
CSCI3160: Regular Exercise Set 4

Prepared by Yufei Tao

Problem 1. Recall that a tree is a connected graph without cycles. Prove:

• Every tree has at least a leaf node, i.e., a node with degree 1 (i.e., a node incident to only one
edge).

• Every tree with n nodes has precisely n− 1 edges.

Solution. Proof of the first statement: Start from an arbitrary node u. If u is not a leaf, then walk
across one of its edges to reach a neighbor node, and delete the edge that was crossed. Then, set u
to that neighbor node, and repeat the process. In this process, every node will be encountered at
most once (if a node is seen twice, there must be a cycle, and hence cause a contradiction). Since
the tree has a finite number of nodes, the process must come to an end eventually. The last node
reached must be a leaf.

Proof of the second statement: We will prove the claim by induction on n. When n = 2, the
tree has only one edge; and the claim is clearly true. Next, assuming the claim’s correctness for
n = k, we will prove that it also holds for any tree T with n = k+1 nodes. From the first statement,
we know that there must be a leaf node u in T . Remove u from T and the only edge incident to u.
The remaining tree has k nodes which, by the inductive assumption, must have k − 1 edges. It thus
follows that T has k edges.

Problem 2. Let G be a simple graph with n vertices and n− 1 edges. Prove: if G is connected
(i.e., a path exists between any two vertices in G), then G must be a tree.

Solution. Consider an arbitrary spanning tree T of G. Because G is connected, T must include all
the n vertices of G. From the statements of Problem 1, we know that T must have n − 1 edges.
This means that T has all the edges of G and, hence, G = T .

Problem 3 (one for one, still a tree). Let T be a tree. Add a new edge between two vertices in
T ; this gives us a graph G with a cycle cyc. Now, remove from G an arbitrary edge e′ of cyc; let G′

be the graph thus obtained. Prove: G′ is a tree.

Solution. Let n be the number of vertices in T . It is clear that G′ has n − 1 edges. Next, we
will prove that G′ is connected (i.e., a path exists between any two of its vertices), which (by the
statement of Problem 2) shows that G′ is a tree.

Let u and v be two arbitrary vertices in G′. Consider an arbitrary path π from u to v in G (this
path must exist because G is connected). If π does not use edge e′ (i.e., the edge deleted), then
π exists in G′ and, hence, u and v are connected in G′. Now, consider the case where e′ is in π.
Assume, without loss of generality, that e′ = {u′, v′} and that π goes from u to u′, crosses e′ to v′,
and then continues onto v′. This means that, in G′, u is connected to u′ and v is connected to v′. It
remains to prove that u′ is connected to v′ in G′, which will tell us that u is connected to v in G′.

Remember that e′ is in the cycle cyc. This implies that, in cyc, we can find a path from u′ to v′

that does not pass through e′. This path must still remain in G′. Therefore, we conclude that u′ is
connected to v′ in G′.

1

Problem 4. Let S be a set of integer pairs of the form (id , v). We will refer to the first field as
the id of the pair, and the second as the key of the pair. Design a data structure that supports the
following operations:

• Insert: add a new pair (id , v) to S (you can assume that S does not already have a pair with
the same id).

• Delete: given an integer t, delete the pair (id , v) from S where t = id , if such a pair exists.

• DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consume O(n) space, and support all operations in O(log n) time where n = |S|.

Solution. Maintain S in two binary search trees T1 and T2, where the pairs are indexed on ids in
T1, and on keys in T2. We support the three operations as follows:

• Insert: simply insert the new pair (id , v) into both T1 and T2.

• Delete: first find the pair with id t in T1, from which we know the key v of the pair. Now,
delete the pair (t, v) from both T1 and T2.

• DeleteMin: find the pair with the smallest key v from T2 (which can be found by continuously
descending into left child nodes). Now we have its id t as well. Remove (t, v) from T1 and T2.

Problem 5. Prove: in a weighted undirected graph G = (V,E) where all the edges have distinct
weights, the minimum spanning tree (MST) is unique.

Solution. We will prove that the tree T returned by the Prim’s algorithm is the only MST. Set
n = |V |. Let e1, e2, ..., en−1 be the sequence of edges that the algorithm adds to T . Suppose, on the
contrary, that there is another MST T ′. Let k be the smallest i such that ei is not in T ′.

• Case 1: k = 1. This means that e1, which is the edge with the smallest weight, is not in T ′.
Add e1 to T ′ to create a cycle, and remove from the cycle the edge with the largest weight.
This create another spanning tree whose cost is strictly smaller than T ′ (remember: all the
edges are distinct), contradicting the fact that T ′ is an MST.

• Case 2: k > 1. Recall that edges e1, e2, ..., ek−1 form a tree. Let S be the set of vertices in
this tree. Add ek = {u, v} into T ′ to create a cycle. Suppose u ∈ S; it follows that v /∈ S. Let
us walk on the cycle from v, by going into S, traveling within S, and stopping as soon as we
exit S. Let {u′, v′} be the last edge crossed (namely, one of u′, v′ is in S, while the other one
is not). By the way Prim’s algorithm runs and the fact that all edges have distinct weights,
we know that {u, v} has a smaller weight than {u′, v′}. Thus, removing {u′, v′} from T ′ gives
spanning tree with strictly smaller cost, which creates a contradiction.

Problem 6. Describe how to implement the Prim’s algorithm on a graph G = (V,E) in O((|V |+
|E|) · log |V |) time.

Solution. Remember that the algorithm incrementally grows a tree T which in the end becomes
an MST. Let S be the set of vertices that are currently in T . At all times, the algorithm maintains,
for every vertex v ∈ V \ S, its lightest cross edge best-cross(v) and the weight of this edge.

We maintain a set P of triples, one for every vertex u ∈ V \ S. Specifically, the triple of u has
the form (u, v, t), indicating that best-cross(u) is the edge {u, v} (i.e., v ∈ S), whose weight is t. We
need the following operations on P :

2

• Insert(u, v, t): add a triple (u, v, t) to P .

• DecreaseKey(u, {u, v′}): given a vertex u /∈ S and a cross edge {u, v′} (i.e., v′ ∈ S), this
operation does the following. First, fetch the triple (u, v, t) in P . Then, compare t to the
weight t′ of {u, v′}. If t′ < t, update the triple (u, v, t) to (u, v′, t′); otherwise, do nothing.

• DeleteMin: Remove from P the triple (u, v, t) with the smallest t.

We can store P in a data structure of Problem 4 which supports all operations in O(log |V |)
time (note: DecreaseKey can be implemented as a Delete followed by an Insert). Besides the above
structure, we also store an array A of length |V | to so that we can query in constant time, for any
vertex v ∈ V , whether v is in S currently.

Now we can implement the algorithm as follows. Let {x, y} be an edge with the smallest weight
in G. The set S contains only x and y at this point. For every vertex u ∈ V \ S where S = {x, y},
we check whether u has cross edges to x and y. If neither edge exists, insert triple (u,nil ,∞) to P .
Otherwise, suppose without loss of generality that {u, x} is the lighter cross edge of u, and it has
weight t; insert a triple (u, x, t) into P .

Repeat the following until P is empty:

• Perform a DeleteMin to obtain a triple (x, y, t).

• Recall that vertex x should be added to S, which may need to change the cross edges of
some other vertices. To implement this, for every edge {x, y} of x with y /∈ S, perform
DecreaseKey(y, {y, x}).

3

