HEHP XL KRE

@ The Chinese University of Hong Kong

EDA for Al Chip Designs

Bei Yu
Chinese University of Hong Kong
byul@cse.cuhk.edu.hk

July 30, 2023

Convolutional Neural Network (CNN)

Image recognition

bouquet of bottle of water glass of water with
red flowers ice and lemon

Autonomous drive

dining table
with breakfast
items

plate of fruit

banana
slices

fork

askm/h

a person
sitting at a
table

2/68

Renaissance of Deep Learning (2006 —)

A fast learning algorithm for deep belief nets. [Hinton et.al 1996]

Data + Computing + Industry Competition

NVidia’s GPU, Google Brain (16,000 CPUs)

Speech: Microsoft [2010], Google [2011], IBM

Image: AlexNet, 8 layers [Krizhevsky et.al 2012] (26.2% -> 15.3%)

. 00:00:27

3/68

Revolution of Depth

AlexNet, 8
layers
(ILSVRC 2012)

11x11 conv, 96, /4, pool/2|

v
[5x5 conv, 256, pool/2 |
v

3x3 cony, 384

v

3x3 conv, 384 3x3_|
 Z

cony, 256, pool/2

fc, 4096

v
fc, 4096

fc, 1000

Slide Credit: He et al. (MSRA)

4/68

Revolution of Depth

AlexNet, 8 — VGG, 19 S GoogleNet, 22
layers layers

(ILSVRC 2012) (ILSVRC (ILSVRC 2014)
2014)

Slide Credit: He et al. (MSRA)

4/68

Revolution of Depth

AlexNet, 8 = VGG, 19
layers layers

(ILSVRC 2012) (ILSVRC
2014)

!

ResNet, 152
layers
(ILSVRC 2015)

4/68

Some Recent Classification Architectures

¢ AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
¢ Network in Network (Lin, Chen, and Yan 2013) 29MB

® VGG (Simonyan and Zisserman 2015) 549MB

® GoogleNet (Szegedy, Liu, et al. 2015) 51MB

¢ ResNet (He et al. 2016) 215MB

¢ Inception-ResNet (Szegedy, Vanhoucke, et al. 2016)

¢ DenseNet (Huang et al. 2017)

¢ Xception (Chollet 2017)

® MobileNetV2 (Sandler et al. 2018)

¢ ShuffleNet (Zhang et al. 2018)

5/68

Some Recent Classification Architectures

¢ AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
¢ Network in Network (Lin, Chen, and Yan 2013) 29MB

® VGG (Simonyan and Zisserman 2015) 549MB

® GoogleNet (Szegedy, Liu, et al. 2015) 51MB

¢ ResNet (He et al. 2016) 215MB

¢ Inception-ResNet (Szegedy, Vanhoucke, et al. 2016) 23MB

¢ DenseNet (Huang et al. 2017) 80MB

¢ Xception (Chollet 2017) 22MB

® MobileNetV2 (Sandler et al. 2018) 14MB

¢ ShuffleNet (Zhang et al. 2018) 22MB

5/68

80 80
75 75
70 £10
> -
? 8
g g
S 65 M
g 3
= 60 " 60
55 55
0 NGRS 6 EINRL %
\ se N AR A OS> A5 > A
AN («, LR e A AT o
\>\";\ N \~\ (,$ \~\ \Ae V\e \\2 X

! Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2017). “An analysis of deep neural
network models for practical applications”. In: arXiv preprint.

Inception-v4
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
ResNet-101
ResNet-34
ResNet-18
() GooglLeNet
ENet
© BN-NIN
5M 35M 65M 95M 125M 155M
BN-AlexNet
AlexNet
0 5 10 15 20 25 30 35 40
Operations [G-Ops]
1

Inception-v4
80 -
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
75 ResNet-101
ResNet-34
B 70 ResNet-18
g | O
I GoogleNet
=1 ENet
51
2 65
”g © BN-NIN
= 60 5M 35M 65M 95M 125M---155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Why AlexNet is large in size, but small in operations?

