Classification, Decision Trees, and a

Generalization Theorem

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/29

Y Tao CMSC5724, CUHK

In classification, we are given a training set containing objects of two
classes and want to learn a classifier to predict the class of an object
outside the training set. This course will cover several techniques to
perform classification effectively. We will start with one such technique:
the decision tree method.

2/29

Y Tao CMSC5724, CUHK

Classification

Let Aq,..., Ay be d attributes.

Define the instance space as X' = dom(A;) x dom(Az) x ... x dom(Ay)
where dom(A;) represents the set of possible values on A;.

Define the label space as)V = {—1,1} (the elements in) are called the
class labels).

Each instance-label pair (a.k.a. object) is a pair (x,y) in X x V.

@ Note that x is a vector; we use x[A;] to represent the vector's value
on A; (1<i<d).

Denote by D a probabilistic distribution over X x).

3/29
Y Tao CMSC5724, CUHK

Classification

Goal: Given an object (x, y) drawn from D, we want to predict its
label y from its attribute values x[A4], ..., x[Aq].

We will find a function
h:X—=Y

which is referred to as a classifier (sometimes also called a hypothesis).
Given an instance x, we predict its label as h(x).

The error of h on D — denoted as errp(h) — is defined as:

errp(h) = Pr(x,)~plh(x) # y]
namely, if we draw an object (x, y) according to D, what is the

probability that h mis-predicts the label?

4/29

Y Tao CMSC5724, CUHK

Classification

Ideally, we want to find an h to minimize errp(h), but this in general is
not possible without the precise information about D.

Instead, we would like to learn a classifier h with small errp(h) from a
training set S where each object is drawn independently from D.

5/29
Y Tao CMSC5724, CUHK

Example: Suppose that we have the following training set:

age | education | occupation | loan default
28 | high school | self-employed yes
32 master programmer no
33 undergrad lawyer yes
37 undergrad programmer no
40 undergrad | self-employed yes
45 master self-employed no
48 | high school | programmer no
50 master laywer no
52 master programmer no
55 | high school | self-employed no

Now, given a new customer (50, high school, self-employed), how
should we predict whether s/he would default?

6/29

Y Tao CMSC5724, CUHK

The decision tree method represents a classifier h as a tree.

Example:
occupation
prog. self-emp, lawyer
- education
master undergrad
or above r below

Given an instance (50, high school, self-employed), the above tree
returns the class label “no” by descending a root-to-leaf path to
the rightmost leaf.

7/29

Y Tao CMSC5724, CUHK

Formally, a decision tree T is a binary tree where
@ each leaf node carries a class label: yes or no (namely, 1 or —1);
@ each internal node v has two child nodes, and carries a predicate P,
on an attribute A,,.
Given an instance x, T predicts its label as follows:
©Q v+ therootof T.
@ If uis a leaf, return the class label associated with wu.

© If uis an internal node, check whether x[A,] satisfies P,,:

e if so, u + the left child of u;
e otherwise, u <+ the right child of wu.

Our objective is to produce a good decision tree from the training
set S. Next, we will describe a simple algorithm called the Hunt’s
algorithm which achieves the purpose reasonably well in practice.

8/29

Y Tao CMSC5724, CUHK

Given a node v in T, define S(u) as follows:
o If uis the root of T, S(u) = S.

@ Recursively, consider now v as an internal node whose S(u) has
been defined. Let v; and v, be the left and right child nodes of v,
respectively.

o S(v1) is the set of objects in S(u) that satisfy P(u);
o S(w) =5(u)\ S(w).

Think: What is S(u) for each node u in the decision tree on
Slide 77

9/29

Y Tao CMSC5724, CUHK

(Hunt's Algorithm)

The algorithm builds a decision tree T in a top-down and greedy manner.
At each node u, it finds the “best” way to split S(u) according to a
certain quality metric.

algorithm Hunt(S)
/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class

2 return a leaf node with the value of this class

3. if all the objects in S have the same attribute values

4, return a leaf node whose class label is the majority one in S

5. find the “best” split attribute A* and predicate P* /* details next slide */
6. S; « the set of objects in S satisfying P*; S, + S\ §;

7. u1 < Hunt(51); w2 < Hunt(Sy)

8. create a root u with left child u; and right child w,

9. set A, + A* and P, + P*

10. return u

10/29

Y Tao CMSC5724, CUHK

Implementing Line 5 requires resolving the following issues:
@ What are the possible ways to perform a split?
@ How to evaluate the quality of a split?

