HHEFXLKE
The Chinese University of Hong Kong

Machine Learning in EDA:
When and How

Bei Yu
Department of Computer Science & Engineering
Chinese University of Hong Kong



Outline

@ When (machine learning integrated)

@ How (to solve unique challenges)

® Future Direction

2/38



Outline

@ When (machine learning integrated)

3/38



When Machine Learning Integrated

:l]—> System Specification
module test Architectural Design

input in[3];

endmodule Functional Design and
Logic Design (RTL)

% Physical Design

DRC Physical Verification and
Lvs Signoff
STA
3 ‘ Fabrication ‘
iaszaes) T
Aunsnnvd

Packaging and Testing

3/38



When Machine Learning Integrated

Manual
Feature

:l]—> System Specification
module test Architectural Design

input in[3];

endmodule Functional Design and
Logic Design (RTL)

% Physical Design

DRC Physical Verification and
Lvs Signoff
STA
3 ‘ Fabrication ‘
iaszaes) T
Aunsnnvd

Packaging and Testing

3/38



RISC-V BOOM-Explorer

Table: Constraints of BOOM design specifications

Rule | Descriptions

1 FetchWdith > DecodeWidth

2 RobEntry | DecodeWidth *

3 FetchBufferEntry > FetchWidth
4 FetchBufferEntry | DecodeWidth
5 | fetchWidth = 2x ICacheFetchBytes
6
7
8

Se—
BOOM
Design Space
IntPhyRegister = FpPhyRegister
LDQEntry = STQEntry
MemlssueWidth = FplssueWidth

* The symbol “|” means RobEntry should be divisi-
ble by DecodeWidth

0.12 .
Design Space

M *Real Pareto
. +SVR

*XGBoost

@ Random Forest
B eDAC'19
+DAC’16
mHPCA'07

ASPLOS06

@ BOOM-Explorer

0.08 .

0.04

Average Power (unit: watts)
.

Average Clock Cycles .04

Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Explo-
ration Framework”. In: Proc. [CCAD. 4/38



Gaps Between Design Stages

RO

63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 1512 9 6 3 O

Case Study: Adder Design

¢ Logic synthesis v.s. physical synthesis

¢ Constraints mapping between two synthesis stages is difficult.
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Active Learning in Logic Synthesis

Front-End Team Perspective:

T T T T T
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Back-End Team Perspective:
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7500 | G2
£ 7000 |
o
g
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6000 |-
| | |
340 360 380 400

¢ Run design tools with all solutions is time-consuming.

¢ For 3K solutions, running time is 3000 x 5 = 15K mins.

o What we care: Pareto Frontier Curve

Yuzhe Ma, Subhendu Roy, et al. (2019). “Cross-layer Optimization for High Speed Adders: A

Critical Delay (ps)

Pareto Driven Machine Learning Approach”. In: IEEE TCAD 38.12, pp. 2298-2311.
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Example: Test Point Insertion

® Not every difficult-to-observe node has the same impact for improving the
observability;

 Select the observation point locations with largest impact to minimize the total count.

© Predicted-0 .\ [0 L@

@ Predicted-1 .:: ° D)
op g
© o ,

I i Fan-in cone |

(a) (b)

Yuzhe Ma, Haoxing Ren, et al. (2019). “High Performance Graph Convolutional Networks with
Applications in Testability Analysis”. In: Proc. DAC, pp. 1-6. 8/38



Example: Logic Synthesis

[ Original Logic Network ]

I K- way Circuit Partitioning |

Partltlon 1 Partltlon 2 Partltlon N

Karnaugh-Map-Image Generator

Cones
[ 4 |
KMImages AlG MIG

Optimizer | [ Optimizer

Results Evaluation

¥
[ Training set ]

Walter Lau Neto et al. (2019). “LSOracle: A logic synthesis framework driven by artificial intelli-
gence”. In: Proc. ICCAD, pp. 1-6. 9/38



Example: Macro Block Placement

Masked
policy
128 %128 %1 128x128x 1
Feature embeddings Policy and value networks x1e8x
64x64x2
& 32x32x4 /
raph
Graph conv. ph Ax4xa2 Bx8x16 16x 16 x8 l
Macro
ot = H = '
4 conv
Netlist 4
graph
Current
macro id Policy network 128 %128 x 1
Netlist )
metadata © Netlist Value network
embedding —
Mask

Azalia Mirhoseini et al. (2021). “A graph placement methodology for fast chip design”. In: Nature
594.7862, pp. 207-212. 10/38
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RouteNet

Features Extraction

(l)..
(3)..

wxhxF Input Tensor

(a) matrix_mult_b: ¢, (b) matrix_mult_b: c;
h=800

(2)

| S—
F=4 (#Features)
@)
(c) edit_dist: ¢, (d) edit_dist: c,
Input tensor constructed by stacking 2D features: Input features for #DRV prediction.
(1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins Red: macro region

Green: global long-range RUDY
Blue: global RUDY pins

Zhiyao Xie et al. (2018). “RouteNet: Routability Prediction for Mixed-Size Designs Using Convo-
lutional Neural Network”. In: Proc. ICCAD. 12/38



T

126h

L Down (k1*ky)
<
oo i )

DOWN (k4*ka)

J-Net model

%

Decoding path

Ground truth

High resolution pin configuration images

L L

Low resolution tile-based feature maps

Predicted DRC hotspot

Input Output

Rongjian Liang et al. (2020). “DRC Hotspot Prediction at Sub-10nm Process Nodes Using Cus-
tomized Convolutional Network”. In: Proc. ISPD. 13/38



CNN Driven Global Placement

Backward Propagation Forward Propagation
Gradient w.r.t. locations Cell Locations
(xy)

(VL. VyL)
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Siting Liu et al. (2021). “Global Placement with Deep Learning-Enabled Explicit Routability Op-
timization”. In: Proc. DATE. 14/38



Machine learning vs. traditional EDA methodologies

EDA Algorithms

ML

Placement, route, synthesis,
CTS, simulations, etc

Supervised, unsupervised,
reinforcement learnings, etc

Known optimality, robust, less
training data, good

GPU parallel computing, easy to
design, end-to-end training on

complex problems

Pros interpretability, complex problems,
Solve an abstract problem Solve any problem by learning
efficiently from its data
T . . Rely too much on data, not
Over simplification of dynamic, y o o .
Cons leveraging the mechanics of the

problem

Yu Huang, “EDA Advanced Technologies”.
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Challenge 1: Circuit
Representation



Defect of Previous GCN Works

¢ Previous works only focus on the graph structural information, which varies greatly
across netlists.

¢ We should extract general knowledge!

B A
similar " g
semantic 12 C
< > L >
1 A~ Close N\ ) Expected embeddings
—>
12 Distant [ C\ é
|l o
different C B
semantic L S
12 ) Acquired embeddings

Previous Structural GNN fail to capture the underlying semantic
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Gate Functionality and Boolean Equivalence

Logic functionality: keep the same across different designs.
¢ Generalized to unseen netlists, even with totally different topology!
Can we extract this information?

® Yes! —> Key: Boolean Equivalence

a s 2 + a°(b+C)

b N

< a(b+b’+c’) + a’(b+c)
Equivalent
l?): ab + (ab’+a’b) + (ac’+a’c)

<=ab + xor(a,b) + xor(a,c)

—)

Ziyi Wang, Chen Bai, et al. (2022). “Functionality Matters in Netlist Representation Learning”.
In: Proc. DAC. 18/38



Netlist Contrastive Learning Scheme

¢ Jterative random sub

-netlist replacement.

¢ Positive sample pair share same functionality, while w. totally different topology.

° Maximizing agreement between positive samples: embedding of netlists with
similar semantic (functionality) tend to be close

® Minimizing agreement between negative samples: distinguish from netlists with
different semantic, even with similar topology.

!_ 1 Replaced XOR(x, y) = OR( AND(INV(x), y) ), AND( x, INV(y) ) )
- 11
y [Z Representations DRI
equivalent :13 DAG
It replacement i _> ——
I == 4——_>1 "
P s O Y it
i DAG
1 o | o (Fp) 2%
equivalent |,
replacement| 7,_ "~ — "7 "7 7"
I or JD=nNor Ili
l >AND —| >o- INV
:D_XOR AND(x,y) = NOR(INV(x), INV(y) )

FGNN
77— A
Maximize
Agreement

= 4
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Pre-trained Circuit Learning Model

@D— ....... % Netlists

( Transform to DAG ) Preprocess

( Netlist Contrastive Learning ) Pr e-train

)
) Pre-trained
FGNN

\4
[ Node-level tasks ) (Graph-level tasks) Fine-tune
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Challenge 2: Timing Modeling



Timing Model in EDA

= Cell path

One example of the timing path in the netlist, cell (cell path) and wire (wire path).
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Why GCN cannot model timing well?

¢ Timing needs to capture path information

® GCNis only good at node embedding and graph embedding
@ [1x 128)

Encoding d=2
@ 1 x 64 Ky =128
@ e Aggregation

e ’@[1><64]‘ @hx64 || ®x64 H @11 x64] ‘

o Encoding Encoding T EncodingT Encodin, gT
@, @ x4 || @ uxa|[@nxq |ld=t

Aggregation ggregation Aggregation| Aggregation
OO || 0G| OO
[3x 4] [3 x 4] [2 x 4]
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Current Progress: Wire Timing

The RC net graph G is represented with:

Node feature matrix X for each capacitance

Path feature matrix H for each wire path

Weighted adj. matrix A for each resistance

Label matrix for real wire slew and delay

Xdxx11 pgdpx2z  A11x11

oog—_g-_gt>

RC Graph: 11 nodes, 2 paths Node Path  Weighted
Features Features Adj.

Yuyang Ye et al. (2023). “Fast and Accurate Wire Timing Estimation Based on Graph Learning”.
In: Proc. DATE. 24/38



Challenge 3: Netlist+Layout:
Multimodality



Netlist+Layout: Multimodality
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Netlist+Layout: Multimodality

Manual CNN+
Feature GNN.

:l]—> System Specification

Architectural Design

module test
input in[3];

endmodule Functional Design and
Logic Design (RTL)

f\

Logic Synthesis “‘ “

% Physical Design ‘ ‘

\/

DRC Physical Verification and \
Lvs Signoff

STA

Fabrication ‘

!

Packaging and Testing

e
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GCN + CNN Flow

&
e °cc vn
D ==
_@ Endpoint-wise ,

Netlist

Endpoint-wise "
Netlist Information Embeddings
Extraction '

Placed bl
iroui @sssveseey
Cireuit Endpoint Embeddings

AV

' Endpoint Arrival Time
Regression
s "l
Endpoint-wise 4 Eﬁ .
Layout Information n Eg;/r;l]r"se
Extraction Embeddings

® Customized GNN: extract information from netlists

¢ CNN with novel masking technique: extract information from layouts.

Ziyi Wang, Siting Liu, et al. (2023). “Realistic Sign-off Timing Prediction via Multimodal Fusion”.
In: Proc. DAC. 27/38



Challenge 4: Constrained AIGC



Layout Pattern Generation

WEIEE s

(@) (b) (0)
Generated Layout Patterns (Ours)

LT

Original Layout Patterns [[CCAD"20]

VLSI layout patterns provide critical resources in various designs for manufacturability

research, from early technology node development to back-end design and sign-off
flows|[DAC 19]'2,

?Haoyu Yang et al. (2019). “DeePattern: Layout pattern generation with transforming convolu-
tional auto-encoder”. In: DAC, pp. 1-6. 29/38



An End-to-End Learning Solution?