Special FC layers
Special Conv layers
More channels

Some redundant operators

7/68

Convolutional Neural Network (CNN)

feature maps feature maps feature maps feature maps
input image

output
category

A . h [= e N
Convolutional |

[1] A. Krizhevsky, etc. Imagenet classification with deep convolutional neural networks. NIPS 2012.
[2] J. Cong and B. Xiao. Minimizing computation in convolutional neural networks. ICANN 2014

Max-pooling is optional

Input feature map

Output
feature map

8/68

Flexibility vs. Efficiency

CPU GPU FPGA ASIC
(Raspberry Pi3) (Jetson TX2) (UltraZed) (Movidius)

- Power/Performance
Flexibilitag iiciency

10/68

When Machine Learning Meets Hardware

Convolution layer is one of the most expensive layers
¢ Computation pattern

¢ Emerging challenges

More and more end-point devices with limited memory

¢ Cameras

¢ Smartphone

® Autonomous driving

& XILINX (romit?

An Intel
Company

11/68

1st Challenge: Model Size

This item is over 100MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK

2Song Han and William J. Dally (2018). “Bandwidth-efficient Deep Learning”. In: Proc. DAC,
147:1-147:6. 12/68

2nd Challenge: Energy Efficiency

000
3‘ i % AlphaGo: 1920 CPUs and 280 GPUs,
o S ® $3000 electric bill per game

on mobile: drains battery !
on data-center: increases TCO &

3Song Han and William J. Dally (2018). “Bandwidth-efficient Deep Learning”. In: Proc. DAC,
147:1-147:6. 13/68

Application Category

Both Datacenter Edge
AMD, Microsoft,

Intel, Apple, Tencent
Nvidia, Cloud’AIiyun Qualcomm, Samsung, STMicroelectronics, NXP,
IBM, Xilinx, Baidu ‘Cloud ' MediaTek, Rockchip, Amazon_AWS, ARM, Synopsys,
HiSilicon, HUAWE Clc’)ud Imagination, CEVA, Cadence, VeriSilicon, Videantis,
Google, Fujitsu, Nokia ' Horizon Robotics, Chipintelli, Unisound, AlSpeech,
Baidu, Facebc;ok HPYE Rokid, KnuEdge, Tenstorrent, ThinClI, Koniku, Knowm,
Alibaba Thinkforc‘e ’ Mythic, Kalray, BrainChip, Aimotive, DeepScale,
Group, Cerebras ’ Leepmind, Krtkl, NovuMind, REM, TERADEEP, DEEP
Cambiricon, ’ VISION, KAIST DNPU, Kneron, Esperanto
DeePhi, gzzhcore, Technologies, Gyrfalcon Technology, GreenWaves
Bitmain, Saml:;aNova Technology, Lightelligence, Lightmatter, ThinkSilicon,
Wave Innogrit, Kortig, Hailo, Tachyum

. Systems,
Computing

Adapteva, PEZY

Source: https://basicmi

.github.io/Deep-Learning—-Processor—-List/

14/68

https://basicmi.github.io/Deep-Learning-Processor-List/

DNN Deployment Flow

Deployment Flow: A Naive Approach

O PyTorch @ o@x

1 TensorFlow Caffe

ONN model [onnx | [PyToreh

(?)

Al Chip

16/68

Deployment Flow: A Naive Approach

O PyTorch @ o@x

1 TensorFlow Caffe

ONN model [onnx | [PyToreh |

(?)

Al Chip

DNN model

16/68

Deployment Flow: A Naive Approach

O PYTorCh @ O%X DNN model

1 TensorFlow Caffe Compier

[onnx | [PyToreh |
[Hardware Description }

Language

(?)

Al Chip

16/68

Deployment Flow: A Naive Approach

O PYTorCh @ O%X DNN model

1 TensorFlow Caffe Compier

[onnx | [PyToreh |
[Hardware Description }

Language

EDA Flow

(?) '

Al Chip
Al Chip

16/68

Deployment Flow: A Naive Approach

O PyTorch @ o@x

F TensorFlow Caffe

ONN model [onnx | [PyToren |

(?)

