-YANG machines is
called a YING-YANG pair or a YING-YANG system. Such
a formalization compliments to a famous Chinese ancient
philosophy that every entity in universe involves the inter-

action between YING and YANG.

The task of specification of a Ying-Yang system is called
learningin a broad sense. For this purpose, we need to spec-
ify four components pas, (), pMle(y|l‘)7 Py, (z|y) and
par, (y) as well as the type and scale of variables x,y.

First, « is given by a practical problem without other
choice, usually it is assumed that # € R? But y can
be real y € R* integer y € [1,2,---,k] and binary
y = [y1, - ,yx], yi € [0,1], where y represents the com-
plexity of representation space or equivalently the scale of
a YING-YANG pair structure. Second, pu, («) is specified
at some nonparametric estimate from a given training data
set, one example is the kernel estimate (Devroye, 1987)

pr(e) = & LI Knle — i), Kn(z) = HEK(Z52). (1)
where [ |K(z)|dz < oo, [K(z)ds < 1. Next, the rest
three can be fixed or from a parametric family. Each is spec-
ified by both structure, e.g., density function form p(z|y, -)
in par,,, (¢|y) = p(xly, 0,),), and parameter 6.

x|y

For convenience, we denote M, = {Sq,0q,k} for a €
{z|y, y|=, y}, i.e., My denotes a component with structure
or desnity form S,, parameter 6, and scale k. Also, we
denote Ms = M, = {K,h, N} with K = K(z), smooth
parameter h and sample size N.

The task of specifying S = {S;y,Syjz, Sy} is called
structural design. The task of specifying k is called scale
selection. The task of specifying © = {0,),,0,s,0y} is
called parameter learning or estimation, also called learn-
ing simply in a narrow sense. The task of specifying M, is



called sampling design. All the four tasks together specify
a Ying-Yang pair. The whole specification process can be
regarded as a Ying-Yang interaction process with four pos-
sible types of marital dynamics: (a) marry, (b) divorce, (c)
YING chases & YANG escapes, and (d) YANG chases &
YING escapes, described by a combination of minimization
(chasing) and maximization (escaping) on a so called sepa-
ration functional:
Fo(My, M2) = Fs(pary, (Yle)pae (), pary, (€ly)Pay, () 2 0,
with Fo (M1, M2) =0, if and only if

par, (Ylz)par, (@) = par_, (#ly)pary, (y) (2a)

ylz x|y

Since this system bases on the interaction between the
two complement YING and YANG Bayesian representa-
tions, we call it Bayestan Ying- Yang Learning System. Par-
ticularly, when F.(M;, M2) is the Kullback divergence:

KL(M:, Ms) =

par, (yle)ppr, (o)
fz,yPMy|z(y|x)PMz(x)lnm
we return to Bayesian-Kullback YING-YANG (BKYY)
Learning (Xu, 1995a&96a&c). In sec. 4, three categories

of Non-Kullback separation functionals will be discussed.

dxdy (2b)

Up to now, only the status marry and divorce,
le., minay a, Fs and maxar v, Fs have been studied.

As shown in (Xu, 1997b), maxn; v, Fe will result in
pley(x|y) = pu,(z) and it can be further shown (Xu,
1996a&c) becomes maximization information preserva-
tion learning (Informax)(Linsker, 1989; Atick & Redlich,
1990) or its variants. Actually, the most useful one is
minas, ar, Fs, which includes already the most useful spe-
cial case of Informax, namely, Maximum output entropy.
Therefore, we only consider it in this paper.
ternative Minimization (ALTMIN) iterative procedure
Step 1: Fix M; = Mgld, get M["°™ = minyg, Fs.
Step 2: Fix M1 = M4, get M2°* = minng, F.. (3)
which is guaranteed to converge (Xu, 1995a&96a&c).

The above system and theory can be directly applied to
those unsupervised and supervised learnings for the infor-
mation processing types like # — y, y — x, where z can
be regarded consisting of two parts & = («,z) or even more
when it is needed.

Generally, this minas, ar, Fe 1s implemented by the Al-

Moreover, for those tasks of focusing particularly on
the relation &« — z, we still can use the above system
with a slight extension. First, we replace all the z in
eqs.(2a&b) by (z,z)|r = z|r and all the y by y|z. Sec-
ond, we notice that (y|z)|(z]z) = y|(z, z,2) = y|(z,z) and
(z]2)|(y|z) = z|(y, =), which leads us to

Fo(My, Ma|o) =

Fs(pary), Wlo, @)par,  (zl@),par,,  (ly, @)pay) (v]2)) 2 0,

with Fo (M1, M2) =0, if and only if
e WP, le) =P (2ly, @)pay (y]2)
F,(M1,M2) = [ par, (2))Fs (M1, Ma|z)dr. (4a)
KL(M;, Ms|c) =

