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Convolutional Neural Network (CNN)

Image recognition

bouquet of bottle of water  glass of water with
red flowers ice and lemon

Autonomous drive
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with breakfast
items
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slices
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askm/h

a person
sitting at a
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Renaissance of Deep Learning (2006 —)

A fast learning algorithm for deep belief nets. [Hinton et.al 1996]

Data + Computing + Industry Competition

NVidia’s GPU, Google Brain (16,000 CPUs)

Speech: Microsoft [2010], Google [2011], IBM

Image: AlexNet, 8 layers [Krizhevsky et.al 2012] (26.2% -> 15.3%)

. 00:00:27
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Revolution of Depth

AlexNet, 8
layers
(ILSVRC 2012)

11x11 conv, 96, /4, pool/2|

v
[ 5x5 conv, 256, pool/2 |
v

3x3 cony, 384

v

3x3 conv, 384 3x3_|
 Z

cony, 256, pool/2

fc, 4096

v
fc, 4096

fc, 1000

Slide Credit: He et al. (MSRA)
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Revolution of Depth

AlexNet, 8 — VGG, 19 S GoogleNet, 22
layers layers

(ILSVRC 2012) (ILSVRC (ILSVRC 2014)
2014)

Slide Credit: He et al. (MSRA)
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Revolution of Depth

AlexNet, 8 = VGG, 19
layers layers

(ILSVRC 2012) (ILSVRC
2014)

!

ResNet, 152
layers
(ILSVRC 2015)
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Some Recent Classification Architectures

¢ AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
¢ Network in Network (Lin, Chen, and Yan 2013) 29MB

® VGG (Simonyan and Zisserman 2015) 549MB

® GoogleNet (Szegedy, Liu, et al. 2015) 51MB

¢ ResNet (He et al. 2016) 215MB

¢ Inception-ResNet (Szegedy, Vanhoucke, et al. 2016)

¢ DenseNet (Huang et al. 2017)

¢ Xception (Chollet 2017)

® MobileNetV2 (Sandler et al. 2018)

¢ ShuffleNet (Zhang et al. 2018)
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Some Recent Classification Architectures

¢ AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
¢ Network in Network (Lin, Chen, and Yan 2013) 29MB

® VGG (Simonyan and Zisserman 2015) 549MB

® GoogleNet (Szegedy, Liu, et al. 2015) 51MB

¢ ResNet (He et al. 2016) 215MB

¢ Inception-ResNet (Szegedy, Vanhoucke, et al. 2016) 23MB

¢ DenseNet (Huang et al. 2017) 80MB

¢ Xception (Chollet 2017) 22MB

® MobileNetV2 (Sandler et al. 2018) 14MB

¢ ShuffleNet (Zhang et al. 2018) 22MB
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! Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2017). “An analysis of deep neural
network models for practical applications”. In: arXiv preprint.
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Inception-v4
80 -
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
75 ResNet-101
ResNet-34
B 70 ResNet-18
g | O
I GoogleNet
=1 ENet
51
2 65
”g © BN-NIN
= 60 5M 35M 65M 95M 125M---155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Why AlexNet is large in size, but small in operations?

Special FC layers
Special Conv layers
More channels

Some redundant operators
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Convolutional Neural Network (CNN)

feature maps feature maps feature maps feature maps
input image

output
category

A . h [ = e N
Convolutional |

[1] A. Krizhevsky, etc. Imagenet classification with deep convolutional neural networks. NIPS 2012.
[2] J. Cong and B. Xiao. Minimizing computation in convolutional neural networks. ICANN 2014

Max-pooling is optional

Input feature map

Output
feature map
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Flexibility vs. Efficiency

CPU GPU FPGA ASIC
(Raspberry Pi3) (Jetson TX2) (UltraZed) (Movidius)

- Power/Performance
Flexibilitag iiciency
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When Machine Learning Meets Hardware

Convolution layer is one of the most expensive layers
¢ Computation pattern

¢ Emerging challenges

More and more end-point devices with limited memory

¢ Cameras

¢ Smartphone

® Autonomous driving

& XILINX (romit?

