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Abstract

In this paper�� we extend Bayesian�Kullback YING�
YANG �BKYY� learning into a much broader Bayesian
Ying�Yang �BYY� learning System via using di�erent sep�
aration functionals instead of using only Kullback Diver�
gence� and elaborate the power of BYY learning as a gen�
eral learning theory for parameter learning� scale selection�
structure evaluation� regularization and sampling design�
with its relations to several existing learning methods and its
developments in the past years brie�y summarized� Then�
we present several new results on BYY learning� First� im�
proved criteria are proposed for selecting number of den�
sities on �nite mixture and gaussian mixtures� for select�
ing number of clusters in MSE clustering and for selecting
subspace dimension in PCA related methods� Second� im�
proved criteria are proposed for selecting number of expert
nets in mixture of experts and its alternative model and se�
lecting number of basis functions in RBF nets� Third� three
categories of Non�Kullback separation functionals namely
Convex divergence� Lp divergence and Decorrelation index�
are suggested for BYY learning as alternatives for those
learning models based on Kullback divergence� with some
interesting properties discussed� As examples� the EM al�
gorithms for �nite mixture� mixture of experts and its alter�
native model are derived with Convex divergence�

�� BYY Learning System and Theory

��� BYY Learning System

The learning problems by an information processing sys�
tem can be summarized into the problem of estimating joint
distribution p�x� y� of the observable pattern x in the ob�
servable space X and its representation patter y in the rep�
resentation space Y � We call a passage Myjx for the �ow
like x � y a Yang��male� passage since it performs the
task of transferring a pattern��a real body� into a code��a
seed�� We call a passage Mxjy for the �ow y � x as a
Ying��female� passage it performs the task of generating
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a pattern��a real body� from a code��a seed�� Myjx and
Mxjy are complement to each other and together imple�
ment an entire circle x � y � x� Interestingly� under
the Bayesian framework� we also have two representations
p�x� y� � p�yjx�p�x� and p�x� y� � p�xjy�p�y�� We use a
Yang��visible� model Mx representing p�x� �i�e�� model�
ing the space X�� and we use a Ying��invisible� model My

representing p�y� �i�e�� modeling the space Y �� Moreover�
Myjx is represented by pMyjx

�yjx� and Mxjy by pMxjy
�xjy��

Together� we have a YANG machine M� � fMyjx�Mxg
to implement pM� �x� y� � pMyjx

�yjx�pMx�x� and a YING
machine M� � fMxjy �Myg to implement pM��x� y� �
pMxjy

�xjy�pMy �y�� A pair of YING�YANG machines is
called a YING�YANG pair or a YING�YANG system� Such
a formalization compliments to a famous Chinese ancient
philosophy that every entity in universe involves the inter�
action between YING and YANG�

The task of speci�cation of a Ying�Yang system is called
learning in a broad sense� For this purpose� we need to spec�
ify four components pMx �x�� pMyjx

�yjx�� pMxjy
�xjy� and

pMy �y� as well as the type and scale of variables x� y�

First� x is given by a practical problem without other
choice� usually it is assumed that x � Rd� But y can
be real y � Rk� integer y � 	
� �� � � � � k� and binary
y � 	y�� � � � � yk�� yi � 	
� 
�� where y represents the com�
plexity of representation space or equivalently the scale of
a YING�YANG pair structure� Second� pMx �x� is speci�ed
at some nonparametric estimate from a given training data
set� one example is the kernel estimate �Devroye� 
����

ph�x� � �
N

P
N
i��Kh�x � xi�� Kh�x� � �

hd
K�

x�xi
h

�� ���

where
R
jK�x�jdx � ��

R
K�x�dx � 
� Next� the rest

three can be �xed or from a parametric family� Each is spec�
i�ed by both structure� e�g�� density function form p�xjy� ��
in pMxjy

�xjy� � p�xjy� �xjy�� and parameter �xjy�

For convenience� we denote Ma � fSa� �a� kg for a �
fxjy� yjx� yg� i�e��Ma denotes a component with structure
or desnity form Sa� parameter �a and scale k� Also� we
denote MS � Mx � fK�h�Ng with K � K�x�� smooth
parameter h and sample size N �

The task of specifying S � fSxjy � Syjx � Syg is called
structural design� The task of specifying k is called scale
selection� The task of specifying � � f�xjy� �yjx� �yg is
called parameter learning or estimation� also called learn�
ing simply in a narrow sense� The task of specifying Mx is



called sampling design� All the four tasks together specify
a Ying�Yang pair� The whole speci�cation process can be
regarded as a Ying�Yang interaction process with four pos�
sible types of marital dynamics� �a� marry� �b� divorce� �c�
YING chases � YANG escapes� and �d� YANG chases �
YING escapes� described by a combination of minimization
�chasing� and maximization �escaping� on a so called sepa�
ration functional�
Fs�M��M�� � Fs�pMyjx

�yjx�pMx�x�� pMxjy
�xjy�pMy �y�� � ��

with Fs�M��M�� � �� if and only if

pMyjx
�yjx�pMx �x� � pMxjy

�xjy�pMy �y� ��a�

Since this system bases on the interaction between the
two complement YING and YANG Bayesian representa�
tions� we call it Bayesian Ying�Yang Learning System� Par�
ticularly� when Fs�M��M�� is the Kullback divergence�

KL�M��M�� �
R
x�y

pMyjx
�yjx�pMx �x� ln

pMyjx
�yjx�pMx

�x�

pMxjy
�xjy�pMy

�y�
dxdy ��b�

we return to Bayesian�Kullback YING�YANG �BKYY�
Learning �Xu� 
���a���a�c�� In sec� �� three categories
of Non�Kullback separation functionals will be discussed�

Up to now� only the status marry and divorce�
i�e�� minM� �M� Fs and maxM��M� Fs have been studied�
As shown in �Xu� 
���b�� maxM��M� Fs will result in
pMxjy

�xjy� � pM��x� and it can be further shown �Xu�

���a�c� becomes maximization information preserva�
tion learning �Informax��Linsker� 
���� Atick � Redlich�

��
� or its variants� Actually� the most useful one is
minM��M� Fs� which includes already the most useful spe�
cial case of Informax� namely� Maximum output entropy�
Therefore� we only consider it in this paper�
Generally� this minM��M� Fs is implemented by the Al�

ternative Minimization �ALTMIN� iterative procedure
Step �� Fix M� � Mold

� � get Mnew
� � minM� Fs�

Step �� Fix M� � Mold
� � get Mnew

� � minM� Fs� ���

which is guaranteed to converge �Xu� 
���a���a�c��

The above system and theory can be directly applied to
those unsupervised and supervised learnings for the infor�
mation processing types like x � y� y � x� where x can
be regarded consisting of two parts x � �x�z� or even more
when it is needed�

Moreover� for those tasks of focusing particularly on
the relation x � z� we still can use the above system
with a slight extension� First� we replace all the x in
eqs���a�b� by �x� z�jx � zjx and all the y by yjx� Sec�
ond� we notice that �yjx�j�zjx� � yj�x� z�x� � yj�z�x� and
�zjx�j�yjx� � zj�y�x�� which leads us to

Fs�M��M�jx� �

Fs�pMyjz�x
�yjz� x�pMzjx

�zjx�� pMzjy�x
�zjy� x�pMyjz

�yjz�� � ��

with Fs�M��M�� � �� if and only if

pMyjz�x
�yjz� x�pMzjx

�zjx� � pMzjy�x
�zjy� x�pMyjz

�yjz�

Fs�M��M�� �
R
pMx �x��Fs�M��M�jx�dx� ��a�

KL�M��M�jx� �
R
x�y

pMyjz�x
�yjz� x�pMzjx

�zjx� ln
pMyjz�x

�yjz�x�pMzjx
�zjx�

pMzjy�x
�zjy�x�pMyjx

�yjx� dxdy

KL�M��M�� �
R
pMx �x�KL�M��M�jx�dx� ��b�

where M� � fMx�Myjz�x�Mzjxg and M� � fMzjy�x �Myjxg�
Ma � fSa� �a� kg for a � fyj�z�x�� zj�y�x�� yjxg� Given a

paired data set fxi� zig
N
i��� we usually let

pMzjx
�zjx� � ph�zjxi� � Kh�z � zi�� at x � xi ��c�

withKh�x� is the same as in eq��
�� Thus� we still have sam�
pling design MS � fMx�Mzjxg � fK�h�Ng� As a whole�
we have the entire structure S � fSyjz�x � Szjx� Szjy�x � Syjzg
and all the parameters � � f�yjz�x� �zjx� �zjy�x� �yjzg�

��� A General Learning Theory

The di�erent choices on speci�c structures� speci�c
forms of separation functionals and sampling designs makes
it possible to specify a large number speci�cations of a
Ying�Yang system and thus a large number of speci�c
learning models and theories� Therefore� we suggest that
minM��M� Fs�M��M�� functions as a uni�ed general statis�
tical learning theory for�

�� Parameter estimation or learning� which is usually
called learning in the narrow sense� That is� given S� k and
MS �xed� we determine

�� � argmin� Fs�� 	 S� k�MS�� �
�

�� Scale selection� or called model size selection� That
is� given S� and MS �xed� we determine

k� � argminkfmin� Fs��� k 	 S�MS�g� ���

�� Structure evaluation� That is� given MS �xed� for
two given sets of structures S��� and S���� We choose the
�rst one if
J�S���� � J�S����� J�S�i�� � minkfmin� Fs��� k 	 S����MS�g���

�� Sampling design� It can be further divided into three�
One is called Sampling smoothing� i�e�� in parameter learn�
ing� we also adapt h to minimize Fs under given K�N �
The second is called Sampling structure evaluation� i�e��
given N � eq���� includes the evaluation on di�erent K���

and K���� The third is Sample complexity� Given S� and
K�h �xed� it can be made by

N� � Ex
minkfmin� Fsg�� ���

where Ex�J�x�� �
R
x
p�x�J�x�dx�

�� Regularization� For a limited number N of samples�
some regularization can be obtained by using one structure
to constrain the others� For example� for a forward net or
recognition model� we can design Syjx with more freedom
to ensure its representation ability� but design Sxjy with less
freedom to regularize the learning to get a good generaliza�
tion� Similarly� for a backward net or generative model� we
can design Sxjy with more freedom to ensure its representa�
tion ability� but design Sxjy with less freedom to regularize
the learning to get good generalization�

It should be noted that this theory provides a uni�
�ed general guideline that applies to all the speci�ca�
tions of Ying�Yang system� As shown previously in �Xu�

���a���a�c�� as well partly in the latter sections of this
paper� we will get the detailed forms of various special
cases of this general theory for di�erent speci�cations of
Ying�Yang system� These speci�cations can be �rst classi�
�ed into groups according structure design� Each of such
groups is usually regarded as a di�erent speci�c learning
model�theory�method� Then� each of these groups can fur�
ther have di�erent realizations or individuals due to the
di�erence in separation functionals� sampling designs and
even the details of implementation algorithms� Therefore�



we can �rst always �x the separation functional given at
Kullback divergence and sampling design at an idealistic
case of eq��
� that ph�x� � limN���hN���h�hN�� ph�x�
�actually in this case� ph�x� will converge to p��x��the
original density that fxig

N
i�� comes from�� and then under

this situation we explore various learning models or theories
through di�erent structural designs� Next� we use di�erent
separation functionals and sampling designs to get variants
of these models or theories with some features�

��� The Power of The General Theory

To the current literature� this uni�ed statistical learning
theory can provide us at least the following strengths�

First� it is able to unify a quite number of existing major
parameter learning models and theories for both supervised
and unsupervised learning�

For unsupervised learning� as shown in �Xu�

���a���a�c�� one of its special cases reduces to Maxi�
mum likelihood learning on �nite mixture model with the
EM algorithm and several related results� e�g�� a cost func�
tion for mixture Gaussian by Hathaway �
���� and Neal �
Hinton �
����� to the Information Geometry theory and the
em algorithm by Amari and others�Amari� 
���� and oth�
ers� to MDL autoencoder with a �bits�back� argument by
Hinton � Zemel �
����� The special case can also reduce to
multisets modeling learning �Xu� 
���d� Xu� 
�����a uni�
�ed learning framework for clustering� PCA�type learnings
and self�organizing map� Its second special case reduces
to the recent proposed Helmholtz machine �Dayan et al�

���� Hinton et al� 
���� with new understandings� Its
third special case gives a general Independent Component
Analysis �ICA� framework �Xu � Amari� 
���� that uni�
�es the information maximization �INFORMAX� approach
�Bell and Sejnowski� 
���� and the minimum mutual in�
formation �MMI� approach �Amari� Cichocki� and Yang�

����� Its another special design �Xu� 
���c� leads to
LMSER learning and Principal Component Analysis �PCA�
�Xu� 
��
���� Oja� 
����� Furthermore� some other spe�
cial cases will also give us improved new learning models
for ICA� linear and nonlinear LMSER learning as well as
their localized extensions�Xu� 
���b��

For supervised learning� as shown in Xu �
���b�c�� one
special case includes the popular mixture of expert model
�Jacobs� Jordan� Nowlan� � Hinton� 
��
� Jordan � Ja�
cobs� 
���� and its alternative model �Xu� Jordan � Hin�
ton� 
������� as special cases� from which we can further
get new algorithms for improving learnings on RBF net�
works �Xu� 
���c�� Moreover� some special cases will not
only lead us to the conventional maximum likelihood learn�
ing �or least square learning in particular� for a feedfor�
ward network� but also provide two new learning theories
and algorithms as the alternatives of the traditional back�
propagation algorithm �Xu� 
���a� 
���a��

The above powerful uni�cation provides us not only deep
insights on these mentioned popular existing learning mod�
els but also further guidance on obtaining their new variants
or extensions via cross�fertilization� with some such exam�
ples already mentioned above�

Second� some special cases give us several interesting
new unsupervised and supervised learning models or theo�
ries� which deserve further investigation �Xu� 
���a�� Par�
ticularly� we can get a general scheme called co�supervised
learning for handling those training data sets with one part
consisting of both input and teaching target and the other
part consisting of input only� so that supervised learning
and unsupervised learning not only have been uni�ed� but
also coexist consistently for best exploiting the information
in such a given data set �Xu� 
���a�� Also in Sec� �� we
will show that by using the so called Convex divergence�
Lp divergence and Decorrelation index to replace Kullback
divergence� we can also generalize all the above mentioned
Kullback divergence related models into a wide spectrum
of di�erent alternatives or extensions with some new inter�
esting properties� such as becoming more robust� Further�
more� some e�ort has been also made on extending this
theory to temporal patterns with a number of new models
for signal modeling� cognition� prediction and segmenta�
tion� Some of them can be regarded as the extensions of
Helmholtz machine or maximum information preservation
learning to temporal processing� Some of them include and
extend the existing Hidden Markov Model �HMM�� AMAR
and AR models �Xu� 
���b�� Particularly� with the state
space representation� it has been shown that this theory
is equivalent to Kalman �lter approach for the linear case�
but outperforms Kalman �lter and the existing extended
Kalman �lter considerably in nonlinear cases �Lei � Xu�

�����

Third� although there are many theories and criteria
available for scale selection on supervised learning �e�g�� the
number of hidden units in the feed�forward nets�� how to do
scale selection on unsupervised learning still remains open�
This theory can function as a general scale selection the�
ory for unsupervised learning� based on which criteria have
been obtained in �Xu� 
���a� and then further re�ned �Xu�

���b�c� for the selection of the number of Gaussians in a
Gaussian mixture or the number of densities in a �nite mix�
ture� particularly� of the number of clusters in the conven�
tional least mean square error �MSE� clustering analysis or
vector quantization� e�g�� by the k�means or LBG algorithm�
Also based on this theory� a criterion has also been �rst ob�
tained in �Xu� 
���c� and then re�ned in �Xu� 
���c� for
the selection of the subspace dimension in Principal Com�
ponent Analysis �PCA� related approach� In Sec��� an
improved version of this criterion will be given� Moreover�
the theory can also solve the model scale selection problems
of other Ying�Yang models for unsupervised learning �Xu�

���b� and supervised learning �Xu� 
���a�� Particularly�
we can get new criteria for selecting the number of hid�
den units in feed�forward nets�Xu� 
���a�� Furthermore� in
�Xu� 
���c�d�� criteria have been obtained for the selec�
tion of number of experts in the mixture of experts model
and its alternative model� as well as of the number of basis
functions in RBF nets� while in Sec� � of this paper� the
improved versions of these criteria will be further proposed�

Fourth� although there are many theories and tech�
niques for regularization on supervised learning� how to do



regularization on unsupervised learning also remains open�
As stated in the previous subsection� our theory also pro�
vides a new regularization scheme which applies to both
unsupervised learning and supervised learning�

The last but not the least� as stated in Sec�
��� the
theory has also provide us a guide line to implement the
more sophisticated evaluation of structure designing and
sampling designing�

��� Relations to Other Approaches

The case minM��M� KL�M��M�� relates to the well
known information geometry theory �Amari� 
���� Byrne�

���� Csiszar� 
���� in that both uses the Kullback diver�
gence for measuring the di�erence between two joint densi�
ties� But� there are several key di�erences� First� the BYY
learning theory considers the joint densities represented by
two models� while the information geometry learning the�
ory considers a missing data joint density and model joint
density� which can be regarded as a special case of two mod�
els� Second� the BYY learning theory does not require joint
densities necessarily in the exponential family� as required
by the information geometry learning theory� Third� most
importantly� the information geometry learning theory con�
siders each joint density as an entire body without looking
into their internal structures� while the BYY learning the�
ory deliberately considers two complement but equivalent
Bayesian structures for two joint densities� Next� the infor�
mation geometry learning theory only considers the prob�
lem of parameter learning� while the BYY learning theory
is proposed as a general uni�ed theory for parameter learn�
ing� scale selection� structure evaluation� regularization and
sampling design�

The sprit of considering the simultaneous modeling of
the forward and backward passages in one system has
been suggested by a number of previous researchers un�
der the di�erent formulations with di�erent motivations� in�
cluding ART theory and architecture �Carpenter � Gross�
berg� 
����� Pattern Theory �Grenander� 
����
��
�� the
Helmholtz machine �Hinton et al� 
���� Dayan et al�

����� Forward�inverse model �Kawato� 
����� Mum�
ford�s pattern�theoretic architectures �Mumford� 
����� Bi�
directional information �ow cortex model�Ullman� 
�����
Least MSE reconstruction principle �Xu� 
��
� 
����� Be�
ing di�erent from these existing e�orts� the BYY learning
theory attempts to formalize this sprit at a high level sta�
tistical theory that considers globally the whole probability
distribution of the input pattern domain and its inner repre�
sentation domain via two complement asymmetric Bayesian
representations for the two passages and serves as a uni�ed
statistical learning theory� On one hand� it can include
or closely relate some of these mentioned models� such as
the Helmholtz machine and the Least MSE reconstruction
principle� On the other hand� the relationship between the
rest models remains unclear yet and deserves further explo�
ration�

�� New Results on BKYY Unsupervised Learning

��� Improved number selection criteria for

�nite mixture and MSE clustering

Given the following design�
pMxjy

�xjy� � p�xjSxjy� �y�� pMyjx
�yjx� �

Pk
j�� P �jjx���y � j��

pMy �y� �
P

k
j�� �j��y � j� with P �jjx� � �� �j � ��Pk

j�� P �jjx� � � and
Pk

j�� �j � �� ���

It can be shown that as Nhd � � and h � 
� the mini�
mization of KL�M��M�� given by eq���b� is equivalent to
min�k KL��k� with �k � f�j� �jg

k
j�� and

KL��k� � �
N

PN
i��

Pk
j�� P �jjxi� lnP �jjxi�

� �
N

P
N
i��

P
k
j�� P �jjxi� ln p�xijSxjj � �j��

P
k
j�� �j ln �j ���a�

As shown in �Xu� 
���a� 
���a�b�c�� this is equivalent to
max�k L��k� with

L��k� � �
N

P
N
i�� p�xi��k��

p�xi��k� �
Pk

j�� �jp�xijSxjj � �j � ���b�

and the ALTMIN eq���� is the same as the EM algorithm�

E Step	 P �jjxi� �
�jp�xijSxjj��j�

p�xi��k�
� �j � �

N

PN
i�� P �jjxi��

M Step	 �newj � max�j
P

N
i�� P �jjxi� ln p�xij�j �� ����

That is� we get the maximum likelihood learning on �nite
mixture eq��

b� with the EM algorithm eq��

�� Moreover�
let J�k� � min�k KL��k�� we can use k

� � mink J�k� for
selecting a correct scale k �Xu� 
���a� 
���a�b�c��

Moreover� assume that fxig
N
i�� comes from

po�x��oko � �
Pko

j�� �
o
jp�xjS

o
xjj � �

o
j �� ����

as Nhd � � and hN � 
� we can prove that KL��k�
reaches its minimum� when k � ko� �o

ko � �k and
Sxjj � Soxjj � j � 
� � � � � k� The condition also becomes
necessary as long as Soxjj � j � 
� � � � � k satisfy a very mild
regular condition �Xu� 
���c� 
���b�� In this case� we have
J�ko� � J�k� for k �� ko� Moreover� for the special case
of the same structure Soxjj �i�e�� p�xjS

o
xjj � �

o
j � � p�xj�j���

when the function�s form p�xj�� in eq��

� is the same one
as in eq��
��� this regular condition will simply become that
p�xj�j�� j � 
� � � � k are linear independent when �j is dif�
ferent from each other� which is automatically satis�ed by
Gaussian �Cheung � Xu� 
�����
However� when N is �nite� actually J�k� gradually re�

duces as k increases and becomes reducing very slowly after
k � ko� We can improve this weak point by dropping the
�rst term in eq��

a�� i�e�� let ��k � argmin�k KL��k�
given by eq��

a�� we de�ne

k� � mink J�k�� and J�k� � J���k� �

� �
N

PN
i��

Pk
j�� P

��jjxi� ln p�xijSxjj � �
�
j � �

Pk
j�� �

�
j ln �

�
j � ����

where P ��jjxi� is given by eq��

� at ��k� As Nhd � �
and hN � 
� under the same condition as above� we still
can prove that J�ko� � J�k� for k �� ko�
Proof� From KL�M��M�� � �� we have P ��k � � Q��k�	

P ��k� �
Pk

j��

R
x
P �jjx�po�x��oko � lnP �jjx�p

o�x��oko �dx

Q��k� �
Pk

j��

R
x
P �jjx�po�x��oko � ln 
�jp�xjSxjj� �j��dx

where the equality holds if and only if
P �jjxi� � �jp�xijSxjj� �j��p

o�x��oko �� Naturally� it is the case
when k � ko and Po�jjxi� � �ojp�xijS

o
xjj � �

o
j ��p

o�x��oko �� in which

we have P ��oko � � Q��oko �	

P ��oko � �
Pk

j��

R
x
Po�jjx�po�x��oko � ln P

o�jjx�po�x��oko �dx

Q��ok� �
P

k
j��

R
x
Po�jjx�po�x��oko � ln 
�

o
jp�xijS

o
xjj � �

o
j ��dx

Next� we consider k �� ko� From
P

k
j�� P �jjxi� � �� we havePk

j�� �jp�xjSxjj � �j � � po�x��oko � �
Pko

j�� �
o
jp�xjS

o
xjj � �

o
j �� ����

Under the above same mild regular condition �Xu� ����c� ����b��
or when p�xjSxjj� �� � p�xjSoxjj � �� � p�xj�� as long as p�xj�j�� j �



�� � � �k are linear independent when �j is di�erent from each other�
we can observe that eq����� can not true when k � ko� That
is� in this case we have P ��k� � Q��k�� While� when k �
ko� eq����� holds only when p�xjSxjjr � �jr � � p�xjSoxjr� �

o
r �� r �

�� � � � � ko and for some r there are at least two r� �� r� such
that p�xjSxjjr�

� �jr� � � p�xjSxjjr�
� �jr� � � p�xijS

o
xjr� �

o
r� with

�jr� � �� �jr� � � and �jr� � �jr� � �or� Thus� from eq�����

we have P �jr� jx� � �� P �jr� jx� � �� P �jr� jx��P �jr� jx� � Po�rjx�
and Pko

j�� P
o�jjx� lnPo�jjx� �

Pk
j�� P �jjx� lnP �jjx�

which in turn leads us to P ��k� � P ��oko ��

In summary� we have that P ��oko � � Q��k� with the equality

only when k � ko��k � �oko � That is� where �Q��k� reaches its

maximum P ��oko �� Let J�k� � min�kf�Q��k�g with po�x��oko � �

limhN���h�hN�� ph�x�� we can get eq������ In other words� as

Nhd �� and hN � �� J��k� converges to �Q��k�� Q�E�D�

This J�k� given by eq��
�� improves the original one
when N is �nite� The reason is that the �rst term in
eq��

a� is always negative and reduces quickly after k � ko�
After dropping it� J�k� becomes increasing after k � ko�
even for the �nite N � as shown by the experimental results
given in �Xu� 
���a�� In fact� from the term �jp�xijSxjj � �j�
in Q��k�� we can also regard this improved scale selection
criterion is a Bayesian model selection criterion for unsu�
pervised learning that considers �j�
In the special case of Gaussian p�xijSxjj � �j� �

G�x�mj��j�� J�k� given by eq��
�� simply becomes
JG�k� � J���k� �

Pk
j�� �

�
j ln
q
j��j j��

�
j � ��
�

from which we can get various special criteria for various
special cases of �j��j�
Furthermore� if we hardcut P ��jjxi� into I

��jjxi� with
I��jjxi� � 
 for j � argmaxr P

��rjxi� and otherwise
I��jjxi� � 
� we can have that J�k� given by eq��
��
becomes exactly Jh�k� � Jh���k�� given by Eq��

� in
Xu �
���c�� which includes the criterion JhG�k� given by
Eq��

b� in Xu �
���c� for the MSE clustering by well
known k�means algorithm�

This hardcut is a heuristic treatment� and thus the above
conclusion that J�ko� � J�k� for k �� ko is not automati�
cally true even as Nhd �� and hN � 
�

To have the conclusion to be true� it must satisfy
J�k�� J�ko� � e�ko�� e�k�� with e�k� � Jh�k�� J�k� ���a�

This condition is di cult to test� We further re�ne it into
J�k�� J�ko� � maxfje�ko�j� je�k�jg� ���b�

and the upper bound of je�k�j can be estimated via a fur�
ther condition

jI��jjx�� P��jjx�j � � � � ���c�

from which we can specify some speci�c condition on �o
ko �

This process is usually quite complicated� However� for
gaussian mixture� especially the case corresponding to the
criterion JhG�k� given by Eq��

b� in Xu �
���c�� it is possi�
ble to get some su cient condition on �o

ko to make eq��
�a�
hold�

��� An improved criterion for subspace dimension

We consider the design that �a� pMx �x� � ph�x�
by eq��
�� �b� pMy �y� � G�y� 
��y� with �y �
diag	��� � � � � �k�� �� � � � � � �k � 
� �c� pMxjy

�xjy� �

G�ex�W
ty� ��xjyI� with x � W ty ! ex� where ex is a

Gaussian noise with E�ex� � 
� E�exetx� � ��xjyId� and

E�exy
t� � 
� �d� pMyjx

�yjx� � G�ey�Wx� ��yjxIk�� with
y �Wx! ey� where ey is a Gaussian noise with E�ey� � 
�
E�eye

t
y� � ��yjxIk� and E�eyx

t� � 
�

With this design� as shown in Xu�
���c���c�� we get

J�W� k� � ��
fln
j�y j�

�n
xjy

��k
yjx

� �
��
xjy

�E��W � � k	�yjx�g� const

E��W � �
R
x
pMx �x�kx�W tWxk�dx ����

For a �xed k� we see that min W J�W�k� is equivalent
to min W E��W �� which is the LMSER self�organization
�Xu� 
��
� 
���� that performs Principal subspace anal�
ysis �Oja� 
����� i�e� its solution W � satis�es W �W �t � I
and spans the subspace spanned by the k principal compo�
nents of data on x�

With this W �W �t � I� from x � W �ty ! ex we can
get y � W �x ! ey � W �x � W �ex with ey � �W �ex�
Thus� ey is also a Gaussian with E�ey� � 
 and covari�
ance E�W �exe

t
xW

�t� � ��xjyIk � ��yjxIk� That is� �
�yjx �

��xjy � ��� We put this together with W �W �t � I into
eq��
��� we can de�ne J�k� � minW J�W�k� ! const� That
is

J�k� � ln 
j�y j	
��n�k� � � k � �

��
E��W

�� ����

Furthermore� from x � W �ty!ex� y �W �x!ey� and ey �
�W �ex� we have x � W �tW �x � ex �W �tW �ex� More�
over� we have E��W

�� �
R
x
pMx �x�kx �W �tW �xk�dx �

Tr	E�I � W �tW ��exetx�I � W �tW ��t� � ���n � k�� and
thus

J�k� � ln j�yj� �n� k� ln
E�

�n�k� � ����

From E�eyxt� � 
 and E�eyety� � ��yjx � ��� we have
�y � E�yyt� � E
�W�x � ey��W

�x� ey�
t� � W�SW�t � 	��

where S � �
N

PN

i�� xix
t
i and W

�SW �t is a diagonal matrix
consisting of �x� � �x� � � � � � �xk � the �rst k largest
eigenvalues of S� Therefore� eq��
�� further becomes

J�k� �
Pk

j�� ln �

x
i �

E��W
��

n�k � � �n� k� ln
E��W

��
�n�k� ����

with E��W
�� estimated by �

N

PN

i�� kxi�W tWxik
� and �xi

from S � �
N

PN

i�� xix
t
i via eigen�analysis or PCA learning�

Therefore� we can �nally use this simpli�ed criterion for
selecting the dimension of subspace in the PCA related sub�
space analysis� That is� we select k� if k� � argmink J�k��
which is an improvement of the old one given in Xu�
���c��

�� New Results for Supervised Learning

�� Improved number selection criteria over that
given in �Xu� 
���c�d� are obtained for the model of mix�
ture of experts �Jacobs� Jordan� Nowlan � Hinton� 
��
�
Jordan � Jacobs� 
�����

We design that� �i� ph�x� is by eq��
� and pMzjx
�zjx�

by eq���c�� �ii� pMyjz�x
�yjzi� xi� �

Pk

j�� P �jjxi���y � j�

with
Pk

j�� P �jjx� � 
� �iii� PMyjx
�yjx� �

Pk

j�� ��y �
j�P �jjx���� pMzjy�x

�zjy�x� � pMzjy�x
�zjy� x� �y�� By

putting the design into eq���b�� it can be shown that as
Nhd �� and h� 
� the minimization of KL�M��M�� by
eq���b� is equivalent to min�k J��k� with �k � f�� �jg

k
j��

and
J��k� �

�
N

PN
i��

Pk
j�� P �jjxi� ln

P �jjxi�
P�zijxi�j��j�P �jjxi���

����

As shown in �Xu� ���c�d�� this is equivalent to
max�k L��k��



L��k� �
�
N

PN
i�� ln p�zijxi��k��

p�zjx��k� �
P

k
y�� P �yjx���p�zjx� y� �y� ����

and the ALTMIN eq���� is the same as the EM algorithm�
E Step	 P �yjxi� �

P �yjxi���p�zijxi�y��y�

p�zijxi���k��
�

M Step	 �newy � max�y
P

N
i�� P �yjxi� ln p�zijxi� y� �y��

�new � max�
PN

i��

Pk
y�� P �yjxi� lnP �yjxi � ��� ����

That is� we get maximum likelihood learning for the orig�
inal model of mixture of experts with the EM algorithm
eq������ Similar to what we did in Sec���
� we get ��k �
argmin�k J��k� by eq���
�� and de�ne J�k� � J���k� �
J�k� � � �

N

P
N
i��

P
k
y�� P

��yjxi� ln 
p�zijxi� y� �y�P �yjxi� ���� ����

as an improved criterion for selecting k� � mink J�k� as
the number of experts required in a mixture expert model�
Also similar to what we did in Sec���
� we can prove that
J�ko� � J�k� for k �� ko�
When the regression error of each expert is gaussian� i�e��

p�zjx�y� �y� � G�z� f�x�Wy���y�� eq����� can be simpli�ed
into
JG�k� � � �

N

PN
i��

Pk
j�� P

��jjxi� lnP �jjxi� �
���

� �
�

P
k
j�� �

�
j ln j�

�
j j� ��j � �

N

P
N
i�� P

��jjxi��

��j �
�

��
j
N

PN
i�� P

��yjxi�
zi � f�xi�W
�
j ��
zi � f�xi�W

�
j ��

t� ����

�� Improved number selection criteria over that
given in �Xu� 
���c�d� are obtained for the alternative
model of mixture of experts �Xu� Jordan� � Hinton� 
����

����� which replace P �yjxi� �� by

P �yjxi� �� � p�xjy��y��y�
Pk

y�� p�xjy��y��y ��
�

and the M step in the EM algorithm eq����� is replaced by
M Step	 �y � �

N

P
N
i�� P �yjxi��

�newy � max�y
PN

i�� P �yjxi� �� ln p�zijxi� y� �y��

�newy � max�
PN

i�� p�xijy� �y� ln p�xijy��y�� ����

which actually maximizes L��k� �
�
N

PN

i�� p�z�x��k�
with p�z� x��k� � p�x�p�zjx��k�� Accordingly� we can get
criteria eq����� and eq����� become respectively�

J�k� � �
Pk

y�� �
�
y ln�

�
y

� �
N

P
N
i��

P
k
y�� P

��yjxi� ln fp�zijxi� y� �
�
y �p�xjy��

�
y�g� ���a�

JG�k� � �
Pk

y�� �
�
y ln�

�
y

� �
�

Pk
y�� �

�
y ln j�

�
yj �

�
N

P
i�y P

��yjxi� lnP �xjy� �
�
y�� ���b�

�� An improved number selection criteria over
that given in �Xu� 
���c�d� is obtained for the normalized
Radial Basis Function �RBF� nets given by Eqs���
a�b�
in �Xu� 
���c�� which are the special case of the above
alternative model of mixture experts respectively at
P �zjx� y� �y� � G�z� cy ��zy � P �zjx� y� �y� � G�z� �tyx� cy��zy �

P �yjxi� �� �
exp����	�x�my ��

��
x �x�my �
Pk

y�� exp����	�x�my ��
��
x �x�my �


� ����

with �y	j�xj � const� We can get an improved criterion�
JG�k� �

�
� ln j�

�
xj�

�
�k

P
k
y�� ln j�

�
zy
j � ln k ����

for the two cases� where ��zy ��
�
x are obtained directly from

the learning by EM algorithm�
In Xu�
���c�� a number of algorithms� including EM�

hard�cut EM� adaptive learning� have been proposed for
e ciently training the alternative model of mixture experts
and RBF networks�

�� Three Categories of Separation Functionals and

Their Related Learning Models

�This part of work has been presented in my invited talks

at WCNN	
 and ICONIP	
 in Sept� ����
 and Sept� ���
��� �		
 respectively� although have not been included in
�Xu� �		
c�d�� Instead� a more general non�Kullack func�
tional f�
� was discussed in �Xu� �		
e� for a learning prin�
ciple related to BYY learning with divorcing dynamic� where
convex function f�
� is discussed in its Sec��� Actually� it
was that work motivated the work given here��

�� Convex Divergence We consider a class of func�
tionals on two densities p��x�� p��x� given by

