Placement in Advanced Technology Nodes

Bei Yu

Department of Computer Science & Engineering
Chinese University of Hong Kong
byul@cse.cuhk.edu.hk

September 30, 2021

Placement in Design Flow

ﬂ ‘ System Specification I

Architectural Design I

module test ‘

input in[3]; ¢
endmodule Functional Design and

Logic Design (RTL)

i '

b Logic Synthesis

o] '
‘ Physical Design ’

!

DRC Physical Verification and
Lvs Signoff
STA ‘
- ‘ Fabrication |
I 1}
i 1
fissses ‘

‘ Packaging and Testing |

huudil ;

Chip I

2/50

Placement in Design Flow

System Specification ’

T} |

!

module test ‘

Architectural Design ’

input in[3];

!

endmodule

Functional Design and
Logic Design (RTL)

!

o

Logic Synthesis

AR

Physical Design

’ Floorpanning ’

/
/

/

! i
/

Placement |

| i

’ Clock Tree Synthesis ’

\ l

Signal Routing

\
\ i
\

\ ’ Timing Closure ’

|

v

DRC Physical Verification and

Lvs Signoff

STA ‘

- ‘ Fabrication ’
I 1}
i 1
fissses ‘

Packaging and Testing ’

!

huudil

Chip ’

2/50

EDA Toy Example

3/50

EDA Toy Example

3/50

EDA Toy Example

3/50

Moore’s Law to Extreme Scaling

Transistor Count

1013

1011

—_
e}
NeJ

107
10°

10°

101 [! ! ! ! ! !
1960 1970 1980 1990 2000 2010 2020

e CPU o
e GPU o o
© RAM &S ot
® FPGA A 'Iglnl"
@ Flash ° . .o':: 'i&o ® .
o® 000 .98 o
Z °...0.:8!=l'
80° .o:'.O Bogete
og.; .°.3. . ° °
.l°§'.... °
8

80

Year

4/50

An Inverter Example

45nm 20135 — "¢
32nm 0165 —*

22nm
5/50

Challenge: Larger and Larger Scale

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

Challenge: Larger and Larger Scale

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

Challenge: Larger and Larger Scale

g il E|H
ﬁ

T -

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.

6/50

Challenge: Larger and Larger Scale

J | B : T !
. EJ Abgehs g U
i o 1 e TR
PR i o P Y
ol .I.- Y :ﬁ:'-.IE-I g
M S
it :
R 2 - -- o Bals |
TRy & s y i
oIy X -
-. -I_.: 11 'lI [I-:.-.
- -I.- .' ek | .I.il.q-
'; T 1 LJF,
. 28 & ']

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

Challenge: Larger and Larger Scale

TE 4

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

Challenge: Larger and Larger Scale

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

Challenge: Larger and Larger Scale

1
LE
I 1
1.
4

S -

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.

6/50

Challenge: Larger and Larger Scale

|

| ——
| §
| i
i [b | | —
£ i
i, Bl T —

I l |:|r|

-
. =
i

| —

Placement [Lu+,DAC’14]: 221K nets, 63 fixed macros and 210K movable cells.
6/50

How Difficult Placement is

* Huge problem sizes: tens of millions of cells

¢ Huge solution space: larger than 1K x 1K grids in a layout

)4 WE
41 41281
a4 a1
w g
AAL &
) [2)
A A AA/A
a4l X
#states: ~10123 #states: ~10360 #states: >1(0100,000
Google AlphaGo
Train using

7/50

Good Placement vs. Bad Placement

Random Initial Final Solution Routing Solution

il Placement. Cost 74,5562, Channel Facir: 100 Final Placement. Cost 235381, Chanrel Fackr: 100 Routig suooseded wit a channelwidh factorof 7.

