
Problem 1.

1. T

2. F

3. T

4. T

5. F

6. F

7. T

Problem 2. opt(1) = 3, opt(2) = 6, opt(3) = 9, opt(4) = 12, opt(5) = 15, opt(6) = 18, and opt(7) = 21.

Problem 3. ad, cd, de, ab, ef .

Problem 4.

e d c b

0

0

0

1

1

1

a

0

1

Problem 5. Let A be the input array for the inversion counting problem. Construct a set P of n points as follows:
for each i ∈ [1, n], add to P the point pi = (i,−A[i]). Observe that (i, j) is an inversion if and only if point pj
dominates pi. We run a dominance counting algorithm to find, for each point pj (j ∈ [1, n]), the number cj of
points dominated by pj . Then, the number of inversions in A can be obtained as

∑n
j=1 cj . As P can be constructed

in O(n) time, the whole algorithm uses f(n) +O(n) time to solve the counting inversion problem.

Problem 6. We can trivially encode each letter in log2 n bits: assign the log2 n-bith binary representation of i to
the i-th letter for each i ∈ [1, n]. This gives a prefix code whose average length is log2 n. As Huffman’s algorithm
constructs an optimal prefix code, the code’s average length must be at most log2 n.

Problem 7.

opt(n) =

{
0 if n = 0

max{P [n], (−c) + maxn−1
i=1 (P [i] + opt(n− i))} otherwise

(1)

Problem 8. This problem can be converted to k-selection. First, find the median m of S in O(n) expected time.
Then, construct a set T = {|x−m| | x ∈ S}. Finally, use k-selection to find the k-th smallest number of T in O(n)
expected time. If |x−m| is the number returned, then output every y ∈ S satisfying |y −m| ≤ |x−m|.

Problem 9. Let I1, I2, ..., It be the sequence of intervals picked by the algorithm. We will prove the claim: for
each i ∈ [1, t], there is an optimal solution containing {I1, I2, ..., Ii}.

To prove the base case (i = 1), notice that I1 must be the longest interval in I starting from 0. Take an
arbitrary optimal solution T . Clearly, T must contain an interval I ′ covering 0. Replacing I ′ with I1 gives another
optimal solution.

1

Assuming that the claim holds for i = k < t, next we will prove its correctness for i = k + 1. Let T be an
arbitrary optimal solution containing I1, I2, ..., Ik. Consider the value a at Line 2 right before our algorithm picks
Ik+1. Clearly, T must contain an interval I ′ covering a+ 1. Replacing I ′ with Ik+1 gives another optimal solution.

Problem 10. First, find the largest element (i.e., the 2log2 n smallest) of S in O(n) time. Then, use k-selection to
find the (n/2)-th smallest element e1 of S in O(n) expected time. Remove from S all the elements that are greater
than e1. Now, |S| = n/2. Use k-selection again to find the (n/4)-th smallest element e2 of S in O(n/2) expected
time. Remove from S all the elements that are greater than e2. Use k-selection again to find the (n/8)-th smallest
element e3 of S in O(n/8) expected time. Remove from S all the elements that are greater than e3. Repeat in the
same fashion until S has only one element. The total expected time is O(n)+O(n/2)+O(n/4)+ ...+O(1) = O(n).

2