We will provide a way to resolve these issues in the next few slides.

11/29

Y Tao CMSC5724, CUHK

Candidate Split

A split concerns a single attribute A. We distinguish two types of A:
@ Ordinal: there is an ordering on A.

@ Nominal: no ordering makes sense on A.

Example: In the training set of Slide 6, age and education are
ordinal attributes, whereas occupation is nominal.

12/29

Y Tao CMSC5724, CUHK

Candidate Split

For an ordinal attribute A, a candidate split is a condition of the form
A < v, where v is a value of A appearing in S.

For a nominal attribute A, a candidate split is a condition of the form
A € S, where S is a subset of the values of A appearing in S.

Example: In the training set of Slide 6, “age < 40", “education
< undergrad”, and “occupation € {self-employed, lawyer}" are all
candidate split predicates.

13/29

Y Tao CMSC5724, CUHK

(Quality of a Split)

Next, we tackle the second issue of Slide 11 by resorting to GINI index.

In general, let S be a set of objects whose class labels are known. Define:

n = 15|
n, = number of objects in S with label yes
py = ny/n
pn = l—py

The GINI index of S is:

GINI(S) = 1—(p}+p})

14/29

Y Tao CMSC5724, CUHK

(Quality of a Split)

Example:

@ If p, =1 and p, = 0 (i.e., maximum purity), then
GINI(R) = 0.

o If p, =0.75 and p, = 0.25, then GINI/(R) = 0.375.

@ If p, =0.5 and p, = 0.5 (i.e., maximum impurity), then
GINI(R) = 0.5.

It is rudimentary to verify:

Lemma: GINI(R) ranges from 0 to 0.5. It increases as |p, — pn|
decreases.

15/29

Y Tao CMSC5724, CUHK

(Quality of a Split)

We are ready to resolve the second issue on Slide 11. Suppose that S has
been split into S; and S,. We define the GINI index of the split as

|S1]

GINIye = WG//\//(sl) +

|S2]

5 GINI(S,).

The smaller GINlg;; is, the better the split quality.

16/29

Y Tao CMSC5724, CUHK

At this point, we have completed the description of Hunt's algorithm on
Slide 10. An important issue has been left out: overfitting, i.e., although
a tree may fit the training set well, its error on the distribution D is
actually rather bad.

Next, we will discuss understand what causes overfitting and then fix the
issue by modifying the algorithm slightly.

17/29

Y Tao CMSC5724, CUHK

Let P be the set of people in the world. Given a random person, we want
to predict whether s/he will commit a crime in her/his life.

Suppose that there are no attributes (i.e., X = (). Given a training set
S C P, Hunt's algorithm returns a decision tree T that has only a single
node (i.e., a leaf). Let ¢ be the label at that leaf; note that T predicts
the label of every person in P as c.

18/29

Y Tao CMSC5724, CUHK

Which value of ¢ is ideal for P? This depends on how many people in P
belong to the yes class. Specifically, let

number of “yes” people in P

T =
g P|
number of “no” people in P
" Pl

The optimal choice is to set ¢ to yes if m, > m,, or to no otherwise.

Example: Suppose 7, = 0.7 and 7, = 0.3. If ¢ = yes, we err with
probability 0.3; if ¢ = no, we err with probability 0.7.

19/29

Y Tao CMSC5724, CUHK

However, 7, and m, are unknown.

We rely on S to infer the relationship between 7, and 7,. If S has
more yes objects, we “believe” m, > m, and, hence, set c to yes;
otherwise, we set ¢ to no. This is precisely what Hunt's algorithm
does.

To increase the confidence of our belief, we need S to be suffi-
ciently large.