An Intel
Company
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1st Challenge: Model Size

This item is over 100MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK

2Song Han and William J. Dally (2018). “Bandwidth-efficient Deep Learning”. In: Proc. DAC,
147:1-147:6. 12/68



2nd Challenge: Energy Efficiency

000
3‘ i % AlphaGo: 1920 CPUs and 280 GPUs,
o S ® $3000 electric bill per game

on mobile: drains battery !
on data-center: increases TCO &

3Song Han and William J. Dally (2018). “Bandwidth-efficient Deep Learning”. In: Proc. DAC,
147:1-147:6. 13/68



Application Category

Both Datacenter Edge
AMD, Microsoft,

Intel, Apple, Tencent
Nvidia, Cloud’AIiyun Qualcomm, Samsung, STMicroelectronics, NXP,
IBM, Xilinx, Baidu ‘Cloud ' MediaTek, Rockchip, Amazon_AWS, ARM, Synopsys,
HiSilicon, HUAWE Clc’)ud Imagination, CEVA, Cadence, VeriSilicon, Videantis,
Google, Fujitsu, Nokia ' Horizon Robotics, Chipintelli, Unisound, AlSpeech,
Baidu, Facebc;ok HPYE Rokid, KnuEdge, Tenstorrent, ThinClI, Koniku, Knowm,
Alibaba Thinkforc‘e ’ Mythic, Kalray, BrainChip, Aimotive, DeepScale,
Group, Cerebras ’ Leepmind, Krtkl, NovuMind, REM, TERADEEP, DEEP
Cambiricon, ’ VISION, KAIST DNPU, Kneron, Esperanto
DeePhi, gzzhcore, Technologies, Gyrfalcon Technology, GreenWaves
Bitmain, Saml:;aNova Technology, Lightelligence, Lightmatter, ThinkSilicon,
Wave Innogrit, Kortig, Hailo, Tachyum

. Systems,
Computing

Adapteva, PEZY

Source: https://basicmi

.github.io/Deep-Learning—-Processor—-List/
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DNN Deployment Flow



Deployment Flow: A Naive Approach

O PyTorch @ o@x

1 TensorFlow Caffe

ONN model [ onnx | [ PyToreh

(?)

Al Chip
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Deployment Flow: A Naive Approach

O PyTorch @ o@x

1 TensorFlow Caffe

ONN model [ onnx | [ PyToreh |

(?)

Al Chip

DNN model
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Deployment Flow: A Naive Approach

O PYTorCh @ O%X DNN model

1 TensorFlow Caffe Compier

[ onnx | [ PyToreh |
[ Hardware Description }

Language

(?)

Al Chip
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Deployment Flow: A Naive Approach

O PYTorCh @ O%X DNN model

1 TensorFlow Caffe Compier

[ onnx | [ PyToreh |
[ Hardware Description }

Language

EDA Flow

(?) '

Al Chip
Al Chip
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Deployment Flow: A Naive Approach

O PyTorch @ o@x

F TensorFlow Caffe

ONN model [ onnx | [ PyToren |

(?)

Al Chip

Question:

Why NOT using such deployment appoarch?

DNN model

Compiler

Hardware Description
Language

EDA Flow

4

Al Chip
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Deployment Flow: AI Chip Generation

O PyTorch @ o@x

4 TensorFlow Caffe

[ Design Specifications ]

|

Y
Hardware Description
Language
EDA Flow
4
[ Al Chip ]

g

HEny

module test
input in[3];

end module

Testing &

Verification
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Deployment Flow: DNN Model Compilation

()PyTorch @ Avd w v

data > conv2d » relu + conv2d —» relu » flatten

|
1F TensorFlow Caffe s -~ coree

padding=(1,1),
use_bias=0 shape=(1,10) — softmax

example attributes

DNN model
jel

A n Parameter Search
Compiler i

Manual Template
Instructions for 1.0 in range(l):

for j.0 in range (]
for k.0 in range(
for i.1 in range(

for j.1 in range(|

Cl...] += A[...] * B[...]
y for i.2 in rangei.
for 3.2 in range(
. D[...] = max(C[+-.], 0.0)
Al Chip
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Multi-Level Intermediate Representation (MLIR)*

LLVM

¢ Pro: Target-independent representation for optimization

¢ Con: Operating low-level operations is tricky

MLIR

¢ A tool for multi-level IR design (MLIR dialects)

¢ Enable different levels of abstraction

*https:/ /mlir.llvm.org/
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https://mlir.llvm.org/

Deep-Learning Compiler Using MLIR 5

Torch-MLIR

The Torch-MLIR project aims to
provide first class compiler support
from the PyTorch ecosystem to the
MLIR ecosystem.