Pn

PAM (vlz,@)ppr, ) (2]e)

Josypry, Wz, )P0, (2]2)In M, |y G907, | (1)
KL(My, M) = prI(x)KL(Ml,M2|x)dx. (4b)

where My = {My, M. ., M, } and My = {M,}, ,, M.},
Mo = {Sa,04,k} for a € {y|(z,2), z|(y,x), ylz}. Given a

ylz,x

drdy

paired data set {z;, 2z }/L;, we usually let

plez(z|x):ph(z|x,):Kh(z—z,), at z = x; (4c)
with K, (x) is the same as in eq.(1). Thus, we still have sam-
pling design Ms = {M., M.} = {K,h,N}. As a whole,
we have the entire structure S = {Sy|s 2, S:|2s S:lyer Sy|z}
and all the parameters © = {0, , 9.1z, 9:1y.2,0y|- }-

1.2 A General Learning Theory

The different choices on specific structures, specific
forms of separation functionals and sampling designs makes
it possible to specify a large number specifications of a
Ying-Yang system and thus a large number of specific
learning models and theories. Therefore, we suggest that
minas, ar, Fo(Mi, M2) functions as a unified general statis-
tical learning theory for:

1. Parameter estimation or learning, which is usually
called learning in the narrow sense. That is, given S, k and
Mg fixed, we determine
©" = argmine Fs(© : S, k, Ms). (5)
2. Scale selection, or called model size selection. That
is, given S, and Ms fixed, we determine
k* = argming{mine F.(0©,k : 5, Ms)}. (6)
3. Structure evaluation. That is, given Mg fixed, for
two given sets of structures SU) and S, We choose the
first one if
J(sMy < Js@, J(5)) = ming {mine Fs(©,k : M) Ms)}(7)
4. Sampling design. It can be further divided into three.
One is called Sampling smoothing, i.e., in parameter learn-
ing, we also adapt h to minimize F. under given K,N.
The second is called Sampling structure evaluation, i.e.,
given N, eq.(6) includes the evaluation on different KW
and K® . The third is Sample complexity. Given S, and
K, h fixed, it can be made by
N* = E;[ming{mine Fs}]. (8)
where E(J(z)) = fm p(z)J(z)dz.
5. Regularization. For a limited number N of samples,
some regularization can be obtained by using one structure
to constrain the others. For example, for a forward net or
recognition model, we can design S|, with more freedom
to ensure its representation ability, but design S|, with less
freedom to regularize the learning to get a good generaliza-
tion. Similarly, for a backward net or generative model, we
can design S|, with more freedom to ensure its representa-
tion ability, but design S|, with less freedom to regularize
the learning to get good generalization.

It should be noted that this theory provides a uni-
fied general guideline that applies to all the specifica-
tions of Ying-Yang system. As shown previously in (Xu,
1995a&96a&c), as well partly in the latter sections of this
paper, we will get the detailed forms of various special
cases of this general theory for different specifications of
Ying-Yang system. These specifications can be first classi-
fied into groups according structure design. Fach of such
groups is usually regarded as a different specific learning
model/theory/method. Then, each of these groups can fur-
ther have different realizations or individuals due to the
difference in separation functionals, sampling designs and
even the details of implementation algorithms. Therefore,



we can first always fix the separation functional given at
Kullback divergence and sampling design at an idealistic
case of eq.(1) that pa(z) = UM N c0,hN—so0,h=hy —0 Pr(Z)
(actually in this case, pn(z) will converge to po(z)—the
original density that {=;}{L, comes from), and then under
this situation we explore various learning models or theories
through different structural designs. Next, we use different
separation functionals and sampling designs to get variants
of these models or theories with some features.

1.3 The Power of The General Theory

To the current literature, this unified statistical learning
theory can provide us at least the following strengths:

First, it is able to unify a quite number of existing major
parameter learning models and theories for both supervised
and unsupervised learning.

For unsupervised learning, as shown in (Xu,
1995a&96a&c), one of its special cases reduces to Maxi-
mum likelihood learning on finite mixture model with the
EM algorithm and several related results, e.g., a cost func-
tion for mixture Gaussian by Hathaway (1986) and Neal &
Hinton (1993), to the Information Geometrytheory and the
em algorithm by Amari and others(Amari, 1995) and oth-
ers, to MDL autoencoder with a “bits-back” argument by
Hinton & Zemel (1994). The special case can also reduce to
multisets modeling learning (Xu, 1995d; Xu, 1994)-a uni-
fied learning framework for clustering, PCA-type learnings
and self-organizing map. Its second special case reduces
to the recent proposed Helmholtz machine (Dayan et al,
1995; Hinton et al, 1995) with new understandings. Its
third special case gives a general Independent Component
Analysis (ICA) framework (Xu & Amari, 1996) that uni-
fies the information maximization (INFORMAX) approach
(Bell and Sejnowski, 1995) and the minimum mutual in-
formation (MMI) approach (Amari, Cichocki, and Yang,
1996). Its another special design (Xu, 1996¢) leads to
LMSER learning and Principal Component Analysis (PCA)
(Xu, 1991&93; Oja, 1989). Furthermore, some other spe-
cial cases will also give us improved new learning models
for ICA, linear and nonlinear LMSER learning as well as
their localized extensions(Xu, 1997b).