Without enough training data, you should not hope to build a reliable
decision tree (lack of statistical significance).

20/29
Y Tao CMSC5724, CUHK

As Hunt's algorithm builds a decision tree T, the |S(u)| of the
current node u continuously decreases as we go deeper. When
|S(u)| becomes too small, statistical significance is lost such that
the subtree of u becomes unreliable: even though the subtree may
fit the training set well, it does not accurately predict the label of
an unknown object falling into the subtree. Therefore, overfitting
occurs.

21/29

Y Tao CMSC5724, CUHK

(Hunt's Algorithm (Modified))

We now add a heuristic to the algorithm to alleviate overfitting.

algorithm Hunt(S)
/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class

2. return a leaf node with the value of this class

3. if (all the objects in S have the same attribute values)
or (|S] is too small)

4, return a leaf node whose class value is the majority one in S

5. find the “best” split attribute A* and predicate P*

6. S; < the set of objects in R satisfying P*; S, + S\ S

7. u + Hunt(Ry); up < Hunt(R»)

8. create a root u with left child vy and right child w;

9. set A, « A" and P, + P*

10. return u

22/29

Y Tao CMSC5724, CUHK

Next, we will provide a theoretical explanation about overfitting.
Given a classifier h, define its error on S — denote as errs(h) — to be:

{(x,y) € S| h(x) # ¥}
S| '

errs(h) =

namely, the percentage of objects in S whose labels are incorrectly
predicted by h.

Remark:
@ errs(h) is often called the empirical error of h.

o errp(h) is often called the generalization error of h.

23/29

Y Tao CMSC5724, CUHK

(Generalization Theorem)

Theorem: Let 7 be the set of classifiers that can possibly be
returned. The following statement holds with probability at least
1—0 (where 0 < ¢ <1): for any h € H:

In(1/6) + In |H]

errp(h) < errs(h) + 5 .

Implications: we should

@ look for a decision tree that is both accurate on the training set and
small in size;

@ increase the size of S as much as possible.

24/29

Y Tao CMSC5724, CUHK

To prove the generalization theorem, we need:

Theorem (Hoeffding Bounds): Let Xi,..., X, be independent
Bernoulli random variables satisfying Pr[X; = 1] = p for all j €
[1,n]. Set s=>"", X;. Then, for any 0 < o < 1:

e—2no¢2

IN

Pr[s/n > p+ q]
Pr[s/n<p—a] < Epaa

The proof of the theorem is not required in this course.

25/29

Y Tao CMSC5724, CUHK

We will also need:

Lemma (Union Bound): Let £, ..., E, be n arbitrary events such
that event E; happens with probability p;. Then,

Pr|at least one of Ey, ..., E, happens] < Z pi.
i=1

The proof is rudimentary and left to you.

26/29

Y Tao CMSC5724, CUHK

(Promc of the Generalization Theorem)

Fix any classifier h € H.

Let S be the training set; set n = |S|. For each i € [1, n], define X; =1 if
the i-th object in S is incorrectly predicted by h, or 0 otherwise. Hence:

1 n
errs(h) = - ZX,-.
i=1

27/29

Y Tao CMSC5724, CUHK

(Proof of the Generalization Theorem)

Since each object in S is drawn from D independently, for every i € [1, n]:
Pr[X; = 1] = errp(h).
By the Hoeffding bounds, we have:
Prlerrs(h) < errp(h) —a] < g2’
which is at most /|| by setting e=2"" = §/|7{|, namely

In(1/0) + In|H|
2n '

We say that h fails if errs(h) < errp(h) — a.

28/29

Y Tao CMSC5724, CUHK

(Proof of the Generalization Theorem)

The above analysis shows that each classifier in H fails with probability
at most ¢/|H|. By the Union Bound, the probability that at least one
classifier in ‘H fails is at most §. Hence, the probability that no classifiers
fail is at least 1 —§. O

Our proof did not use any properties from decision trees. Indeed,
the generalization theorem holds for any type of classifiers.

29/29
Y Tao CMSC5724, CUHK

