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Classification

For today’s lecture, let us consider a slightly more general version
of the classification problem by allowing a don't-know option for
the classifiers.

Let Ay, ..., Ay be d attributes, where dom(A;) =R for i € [1,d].

Instance space X = dom(A;) x dom(Az) x ... x dom(A4) = R9.
Label space Y = {—1,1,x*}, where * means “don’t know” .

Each instance-label pair (a.k.a. object) is a pair (x,y) in X x V.

@ we use x[A/] to represent the value of x on A; (1 <7< d).
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Classification

Denote by D a probabilistic distribution over X x ).

A classifier is a function
h: X =Y.

Denote by #H a collection of classifiers.

The error of h on D (i.e., generalization error) is defined as:

errp(h) = Prix).plh(x) # y].

We want to learn a classifier h € H with small errp(h) from a
training set S where each object is drawn independently from D.

The error of h on S (i.e., empirical error) is defined as:

(x,y) € S| h(x) #y

errs(h) = 5]
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Let P be a set of points in R?. Given a classifier h € H, we define:
Pn=A{p € P|h(p) =1}

namely, the set of points in P that h classifies as 1.

H shatters P if, for any subset P’ C P, there exists a classifier
h € H satisfying P’ = Py,
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Example: An generic linear classifier h is described by a d-
dimensional weight vector w and a threshold 7. Given an instance
x €RY, h(x)=1if w-x > 7, or —1 otherwise. Let H be the set

of all generic linear classifiers.

In 2D space, H shatters the set P of points shown below.
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Example (cont.): Can you find 4 points in R? that can be shat-
tered by H?

The answer is no. Can you prove this?
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Let P be a subset of X. The VC-dimension of  on P is the size
of the largest subset P C P that can be shattered by 7.

If the VC-dimension is A, we write VC-dim(P, H) = A.
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(VC Dimension of Generic Linear Classifiers)

Theorem: Let H be the set of generic linear classifiers.
VC-dim(RY, H) = d + L.

The proof is outside the syllabus.

Example: We have seen earlier that when d = 2, H can shatter
at least one set of 3 points but cannot shatter any set of 4 points.
Hence, VC-dim(R?, H) = 3.

Think: Now consider H as the set of linear classifiers (where
the threshold 7 is fixed to 0). What can you say about
VC-dim(R9, H)?

8/16

Y Tao More Generalization Theorems



(VC—Based Generalization Theorem)

The support set of D is the set of points in RY that have a positive
probability to be drawn according to D.

Theorem: Let P be the support set of D and set \ =
VC-dim(P,H). Fix a value ¢ satisfying 0 < 6 < 1. It holds
with probability at least 1 — § that

8ln% +8x-In 2
eer(h)gerrg(h)—F\/ n5—|—|5| ki

for every h € H, where S is the set of training points.

The proof is outside the syllabus.
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The new generalization theorem places no constraints on the size of H.

Think: What implications can you draw about the Perceptron
algorithm?
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If a set H of classifiers is “more powerful’ — namely, having a
greater VC dimension — it is more difficult to learn because a
larger training set is needed.

For the set 1 of (generic) linear classifiers, the training set size needs to
be Q(d) to ensure a small generalization error. This becomes a problem
when d is large. In fact, later in the course we may even want to work
with d = oo.

Next, we will introduce another generalization theorem to address the
problem.
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label 1

don’t know

label —1

A margin classifier is a function h : X — ) where h is defined
by a d-dimensional unit vector w (called the weight vector) and
a non-negative real value v (called the margin) such that

@ hix)=1ifx-w>r;
0 hix)=-1ifx -w< —;

@ h(x) = x otherwise.
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Theorem: Let P be a set of points whose distances to the origin
are bounded by R. Let #. be the set of margin classifiers with
margin at least 7. Then, VC-dim(P,H,) < (R/7)2.

The proof is outside the syllabus.

For the linear classification problem, the theorem provides strong
justification on choosing a linear classifier whose separation plane
is as far away from the sample points as possible.
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Recall:

Linear classifier: A function h : X — ) where h is defined by a
d-dimensional weight vector w such that

@ h(ix)=1ifx-w>0;

@ h(x) = —1 otherwise.

Aset S C RYis linearly separable if there is a d-dimensional
vector w such that for each p € S:

@ w-p>0if p has label 1;
@ w-p<O0if phas label —1.

The linear classifier defined by w is said to separate S.

14/16

Y Tao More Generalization Theorems



Let h be a linear classifier defined by a d-dimensional vector w. Its
separation plane, denoted as 7, is the plane defined by equation
x-w=0.

Suppose that h separates a linearly separable set S. Then, the margin of
h on S is the smallest distance of the points in S to 7.
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(Margin—Based Generalization Theorem)

Theorem: Let 7 be the set of linear classifiers. Suppose that
the training set S is linearly separable. Fix a value ¢ satisfying
0 < 0 < 1. It holds with probability at least 1 — § that,

+ In[log,(R/7)]

T \W \/'” 191

for every h € H on S, where ~ is the margin of h on S and

eer

R = ma
peglpl

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d.
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