CMSC5724: Exercise List 3

Problem 1. Consider d boolean variables $x_1, x_2, ..., x_d$. An expression is a conjunction of d literals where the *i*-th literal $(i \in [1, d])$ is either x_i or its negation $\overline{x_i}$. For example, when d = 3, $x_1 \wedge x_2 \wedge \overline{x_3}$ and $\overline{x_1} \wedge x_2 \wedge \overline{x_3}$ are both expressions. Let \mathcal{H} be the set of all expressions. Define the instance space $\mathcal{X} = \{0, 1\}^d$ and label space $\mathcal{Y} = \{-1, 1\}$. Note that each $x \in X$ is a d-dimensional boolean vector $x = (x_1, ..., x_d)$. For each expression (i.e., classifier) $h \in \mathcal{H}$, h(x) equals 1 if evaluating the expression h on x gives 1, or -1 if the evaluation gives 0. Consider d = 10. Denote by \mathcal{D} a distribution over $\mathcal{X} \times \mathcal{Y}$. Let S be a training set of objects drawn independently from \mathcal{D} . Prove: when $|S| \ge 50000$, with probability at least 0.9, the error of h on \mathcal{D} is higher than the error of h on S by at most 0.01, for every $h \in \mathcal{H}$.

Answer. Let $err_{\mathcal{D}}(h)$ be the error of h on \mathcal{D} , and $err_{S}(h)$ be the error of h on S, for a classifier h in \mathcal{H} . By definition, $|\mathcal{H}| = 2^{d}$. According to the generalization theorem, with probability at least $1 - \delta$, we have

$$err_{\mathcal{D}}(h) \leq err_{S}(h) + \sqrt{\frac{\ln(1/\delta) + \ln|\mathcal{H}|}{2|S|}}$$

for every $h \in H$. By setting $\delta = 0.1$, we know with probability at least 0.9,

$$err_{\mathcal{D}}(h) \leq err_{S}(h) + \sqrt{\frac{\ln(10 \cdot 2^{10})}{2|S|}}.$$

When $|S| \ge 50000$, we have $\sqrt{\frac{\ln(10\cdot 2^{10})}{2|S|}} \le 0.01$; hence, with probability at least 0.9, $err_{\mathcal{D}}(h)$ is higher than $err_{S}(h)$ by at most 0.01, for every $h \in \mathcal{H}$.

Problem 2. Let P be a set of 4 points: A = (1, 2, 1), B = (2, 1, 1), C = (0, 1, 1) and D = (1, 0, 1). A and B have label 1, while C and D have label -1. Execute Perceptron on P. Give the weight vector \boldsymbol{w} maintained by the algorithm after each iteration.

Answer. At the beginning, $\boldsymbol{w} = (0, 0, 0)$. We use \boldsymbol{A} to denote the vector form of \boldsymbol{A} . Define $\boldsymbol{B}, \boldsymbol{C}$, and \boldsymbol{D} similarly.

Iteration 1. Since *A* does not satisfy $A \cdot w > 0$, update *w* to w + A = (0, 0, 0) + (1, 2, 1) = (1, 2, 1).

Iteration 2. Since *C* does not satisfy $C \cdot w < 0$, update *w* to w - C = (1, 2, 1) - (0, 1, 1) = (1, 1, 0).

Iteration 3. Since *C* does not satisfy $C \cdot w < 0$, update *w* to w - C = (1, 1, 0) - (0, 1, 1) = (1, 0, -1).

Iteration 4. Since \boldsymbol{A} does not satisfy $\boldsymbol{A} \cdot \boldsymbol{w} > 0$, update \boldsymbol{w} to $\boldsymbol{w} + \boldsymbol{A} = (1, 0, -1) + (1, 2, 1) = (2, 2, 0)$.

Iteration 5. Since C does not satisfy $C \cdot w < 0$, update w to w - C = (2, 2, 0) - (0, 1, 1) = (2, 1, -1).

Iteration 6. Since C does not satisfy $C \cdot w < 0$, update w to w - C = (2, 1, -1) - (0, 1, 1) = (2, 0, -2).

Iteration 7. Since A does not satisfy $A \cdot w > 0$, update w to w + A = (2, 0, -2) + (1, 2, 1) = (3, 2, -1).

Iteration 8. Since C does not satisfy $C \cdot w < 0$, update w to w - C = (3, 2, -1) - (0, 1, 1) = (3, 1, -2).

Iteration 9. Since *D* does not satisfy $D \cdot w < 0$, update *w* to w - D = (3, 1, -2) - (1, 0, 1) = (2, 1, -3).

Iteration 10. No more violation points.

Problem 3. Let P be a set of multidimensional points where each point has a label equal to 1 or -1. We want to design an algorithm to achieve the following purpose:

- Either return a separation plane (see the lecture notes for the definition of separation plane);
- Or declare that P has no separation planes with a margin at least γ .