WL = 5.47e+4 WL = 6.73e+3

230 cells in FPGA (design e 64 in the MCNC benchmark suite)

8/50

Typical Placement Flow

WL: 1.00e+6

5?% @D

1. Global placement

[

9/50

Typical Placement Flow

WL: 1.00e+6 WL: 1.05e+6

; %ﬂm s

J 0O

1. Global placement 2. Legalization

[

9/50

Typical Placement Flow

WL: 1.00e+6 WL: 1.05e+6 WL: 1.02e+6

Eﬂ% %] SO | | :]

0 O g B B| |EBE B

1. Global placement 2. Legalization 3. Detailed Placement

9/50

Global Placement Algorithms

The History of Placement Algorithms

<1970-1980s 1980s-1990s

Simulated
Annealing

B Timberwolf
reuer VPR
Dunlop & n
Kernighan
Quadra
Assignment

Partitioning

Cadence
QPlace

Low quality ~Low
efficiency

11/50

The History of Placement Algorithms

<1970-1980s 1980s-1990s

1990s-201C5

Simulated Min-Cut Analytic Analytic

Annealing (Multi-level)

Breuer Timberwolf FengShui GORDIAN
VPR
Dunlop &
Dragon Capo
Kernighan
Quadr: Capo
Assignme +Rooster

Partitioning

Nonlinear

Naylor SimPL
Synopsis ComP

Quadratic NorkriEar

ePlace
RePlAce

POLAR

BonnPlace

DREAMPlace

mFar

NTUplace MAPLE

Cadence m
QPlace

FastPlace

Low quality ~Low
efficiency

o
&
=
2
I}
3
=

11/50

Recent Development of Placement

Ly ePlace i
BonnPlace RePlAce DREAMPIlace)
2 MAPLE _ =
= 0.951 e © -
S mPL6 @ rqL ComPLx POLAR
- Min-Cut
@ 0.9 a : . B
= FastPlace3 ' Quadratic
£ Nonlinear
G 0.85 APlace3 NTUplace3 i
2
0.8- Capo 10.5 |
2006 2008 2010 2012 2014 2016 2018 2020
Year

12/50

Quadratic Placement — Optimizing Wirelength Objective

lei_le"'ZD’t—YH max|x; — x;| + max |y; — ;|

Py Py
e || L
\ T \ T \
4-pin net Optimal: min. Steiner tree Clique model HPWL
- /
~N

Manhattan-distance model

13/50

Quadratic Placement — Optimizing Wirelength Objective

Z(xi _xj)z +Z(}’i - }’j)z

6) 5 o
1 /
/

b i\ II /1 x\

T] ERaSAY ERAEE!
T T \ T \ T

4-pin net Optimal: min. Steiner tree Clique model Star model
- /
~N

Euclidean-distance model

13/50

Quadratic Placement — Optimizing Wirelength Objective

Pessimistic Optimistic PN
Tree

Distance Manhattan Manhattan ~ Euclidean Manhattan Euclidean

Accuracy * %k Kk ok * * * %k K * Kk k
Smoothness * * % * %k k * % * % %k %k

*
Manhattan
" Euclidean

05

13/50

Quadratic Placement — Optimizing Wirelength Objective

Compute wirelength for net1
WLy = (x;— %)% + (= y2)?

Physical
intuition?

How to solve?

'{‘F’ Minimize
Compute wirelength for net2 total wirelength

WLy = (x; = x3)° + O —y3)*

.——//pe/ﬂ//——l (%2,72) Quadratic I;rogrammlng (QP)
min.—xTAx — bTx
(x1,¥1) 2 2

12
1 e Gradient of x
(x3,¥3) Ax=b=0

14/50

Quadratic Placement — Optimizing Wirelength Objective

Compute wirelength for net1
WLy = (x;— %)% + (= y2)?

Physical 2

Optimal solution
X1 =Xy = X3

'{‘F’ Minimize
Compute wirelength for net2 total wirelength

WLy = (1 —x3)% + (g —y3)°
How to solve?

.__/@///' (292) Quadratic I;rogramming (QP) ==
T _ T
v 5 mm.zx Ax —b' x T
net2 A ocks

Ax —b =0
(x3,¥3)

14/50

Quadratic Placement — Satisfying Constraints

j connected to 6
f_%

* Rough Legalization Original obj. min <+ Y (xg =) ++ Anchor loc

* Leverage anchors i Vo,

Obj. with anchors ~ min. - +Z(Xs — %)+ we(x6 —xq,) + -
%_/

wL

netgg

[J
Pseudo-net nqt,q

Anchor ag

Input Rough legalization Insert anchors

15/50

Quadratic Placement — Overall Optimization Flow

A T

Initial placement Solve QP Rough legalization Insert anchors
Optimize ob;j. Satisfy constraints
- ~ J
1stiteration
[]
=l 1 -]
Solve QP Rough legalization Insert anchors Solve QP
Optimize ob;j. Satisfy constraints Optimize obj.
N -~ J
2nd jteration 3rd iteration

16/50

Quadratic Placement —

Iter=0, WL=4.484e+07

JUW 5 ‘

O 2000 4000 6000 8000 10000 12000

Solve QP
Iter=10, WL=6.496e+07

Solve QP

Iter=1, WL=1.501e+08

Rough Lega||zat|on -

lter=11, WL=9.208e+07

_— mENREam g mm
2000 4000 €00 8000 10000 12000

Rough Legalization

Overall Optimization Flow

Iter—3 WL=1. 1736+08

lter=2, WL=5.556e+07

- 12000
Rough Legahzatlon

Solve QP
Iter=21, WL=8.572e+07

lter=20, WL=6.824e+07

2000 400 6000 8000 10000 12000

Rough Legalization

16/50

Quadratic Placement — Summary

¢ Iterative optimization

Wirelength models: HPWL, clique model, star model

QP solver is fast!

Rough legalization

Satisfying Satisfying
Constraints Constraints

17/50

Nonlinear Placement

* Mathematical formulation
* d; denotes the density of bin i

rgcliyn WL(x,y),
s.t. dp(x,y) <tgq,Vb € Bins

* Nonlinear placement objective
* Lagrangian relaxation

rgcliyn WL(x,y)+ AD(x,y)

N

Wirelength Density

.

—

= _Gas

d

Bins

18/50

Nonlinear Placement — Wirelength Smoothing1

*WL(x,y) = Teer WLe(x,5) ?
* HPWL = max|xl- - xj| + max |y; — Yj|

* Equivalently (maxxi — min xl-) + (maxyi — min yi)
l l l L

* Log-sum-exp (LSE)

* LSE(x;y) = yanieT’L

* max{xy, -, xn} < LSE(x;y) < max{xy,+, x,} + yIn(n)
* LSE(x;y) ~ max{xq, -, x,}

e —LSE(x; —y) =~ min{xy, -, x,,}

Xi X Yi i
* Whe(x,y;v) = y(anviEeey +anviEee Y+ anviEeeY + anviEee)

\Hf—/w—/

X y

'William C. Naylor, Ross Donelly, and Lu Sha (2001). Non-linear optimization system and method for
wire length and delay optimization for an automatic electric circuit placer. US Patent 216,632. 19/50

Nonlinear Placement — Wirelength Smoothing2

* Weighted average (WA)
« WL (x .) _ Zviee xjeXilY _ Zviee xie~XilY EviGBJ’ieyi/y B Zviee yie~VilY
eHYTI= Lyjee e*ilY Yyee e~ /Y 2, eeyi/y Zyee e YilY

\H/—/ H/—/ More recent work

DAC2019
* Larger y = smoother, but less accurate BiG. Bivariant smoothing
Net: (x, 0) (0, 0) N o
LSE(+;5)
LSE(31 HPWL
HPWL /
o WA 1) " WA(:5)

2Meng—Kai Hsu, Valeriy Balabanov, and Yao-Wen Chang (2013). “TSV-aware analytical
placement for 3-D IC designs based on a novel weighted-average wirelength model”. In: [EEE
TCAD 32.4, pp. 497-509. 20/50

2.3.1 Numerical Stability and Approximation Error. Although multivari-
ate wirelength models (LSE, WA) are able to approximate maximum (min-
imum) as close as possible in theory, numerical instability may happen
when y is too small. On a modern computer, a double-precision floating-
point cannot handle e* when z > 710 (overflow issue), or z < =746
(precision limit). Thus, an appropriate value of y needs to be determined
carefully for LSE and WA. On the other hand, there is no exponential func-
tion in a bivariate function, so the value of y can be much smaller, as long
as il is representable and appropriate. As a resull, the bivariate wirelength
model is able to achieve a lower approximation error of HPWL, when
compared to the multivariate wirelength model [14]. However, a lower
approximation error does not always imply better solution quality, since
the optimization process of the placement problem is very complicated.

2.3.2 Total Runtime. In an oplimization process, the total runtime is
roughly equal to the number of iterations times the runtime per iteration.
The runtime per iteration can be further divided into the intrinsic cost of
[y and the cost of calling the function. The bivariate wirelength model
has a smaller intrinsic computational cost, which is apparent since the
multivariate wirelength model uses more complex functions such as
logarithm and exponentiation, whereas the bivariate wirelength model
only uses square and square rool. However, the calculation process of a
bivariate wirelength model requires recursive function calls, which in-
duces considerable computational overheads. The number of iterations to
convergence is difficult to analyze in a placement problem since there are
overlapping and density constraints. However, it has been observed that
the bivariate wirelength model needs more iterations Lo converge [14].
Combining all these factors, the multivariate wirelength model could be

Algorithm: BiG wirelength model

Input:
X =[xy, ..., xn]: variables (array)
f: smooth maximum function
Output:
G = (g1, - . ., gn]: derivatives for each variables (array)

max’: estimated maximum value (scalar)
. max; « —oo //first largest value
. max; « -0 //second largest value
. for each x;:
if x; > max;:
max; «— max
maxy « x;
else if x; > max;:
max; « x;
. sumg « 0
. for each x;:
if x; == max:
F)
9i — g f(xi, maxz)
else:
J
9i — g5 f(xi, maxy)
sumg « sumgy +4i
. for each g;:
- =9
9i < Sumy
. max’ « max,
. return G, max’

Figure 1: Algorithm of BiG.

3Fam—Keng Sun and Yao-Wen Chang (2019). “BiG: A bivariate gradient-based wirelength model

for analytical circuit placement”. In: Proc. DAC.

21/50

Nonlinear Placement — Density Penalty*>

* Potential function for standard cells
* P.(b,v) and P, (b, v) are the overlap functions between bin b and cell v

* Dp(x,y) = Xpey Pc(b, V)P, (b,v)

P.(by) o Pwalby) Psigmoia(b.V)

0.5 Iw,, w, {).5;4/,, C Wy Wy wy Wy, Wy 0.5w, w, 0.5w,
Bell-shape smoothing Sigmoid smoothing
Non-smooth [TCAD 2005] [DAC 2012]

Non-convex

*Andrew B Kahng and Qinke Wang (2005). “Implementation and extensibility of an analytic
placer”. In: IEEE TCAD 24.5, pp. 734-747.

5Sheng Chou, Meng-Kai Hsu, and Yao-Wen Chang (2012). “Structure-aware placement for
datapath-intensive circuit designs”. In: Proc. DAC, pp. 762-767. 22/50

Nonlinear Placement — Density Penalty

* Potential function for standard cells
* Smoothed potential function

* D\b(x:}’) = Z‘UEV P;c(b, U)P; (b: V)
*min WL(x,y)+AD(x,y)
X,y

2 Dy y) —ta)”
b
* Challenges

* Gradient only has local view
* Need multi-level bins

Multi-level bins

23/50

Nonlinear Placement — D

* Potential function for fixed macros
* Bell-shape smoothing works well for standard cells
* For fixed macros, P'(x,y) = G(x,y) * P(x,y)

ISPD2005 Exact potential Bell-shape smoothing Gaussian smoothing
adaptec2 P(x,y) P'(x,y)

23/50

Detailed Placement Algorithms

NP-Hardness

¢ Multi-bin Knapsack?
* TSP?

WL: 1.02e+6

/]

2

3. Detailed Placement

25/50

Single-Row Problem

movable cells

ingle-Row Placement®

min 3" w(n) (F(n) - £(n))

neN
st z(n) <a(c(p) +zoffs(p) <T(n)

(for all p € n)

2l <)) (for all 7)
e)
x(cj) + % < w(cy)
(for all 7,)
2(ch,) < xhoy (for all 7)

¢ Dual of Min-Cost Flow

¢ Unimodular matrix

This LP is the dual of a minimum-cost flow prob-
lem. To see this, we introduce an auxiliary variable
vy with the value zero. Then every constraint has the
form v; — v; > a;;, where a;; is a constant and v; and
v; are variables. Fach of these constraints corresponds
to a directed edge in a graph and to a dual variable
fij. As the dual LP we then obtain

max Z (2% fl’]’
4]
_w(

st > fiy =Y fik= {w(n?
i k 0

) if vy is z(n)
if v; is F(n)
otherwise
(for all j)

fij >0 (for all 7, 7)

%Jens Vygen (1998). “Algorithms for detailed placement of standard cells”. In: Proc. DATE,

pp. 321-324.

Single-Row Placement’ ®

Cell 1

Cell 2 [

Cell 3

Cellm

Figure 4: Shortest path computation for legalizing
a row placement.

7 Andrew B Kahng, Paul Tucker, and Alex Zelikovsky (1999). “Optimization of linear placements
for wirelength minimization with free sites”. In: Proc. ASPDAC, pp. 241-244.

8 Andrew B. Kahng, Igor L. Markov, and Sherief Reda (2004). “On legalization of row-based
placements”. In: Proc. GLSVLSI, pp. 214-219. 28/50

Single-Row Placement’

Single-Segment Clustering Algorithm

num_old_cluster n
Initialize old_cluster[i] as standard cell Ci, i=1,2, ..., num_old_cluster.
do
Find the bounds list and the Optimal Region Center Xic for Ki,
and set X(old_cluster[i]) = Xic
newcount 1 // the count for the number of new clusters
new_cluster[1] old_cluster[1] // initialize the first new cluster

i1
while(j < num_old_cluster)
do
if new_cluster[newcount] and old_cluster[j+1] has overlap
Cluster new_cluster[newcount] and old_cluster[j+1] to form the
new new_cluster[newcount]
Merge the bounds list for new_cluster[newcount] and old_cluster[j+1]
to get the new bounds list for new_cluster[newcount]
Find the Optimal Region Center Xc for new_cluster[newcount]
based on the new bounds st
X(new_cluster[newcount]) Xc
else

newcount
i

num_old_cluster
old_cluster[i]

Assign the Ci (i=1

until no overlap among old_cluster[i], (i
2

old_cluster[j] (j=1,2,

newcount + 1 //begin a new cluster new_cluster[newcount+1]

newcount
new_cluster(i] (i=1, ..., newcount)
num_old_cluster)
n) to the positions rding to the positions of the

um_old_cluster) they belong to

“Min Pan, Natarajan Viswanathan, and Chris Chu (2005). “An efficient and effective detailed
placement algorithm”. In: Proc. ICCAD, pp. 48-55.

29/50

Can we consider Cell Ordering?

¢ Sung Woo Hur and John Lillis (2000). “Mongrel: hybrid techniques for standard cell
placement”. In: Proc. ICCAD, pp. 165-170

® Yuelin Du and Martin D. F. Wong (2014). “Optimization of standard cell based
detailed placement for 16 nm FinFET process”. In: Proc. DATE, 357:1-357:6

30/50

DREAMPlace

Typical Nonlinear Placement Algorithm

Objective of nonlinear placement

min WL(x,y), ()
xy) 0 (3, WL(ex,y)) +AD(x,y)
st. D(x,y) <t4 b efN. N Doy
ireleng enst
p N

Challenges of Nonlinear Placement

Low efficiency

» >3h for 10M-cell design
Limited acceleration

» Limited speedup, e.g. mPL, due to clustering
Huge development effort

m >lyear for ePlace/RePlAce

32/50

Advances in Deep Learning Hardware/Software

Peak Double Precision FLOPS Amazon
V100

F TensorFlov

[

Microsoft

Deep Learning
Toolkit

GFLOPS

Keras

M1060 haswell Skvlake

Sandy vy
Bridge Bridge

Nehalem

2008 2010 2012 2014 2016 2018

Year Facebook
Over 60x speedup in
neural network training
since 2013

Deep learning toolkits

33/50

DREAMPlace Strategies

¢ Cast the non-linear placement problem into a neural network training problem.
¢ Leverage deep learning hardware (GPU) and software toolkit (e.g. Pytorch)

¢ Enable ultra-high parallelism and acceleration while getting the state-of-the-art
results.