Fs�p�� p�� � f����
R
x
p��x�f�

p��x�
p��x�

�dx � ��

f�u� is a strict convex on ������ ����

Obviously Fs�p�� p�� � � when p� � p� � We have also

Fs�p�� p�� � � when p� �� p� since
R
x
p��x�f�

p��x�
p��x�

�dx �

f�
R
x
p��x�

p��x�
p��x�

dx� � f���� Substituting p� by pMyjx
�yjx�pMx �x�

and p� by pMxjy
�xjy�pMy �y� in eq���a�� we have Fs�M��M���

There are some typical examples of this convex diver�
gence�

�a� f�u� � ln u which leads us to Kullback Divergence�
�b� f�u� � �u� � � � 
� called as Minus Convex diver�

gence�
�c� When f�u� � u� � 
 � � � 
� we called as Positive

Convex �PC� divergence� One of its particular interesting
case is that � � 

�� which leads to a symmetric Root�
Inner�Product �RIP� divergence�

Fs�p�� p�� � ��
R
x

p
p��x�p��x�dx ����

Remarks� �
� We will have a similar situation for f�u�
being strict concave on �
�!�� since �f�u� is a strict con�
cave when f�u� is a strict convex� ��� RIP has a nice sym�
metric feature that the Kullback divergence does not have�
��� Non�Kullback cases of convex divergence may lose a fa�
vorable feature of Kullback divergence of holding partially
triangle inequality �Amari� 
����� which can de�ne an or�
thogonal projection�
�� Lp Divergence Lp distance may also be extended

as the separation functional� Fs�M��M�� �R
x�y

p�x�jg�pMyjx
�yjx�pMx �x��� g�pMxjy

�xjy�pMy �y��j
pdxdy ����

where g�u� is any function such that g�p��x�� � g�p��x�� if
and only if p��x� � p��x��

�� De�correlation Index The correlation coe �
cient is extended into� Fs�M��M�� �

��

R
x�y p�x�gyjx�x�y�gxjy�x�y�dxdyqR

x�y p�x�g
�gyjx�x�y�dxdy

qR
x�y p�x�g

�gxjy�x�y�dxdy
� �

gyjx�x� y� � g�pMyjx
�yjx�pMx�x���

gxjy�x� y� � g�pMxjy
�xjy�pMy �y�� ����

where g�u� is any function such that g�u��g�u�� � 
� if
u� � 
 u� � 
 and g�p��x�� � g�p��x�� i� p��x� � p��x��
Particularly when g�u� � u� we have the ordinary De�
correlation Index�

�� Examples of Related Learning Models� As
mentioned at the end of Sec���
� using the three categories
of separation functionals to replace Kullack divergence� we
can� at least theoretically� obtain their counterparts of those
models using Kullack divergence� Due to space limit� here
we only consider two examples�
Robust Finite Mixture� By putting the design eq����

into eq���a� instead of eq���b�� although we can not get
the expanded form like eq��

a�� we can still get that the



minimization of Fs�M��M�� with the �xed M� will re�
sults in the E step in the EM algorithm eq��

�� With
this obtained P �jjxi� put into eq���a�� we consider the
case of Convex Divergence and get the form like eq��

b��
Lf ��k� �

�
N

P
N
i�� f�p�xi ��k�� �

�
N

P
N
i�� f�e

ln p�xi��k�� ����

That is� the minimization of Fs�M��M�� is equivalent to
the maximization of Lf ��k�� So we get a generalized ML
learning for �nite mixture�

When f�u� is monotonically increasing for positive u�
e�g�� f�u� � u� � 
 � � � 
� f�eu� � e� ln u is also a mono�
tonically increasing for � � ���� 
�� Since this e�� puts
more attention on the value of � near 
� and the maximiza�
tion of Lf ��k� gives more weights to those samples with
p�xi��k�� near 
� In other words� the learning is more re�
layed on those samples around each density center� while
those boundary samples are discounted� Thus� the learning
will give more robust estimation by discounting outliers�
Since the more close the � around 
� the more rapid the
e�� changes around 
� the more robust the learning will be�

On the other hand� when f�u� is monotonically decreas�
ing for positive u� e�g�� f�u� � �u� � � � 
� the e�ect is the
minimization of e���� � � ln p�xi��k�� e

��� is also mono�
tonically decreasing for � � ���� 
�� That is� more atten�
tion is put on those boundary values� The learning seems to
emphasizes more on the discrimination between the samples
from di�erent models� However� whether it has this type
feature is still not quite clear yet and needs to be further
explored�

From the E step of eq��

� and the fact that
df�eln p�xi��k��

d�j
� f ��p�xi��k���jp�xijSxjj � �j�

d ln p�xijSxjj��j�

d�j

� f ��p�xi��k��p�xi��k�P �jjxi�
d ln p�xi jSxjj��j�

d�j
�

we get that the M Step in eq��

� should be replaced by
M Step	 �newj is given by solving
PN

i�� f
��p�xi��k��p�xi��k�P �jjxi�

d ln p�xi jSxjj��j�

d�j
� � ��
�

Particularly� for Gaussian p�xijSxjj � �j� � G�x�mj ��j��
it is explicitly given as�

MStep 	 w�y� xi� � f ��p�xi��k��p�xi��k�P �jjxi�

mnew
y � �

N

PN
i�� w�y� xi�xi� ����

�newy � �
N

PN
i�� w�y� xi��xi �mnew

y ��xi �mnew
y �t

we actually get a weighted variant of the EM algorithm�
When f�u� is monotonically increasing for positive u� we
call eq����� as Robust EM �REM� algorithm for �nite mix�
ture� and eq����� as Robust EM �REM� algorithm for Gaus�
sian mixture�

Robust Mixtures of Experts� For the mixture of ex�
pert model by eq���
�� we can similarly get Lf ��k� �

�
N

P
N
i�� f�p�zijxi��k�� �

�
N

P
N
i�� f�e

ln �p�zi jxi��k��� ����

Moreover� the M Step in eq����� should be replaced by
M Step	 �newj is given by solving
PN

i�� f
��p�zijxi��k��p�zijxi��k�P �jjxi�

d ln p�zijxi�j��j�

d�j
� � ����

and �new is given by solvingPN
i��

Pk
j�� f

��p�zijxi��k��p�zijxi��k�P �jjxi�
d lnP �jjxi���

d�
� � ����

with the E step being still the same as that in eq����� to
get P �jjxi�� Similarly� the M Step in eq����� should be re�
placed by
M Step	 get �y by eq������ get �newj by solving eq����� and get