For supervised learning, as shown in Xu (1996b&c), one
special case includes the popular mixture of expert model
(Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Ja-
cobs, 1994) and its alternative model (Xu, Jordan & Hin-
ton, 1994&95) as special cases, from which we can further
get new algorithms for improving learnings on RBF net-
works (Xu, 1997c). Moreover, some special cases will not
only lead us to the conventional maximum likelihood learn-
ing (or least square learning in particular) for a feedfor-
ward network, but also provide two new learning theories
and algorithms as the alternatives of the traditional back-
propagation algorithm (Xu, 1995a; 1997a).

The above powerful unification provides us not only deep
insights on these mentioned popular existing learning mod-
els but also further guidance on obtaining their new variants
or extensions via cross-fertilization, with some such exam-
ples already mentioned above.

Second, some special cases give us several interesting
new unsupervised and supervised learning models or theo-
ries, which deserve further investigation (Xu, 1997a). Par-
ticularly, we can get a general scheme called co-supervised
learning for handling those training data sets with one part
consisting of both input and teaching target and the other
part consisting of input only, so that supervised learning
and unsupervised learning not only have been unified, but
also coexist consistently for best exploiting the information
in such a given data set (Xu, 1997a). Also in Sec. 4, we
will show that by using the so called Conver divergence,
L, divergence and Decorrelation index to replace Kullback
divergence, we can also generalize all the above mentioned
Kullback divergence related models into a wide spectrum
of different alternatives or extensions with some new inter-
esting properties, such as becoming more robust. Further-
more, some effort has been also made on extending this
theory to temporal patterns with a number of new models
for signal modeling, cognition, prediction and segmenta-
tion. Some of them can be regarded as the extensions of
Helmholtz machine or maximum information preservation
learning to temporal processing. Some of them include and
extend the existing Hidden Markov Model (HMM), AMAR
and AR models (Xu, 1995b). Particularly, with the state
space representation, it has been shown that this theory
is equivalent to Kalman filter approach for the linear case,
but outperforms Kalman filter and the existing extended
Kalman filter considerably in nonlinear cases (Lei & Xu,
1997).

Third, although there are many theories and criteria
available for scale selection on supervised learning (e.g., the
number of hidden units in the feed-forward nets), how to do
scale selection on unsupervised learning still remains open.
This theory can function as a general scale selection the-
ory for unsupervised learning, based on which criteria have
been obtained in (Xu, 1995a) and then further refined (Xu,
1996b&c) for the selection of the number of Gaussians in a
Gaussian mixture or the number of densities in a finite mix-
ture, particularly, of the number of clusters in the conven-
tional least mean square error (MSE) clustering analysis or
vector quantization, e.g., by the k-means or LBG algorithm.
Also based on this theory, a criterion has also been first ob-
tained in (Xu, 1995¢) and then refined in (Xu, 1996¢) for
the selection of the subspace dimension in Principal Com-
ponent Analysis (PCA) related approach. In Sec.2, an
improved version of this criterion will be given. Moreover,
the theory can also solve the model scale selection problems
of other Ying-Yang models for unsupervised learning (Xu,
1997b) and supervised learning (Xu, 1997a). Particularly,
we can get new criteria for selecting the number of hid-
den units in feed-forward nets(Xu, 1997a). Furthermore, in
(Xu, 1996c&d), criteria have been obtained for the selec-
tion of number of experts in the mixture of experts model
and its alternative model, as well as of the number of basis
functions in RBF nets; while in Sec. 3 of this paper, the
improved versions of these criteria will be further proposed.

Fourth, although there are many theories and tech-
niques for regularization on supervised learning, how to do



regularization on unsupervised learning also remains open.
As stated in the previous subsection, our theory also pro-
vides a new regularization scheme which applies to both
unsupervised learning and supervised learning.

The last but not the least, as stated in Sec.1.2, the
theory has also provide us a guide line to implement the
more sophisticated evaluation of structure designing and
sampling designing.