Al Chip

Question:

Why NOT using such deployment appoarch?

DNN model

Compiler

Hardware Description
Language

EDA Flow

4

Al Chip

16/68

Deployment Flow: AI Chip Generation

O PyTorch @ o@x

4 TensorFlow Caffe

[Design Specifications]

|

Y
Hardware Description
Language
EDA Flow
4
[Al Chip]

g

HEny

module test
input in[3];

end module

Testing &

Verification

17/68

Deployment Flow: DNN Model Compilation

()PyTorch @ Avd w v

data > conv2d » relu + conv2d —» relu » flatten

|
1F TensorFlow Caffe s -~ coree

padding=(1,1),
use_bias=0 shape=(1,10) — softmax

example attributes

DNN model
jel

A n Parameter Search
Compiler i

Manual Template
Instructions for 1.0 in range(l):

for j.0 in range (]
for k.0 in range(
for i.1 in range(

for j.1 in range(|

Cl...] += A[...] * B[...]
y for i.2 in rangei.
for 3.2 in range(
. D[...] = max(C[+-.], 0.0)
Al Chip

18/68

Multi-Level Intermediate Representation (MLIR)*

LLVM

¢ Pro: Target-independent representation for optimization

¢ Con: Operating low-level operations is tricky

MLIR

¢ A tool for multi-level IR design (MLIR dialects)

¢ Enable different levels of abstraction

*https:/ /mlir.llvm.org/

19/68

https://mlir.llvm.org/

Deep-Learning Compiler Using MLIR 5

Torch-MLIR

The Torch-MLIR project aims to
provide first class compiler support
from the PyTorch ecosystem to the
MLIR ecosystem.

Other MLIR Based DL Compiler:

@ OpenXLA
@ StableHLO
© Triton

@ OneFlow

*https:/ / github.com/llvm /torch-mlir

Torch-MLIR Architecture

PL/T orch
TorchSerigt LozyTensorCore

github.com/pytorch/pytorch

Torchseript/MLIR LTe MLIR
Converter Plug-in

/

Torch Dialect

)

github.com/llvm/torchomlic

[Cindlg, Acttn,
s

Reference MLIR : cPU :
CPU runner : Backends

MLIR Ecoysystem

The overall architecture of Torch-MLIR

20/68

https://github.com/llvm/torch-mlir

MLIR For Efficient Chip Design — AI Chip Compiler

TPU-MLIR®
TPU-MLIR is an open-source machine-learning compiler based on MLIR for TPU.

Top Dialect: N e f
¢ graph optimization - _o?_ — — 1=
® quantization and inference "T\

()

TPU Dialect: I M S —
* weight reordering - : :5—{7—
® operator slicing ‘:l: ‘
¢ address assignment Teu ”Lﬁ
. o

(o)

SPengchao Hu et al. (2022). “TPU-MLIR: A Compiler For TPU Using MLIR”. In: arXiv preprint

arXin-22710 15076

21/68

Why MLIR?

Why MLIR?

¢ Stable LLVM community
¢ Easy to implement

e Efficient optimization in multi-level
abstract

*: You can simply combine other MLIR
projects by dialect conversion.

ISA

C/CPP RTL

22/68

MLIR For Efficient Chip Design — CIRCT

Upstream frontends (selection)

¢ Circuit IR Compilers and Tools (CIRCT) [=] \ Q“é
¢ apply MLIR and the LLVM development
methodology

* to the domain of hardware design tools.

[Design Specifications]

Hardware Description
Language

EDA Flow

] | mmmtm(wi) VA=

[Al Chip

23/68

MLIR For Efficient Chip Design — CIRCT”

Calyx’

Calyx is a compiler infrastructure for languages that target hardware accelerators.

Firrtl 8

Firrtl is an intermediate representation (IR) for digital circuits designed as a platform for
writing circuit-level transformations.

Calyx and Firrtl has been integrated with the LLVM CIRCT infrastructure and is
available as a dialect within it.

Cal'x |-|Ig %RTL

"Rachit Nigam et al. (2021). “A compiler infrastructure for accelerator generators”. In:
Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 804-817.