�newj by solving
PN

i�� f
��p�zijxi��k��p�zijxi��k�P �jjxi�

d ln p�xijj��j�

d�j
� � ����

References

�Due to limited space� a number of references are omitted
here� and can be �nd in the reference lists of Xu� �		�a�
�		
a�b�c�d�

Amari� S�
����� Neural Networks 
� No��� 
����
�
��
Dempster� A�P�� Laird� N�M�� � Rubin� D�B� �
����� J�
Royal Statist� Society� B�	� 
����
Carpenter� G�A� and Grossberg� S��
����� Computer Vi�
sion� Graphics� and Image Processing� V��� pp����

��
Cheung� Y�M�� and Xu� L �
����� in this Proc� of IEEE
ICNN	��
Devroye� L��
����� A Course in Density Estimation�
Birhhauser�
Grenander� U �
����
��
�� Lectures in Pattern Theory I�
II and III� Pattern Analysis� Pattern Synthesis and Regu�
lar Structures� Berlin� Springer�Verlag�� Berlin� 
����
��
�
Dayan� P�� Hinton� G� E�� � Neal� R� N� �
����� Neural
Computation Vol��� No��� �����
��
Dempster� A�P�� Laird� N�M�� � Rubin� D�B� �
����� J�
Royal Statist� Society� B�	� 
����
Hinton� G� E�� et al� �
����� Science �

� pp

���

�
�
Jacobs� R�A�� Jordan� M�I�� Nowlan� S�J�� and Hinton� G�E��
�
��
�� Neural Computation� �� pp �����
Jordan� M� � Jacobs� R� �
����� Neural Computation 
�

�
��
��
Kawato� M� et al �
����� Networks �� pp�
������
Lei� Y�Q and Xu� L� �
����� �Linear And Nonlinear Filter�
ing Based on the Principle of Ying�Yang Machine �� sub�
mitted to a journal�
Mumford� D �
����� In C�Koch and J�Davis eds� Large�
Scale Theories of the Cortex� Cambridge� MA� MIT Press�
pp
��
���
Oja�E��
����� Int� J� Neural Systems �� 
���� �
����
Ullman� S� �
����� In the same eds as above� pp������
�
Xu� L� �
���a�� �Unsupervised� Supervised and Cosuper�
vised Bayesian Ying�Yang Learning� New Developments��
to appear on Lecture Notes in Computer Science�Proc� Intl
Workshop on Theoretical Aspects of Neural Computation�
May ������ Hong Kong� 
���� Springer�verlag�
Xu� L� �
���b�� �Bayesian Ying�Yang Learning� LMSER
Self�Organization and Independent Component Analysis��
to appear on Proc� ICONIP	�� ������ Nov� 
���� Dunedin�
New Zealand�
Xu� L� �
���c�� �Batch and Adaptive Matched Competi�
tive Learning Algorithms for Mixture of Experts and RBF
Networks�� submitted to a Journal�
Xu� L� �
���a�� �A Uni�ed Learning Scheme� Bayesian�
Kullback YING�YANG Machine�� Advances in NIPS 
�
David S� Touretzky� Michael C� Mozer and Michael E� Has�
selmo� eds� MIT Press� Cambridge� MA� pp������
�
Xu� L� �
���b���How Many Clusters " � A YING�YANG
Machine Based Theory For A Classical Open Problem In
Pattern Recognition�� Proc� IEEE ICNN��� Vol��� pp
����

��
�



Xu� L� �
���c���Bayesian�Kullback YING�YANG Learning
Scheme� Reviews and New Results�� Progress in Neural In�
formation Processing� Proc� ICONIP	
� Sept� ������ pp���
��� Springer�verlag�
Xu� L� �
���d�� �Bayesian�Kullback YING�YANG Ma�
chines for SupervisedLearning�� Invited Talk� Proc�
WCNN�� �Sept� 
��
��� pp
����

�
Xu� L� �
���e�� �A Maximum Balanced Mapping Certainty
Principle for Pattern Recognition and Associative Map�
ping�� Proc� WCNN�� �Sept� 
��
��� pp��������
Xu� L� and Amari� S �
����� � A general independent
component analysis framework based on Bayesian�Kullback
Ying�Yang Learning�� Progress in Neural Information Pro�
cessing� Proc� ICONIP	
� pp������ Springer�verlag�
Xu� L� �
���a�� �YING�YANG Machine� a Bayesian�
Kullback scheme for uni�ed learnings and new results on
vector quantization�� Keynote talk� Proc� Intl Conf� on
Neural Information Processing �ICONIP���� Oct �
 � Nov�
�� 
���� pp��������
Xu� L��
���b�� �YING�YANG Machine for Temporal Sig�
nals�� Keynote talk� Proc of international Conference on
Neural Networks and Signal Processing 
���� Vol�I� pp����
��
� Nanjing� 

�
�� 
����
Xu� L� �
���c�� �New Advances on The YING�YANG Ma�
chine�� Invited paper� Proc� of 
��� Intl� Symposium
on Arti�cial Neural Networks� ppIS
��
�� Dec� 
���
�
Hsinchu� Taiwan�
Xu� L� �
���d�� � A Uni�ed Learning Framework� Mul�
tisets Modeling Learning�� Proc� WCNN���July 
���
��
Vol�I� pp������
Xu� L�� Jordan� M�I�� � Hinton� G� E� �
����� � An Alter�
native Model for Mixtures of Experts�� Advances in NIPS
�� eds�� Cowan� J�D�� Tesauro� G�� and Alspector� J�� MIT
Press� 
���� pp������
�
Xu� L�� Jordan� M�I� and Hinton� G�E� �
����� �A Modi�ed
gating network for the mixtures of experts architecture��
Proc� of WCNN�	�� San Diego� Vol��� �
���

�
Xu� L� �
����� �Least MSE Reconstruction� A Principle for
Self�Organizing Nets�� Neural Networks� Vol��� pp��������

����


