
CSCI3160: Tutorial 3

Problem 1

⚫ 𝑂(𝑛log𝑛)-time algorithm for finding the number of

inversions.

Problem 2

⚫ 𝑂(𝑛log𝑛)-time algorithm to solve the dominance counting 

problem.



Review: Counting inversions

Problem: Given an array 𝐴 of 𝑛 distinct integers, count 

the number of inversions.

An inversion is a pair of 𝑖, 𝑗 such that

⚫ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

⚫ 𝐴 𝑖 > 𝐴[𝑗].



Review: Counting inversions

Let: 𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (10, 3, 9, 8, 2), 𝐴2 = (5, 4, 1, 7, 6).

⚫ The counts of inversions in 𝐴1 and 𝐴2 are known by solving 

the “counting inversion” problem recursively on 𝐴1 and 𝐴2.



Review: Counting inversions

Let: 𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (10, 3, 9, 8, 2), 𝐴2 = (5, 4, 1, 7, 6).

⚫ The counts of inversions in 𝐴1 and 𝐴2 are known by solving 

the “counting inversion” problem recursively on 𝐴1 and 𝐴2.

We need to count the number of crossing inversion 

(𝑖, 𝑗) where 𝑖 is in 𝐴1 and 𝑗 in 𝐴2.



Review: Counting inversions

Let: 𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (10, 3, 9, 8, 2), 𝐴2 = (5, 4, 1, 7, 6).

⚫ The counts of inversions in 𝐴1 and 𝐴2 are known by solving 

the “counting inversion” problem recursively on 𝐴1 and 𝐴2.

We need to count the number of crossing inversion 

(𝑖, 𝑗) where 𝑖 is in 𝐴1 and 𝑗 in 𝐴2.

Binary search

⚫ Sort 𝐴1 and 𝐴2, and conduct 𝑛/2 binary searches (𝑂(𝑛log𝑛)).



Review: Counting inversions

Let: 𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (10, 3, 9, 8, 2), 𝐴2 = (5, 4, 1, 7, 6).

⚫ The counts of inversions in 𝐴1 and 𝐴2 are known by solving 

the “counting inversion” problem recursively on 𝐴1 and 𝐴2.

We need to count the number of crossing inversion 

(𝑖, 𝑗) where 𝑖 is in 𝐴1 and 𝑗 in 𝐴2.

Binary search

⚫ Sort 𝐴1 and 𝐴2, and conduct 𝑛/2 binary searches (𝑂(𝑛log𝑛)).

⚫ Let 𝑓(𝑛) be the worst-case running time of the algorithm on 𝑛
numbers. 

✓ 𝑓(𝑛) ≤ 2𝑓( 𝑛/2 ) + 𝑂(𝑛log𝑛)

✓ which solves to 𝑓(𝑛) = 𝑂(𝑛log2𝑛).



Counting inversions: a faster algorithm

Strategy: ask a harder question, and exploit it in the 

conquer phase.



Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the 

conquer phase.

Given an array 𝐴 of 𝑛 distinct integers, output the 

number of inversions and produce an array to store the 

integers of 𝐴 in ascending order.



Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the 

conquer phase.

Given an array 𝐴 of 𝑛 distinct integers, output the 

number of inversions and produce an array to store the 

integers of 𝐴 in ascending order.

𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (2,3,8,9,10), 8 invs;  𝐴2 = 1,4,5,6,7 , 4 invs. 



Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the 

conquer phase.

Given an array 𝐴 of 𝑛 distinct integers, output the 

number of inversions and produce an array to store the 

integers of 𝐴 in ascending order.

𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (2,3,8,9,10), 8 invs;  𝐴2 = 1,4,5,6,7 , 4 invs. 

Exploit subproblem property 

⚫ Subarrays 𝐴1, 𝐴2 are sorted

➢ Count crossing inversions in O(n) time.

➢ Merge 2 sorted arrays in O(n) time.



Counting crossing inversions

 Let 𝑆1 and 𝑆2 be two disjoint sets of n integers. 

Assume that 𝑆1 is stored in an array 𝐴1, and 𝑆2 in an 

array 𝐴2. Both 𝐴1 and 𝐴2 are sorted in ascending 

order. Design an algorithm to find the number of such 

pairs (𝑎, 𝑏) satisfying the following conditions: 
✓ 𝑎 ∈ 𝑆1,

✓ 𝑏 ∈ 𝑆2,

✓ 𝑎 > 𝑏.

✓ Your algorithm must finish in O(n) time.



Counting crossing inversions

Method 

⚫ Merge 𝐴1 and 𝐴2 into one sorted list 𝐴.

Let: 𝐴 = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)

⚫ 𝐴1 = (2,3,8,9,10), 𝐴2 = (1,4,5,6,7)

We will merge them together and in the meantime 

maintain the count of crossing inversions.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1



Counting crossing inversions

⚫ Ordered list produced: Nothing yet 

⚫ The count of crossing inversions : 0

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4



Counting crossing inversions

⚫ Ordered list produced: 1

⚫ The count of crossing inversions : 0

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4



Counting crossing inversions

⚫ Ordering produced: 1, 2

⚫ The count of crossing inversions : 0 + 1 = 1.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count Newly added: (2,1) is a 

crossing inversion



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3

⚫ The count of crossing inversions : 1 + 1 = 2.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count Newly added: (3,1) is a 

crossing inversion.



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4

⚫ The count of crossing inversions : 2

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5

⚫ The count of crossing inversions : 2

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5, 6

⚫ The count of crossing inversions : 2.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5, 6, 7

⚫ The count of crossing inversions : 2

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8

⚫ The count of crossing inversions : 2 + 5 = 7.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count Newly added count:

(8,1), (8,4), (8,5), (8,6), (8,7)



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9

⚫ The count of crossing inversions : 7 + 5 = 12.