Shttps:/ / github.com /chipsalliance/firrtl

Shttps: / /circt.llvm.org /

24/68

https://github.com/chipsalliance/firrtl
https://circt.llvm.org/

MLIR For Efficient Chip Design — CIRCT

Chisel v3.6.0:

¢ The primary change in Chisel v3.6.0 is the transition from the Scala FIRRTL Compiler
to the new MLIR FIRRTL Compiler(CIRCT/FIRTOOL).

¢ "Meaningless intermediate variable" problem is solved.

Chisel v5.0.0:
¢ Scala FIRRTL Compiler (SFC) is deprecated.

CcCHISeU it
ALLIANCE
%7onathan Bachrach et al. (2012). “Chisel: constructing hardware in a scala embedded language”.
In: Proceedings of the 49th Annual Design Automation Conference, pp. 1216-1225. 25/68

Today We Focus on EAD Part

module test
input in[3];
eﬁarnodub
[Design Specifications] =
St
%
A4 -+
Hardware Description
Language
EDA Flow
A o Testing &
; 5t Verification
[Al Chip] e
<

26/68

Outline

@ Arithmetic Unit Synthesis

@ Datapath Driven Placement

@ Wafer-Scale Floorplan

27/68

Arithmetic Unit Synthesis

[Design Specifications]

A4

Hardware Description
Language

|

EDA Flow

y

Al Chip]

b

1

sy

module test
input in[3];

end module

RTL Design

Logic Synthesis

Place & Route

Testing &

Verification

Packaging

29/68

Arithmetic Unit Synthesis

PSweep PAL GNP-Adder RL-MUL
ISLPED17 TCADI19 TCAD21 DAC23

Arithmetic Unit

Synthesis =)

Logic synthesis v.s. Physical synthesis

Level
S - b ow & U o

63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 1512 9 6 3 0

Constraints mapping between two synthesis stages is difficult.

30/68

Question:
Why We Need to Optimize Arithmetic Circuits (Adder & Multiplier)?

31/68

Key Challenges

Front-End Team Perspective: Back-End Team Perspective:
T T T T T ‘ ‘ ‘
» | G1
230 a1 7500 | G2 -
» 220 |- . =
[37 o f
@ 210 |- g = 7000
o [
8 200 |- 1 S 6500 | 2
8 o
190 - 1
6000 - B
180 | | | | | | | |
5 10 15 20 25 30 35 340 360 380 400
mfo Critical Delay (ps)

® Run design tools with all solutions is time-consuming. => Enumeration is not
feasible!

¢ For 3K solutions, running time is 3000 x 5 = 15K mins.
e What we care: Pareto Frontier Curve

32/68

Pareto Frontier

¢ All the points are not dominated by any other point.
¢ Evaluation: Hyper-volume.

- Size of the region bounded by the Pareto frontier and reference point.
- Each dimension of the reference point is the maximum value on that dimension.

fal) fo(a)

...................

Hypervolume
Reference point :

®Pareto-optimal point

filz)

33/68

A Learning Flow for DSE in Adder Synthesis

Input prefix adder
structures

Feature Extraction
[
Y e
Initialization
| Random Sampling | (INIT)
v
| Run synthesis on the samples |
I ® General flow;

|
v

| Model Training | Modeling ® Use ajoint output Power-Delay function
7 (PD) as the regression output rather than

using any single output;

| Prediction in exhaustive space

i ® Select different features in different

A j
- - Verification : :
Run synthesis on the designs a llcatlons.
predicted as superior (VERD pp
\ I

v
Output Pareto-optimal
adders

a-sweep learning

4, Roy, Y. Ma, J. Miao and B. Yu, "A learning bridge from architectural synthesis to physical
design for exploring power efficient high-performance adders", ISLPED’17. 34/68

Can we do more?

¢ Can we improve the quality of the Pareto-Frontier?

¢ We use 3K samples to cover the solution space. Can we use less labelled data for
training ?

¢ Select representative samples to learn the property of the Pareto-Frontier;

* Fewer samples are needed, and the cost for labeling data is reduced.

35/68

Active Learning Flow

® Gaussian process model;
® A prediction consists of a mean and a variance;

¢ Off-the-shelf library for implementation.

20
—— Prediction
151 ®W= 95% confidence interval

0 2 4 6 8 10
X

2Y. Ma, S. Roy,]. Miao, J. Chen and B. Yu, "Cross-Layer Optimization for High Speed Adders: A
Pareto Driven Machine Learning Approach”, TCAD’19. 36/68

Active Learning Flow

¢ Given the prediction (m, o), a hyper-rectangle is defined as
HR(x) = {y : mi(x) = Boi(x) <yi < mi(x) + foi(x)}
¢ The uncertainty region is defined as:

Rt+1 (X) = Rt(X) n HR(X)

f2($)‘ f2(x)‘ Rt(l‘)
E Ri1(z)
o =
: HR(z) HR(z)
m@) e

Active Learning Flow

P, if max(Rs(x)) < min(R¢(x")) + 6,
x € ¢ N, if max(Ri(x")) < min(Rs(x)) + 4,

U, otherwise.

fa(z) 4

Pareto-optimal

Non-Pareto-optimal

Unclassified

fi(2)

38/68

Active Learning Flow

¢ Pick the one with largest uncertainty among the Pareto-optimal designs and
unclassified designs.

_ -
wi(x) = max lly =yl

fa(x) A

y
o)

h

39/68

Pareto-Frontier Results

8000
2300 Reb.Adder‘ Reb.Adder
Real PF Real PF
2200 - Predicted PF = | 7500 - Predicted PF =+ _|
2100 1 3
€ 27000 | 1
%2000 * g
(0]
<1900 | | 6500)
1800 |- - 6000 | i
| | | | | | | | |
340 360 380 400 420 340 360 380 400 420
Critical Delay(ps) Critical Delay(ps)

40/68

Pareto-Frontier Results

2300 ‘ ‘ 8000 T w
Rep. Adder Rep. Adder
Real PF Real PF
2200 - Predicted PF w/ o-sweep = | 7500 Predicted PF w/a-sweep =+ |
. Predicted PF w/ PAL . Predicted PF w/ PAL ~
N82100 - . 2
=1 =7000 |- .
52000 4 B
2
o o
<1900 4 6500 - :
1800 - 6000 |- _
| | | | | | | | |
340 360 380 400 420 340 360 380 400 420
Critical Delay (ps) Critical Delay (ps)

40/68

Graph Learning for Adder Structure

Pareto Frontiers in
The Proposed DSE Multi-obj Spaces
Framework

-
Surrogate N B .
e Model i icted Pz -
Prefix Adder Graphs Pgeililg:flgssrietr?
in Design Space P Layouts &

Graph Neural Process in the adder design space exploration.

¢ A variational graph autoencoder is built to extract features from prefix adder
structures automatically;
¢ A neural process is exploited to reduce computational complexity.

°H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy and B. Yu, "High-Speed Adder Design Space Exploration
via Graph Neural Processes," TCAD'21. 41/68

Our solution: Overview (I)

The Adders in
Design Space

! 3
1 1
Il 1
1 1
Il 1
1 1
Il 1
1 1
| Incrementally Categorize Pareto-optimal, i
. I
<:::> Sample Adders| | Non-Pareto-optimal & |
| Unknown Adders !
1
: i
1 1
- :
| N nknown Set iS |
:chucmi:ll Optimization- Empty? :
{ based DSE Framework ____ 77 Y . ’
<:::> Output Adders Classified
as Pareto-optimal
-) Evaluation on o o Evaluation on Evaluation on
Initial Adders Model Sampled Adders Outputs

42/68

Our solution: Overview (II)

{ Graph Construction @ 10101 o 3
' 1 '
| Node Feature 7y |1 0 2 o1 o4}
I ng N2 np Ny Matrix: :
i :
: — ng \s 2 0 o1 0a) !
! ny . n0 10001000,
! Adjusted —n1 (91091000 | |
! Adjacency "2 | 00100110 :
y T Ne Matrix: 000 - 1
| Prefix Adder Graph 7 100001101 !

{Graph 4T
! Encoder

Latent Feature Vector of
Adder Design
Neural

'
'

'

'

'

'

'

'

'

'

'

'

'

A '
Proces |
'

'

'

'

'

'

'

'

'

'

'

Categorize Pareto-optimal,
Non-Pareto-optimal &
Unknown Adders

Incrementally
‘Sample Adders

MLP Encoder MLP Encoder

Sequential Optimization-
{ DSE Framework

L ((Ouporhdiens Clasted i Graph J
as Parcio-optimal __/\ ! Decoder i

N ! 1 MLP Decoder
Evaluation on Evaluation on Evaluatidn on i | Inner Product | |
O st adders & Mol BT gt adders I Oupuy : I:;:l '
\ ! :
\ 1 '

| StreamI: VGAE | Stream IL: NP

Output: Reconstructed Adjusted Output: Predicted QoR metric
Adjacency Matrix values with Uncertainties

43/68

Multiplier

¢ A partial product generator (PPG)
¢ A compressor tree (CT), which is the most critical part.

¢ A carry propagation adder

A(N-bit) B(N-bit) A(N-bit) B(N-bit)

PP Generation

D 2:2
Compressor
o,

Compressor

Stagel

Stage2

011
000
Full Adder
Full Adder

Result 00110010

Multiplier architecture

44/68

RL in Multiplier Synthesis Optimization

Deep Q-learning(DQN) based
framework

ResNet-18 as the agent

A state s refers to a structure.

® An action a refers to modification on
current structure s

Pareto-driven Reward

.

.) ,
'
[] Stage 2 Next step Stage 2

Synthesis r Synthesis
& STA t & STA

*D. Zuo, Y. Ouyang, Y. Ma "RL-MUL: Multiplier Design Optimization with Deep Reinforcement
Learning," DAC’23. 45/68

Datapath Driven Placement

[Design Specifications]

Y

A

Hardware Description
Language

|

y

EDA Flow

Al Chip

)

b

1

sy

module test
input in[3];

end module

RTL Design
Logic Synthesis

Place & Route

Testing &

Verification

Packaging

47/68

Dataflow Optimization and Ph

al Synthesis

APM
ICCADO0
Datapath

Placement == e

[Ty Y

Dataflow Optimization and Physical Synthesis

¢ Dataflow optimization becomes essential for Al chips

¢ Schedules operation by data availability
® Exposes opportunity for parallelism and data reuse

¢ Datapath regularity gives rise to new physical synthesis approaches

¢ Directly determines system performance!

(a)Our flow 200 iteration (b)Our flow detailed placement

49/68

Datapath Driven Placement:

® Datapath driven physical synthesis is
not new!

¢ Placer has little control of exact
locations if datapath is generated
separately

¢ Abstract physical model

° Bit-sliced abstraction
® Compiled from HDL
® Blocks are placed abutted

* Two-step heuristic for linear placement

® quadratic assignment
¢ sliding window optimization

bstract Physical Model

Multif
plicagt g ooon |l Partial
Products
Muxes
Sum

i

Tad 4

Ber
tiplier

Booth Booth Booth CSA Booth CSA CPA

MUX MUX MUX MUX

APM of a booth multiplier

Ye, T. Tao, and Giovanni De Micheli. "Data path placement with regularity", ICCAD’00. 50/68

Datapath Driven Placement: SAPT

¢ Structure aware placement obtains better steiner wire length — better routed wire

length

¢ Apply bit-slice alignment constraints for force-directed placer

¢ Regularity driven detailed placement

‘ out<0>

nett —]

out<1>

Fixed : out<g>
pins out<9>

(b) Manual F (c) F
Total HPWL: 1442 Total HPWL: 1415
Total StWL: 1443 Total StWL: 1582
=

Regularity matters

Initial HPWL Optimization

and Fixed Point

Pseudo Net Insertion

Skewed Weighting with
Step Size Scheduling

Linear System Solver
and Fixed Point {
Fixed Point and Pseudo
Net Alignment Constraint
¥

Datapath Aware
Detailed Placement

Bit-Stack Aligned
Cell Swapping
Datapath Group

- 2N J
N Y
Global Placement Detailed Placement and
Legalization

Structure aware placement

*Ward, Samuel I, et al. "Keep it straight: Teaching placement how to better handle designs with

datapaths", ISPD"12.

51/68

ML Techniques for Datapath Driven Placement

¢ Machine learning techniques are involved

¢ Graph-based (e.g., automorphism) and physical features (e.g., cell area) are
analyzed and extracted from the netlist

* Features are fed to SVMs and NN to classify and evaluate datapath patterns

¢ Maximize the evaluation accuracies of datapath and non-datapath pattern

¢ Proposed new placer: PADE

(a) Logic Circuit (b) PADE: (c) FastPlace3:
Total StWL: 524 Total StWL: 612
oo Lelwlel,

10| 11 (12| 13 L s

6

67|89 9% Ge

23|45 2 5

9
L R A LS omn ol 4

\ Fixed Pins /

Fixed pins

PADE effectively handles datapath in placement.

3Ward, Samuel, Duo Ding, and David Z. Pan. "PADE: A high-performance placer with automatic
datapath extraction and evaluation through high dimensional data learning", DAC’12. 52/68

Datapath Driven Systolic Array Placement

¢ Systolic arrays are a popular choice to support neural network computations
¢ Current FPGA CAD tools cannot synthesize them in high quality

® One solution: restrict fixed locations for PEs

® Sufficient DSPs, close to used I/O banks

I O O Y 1 i
sl l E i
Thlled 11 é 't ['l"a'a

PE placement with floorplan constraints

*Zhang, Jiaxi, et al. "Frequency improvement of systolic array-based CNNs on FPGAs",
ISCAS'19. 53/68

PE Array Placement with 2D Regularity

Solution: ;

A. PE array regularization

0. PE array orientation :

1. Quadratic placement with | |
hard regularity i / (a) PE cells are placed in macro gen-(b) PE cells are placed along with
: B Brorco || S eration, wirelength: 264 random logic, wirelength: 244
J] : i with regularity
2. RePlAce with array) I 20
ax |

regularization
\ C. Enhanced Nesterov's method :
L PE PE PE.
I P

Solution+1 I:I D I

. BE PE;2 PEss

E M T

2y

4. Detailed placement

Placement Flow

Regularity Constraints

¢ Simultaneously place the PEs and random logic cells for better solution quality

® Analytical global placement with PE array regularization

°Fang, Donghao, et al. "Global placement exploiting soft 2D regularity", ISPD"22. 54/68

Regularity Extraction: Network Flow Approach

® Datapath main frame (DMF)

* aset of n disjoint paths from input to output
® maximize the number of datapath gates on these paths

¢ Can be optimally identified by the min-cost max-flow algorithm

Y2)

DMF identification can be transformed to a network flow problem

6Xiang, Hua, et al. "Network flow based datapath bit slicing", ISPD"13. 55/68

Wafer-Scale Floorplan

[Design Specifications]

Y

A

Hardware Description
Language

|

y

EDA Flow

Al Chip

)

b

1

sy

module test
input in[3];

end module

RTL Design
Logic Synthesis

Place & Route

Testing &

Verification

Packaging

57/68

Wafer-Scale Engine (WSE)

The Cerebras CS-1’s Wafer-Scale Engine
(WSE) is the largest and most powerful
processor ever built.

* Consisting of 800 by 1060 identical
processing elements.

¢ Keep all memory and all computation
together on a single monolithic chip.

Die photograph of the Cerebras Wafer-Scale
Engine (WSE; at left). For comparison, the largest
GPU is shown on the right to scale.