%¥ibo Lin et al. (2019). “DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement”. In: Proc. DAC. 34/50

Analogy between NN Training and Placement

n
min Zf B (xi; W), i) + AR(W) ngnZWL(qs(xi;w),yi) + AD(w)
Forward Propagation
Compute obj
Data Neural Error Net Neural Error
Instance |fl> Network |fl> Function Instance Ifl> Network Ifl> Function
(xi, yi) P(;w) f(o(xizw),yi) | (ei,0) WL(-;w) WL(e;; w)

‘Backward Propagation

Compute gradient - 9obj

Train a neural network Solve a placement

"Yibo Lin et al. (2019). “DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for

35/50
NMadorn VT QT Placrormont” Tn: PRears YA /

Analogy between NN Training and Placement

Casting the placement problem into neural network training

n
Net instances min Z WL(e;; w) + AD(w)
i
@ p @ Forward Propagation
AL Compute obj -
~ ~ >
Input . ‘ . ‘ Net Neural Error
\\ / Instance Hl> Network Hl> Function
i v - (x,v) (e, 0)4 WL(-; w) WL(e;; w)
) Backward Propagation
Net Wirelength Output Comput dient 2
pute gradient -1
Train a neural network Solve a placement

"Yibo Lin et al. (2019). “DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement”. In: Proc. DAC. 35/50

DREAMPlace Architecture

Leverage highly optimized deep learning toolkit PyTorch

il Match RePlAce
Nonlinear

Nesterov’s

Method
Automatic [TCAD'19,Cheng+]
Gradient

-
C4+/CUDA
12

2c, Cheng et al. (2019). “RePlAce: Advancing Solution Quality and Routability Validation in
Global Placement”. In: [EEE TCAD 38.9, pp. 1717-1730. 36/50

Experimental Results

-
DREAMPIlace
* CPU: Intel E5-2698 v4 @2.20GHz
* GPU: 1 NVIDIA Tesla V100

\- Single CPU thread was used

J

r

RePlAce
* CPU: 24-core 3.0 GHz Intel Xeon
* 64GB memory allocated

|\

Same quality of results!

10M-cell design
finishes within 5min c.f. 3h

RePlAce Threads = 1 m 10 == 20 40

DREAMPlace == V100
10*
O
34x £ 102
speedup =
o
10°
™
% 1SPD 2005 Benchmarks &
R 200K~2M cells ~ BD
104
0
43x £ 102
speedup €
o
10° T T T T T T

©
599& Industrial Benchmarks ‘.)\q*\
& 1M~10M cells &

37/50

Future Directions

New Objectives

SGD, ADAM, etc. Routability, timing, etc.

DREAM
Gate sizing, BIGGER Multi-GPU,

floorplannin distributed computing,
P g mixed precision,

Applicable to Other)
CAD Problems New Accelerations

38/50

Ex: Routability Estimation x DREAMPlace

Backward Propagation Forward Propagation
Gradient w.r.t. locations Cell Locations
(VxL,VyL) (x.y)

| b 3
i | 1
i | 1
|| Gradient w.r.t. features VmL | 3 Features M € RM*Nx3 !
| | |
s i 1
| B |
i 8 s
: o w
! [1
: D |
i | 1
: ['

R

Network
Backward
O

Gradient w.r.t. congestion map

Conv

Vil

Trans Conv

i

Input Trans Output [Congestion Penalty L = 5 || fr(M)][3

13Siting Liu et al. (2021). “Global Placement with Deep Learning-Enabled Explicit Routability
Optimization”. In: Proc. DATE. 39/50