The three basic DRC checks

Width

Enclosure

ot |

Spacing

® Maybe No
® Gap between Discrete Rules and Continuous DNN Model
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Squish Pattern Representation

Oy1

Oy2

Squish Pattern

¢ Lossless and efficient representation method
¢ Encodes layout into pattern topology matrix and geometric information

¢ Problem #1: information density of each pixel is still not satisfactory

Frank E Gennari and Ya-Chieh Lai (Sept. 2014). Topology design using squish patterns. US Patent
8,832,621. 31/38



Pattern Legalization

%
.
%

%7
R
] v
1

.
Space Width Area
Examples of DRC Rule

Finding legal distance vector for each topology

¢ Solving a Linear System (1D pattern) [DAC 19].
¢ Using Exist Distance Vector (2D pattern) [ICCAD20]

¢ Problem #3: 2D pattern introduces non-linear constraint, hard to solve!

32/38



Constrained AIGC

___________ Intialize
AgpA, T e/ AL A,

I 7 Discrete Diffusion Model BN
"\ L1 PO—— Tx Assign
T
Real Pattern ini T i

ToTiTo Training Sampling oToliTa New Pattern

Fold
111]1]0 Unfoldllll
1{o]ofo 11 0]1 —— (10| 1]0
1)1 N
olof1]1 1o T 7 olof1]1

[ Deep Squish Pattern Representation ] [ Topology Tensor Generation ] [ 2D Legal Pattern Assessment

Zixiao Wang et al. (2023). “DiffPattern: Layout Pattern Generation via Discrete Diffusion”. In:
Proc. DAC. 33/38
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® Future Direction
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How Machine Can Understand Picture?

R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation’, CVPR 2014,
015; s0

e, Rep perission
Slides from Justin Johnson

Machine Learning is to Fit A Function f/(x)

34/38



How Machine Can Understand Picture?

R-CNN: Region-Based CNN

Interest (Rol)
from a proposal

Girshick et al, “Rich feature hierarchies for accurate object detection and

method (V2K)  emantescgmentation’, cvpr 014

permission.

Slides from JustinVJohnson

Machine Learning is to Fit A Function f/(x)
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How Machine Can Understand Picture?

R-CNN: Region-Based CNN

/7 Warped image
regions (224x224)

Regions of
Interest (Rol)

from a proposal
~ Girshick et al, “Rich feature hierarchies for accurate object detection and
method (~2K)  semanicsegmentation’, cvpr 2014,
015;source

permission.

Slides from JustinVJohnson

Machine Learning is to Fit A Function f/(x)
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How Machine Can Understand Picture?

R-CNN: Region-Based CNN L Classify each region
Class
Class —
Class i
Conv Forward each
i Conv Net region through
Net ConvNet
Conv
& Warped image

regions (224x224)

Regions of

Input 7 3 Interest (Rol)
imag o ,4‘ 7 from a proposal
=& (e /SN method (~2k)

Slides from Justin Johnson

Machine Learning is to I'it A Function f(x)
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How Machine Can Understand Picture?

R-CNN: Region-Based CNN L Classify eachregion |

Bbox || Class Predict “transform” to correct the

Bounding box regression:

Rol: 4 numbers (t,, t,, tn, tw)

Bbox | | Class
Bbox | [ Class | ™ U c
onv
Conv Net
Conv Net

Forward each
region through
ConvNet

ﬁ Warped image

regions (224x224)

Regions of
Interest (Rol)
from a proposal
method (~2k)
Slides from Justin Johnson

Machine Learning is to it A Function f (x)
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How Machine Can Understand Text?

, Foo44%
S g 9%

fr % 33%
1&: 66Y%

c IR 7%

R 43%

t,ﬁ‘uz 7 86k v
ﬁ 33%

B 43%
©67%

' Mt
b Ry — & 35%
g 93%

(L #reTm

Machine Learning is to it A Function f/(x)
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Challenges to Al

¢ Combinatorial Problem (e.g. Coloring)

¢ Handling Complicated Rules

The three basic DRC checks

Width
Enclosure
Spacing
(a) Graph Coloring (b) Design Rule Checking
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Know the Boundary!

EDA problems

Al Model?
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Know the Boundary!

EDA problems

Math Approximate
Formualtion Algorithm
Dynamic
Programming

Al Model'?

- Search based

Concrete
Modelmg
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THANK YOU!
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