Other MLIR Based DL Compiler:

@ OpenXLA
@ StableHLO
© Triton

@ OneFlow

*https:/ / github.com/llvm /torch-mlir

Torch-MLIR Architecture

PL/T orch
TorchSerigt LozyTensorCore

github.com/pytorch/pytorch

Torchseript/MLIR LTe MLIR
Converter Plug-in

/

Torch Dialect

)

github.com/llvm/torchomlic

[Cindlg, Acttn,
s

Reference MLIR : cPU :
CPU runner : Backends

MLIR Ecoysystem

The overall architecture of Torch-MLIR
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https://github.com/llvm/torch-mlir

MLIR For Efficient Chip Design — AI Chip Compiler

TPU-MLIR®
TPU-MLIR is an open-source machine-learning compiler based on MLIR for TPU.

Top Dialect: N e f
¢ graph optimization - _o?_ — — 1=
® quantization and inference "T\

()

TPU Dialect: I M S —
* weight reordering - : :5—{7—
® operator slicing ‘:l: ‘
¢ address assignment Teu ”Lﬁ
. o

(o)

SPengchao Hu et al. (2022). “TPU-MLIR: A Compiler For TPU Using MLIR”. In: arXiv preprint

arXin-22710 15076
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Why MLIR?

Why MLIR?

¢ Stable LLVM community
¢ Easy to implement

e Efficient optimization in multi-level
abstract

*: You can simply combine other MLIR
projects by dialect conversion.

ISA

C/CPP RTL
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MLIR For Efficient Chip Design — CIRCT

Upstream frontends (selection)

¢ Circuit IR Compilers and Tools (CIRCT) [=] \ Q“é
¢ apply MLIR and the LLVM development
methodology

* to the domain of hardware design tools.

[ Design Specifications ]

Hardware Description
Language

EDA Flow

] | mmmtm(wi) VA=

[ Al Chip
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MLIR For Efficient Chip Design — CIRCT”

Calyx’

Calyx is a compiler infrastructure for languages that target hardware accelerators.

Firrtl 8

Firrtl is an intermediate representation (IR) for digital circuits designed as a platform for
writing circuit-level transformations.

Calyx and Firrtl has been integrated with the LLVM CIRCT infrastructure and is
available as a dialect within it.

Cal'x |-|Ig %RTL

"Rachit Nigam et al. (2021). “A compiler infrastructure for accelerator generators”. In:
Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 804-817.

Shttps:/ / github.com /chipsalliance/firrtl

Shttps: / /circt.llvm.org /
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https://github.com/chipsalliance/firrtl
https://circt.llvm.org/

MLIR For Efficient Chip Design — CIRCT

Chisel v3.6.0:

¢ The primary change in Chisel v3.6.0 is the transition from the Scala FIRRTL Compiler
to the new MLIR FIRRTL Compiler(CIRCT/FIRTOOL).

¢ "Meaningless intermediate variable" problem is solved.

Chisel v5.0.0:
¢ Scala FIRRTL Compiler (SFC) is deprecated.

CcCHISeU it
ALLIANCE
%7onathan Bachrach et al. (2012). “Chisel: constructing hardware in a scala embedded language”.
In: Proceedings of the 49th Annual Design Automation Conference, pp. 1216-1225. 25/68




Today We Focus on EAD Part

module test
input in[3];
eﬁarnodub
[ Design Specifications ] =
St
%
A4 -+
Hardware Description
Language
EDA Flow
A o Testing &
; 5t Verification
[ Al Chip ] e
<
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Outline

@ Arithmetic Unit Synthesis

@ Datapath Driven Placement

@ Wafer-Scale Floorplan
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Arithmetic Unit Synthesis



[ Design Specifications ]

A4

Hardware Description
Language

|

EDA Flow

y

Al Chip ]

b

1

sy

module test
input in[3];

end module

RTL Design

Logic Synthesis

Place & Route

Testing &

Verification

Packaging
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Arithmetic Unit Synthesis

PSweep PAL GNP-Adder RL-MUL
ISLPED17 TCADI19 TCAD21 DAC23

Arithmetic Unit

Synthesis =)