7].P. Fricker, A. Hock, “Building a Wafer-Scale Deep Learning System: Lessons Learned”,
Supercomputing’19. 58/68

Cerebras: Largest
Chip Ever Built

* 46,225 mmZ silicon

¢ 2.6 Trillion transistors, 7nm TSMC
* 850,000 processor cores

* 40 Gigabytes of On-chip Memory
* 9 PByte/s memory bandwidth

* 100 Pbit/s fabric bandwidth

@erebras

CS-1 Supercomputer Hardware

@erebras

Kernel Definition

* conv: basic convolution kernel

1
X width
1 convl.w (H,W,F)
1
1 conv3.w
1 p——
1 E = convi.w
[
Q| = <
£ I =|c N
T+ 1 £
H U I ©
: (hyw,c, ki) (hyw,cy,ky) J(hw,c3ks)
1
K I kernel = (TP,H,W, F; h,w, ¢, ¢, c3,Kkq, Ky, k3)
1
L 1 time = max convj.time mem = max convj.mem
C I 1sis3 1sis3
(a) Arguments of conv (b) Performance of a kernel with 3 convs

e 8 formal arguments: (H, W, R, S, C, K, T, U) = fixed input parameters.

® 4 execution arguments: (h, w, ¢, k) = variables to be determined.
61/68

Problem Formulation

* Determine the execution parameters and the locations for all kernels. [ISPD’20]8

¢ Blocks are soft: kernel sizing

¢ Floorplanning
¢ Optimize performance, wirelength, etc.

Input

Input

Extract _

a\

-@lelo-ereie-0delo-
I

?JE

Output

Output

(a) Network Architecture (b) Kemel Graph (¢) Execution Plan

Kernel floorplanning. Figure adopted from [ICCAD20]°

8Michael James, et.al., "Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning

Accelerator", ISPD’20.
“Bentian Jiang, et.al., CU.POKer: Placing DNNs onWafer-Scale Al Accelerator with Optimal
62/68

Kernel Sizing, ICCAD’20.

CU.POKer

Initialize best_solution and best_time.
Set lower_bound = 0, upper_bound = MAX_INT.

Binary search

Tower_bound -+ min_gap
<upper_bound

| targe_time = [(lower_bound + upper_bound)/2] |

| Kernel candidate generation under target_time. |

| Data-path aware kernel placement under target_time. |

Set upper_bound = target_time.

—| Set lower_bound = target_time.

Update best_solution and best_time if needed.

Neighbor-range search based on best_time. I

T
y

| Post refinement on best_solution. |

Output best_solution.

Two-steps Search

¢ Binary search
® Neighbor-range search

® Post refinement

Searching under Target Time

¢ Kernel candidates generation with optimal
shapes under given target time

¢ Data-path aware placement

“Bentian Jiang, et.al., CU.POKer: Placing DNNs onWafer-Scale Al Accelerator with Optimal
63/68

Kernel Sizing, ICCAD’20.

CU.POKer: Data-path-aware Kernel Placement

0 I i

Overall Flow

¢ Given a target time T, generate all the kernel candidates with optimal shapes and
execution times under T.

¢ According to the connectivity graph, generate the topological order of the kernels for
placement.

¢ Place the kernels compactly row by row in the topological order.

64/68

Comparisons with Conventional Floorplanning Heuristics

Simulated Annealing Placer:

Max_time: 76698 Divide and Conquer Placer: CU.POKer:
Wire leneth: 3237 Max_time: 65106 Max_time: 65170
e Wire_length: 2650.5 Wire_length: 1489.5
Adapter_cost: 15 . .
Score: 110478 Adapter_cost: 18 Adapter_cost: 12
core Score: 93321 Score: 81265

Performance comparisons with SA and DC placers on 8 public benchmarks.

65/68

Conclusion

Conclusion

module test
input in[3]; RTL Design
end module

[Design Specifications]

M

Logic Synthesis
Place & Route

e

A4
[Hardware Description]

Language
EDA Flow
A o Testing &
[Al Chip])31& Verification
had

Packaging

¢ Arithmetic Unit Synthesis
¢ Datapath Driven Placement

¢ Wafer-Scale Floorplan

67/68

THANK YOU!

	CNN Energy Efficiency
	Main Talk
	Arithmetic Unit Synthesis
	Datapath Driven Placement
	Wafer-Scale Floorplan