Datapath

Huawei Ascend 910

Level
o - v ow s ou oo

' 1 1
63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 1512 9 6 3 0

(a) Logic perspective (b) Physical synthesis
perspective 41/50

(c) Current EDA tool output (d) Manual design

42/50

Datapath Driven Standard Cell Placement

¢ Classical idea: bit-sliced DSP datapaths [Cai, DAC’90]

¢ Decide ordering of linearly placed blocks
¢ Solved by Ax in the search space

¢ Standard cell placement [Tsay, TCAD95]

¢ Strongly connected subcircuits (cones) are extracted
® BFS + heuristics
¢ Placed as macro cells

43/50

Datapath Driven Placement: Abstract Physical Model

¢ Placer has little control of exact
locations if datapath is generated
separately

Multif
plicagt oo Partial
Products
Muxes
Sum

11

I

iaa 4

® Abstract physical model [Ye,

ICCAD'00]
* Bit-sliced abstraction witiplier
* Compiled from HDL

¢ Blocks are placed abutted

* Two-step heuristic for linear placement

Booth Booth Booth CSA Booth cs
MUX MUX MUX MUX

® quadratic assignment
¢ sliding window optimization APM of a booth multiplier [Ye, ICCAD’00]

44/50

Regularity Extraction

¢ Consider cells with the same bit-slice are lined up horizontally [Nijssen [WL596]

® geometric regularity: circuit is fitted onto a matrix of rectangular buckets
¢ interconnect regularity: most nets are within one slice/one stage

¢ Typical methods for regularity extraction

¢ Search-wave expansion [Nijssen IWLS96]
Signature-based [Arikati, ICCAD97]

Template covering [Chowdhary, TCAD99]
Network flow [Xiang, [ISPD"13]

Bipartite graph vertex covering [Huang, DAC17]

45/50

Regularity Extraction: Network Flow Approach

® Datapath main frame (DMF) [Xiang, ISPD’13]

¢ aset of n disjoint paths from input to output
° maximize the number of datapath gates on these paths

¢ Can be optimally identified by the min-cost max-flow algorithm

DMEF identification can be transformed to a network flow problem [Xiane, ISPD’13] 46/50

Datapath Driven Systolic Array Placement

® Systolic arrays are a popular choice to support neural network computations
¢ Current FPGA CAD tools cannot synthesize them in high quality

¢ One solution: restrict fixed locations for PEs [Zhang, [SCAS'19]
¢ Sufficient DSPs, close to used I/O banks

ocfipE16 1udPrHs

0cfLPE16Uboicki pel73_ UBidociber7ollo

: A
i
(12 : I _,
: ' P :l [0
o< PE167]U ok ot oo 1 : lge :=' H
g N ii
E

- 54

==
=
—

- -

e LT SRR

= {]
p——]
T O .
== Pm——
B D R R .
gy

-

.
e ——

s

e——

ocfPE17 11U

ool H';'H“'é"!';'ﬁ"'ﬁm o

PE placement with floorplan constraints [Zhang, [SCAS"19] 47750

Datapath Driven Placement: Many More

Detailed placement [Serdar, DATE01]

SOC placement [Tong, JOS'02] [Jing, ICCCAS02]

Parallel multiplier design [Bae, [SPD"15]

Genaral ASIC design [Ye, ISCAS'02] [Chou, DAC’12] [Wang, IETCDS"17]

48/50

¢ Course “Optimization and Machine Learning in VLSI Design Automation”, Peking
Univ, 2021.

¢ Yibo Lin et al. (2019). “DREAMPlace: Deep Learning Toolkit-Enabled GPU
Acceleration for Modern VLSI Placement”. In: Proc. DAC

¢ Zhuolun He et al. (2021). “Physical synthesis for advanced neural network
processors”. In: Proc. ASPDAC, pp. 833-840

49/50

	Introduction
	Global Placement Algorithms
	Detailed Placement Algorithms
	New Direction: Integrating GPU Power into Placement
	New Direction: Datapath aware Placement