Logic synthesis v.s. Physical synthesis

Level
S - b ow & U o

63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 1512 9 6 3 0

Constraints mapping between two synthesis stages is difficult.
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Question:
Why We Need to Optimize Arithmetic Circuits (Adder & Multiplier)?
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Key Challenges

Front-End Team Perspective: Back-End Team Perspective:
T T T T T ‘ ‘ ‘
» | G1
230 a1 7500 | G2 -
» 220 |- . =
[ 37 o f
@ 210 |- g = 7000
o [
8 200 |- 1 S 6500 | 2
8 o
190 - 1
6000 - B
180 | | | | | | | |
5 10 15 20 25 30 35 340 360 380 400
mfo Critical Delay (ps)

® Run design tools with all solutions is time-consuming. => Enumeration is not
feasible!

¢ For 3K solutions, running time is 3000 x 5 = 15K mins.
e What we care: Pareto Frontier Curve
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Pareto Frontier

¢ All the points are not dominated by any other point.
¢ Evaluation: Hyper-volume.

- Size of the region bounded by the Pareto frontier and reference point.
- Each dimension of the reference point is the maximum value on that dimension.

fal) fo(a)

...................

Hypervolume
Reference point :

®Pareto-optimal point

filz)

33/68



A Learning Flow for DSE in Adder Synthesis

Input prefix adder
structures

Feature Extraction
[
Y e
Initialization
| Random Sampling | (INIT)
v
| Run synthesis on the samples |
I ® General flow;

|
v

| Model Training | Modeling ® Use ajoint output Power-Delay function
7 (PD) as the regression output rather than

using any single output;

| Prediction in exhaustive space

i ® Select different features in different

A j
- - Verification : :
Run synthesis on the designs a llcatlons.
predicted as superior (VERD pp
\ I

v
Output Pareto-optimal
adders

a-sweep learning

4, Roy, Y. Ma, J. Miao and B. Yu, "A learning bridge from architectural synthesis to physical
design for exploring power efficient high-performance adders", ISLPED’17. 34/68



Can we do more?

¢ Can we improve the quality of the Pareto-Frontier?

¢ We use 3K samples to cover the solution space. Can we use less labelled data for
training ?

¢ Select representative samples to learn the property of the Pareto-Frontier;

* Fewer samples are needed, and the cost for labeling data is reduced.

35/68



Active Learning Flow

® Gaussian process model;
® A prediction consists of a mean and a variance;

¢ Off-the-shelf library for implementation.

20
—— Prediction
151 ®W= 95% confidence interval

0 2 4 6 8 10
X

2Y. Ma, S. Roy, ]. Miao, J. Chen and B. Yu, "Cross-Layer Optimization for High Speed Adders: A
Pareto Driven Machine Learning Approach”, TCAD’19. 36/68




Active Learning Flow

¢ Given the prediction (m, o), a hyper-rectangle is defined as
HR(x) = {y : mi(x) = Boi(x) <yi < mi(x) + foi(x)}
¢ The uncertainty region is defined as:

Rt+1 (X) = Rt(X) n HR(X)

f2($)‘ f2(x)‘ Rt(l‘)
E Ri1(z)
o =
: HR(z) HR(z)
m@ ) e



Active Learning Flow

P, if max(Rs(x)) < min(R¢(x")) + 6,
x € ¢ N, if max(Ri(x")) < min(Rs(x)) + 4,

U, otherwise.

fa(z) 4

Pareto-optimal

Non-Pareto-optimal

Unclassified

fi(2)
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Active Learning Flow

¢ Pick the one with largest uncertainty among the Pareto-optimal designs and
unclassified designs.

_ -
wi(x) = max lly =yl

fa(x) A

y
o)

h

39/68



Pareto-Frontier Results

8000
2300 Reb.Adder‘ Reb.Adder
Real PF Real PF
2200 - Predicted PF = | 7500 - Predicted PF =+ _|
2100 1 3
€ 27000 | 1
%2000 * g
(0]
<1900 | | 6500 )
1800 |- - 6000 | i
| | | | | | | | |
340 360 380 400 420 340 360 380 400 420
Critical Delay(ps) Critical Delay(ps)
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Pareto-Frontier Results

2300 ‘ ‘ 8000 T w
Rep. Adder Rep. Adder
Real PF Real PF
2200 - Predicted PF w/ o-sweep = | 7500 Predicted PF w/a-sweep =+ |
. Predicted PF w/ PAL . Predicted PF w/ PAL ~
N82100 - . 2
=1 =7000 |- .
52000 4 B
2
o o
<1900 4 6500 - :
1800 - 6000 |- _
| | | | | | | | |
340 360 380 400 420 340 360 380 400 420
Critical Delay (ps) Critical Delay (ps)
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Graph Learning for Adder Structure

Pareto Frontiers in
The Proposed DSE Multi-obj Spaces
Framework

-
Surrogate N B .
e Model i icted Pz -
Prefix Adder Graphs Pgeililg:flgssrietr?
in Design Space P Layouts &

Graph Neural Process in the adder design space exploration.

¢ A variational graph autoencoder is built to extract features from prefix adder
structures automatically;
¢ A neural process is exploited to reduce computational complexity.

°H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy and B. Yu, "High-Speed Adder Design Space Exploration
via Graph Neural Processes," TCAD'21. 41/68



Our solution: Overview (I)

The Adders in
Design Space

! 3
1 1
Il 1
1 1
Il 1
1 1
Il 1
1 1
| Incrementally Categorize Pareto-optimal, i
. I
<:::> Sample Adders| | Non-Pareto-optimal & |
| Unknown Adders !
1
: i
1 1
- :
| N nknown Set iS |
:chucmi:ll Optimization- Empty? :
{ based DSE Framework ____ 77 Y . ’
<:::> Output Adders Classified
as Pareto-optimal
-) Evaluation on o o Evaluation on Evaluation on
Initial Adders Model Sampled Adders Outputs
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Our solution: Overview (II)

{ Graph Construction @ 10101 o 3
' 1 '
| Node Feature 7y |1 0 2 o1 o4}
I ng N2 np Ny Matrix: :
i :
: — ng \s 2 0 o1 0a) !
! ny . n0 10001000,
! Adjusted —n1 (91091000 | |
! Adjacency "2 | 00100110 :
y T Ne Matrix: 000 - 1
| Prefix Adder Graph 7 100001101 !

{Graph 4T
! Encoder

Latent Feature Vector of
Adder Design
Neural

'
'

'

'

'

'

'

'

'

'

'

'

'

A '
Proces |
'

'

'

'

'

'

'

'

'

'

'

Categorize Pareto-optimal,
Non-Pareto-optimal &
Unknown Adders

Incrementally
‘Sample Adders

MLP Encoder MLP Encoder

Sequential Optimization-
{ DSE Framework

L ((Ouporhdiens Clasted i Graph J
as Parcio-optimal __/\ ! Decoder i

N ! 1 MLP Decoder
Evaluation on Evaluation on Evaluatidn on i | Inner Product | |
O st adders & Mol BT gt adders I Oupuy : I:;:l '
\ ! :
\ 1 '

| StreamI: VGAE | Stream IL: NP

Output: Reconstructed Adjusted Output: Predicted QoR metric
Adjacency Matrix values with Uncertainties
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Multiplier

¢ A partial product generator (PPG)
¢ A compressor tree (CT), which is the most critical part.

¢ A carry propagation adder

A(N-bit) B(N-bit) A(N-bit) B(N-bit)

PP Generation

D 2:2
Compressor
o,

Compressor

Stagel

Stage2

011
000
Full Adder
Full Adder

Result 00110010

Multiplier architecture
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RL in Multiplier Synthesis Optimization

Deep Q-learning(DQN) based
framework

ResNet-18 as the agent

A state s refers to a structure.

® An action a refers to modification on
current structure s

Pareto-driven Reward

.

. ) ,
'
[ ] Stage 2 Next step Stage 2

Synthesis r Synthesis
& STA t & STA

*D. Zuo, Y. Ouyang, Y. Ma "RL-MUL: Multiplier Design Optimization with Deep Reinforcement
Learning," DAC’23. 45/68




Datapath Driven Placement
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Dataflow Optimization and Ph

al Synthesis

APM
ICCADO0
Datapath

Placement == e

[Ty Y




Dataflow Optimization and Physical Synthesis

¢ Dataflow optimization becomes essential for Al chips

¢ Schedules operation by data availability
® Exposes opportunity for parallelism and data reuse

¢ Datapath regularity gives rise to new physical synthesis approaches

¢ Directly determines system performance!

(a)Our flow 200 iteration (b)Our flow detailed placement
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Datapath Driven Placement:

® Datapath driven physical synthesis is
not new!

