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Today, we start a series of lectures devoted to linear classification,
which harbors a deep theory and is one of the most important topics
in machine learning.
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(Linear Classification)

Let Aq,..., Ay be d attributes, each with a domain R, i.e.,
dom(A;) = R? for each i € [1,d].

Instance space: X' = dom(A;) x dom(A) x ... x dom(Ag) = R.
Label space: ) = {—1,1} (where —1 and 1 are class labels).
Instance-label pair (a.k.a. object): a pair (x,y) in X x Y.

@ x is a d-dimensional vector. Since every dimension has a real
domain, we can regard x as a d-dimensional point.

@ We use x[i] to represent the i-th coordinate of point x.
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(Linear Classification)

Linear classifier: A function h: X — ) where h is defined by a
d-dimensional weight vector w such that

@ h(x)=1if x-w >0 (note: " represents dot product);

@ h(x) = —1 otherwise.

Suppose that Alice chooses a linear classifier h* and a distribution D
over X (note: D is defined in the instance space, not the instance-
label space).

For any linear classifier h, its error on D is defined as:
errp(h) = Pryp[h(x) # h*(x)].
Note that the error of h* on D is 0.
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(Linear Classification)

Alice provides a training set S which contains objects (x, y) obtained as
follows:

@ First, draw x independently from X.

@ Then, set y = h*(x).

The goal of linear classification is to learn a classifier h from S
whose error on D is as low as possible.
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(Linear Classification)

S is linearly separable if there is a d-dimensional vector w such that for
each p € S:

@ w-p>0if phas label 1;
@ w-p <O0if phas label —1.

The plane w - x = 0 is a separation plane of S.

We will discuss only the scenario where S is linearly separable.
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Example:

Linearly separable

o

Linearly non-separable
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In this lecture, we will study the following problem:

Problem (Finding a Separation Plane): Given a linearly separa-
ble set S, find a separation plane.

The separation plane gives a linear classifier h with errs(h) =0, i.e.,
empirical error 0.

We will solve the problem with a surprisingly simple algorithm called
perceptron.
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The algorithm starts with w = (0,0, ...,0) and, then, runs in iterations.
In each iteration, it looks for a violation point p € S:

@ If p has label 1, p is a violation point if w - p <0;

@ If p has label —1, p is a violation point if w-p > 0;
If p exists, the algorithm adjusts w as follows:

@ If p has label 1, then w < w + p.

@ If p has label —1, then w +— w — p.

The algorithm finishes when there are no more violation points.
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Example: Suppose that S has points: p; = (1,0), p, = (0,-1),
ps = (0,1), and p, = (—1,0). Points p; and p; have label 1, and
the other have label —1.

The algorithm starts with w = (0,0, ..., 0).

@ [teration 1: p; is a violation point because it has label 1 but
p; - w = 0. Hence, we update w to w + p; = (1,0).

@ lteration 2: p,, is a violation point because it has label —1
but p, - w = 0. Hence, we update w to
w—p; = (170) - (07 _1) = (1a 1)'

@ Iteration 3: No more violation points. The algorithm finishes
with w = (1,1).
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We now analyze the number of iterations performed by Perceptron.

Given a vector v = (v1, ..., vg), we define its length as

lv=vVv -v=

> vliP.

For any vectors vy, vy, it holds that vy - vo < |vy]|va|.

Define:
R = max .
max{|pl}
In other words, all the points of S fall in a ball that centers at the origin

and has radius R.
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Given a separation plane 7, define its margin as the smallest distance

from the points of S to 7.

Example:

margin
AN o label 1
/

Denote by + the largest margin of all the separation planes. Let 7" be
the origin-passing plane with margin ; the plane has a unit normal

vector u” such that
o for every p € S with label 1, u* - p > 0;

o for every p € S with label —1, u* - p < 0.

We have:
= min|u* - p|.
v = min lu™ - pl
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Theorem: Perceptron terminates after at most (R/v)? adjust-
ments of w.

Proof: Let w; (i > 1) be the value of w after the /-th adjustment. As a
special case, define wy = (0, ...,0). Denote by k the total number of
violations.
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We first show that w; 1 - u* > w; - u* + ~ for any i > 0. Consider the
violation point p used to change w from w; to w;:

@ Case 1: p has label 1. Thus, p-w; <0 and w;y; = w; + p. Hence,
wii-u* =w; -u*+ p-u*. From the definition of v, we know that
p-u*>~. This gives w1 - u* > w; - u* + .

@ Case 2: p has label —1. The proof is similar and left to you.

Therefore:

Wi_1-u"+7v

(A\VARAY

Wy o u*+ 2y

wo - u™ + kv
= k. (1)
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Next, we show that |w;1|> < |w;|? + R? for any i > 0. Consider the
violation point p used to change w from w; to wj1:

@ Case 1: p has label 1. Thus, p-w; < 0 and w;1; = w; + p. Hence:

Wi =wip1-wipn = (wi+p)-(w;+p)
wi-w;+2w;-p+|p]
\w;> + 2w, - p+ R?
lwi|? + R?

(by def. of R) <
<

where the last step used the fact that p- w; < 0.

@ Case 2: p has label —1. The proof is similar and left to you.
Therefore:

Iwi > < |wi_1]? + R? < [wi_o|? +2R?... < |wo|® + kR? = kR, (2)
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From (1), we know:
|wi| = |wil||lu®| > wy - u™ > k.

Therefore, |wy|> > k?>y2. Comparing this to (2) gives:

kR? > k*y? =
2
(< B
gl
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We have learned how to obtain a linear classifier h with 0 empirical
error on S. Does h have a small generalization error errp(h)?
The answer is yes, but this does not follow from the generalization
theorem we currently have (think: why not?). In the next lecture,
we will discuss a more powerful generalization theorem that will
allow us to bound errp(h).
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