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Last count Newly added count:

(9,1), (9,4), (9,5), (9,6), (9,7)



Counting crossing inversions

⚫ Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

⚫ The count of crossing inversions : 12 + 5 = 17. 

2 3 8 9 10

1 4 5 6 7𝐴2

𝐴1

index 0 1 2 3 4

Newly added count: #integers 

from 𝐴2 already in the ordered 

list produced

Last count



Counting inversions

Analysis

⚫ Let 𝑓(𝑛) be the worst-case running time of the algorithm on 𝑛
numbers. 

Then

⚫ 𝑓(𝑛) ≤ 2𝑓( 𝑛/2 ) + 𝑂(𝑛),

⚫ which solves to 𝑓(𝑛) = 𝑂(𝑛log𝑛). 



Dominance counting

Problem 

⚫ Give an 𝑂(𝑛log𝑛)-time algorithm to solve the dominance 

counting problem discussed in the class.

Point dominance definition

⚫ Denote by ℕ the set of integers. Given a point 𝑝 in two-

dimensional space ℕ2, denote by 𝑝[1] and 𝑝[2] its x- and y-

coordinates, respectively.

⚫ Given two distinct points 𝑝 and 𝑞, we say that 𝑞 dominates 𝑝
if 𝑝[1] ≤ 𝑞[1] and 𝑝[2] ≤ 𝑞[2].

x

y

𝑝

𝑞



Dominance counting

Let 𝑃 be a set of n points in ℕ2. Find, for each point 

𝑝 ∈ 𝑃, the number of points in 𝑃 that are dominated by 

𝑝.



Dominance counting

Divide: Find a vertical line 𝑙 such that 𝑃 has 𝑛/2
points on each side of the line. (k-selection, 𝑂(𝑛) time).



Dominance counting

Divide:

⚫ 𝑃1 = the set of points of 𝑃 on the left of 𝑙.

⚫ 𝑃2 = the set of points of 𝑃 on the right of 𝑙.



Dominance counting

Divide:

⚫ Solve the dominance counting problem on 𝑃1 and 𝑃2
separately.



Dominance counting

Divide:

⚫ Solve the dominance counting problem on 𝑃1 and 𝑃2
separately.

⚫ It remains to obtain, for each point 𝑝 ∈ 𝑃2, how many points 

in 𝑃1 it dominates. 



Dominance counting

Review: Binary search 

⚫ Sort 𝑃1 by y-coordinate. (𝑂(𝑛log𝑛))

⚫ Then, for each point 𝑝 ∈ 𝑃2, we can obtain the number of 

points in 𝑃1 dominated by 𝑝 using binary search. (𝑂(𝑛log𝑛))



Dominance counting: a faster algorithm

Ask a harder question:

⚫ Output the dominance counts and sort 𝑃 by y-coordinate.

Scan the point from 𝑃1 by y-coordinate in ascending 

order, and scan 𝑃2 in the same way synchronously.

⚫ Merge the following two sorted arrays, based on y-coordinates 

and obtain the number of points in 𝑃1 dominated by 𝑝.

⚫ 𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

⚫ 𝑃2 = (𝑝8 , 𝑝7 , 𝑝5 , 𝑝6 )



Dominance counting

Scan the points from 𝑃1 by y-coordinate in ascending 

order. Do the same on 𝑃2.

⚫ 𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

⚫ 𝑃2 = (𝑝8 , 𝑝7 , 𝑝5 , 𝑝6 )

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

Only care about y-coordinates



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

 ത𝑃 = ()

⚫ All the points will be stored in this array in ascending order of 

y-coordinate. 

⚫ To be produced by merging 𝑃1 and 𝑃2.



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 0

 ത𝑃 = ()

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 0

 ത𝑃 = 𝑝8

⚫ 𝑝8 dominates 0 point in 𝑃1 . 
𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 0

 ത𝑃 = (𝑝8 , 𝑝3 )

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 0

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 )

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 2

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 )

⚫ 𝑝7 dominates 2 point in 𝑃1
𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 4

 ത𝑃 = 𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 , 𝑝5

⚫ 𝑝5 dominates 2 point in 𝑃1
𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 4

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 , 𝑝5 , 𝑝4 )

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 4

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 , 𝑝5 , 𝑝4 , 𝑝2 )

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3

4



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 )

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6

count = 8

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 , 𝑝5 , 𝑝4 , 𝑝2 , 𝑝6 )

⚫ 𝑝6 dominates 4 points in 𝑃1.

𝑝3
𝑦

𝑝1
𝑦

𝑝4
𝑦

𝑝2
𝑦

𝑝8
𝑦

𝑝7
𝑦

𝑝5
𝑦

𝑝6
𝑦

index

0

1

2

3

4



Dominance counting

𝑃1 = (𝑝3 , 𝑝1 , 𝑝4 , 𝑝2 ).

𝑃2 = 𝑝8 , 𝑝7 , 𝑝5 , 𝑝6 .

count = 8

 ത𝑃 = (𝑝8 , 𝑝3 , 𝑝1 , 𝑝7 , 𝑝5 , 𝑝4 , 𝑝2 , 𝑝6 ).

Current time complexity: 𝑂(𝑛).



Dominance counting

Analysis

⚫ Let 𝑓(𝑛) be the worst-case running time of the algorithm on 𝑛
points. 

⚫ 𝑓(𝑛) ≤ 2𝑓( 𝑛/2 ) + 𝑂(𝑛), 

⚫ which solves to 𝑓(𝑛) = 𝑂(𝑛log𝑛). 