¢ Placer has little control of exact
locations if datapath is generated
separately

¢ Abstract physical model

° Bit-sliced abstraction
® Compiled from HDL
® Blocks are placed abutted

* Two-step heuristic for linear placement

® quadratic assignment
¢ sliding window optimization

bstract Physical Model

Multif
plicagt g ooon |l Partial
Products
Muxes
Sum

i

Tad 4

Ber
tiplier

Booth Booth Booth CSA Booth CSA CPA

MUX MUX MUX MUX

APM of a booth multiplier

Ye, T. Tao, and Giovanni De Micheli. "Data path placement with regularity", ICCAD’00. 50/68



Datapath Driven Placement: SAPT

¢ Structure aware placement obtains better steiner wire length — better routed wire

length

¢ Apply bit-slice alignment constraints for force-directed placer

¢ Regularity driven detailed placement

‘ out<0>

nett —]

out<1>

Fixed : out<g>
pins out<9>

(b) Manual F (c) F
Total HPWL: 1442 Total HPWL: 1415
Total StWL: 1443 Total StWL: 1582
=

Regularity matters

Initial HPWL Optimization

and Fixed Point

Pseudo Net Insertion

Skewed Weighting with
Step Size Scheduling

Linear System Solver
and Fixed Point {
Fixed Point and Pseudo
Net Alignment Constraint
¥

Datapath Aware
Detailed Placement

Bit-Stack Aligned
Cell Swapping
Datapath Group

- 2N J
N Y
Global Placement Detailed Placement and
Legalization

Structure aware placement

*Ward, Samuel I, et al. "Keep it straight: Teaching placement how to better handle designs with

datapaths", ISPD"12.
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ML Techniques for Datapath Driven Placement

¢ Machine learning techniques are involved

¢ Graph-based (e.g., automorphism) and physical features (e.g., cell area) are
analyzed and extracted from the netlist

* Features are fed to SVMs and NN to classify and evaluate datapath patterns

¢ Maximize the evaluation accuracies of datapath and non-datapath pattern

¢ Proposed new placer: PADE

(a) Logic Circuit (b) PADE: (c) FastPlace3:
Total StWL: 524 Total StWL: 612
oo Lelwlel,

10| 11 (12| 13 L s

6

67|89 9% Ge

23|45 2 5

9
L R A LS omn ol 4

\ Fixed Pins /

Fixed pins

PADE effectively handles datapath in placement.

3Ward, Samuel, Duo Ding, and David Z. Pan. "PADE: A high-performance placer with automatic
datapath extraction and evaluation through high dimensional data learning", DAC’12. 52/68



Datapath Driven Systolic Array Placement

¢ Systolic arrays are a popular choice to support neural network computations
¢ Current FPGA CAD tools cannot synthesize them in high quality

® One solution: restrict fixed locations for PEs

® Sufficient DSPs, close to used I/O banks

I O O Y 1 i
sl l E i
Thlled 11 é 't ['l"a'a

PE placement with floorplan constraints

*Zhang, Jiaxi, et al. "Frequency improvement of systolic array-based CNNs on FPGAs",
ISCAS'19. 53/68



PE Array Placement with 2D Regularity

Solution: ;

A. PE array regularization

0. PE array orientation :

1. Quadratic placement with | |
hard regularity i / (a) PE cells are placed in macro gen-(b) PE cells are placed along with
: B Brorco || S eration, wirelength: 264 random logic, wirelength: 244
J] : i with regularity
2. RePlAce with array ) I 20
ax |

regularization
\ C. Enhanced Nesterov's method :
L PE PE PE.
I P

Solution+1 I:I D I

. BE PE;2 PEss

E M T

2y

4. Detailed placement

Placement Flow

Regularity Constraints

¢ Simultaneously place the PEs and random logic cells for better solution quality

® Analytical global placement with PE array regularization

°Fang, Donghao, et al. "Global placement exploiting soft 2D regularity", ISPD"22. 54/68



Regularity Extraction: Network Flow Approach

® Datapath main frame (DMF)

* aset of n disjoint paths from input to output
® maximize the number of datapath gates on these paths

¢ Can be optimally identified by the min-cost max-flow algorithm

Y2)

DMF identification can be transformed to a network flow problem

6Xiang, Hua, et al. "Network flow based datapath bit slicing", ISPD"13. 55/68



Wafer-Scale Floorplan
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Wafer-Scale Engine (WSE)

The Cerebras CS-1’s Wafer-Scale Engine
(WSE) is the largest and most powerful
processor ever built.

* Consisting of 800 by 1060 identical
processing elements.

¢ Keep all memory and all computation
together on a single monolithic chip.

Die photograph of the Cerebras Wafer-Scale
Engine (WSE; at left). For comparison, the largest
GPU is shown on the right to scale.

7].P. Fricker, A. Hock, “Building a Wafer-Scale Deep Learning System: Lessons Learned”,
Supercomputing’19. 58/68



Cerebras: Largest
Chip Ever Built

* 46,225 mmZ silicon

¢ 2.6 Trillion transistors, 7nm TSMC
* 850,000 processor cores

* 40 Gigabytes of On-chip Memory
* 9 PByte/s memory bandwidth

* 100 Pbit/s fabric bandwidth

@erebras



CS-1 Supercomputer Hardware

@erebras




Kernel Definition

* conv: basic convolution kernel

1
X width
1 convl.w (H,W,F)
1
1 conv3.w
1 p——
1 E = convi.w
[
Q| = <
£ I =|c N
T+ 1 £
H U I ©
: (hyw,c, ki) (hyw,cy,ky) J(hw,c3ks)
1
K I kernel = (TP,H,W, F; h,w, ¢, ¢, c3,Kkq, Ky, k3)
1
L 1 time = max convj.time mem = max convj.mem
C I 1sis3 1sis3
(a) Arguments of conv (b) Performance of a kernel with 3 convs

e 8 formal arguments: (H, W, R, S, C, K, T, U) = fixed input parameters.

® 4 execution arguments: (h, w, ¢, k) = variables to be determined.
61/68



Problem Formulation

* Determine the execution parameters and the locations for all kernels. [ISPD’20]8

¢ Blocks are soft: kernel sizing

¢ Floorplanning
¢ Optimize performance, wirelength, etc.

Input

Input

Extract _

a\

-@lelo-ereie-0delo-
I

?JE

Output

Output

(a) Network Architecture (b) Kemel Graph (¢) Execution Plan

Kernel floorplanning. Figure adopted from [ICCAD20]°

8Michael James, et.al., "Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning

Accelerator", ISPD’20.
“Bentian Jiang, et.al., CU.POKer: Placing DNNs onWafer-Scale Al Accelerator with Optimal
62/68
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CU.POKer

Initialize best_solution and best_time.
Set lower_bound = 0, upper_bound = MAX_INT.

Binary search

Tower_bound -+ min_gap
<upper_bound

| targe_time = [(lower_bound + upper_bound)/2] |

| Kernel candidate generation under target_time. |

| Data-path aware kernel placement under target_time. |

Set upper_bound = target_time.

—| Set lower_bound = target_time.

Update best_solution and best_time if needed.

Neighbor-range search based on best_time. I

T
y

| Post refinement on best_solution. |

Output best_solution.

Two-steps Search

¢ Binary search
® Neighbor-range search

® Post refinement

Searching under Target Time

¢ Kernel candidates generation with optimal
shapes under given target time

¢ Data-path aware placement

“Bentian Jiang, et.al., CU.POKer: Placing DNNs onWafer-Scale Al Accelerator with Optimal
63/68

Kernel Sizing, ICCAD’20.



CU.POKer: Data-path-aware Kernel Placement

0 I i

Overall Flow

¢ Given a target time T, generate all the kernel candidates with optimal shapes and
execution times under T.

¢ According to the connectivity graph, generate the topological order of the kernels for
placement.

¢ Place the kernels compactly row by row in the topological order.

64/68



Comparisons with Conventional Floorplanning Heuristics

Simulated Annealing Placer:

Max_time: 76698 Divide and Conquer Placer: CU.POKer:
Wire leneth: 3237 Max_time: 65106 Max_time: 65170
e Wire_length: 2650.5 Wire_length: 1489.5
Adapter_cost: 15 . .
Score: 110478 Adapter_cost: 18 Adapter_cost: 12
core Score: 93321 Score: 81265

Performance comparisons with SA and DC placers on 8 public benchmarks.
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¢ Arithmetic Unit Synthesis
¢ Datapath Driven Placement

¢ Wafer-Scale Floorplan
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THANK YOU!
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