1.4 Relations to Other Approaches

The case minag,, ar, X L(My, M;) relates to the well
known information geometry theory (Amari, 1995; Byrne,
1992; Csiszar, 1975) in that both uses the Kullback diver-
gence for measuring the difference between two joint densi-
ties. But, there are several key differences. First, the BY'Y
learning theory considers the joint densities represented by
two models, while the information geometry learning the-
ory considers a missing data joint density and model joint
density, which can be regarded as a special case of two mod-
els. Second, the BYY learning theory does not require joint
densities necessarily in the exponential family, as required
by the information geometry learning theory. Third, most
importantly, the information geometry learning theory con-
siders each joint density as an entire body without looking
into their internal structures; while the BY'Y learning the-
ory deliberately considers two complement but equivalent
Bayesian structures for two joint densities. Next, the infor-
mation geometry learning theory only considers the prob-
lem of parameter learning; while the BY'Y learning theory
is proposed as a general unified theory for parameter learn-
ing, scale selection, structure evaluation, regularization and
sampling design.

The sprit of considering the simultaneous modeling of
the forward and backward passages in one system has
been suggested by a number of previous researchers un-
der the different formulations with different motivations, in-
cluding ART theory and architecture (Carpenter & Gross-
berg, 1987), Pattern Theory (Grenander, 1976-1981); the
Helmholtz machine (Hinton et al, 1995; Dayan et al,
1995), Forward-inverse model (Kawato, 1993). Mum-
ford’s pattern-theoretic architectures (Mumford, 1994), Bi-
directional information flow cortex model(Ullman, 1994),
Least MSE reconstruction principle (Xu, 1991; 1993). Be-
ing different from these existing efforts, the BYY learning
theory attempts to formalize this sprit at a high level sta-
tistical theory that considers globally the whole probability
distribution of the input pattern domain and its inner repre-
sentation domain via two complement asymmetric Bayesian
representations for the two passages and serves as a unified
statistical learning theory. On one hand, it can include
or closely relate some of these mentioned models, such as
the Helmholtz machine and the Least MSE reconstruction
principle. On the other hand, the relationship between the
rest models remains unclear yet and deserves further explo-
ration.

P($|0]),j =1,

2. New Results on BKYY Unsupervised Learning

2.1 Improved number selection criteria for
finite mixture and MSE clustering

Given the following design:
1y (@19) = p(@|Sepy, 8y), pary, (vle) = T2, PUile)o(y = 5),

Py (y) = Ef 1 ¢i0(y — j) with P(j|z ) > 0,5 >0,

k P(jlz) =1 and E?zl o; =1, (9)
It can be shown that as Nh® = oo and h — 0, the mini-
mization of K L(M, Mz) given by eq.(2b) is equivalent to
mine, K L(Ok) with O = {a;,8,}/—, and

KL(Ox) = 5 L0y X 5=y Piles) In P(jlas)

— % L i PUle) Inp(eilSey5, 65) — 5oy aslna; (10a)
As shown in (Xu, 1995a, 1996a&bé&c), this is equivalent to
maxe, L(Ok) with

L(®) = N E —1 (74, Ok),
plei, Ok) = 5oy aip(@ilSeyy, 65) (100)
and the ALTMIN eq.(3) is the same as the EM algorithm:

B Step: P(jlei) = N0 o2 LN (e,

M Step: #7°% = maxo, SN P(le) Inp(z]8;). (11)
That 1s, we get the maximum likelihood learning on finite
mixture eq.(10b) with the EM algorithm eq.(11). Moreover,
let J(k) = mine, K L(O), we can use k* = miny J(k) for
selecting a correct scale k (Xu, 1995a, 1996a&bé&c).

Moreover, assume that {z;}{_; comes from

P

P°(@,0%) = T4Z, afp(w|52);, 03), (12)
as Nh¢ = oo and hxy — 0, we can prove that KL(Ok)
reaches its mimimum, when & = k° ©fF, = ©Op and

Sely = Solj, 79 = 1,--- k. The condition also becomes
necessary as long as S.r| , 3 =1,---,k satisfy a very mild
regular condition (Xu, 1996¢, 1997b). In this case, we have
J(k°) < J(k) for k # k°. Moreover, for the special case
of the same structure S7|; (i.e., p(2]S7);,97) = p(»9;)),
when the function’s form p(z|-) in eq.(11) is the same one
as in eq.(12), this regular condition will simply become that
-k are linear independent when 6; is dif-
ferent from each other, which is automatically satisfied by
Gaussian (Cheung & Xu, 1997).

However, when N is finite, actually J(k) gradually re-
duces as k increases and becomes reducing very slowly after
k > k°. We can 1mpr0ve this weak point by dropplng the
first term in eq. (10a), i.e., let ©; = argmine, K L(Ok)
glven by eq.(10a), we deﬁne

k* = ming J(k), and J(k) = J(@®}) =

- L L T P Gled) Inp(wlSey;,07) = Thoy ofInal. (18)
where P*(j|z;) is given by eq.(11) at ©F. As Nh* = oo
and hy — 0, under the same condition as above, we still
can prove that J(k°) < J(k) for k # k°:

Proof: From KL(Mi,M3) > 0, we have P(@r) > Q(O):
P(Or) = Tk, J, P(ile)p® (z, ©30) In P(j|o)p® (v, ©F, )dw
Q(Or) = 5o, [, PUle)p°(z, 070 ) In[ajp(e|S,;, 6;)]ldx
where the equality holds if and only if
P(jle:) = ajp(eiSe;,05)/p°(z,®%0). Naturally, it is the case
when k& = k° and P°(jl;) = oc?p(x,|5§|j,€]9)/p°(x, ®75), in which
we have P(07,) = Q(®},):

P(®o) = Tk, [, P°(jle)p® (2, ©%0 ) In P (jl2)p® (e, OF0 )da
QO7) =%, [, P°(jle)p®(x, 000 ) In[afp(ei]SY);, 65)]de
Next, we consider k # k°. From E?zl

E§=1 O‘jp(xlszljvej):po(xvezo): 5 1 %y ip(w |Sg:|]7 ]O) (14)
Under the above same mild regular condition (Xu, 1996¢c, 1997b),
or when p(x|SI|j, = p(e |SZ|], ) = p(«]-) as long as p(x|€j),j =

2|

P(jlzs) = 1, we have



1,---k are linear independent when 6; is different from each other,
we can observe that eq.(14) can not true when k < k°. That
is, in this case we have P(®) > Q(©k). While, when k >
k°, eq.(14) holds only when p(z|Sg);,.,0;5.) = p(= |S r =

1, ,k° and for some r there are at least two r; # ra such

that p(]Seps,, 0 05y) = P(olSalsy, Oiry) = plaalS2,6%) with

gy > O,Ocjr2 > 0 and i, + jpy = of. Thus, from eq.(14)

we Rave Pl fe) > 0, P(Grsle) > 0, Pliry )+ Plirsle) = P7(rle)
320 PP (ile) In PP (jle) > S5, P(jle) In P(jle)

which in turn leads us to P(@r) < P(©3%.).

In summary, we have that P(©®7,) > Q(@®g) with the equality
only when k& = k°,0, = ©,. That is, where —Q(O) reaches its
maximum P(@p,). Let J(k) = ming, {—Q(®)} with p°(z,03.) =
lithqw)hthquh(x), we can get eq.(13). In other words, as
Nh? = oo and hy — 0, J(©y) converges to —Q(Oy). Q.E.D.

This J(k) given by eq.(13) improves the original one
when N is finite. The reason is that the first term in
eq.(10a) is always negative and reduces quickly after & > k°.
After dropping it, J(k) becomes increasing after k > k°,
even for the finite NV, as shown by the experimental results
given in (Xu, 1997a). In fact, from the term a,;p(z;|Sy);, 8;)
in Q(O), we can also regard this improved scale selection
criterion is a Bayesian model selection criterion for unsu-
pervised learning that considers a.

x|r? r)

In the special case of Gaussian p(x:|S,);,0;) =

G(x,my,3;), J(k) given by eq. (13) simply becomes

Ja(k)y=J(@F) =Tk, ofIn /ID3|/ o} (15)
from which we can get various spec1al criteria for various
special cases of aj,%;.

Furthermore, if we hardeut P*(j|z;) into [*(j|z;) with
I"(jlz;) = 1 for j = argmax, P*(r|z;) and otherwise
I"(jlz;) = 0, we can have that J(k) given by eq.(13)
becomes exactly Jn(k) = Jn(©(k)) given by Eq.(10) in
Xu (1996c), which includes the criterion JZ(k) given by
Eq.(11b) in Xu (1996c) for the MSE clustering by well
known k-means algorithm.

This hardcut is a heuristic treatment, and thus the above
conclusion that J(k°) < J(k) for k # k° is not automati-
cally true even as Nh? = 0o and hy — 0.

To have the conclusion to be true, it must satisfy

J(k) = J(k°) > e(k°) — e(k), with e(k) = Ju (k) — J(k)  (16a)
This condition is difficult to test. We further refine it into

J(k) = J(k%) > max{|e(k°)|, |e(k)|}, (16b)
and the upper bound of |e(k)| can be estimated via a fur-
ther condition

[I*(jlw) = P*(Jlz)l < € <1 (16c)
from which we can specify some specific condition on ©%,.
This process is usually quite complicated. However, for
gaussian mixture, especially the case corresponding to the
criterion J&(k) given by Eq.(11b) in Xu (1996¢), it is possi-
ble to get some sufficient condition on ©F, to make eq.(16a)

hold.

2.2 An improved criterion for subspace dimension

We consider the design that (a) pa,(z) = pa(z)
by eq.(1); (b) pa,(y) = G(y,0,%,) with X, =
diaglhi, - Akl, At > o0 > Xk > 05 (c) pa, (xly) =
Gles, Wy, aily]) with # = W'y 4 e,, where e, is a

= 0, Besel) = o2 14, and

Gaussian noise with E(eg) oy

E(ezy®) = 0; (d) pMylz(y|x) = G(ey,Wx,cr;lm]k), with

y=Waz —|—ey7 where €, 1s a Gaussian noise with E(e,) =0,

Feyel) = y|mlk7 and E(eyz’) = 0.
With this design, as shown in Xu(1995c&96c), we get
S, k) = 050 U7 {4 (5, (w) 4 ko?,)) 4 const
ylr Il
Ex(W) = [, paag (o)lle = Wi We||*do (17

For a fixed k, we see that min w J(W, k) is equivalent
to min w E2(W), which is the LMSER self-organization
(Xu, 1991& 1993) that performs Principal subspace anal-
ysis (Oja, 1989), i.e, its solution W* satisties W*W** = |
and spans the subspace spanned by the k principal compo-
nents of data on z.

With this W*W*' = I, from ¢ = W*'y + e, we can

get y = W'z +e, = W*z — W¥e, with ¢, = —W'e,.
Thus, e, is also a Gaussian with E(ey) = 0 and covari-
ance E(W*emeiW*t) = am|y]k = 0'y|$]k That is, o ny =

o?sly = 0%, We put this together with W*W*' = [ into
eq.(17), we can define J(k) = minw J(W, k) + const. That
is

J(k) =[Syl M+ k + LB (W) (18)
Furthermore, from & = W*'y+e,, y =W*s+ey, and e, =
—W*e,, we have # — W*W*x = e, — W*W*e,. More-
= [, pas, (0)]ls — W W |de =

over, we have Ex(W*)

Tr[E(I — W*W*)ezel(I — W*W*)'] = o*(n — k), and
thus
J(k) = |Ty| + (n = k) In 52y (19)
From E(eyx') = 0 and E(eyel) = a;lm = 02, we have
2y = E(yy ) E(W*x+ey)(W*x+ey)t]:W*SW*t+02,

where S5 = + SN wiat and W*SW* is a diagonal matrix
consisting of A > AS > ... > A7 — the first k largest
eigenvalues of S. Therefore, eq.(19) further becomes

J(k) = LIn (AT + %) +(n - k)In 22020 (20)
with EQ(W ) estlmated by 4 = Zl e VVtVVa:,'H2 and A7

from S = % Zi:l r;x! via eigen-analysis or PCA learning.

Therefore, we can finally use this simplified criterion for
selecting the dimension of subspace in the PCA related sub-
space analysis. That is, we select k™ if k* = arg ming J(k),
which is an improvement of the old one given in Xu(1996¢).

3. New Results for Supervised Learning

1. Improved number selection criteria over that
given in (Xu, 1996c&d) are obtained for the model of mix-
ture of experts (Jacobs, Jordan, Nowlan & Hinton, 1991,
Jordan & Jacobs, 1994).

We design that: (i) pn(z) is by eq.(1) and ), (z]z)
by eq.(4c); (i) pag,, . (ylzi @) = 252, P(slea)dly — J)
with 327_, P(jle) = 1; (iii) P, (yle) = 37, 8(y —
NPz, ), pMz|y,a:(Z|y7x) = pMz|y,z(Z|y7x7ey)' By
putting the design into eq.(4b), it can be shown that as
Nh? = oo and h — 0, the minimization of K L(M;, M) by
eq.(4b) is equivalent to mine, J(Ox) with O = {v, §; }le
and

J(Ox) = % TiL
As shown in (Xu,
maxe, L(O):

. P(jl=
=1 P(lz:)In 4p(;,|z,,j,(glv)§>)(—j|z,,¢) (21)

996c&d), this is equivalent to



L(©y) = & T, Inp(eiles, 0),
p(ele, 04) = $E_, Plyle, v)p(zle,v,6,) (21)
and the ALTMIN eq.(3) is the same as the EM algorithm:
B Step: Plyle,) = St s,
M Step: 9,°" = maxg, SN Pyle) Inp(ziei, v, 8y).
1 = maxy D, 25, Pluled) In Plyles, ). (22)
That 1s, we get maximum likelihood learning for the orig-
inal model of mixture of experts with the EM algorithm
eq.(22). Similar to what we did in Sec.2.1, we get Of =
argmine, J(O) by eq.(21), and define J(k) = J(OF) :
J(k) = =% LI Zhoy P (yled) In[p(ailes, v, 6,) Plylei, ¢)], (23)
as an improved criterion for selecting k* = min J(k) as
the number of experts required in a mixture expert model.
Also similar to what we did in Sec.2.1, we can prove that
J(k°) < J(k) for k # k°.

When the regression error of each expert is gaussian, 1i.e.,
p(z|z,y,0y) = G(z, f(z,Wy),3y), eq.(23) can be simplified
into

Ja(k) = =% LI = Prlleo) n P(los, v,
+1TE oDy, o = £ 2, PT(le),

xi= ;fw Tl P (yle)lse = flos, Wl = fe, W, (24)

2. Improved number selection criteria over that
given in (Xu, 1996c&d) are obtained for the alternative
model of mixture of experts (Xu, Jordan, & Hinton, 1994,
1995), which replace P(y|z:,v) by

P(ylzi, ¢) = p(zly, ¥y)ay/ 22:1 p(oly, vy)ay (25)
and the M step in the EM algorithm eq.(22) is replaced by
M Step: ay = & 3N, Pyle).

9,°" = maxg, Ef\le P(ylz:, ) Inp(z]es,y, 0y).

Py = maxy TIL plwily, ¥y)Inplz:ly, ¢y). (26)
which actually maximizes L(Op) = % Zfil p(z,z,0k)
with p(z,x,0%) = p(z)p(z|z,Or). Accordingly, we can get
criteria eq.(23) and eq.(24) become respectively:

J(k)=— Elzzl ay Inaj,

- AT kL Pryle) In {p(ailwi,y, 02 )p(ely, ¥3)},  (27a)
Jo (k)= — Elzzl aylnay

+3 b oy T - & 25, P (yley) In Plely, ¥}). (27b)

3. An improved number selection criteria over
that given in (Xu, 1996c&d) is obtained for the normalized
Radial Basis Function (RBF) nets given by Egs.(20a&b)
in (Xu, 1996¢), which are the special case of the above
alternative model of mixture experts respectively at

P(zle,y,8y) = G(z,cy, B2y, Pzle,y,0y) = G(z, 9;17 +cy, B2y)
exp[—0.5(z—my )7 (z—m
Plyles,v) = z’;zlpizp[—(oa(zfv)n;m(;l(zfv)iyn’
with ay/|2z| = const. We can get an improved criterion:
Ja(k) = $I|SL+ g5 y= NS5 | +1nk (29)
for the two cases, where E;y, Y5 are obtained directly from
the learning by EM algorithm.

In Xu(1997c), a number of algorithms, including EM,
hard-cut EM, adaptive learning, have been proposed for
efficiently training the alternative model of mixture experts

and RBF networks.

4. Three Categories of Separation Functionals and
Their Related Learning Models

(This part of work has been presented in my invited talks

(28)

at WONNI6 and ICONIPI6 in Sept. 15-18 and Sept. 24-
27, 1996 respectively, although have not been included in
(Xu, 1996¢8d). Instead, a more general non-Kullack func-
tional f(.) was discussed in (Xu, 1996¢) for a learning prin-
ciple related to BY'Y learning with divorcing dynamic, where
conves function f(.) is discussed in its Sec.4. Actually, it
was that work motivated the work given here.)

1. Convex Divergence  We consider a class of func-
tionals on two densities pi(z), p2(z) given by
Fo(p1,p2) = (1) = [, pa(@) f(E2{)de > 0,
fu) is a strict convex on (0,400) (30)
Obviously Fs(pi,p2) = 0 when p; = po. We have also
Fs(p1,p2) > 0 when p1 # pz since fzpl(x)f(ifgi;)dx <
f(fzpl(x)ifgz; dz) = f(1). Substituting pi by pMylx(y|x)pMz(x)
and p3 by par,, (z|y)pary (y) in eq.(2a), we have Is (M1, Mo).
There are some typical examples of this convex diver-

gence:

(a) f(u) =Inu which leads us to Kullback Divergence.

(b) f(u) = —u®, 8 > 1, called as Minus Convex diver-
gence.

(c) When f(u) = u®,0 < B < 1, we called as Positive
Convex (PC) divergence. One of its particular interesting
case is that 8 = 0.5, which leads to a symmetric Root-
Inner-Product (RIP) divergence:

Felp1,p2) = 1= [, Vpi(o)pa(w)ds (31)

Remarks: (1) We will have a similar situation for f(u)
being strict concave on (0, 4+00) since — f(u) is a strict con-
cave when f(u) is a strict convex. (2) RIP has a nice sym-
metric feature that the Kullback divergence does not have.
(3) Non-Kullback cases of convex divergence may lose a fa-
vorable feature of Kullback divergence of holding partially
triangle inequality (Amari, 1995), which can define an or-
thogonal projection.

2. L, Divergence
as the separation functional:

L, distance may also be extended
Fo(My, M) =
Je, o @ g(oray,, (Wle)pae (=) = g(pary, (ely)pary ()7 dedy (32)
where g(u) is any function such that g(p:(z)) = g(p2(z)) if
and only if p1(z) = p2(x).
3. De-correlation Index The correlation coeffi-
cient is extended into: Fo(My, M) =
Jo,y P(8)ay|o (£,0) g,y (@ y)dedy
\/fr)y p(r)929y|z(r,y)drdy\/fz)y p(2)92 95|y (€, y)dedy =
Iy1=(®,y) = g(Pary ), WlE)par, (),
grly(xvy) Zg(prly(xly)pMy(y)) (33)
where g(u) is any function such that g(ui)g(uz) > 0, if
uy > 0 uz > 0 and g(p1(x)) = g(p2(x)) iff pi(z) = p2(=).
Particularly when g(u) = u, we have the ordinary De-
correlation Index.
4. Examples of Related Learning Models. As
mentioned at the end of Sec.2.1, using the three categories

1 —

of separation functionals to replace Kullack divergence, we
can, at least theoretically, obtain their counterparts of those
models using Kullack divergence. Due to space limit, here
we only consider two examples.

Robust Finite Mixture. By putting the design eq.(9)
into eq.(2a) instead of eq.(2b), although we can not get
the expanded form like eq.(10a), we can still get that the



minimization of F.(M;, M;) with the fixed M, will re-
sults in the E step in the EM algorithm eq.(11). With
this obtained P(j|z;) put into eq.(2a), we consider the
case of Convex Divergence and get the form like eq.(10b):

Li(®) = F LN, Flp(zi, O0)) = & LI, f(eMPE0OR) (34
That is, the minimization of F.(M;, M2) is equivalent to
the maximization of L(©). So we get a generalized ML
learning for finite mixture.

When f(u) is monotonically increasing for positive u,
e.g., flu) =u”, 0 < B <1, f(e*) =" “ is also a mono-
tonically increasing for ¢ € (—o0,0]. Since this e puts
more attention on the value of ¢ near 0, and the maximiza-
tion of L(Ox) gives more weights to those samples with
p(zi,0%)) near 1. In other words, the learning is more re-
layed on those samples around each density center, while
those boundary samples are discounted. Thus, the learning
will give more robust estimation by discounting outliers.
Since the more close the 8 around 1, the more rapid the
e”¢ changes around 1, the more robust the learning will be.

On the other hand, when f(u) is monotonically decreas-
ing for positive u, e.g., f(u) = —u®, 8 > 1, the effect is the
minimization of e ¢ = Inp(x;, O1), e~ is also mono-
tonically decreasing for £ € (—o0,0]. That is, more atten-
tion 1s put on those boundary values. The learning seems to
emphasizes more on the discrimination between the samples
from different models. However, whether it has this type
feature is still not quite clear yet and needs to be further
explored.

From the E step of eq.(11) and the fact that

af(mP(@i®r)y ) Al p(e]Sg5.85)
o= = [ (p(wi, Ox))ayp (@il S, 67) —gg =
. dlnp(z;|Se)5,685)
= £ (p(ws, ©6)p(ws, O%) P(jlri) —— 12,

we get that the M Step in eq.(11) should be replaced by

M Step:  §7°" is given by solving
. dlnp(e;lS,)5,85)
DI £ s, ©6)p (s, Ox)P(jle) =" =0 (35)

Particularly, for Gaussian p(x;|S,;,8;) = G(z,m;, 3;),
it is explicitly given as:

M Step : wiy,ei) = ' (p(ei, O))p(ri, @) P(jlei)

my = & LIl wly, e, (36)
DY = & i wly e (e — mye) (e — mye)!

we actually get a weighted variant of the EM algorithm.
When f(u) is monotonically increasing for positive u, we
call eq.(35) as Robust EM (REM) algorithm for finite mix-
ture, and eq.(36) as Robust EM (REM) algorithm for Gaus-
sian mixture.

Robust Mixtures of Experts. For the mixture of ex-
pert model by eq.(21), we can similarly get L(Oy) =

* T Fp(ziles, ©0)) = & DI, e Pileir)), (37)
Moreover, the M Step in eq.(22) should be replaced by
M Step:  §7°" is given by solving

L dinp(sle,085)
Tl F(p(ailes, Ok))p(ziles, @) P(jloy) ———f—— =0 (38)

and ¥™°Y is given by solving

N S (p(eides, @0))p(ziles, @) P(jles) HEEULELY) = 0 (39)
with the E step being still the same as that in eq.(22) to
get P(j|z;). Similarly, the M Step in eq.(26) should be re-
placed by

M Step: get oy by eq.(26), get §7°% by solving eq.(38) and get

YP7¥ by solving

R dlnp(e;|7,¢;
T A (Pl @0)p(ziles, O4) P(jlo) G = 0 (40)
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