Your algorithm must still work even if no separation planes exist.

Answer. Run Perceptron and return whatever plane found by the algorithm. If the algorithm still has not finished after R^2/γ^2 corrections, force it to stop and declare that no separation plane has a margin at least γ .

Problem 4. Consider the set of points below where points of different colors carry different labels. Only two points have their coordinates shown. Apply Perceptron to find a separation plane on the set. Prove: Perceptron finishes after at most 5 iterations.

Answer. The y-axis is a separation plane with margin $\gamma = 1$. Clearly, the largest distance from a point to the origin is $R = \sqrt{5}$. Hence, Perceptron performs at most $R^2/\gamma^2 = 5$ iterations.

Problem 5. Some people prefer the following variant of the Perceptron algorithm:

1.
$$w = 0$$

2. while there is a violating point p
3. if p has label 1
4. $w = w + \lambda \cdot p$
else
5. $w = w - \lambda \cdot p$

where λ is a positive real-value constant. In the version we discussed in the lecture, $\lambda = 1$. Prove: regardless of λ , Perceptron always terminates in R^2/γ^2 iterations, where R is the maximum distance of the points to the origin and γ the largest margin of all separation planes. **Answer.** Let w_k denote the vector w after the k-th iteration. Following the analysis we discussed in the lecture, we can prove the two inequalities below:

$$egin{array}{rcl} |oldsymbol{w}_k| &\geq & \lambda \cdot k \cdot \gamma \ |oldsymbol{w}_k|^2 &\leq & k \cdot \lambda^2 \cdot R^2 \end{array}$$

The two inequalities give $\lambda^2 \cdot k^2 \cdot \gamma^2 \leq k \cdot \lambda^2 \cdot R^2$, which indicates $k \leq R^2/\gamma^2$.

Problem 6. Let P be a set of points in \mathbb{R}^d , where each point is labeled 1 or -1. A d-dimensional plane π is a separation plane of P if

- π does not pass any point in P;
- the points of the two labels in P fall on different sides of π .

Note that we do not require π to pass the origin.

Construct a (d + 1)-dimensional point set P' as follows: given each $p \in P$, add to P' the point (p[1], p[2], ..., p[d], 1) (i.e., adding a new coordinate 1), carrying the same label as p. Prove: P has a separation plane if and only if P' has a separation plane passing the origin of \mathbb{R}^{d+1} .

Answer: Given a point $p \in P$, we use p to denote its vector form. Similarly, we use p' to denote the vector form of a point $p' \in P'$.

Only-if direction. Suppose that *P* has a separation plane. Then, there must be a *d*-dimensional plane $\boldsymbol{w} \cdot \boldsymbol{x} + w_{d+1} = 0$ such that for every $p \in P$:

$$\begin{cases} \boldsymbol{w} \cdot \boldsymbol{p} + w_{d+1} > 0 & \text{if } \boldsymbol{p} \text{ has label } 1 \\ \boldsymbol{w} \cdot \boldsymbol{p} + w_{d+1} < 0 & \text{if } \boldsymbol{p} \text{ has label } -1. \end{cases}$$
(1)

Let $w' = (w[1], w[2], ..., w[d], w_{d+1})$. Every $p' \in P'$ has the same label as (p'[1], p'[2], ..., p'[d]) in P and p'[d+1] = 1. From (1), we have

- $w' \cdot p' = \sum_{i=1}^{d} w[i]p'[i] + w_{d+1} > 0$ if p' has label 1;
- $w' \cdot p' = \sum_{i=1}^{d} w[i]p'[i] + w_{d+1} < 0$ if p' has label -1.

Hence, P' has a separation plane (i.e., $w' \cdot x = 0$) passing the origin of \mathbb{R}^{d+1} .

If-direction. Suppose that P' has a separation plane passing the origin of \mathbb{R}^{d+1} . Then, there must be a (d+1)-dimensional vector w' such that for every $p' \in P'$:

$$\begin{cases} \boldsymbol{w}' \cdot \boldsymbol{p}' > 0 & \text{if } p' \text{ has label } 1\\ \boldsymbol{w}' \cdot \boldsymbol{p}' < 0 & \text{if } p' \text{ has label } -1. \end{cases}$$
(2)

Let $\boldsymbol{w} = (\boldsymbol{w'}[1], \boldsymbol{w'}[2], ..., \boldsymbol{w'}[d])$. Every $p \in P$ has the same label as p' = (p[1], p[2], ..., p[d], 1) in P'. From (2), we know

- $\boldsymbol{w} \cdot \boldsymbol{p} + \boldsymbol{w'}[d+1] = \boldsymbol{w'} \cdot \boldsymbol{p'} > 0$ if p has label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} + \boldsymbol{w'}[d+1] = \boldsymbol{w'} \cdot \boldsymbol{p'} < 0$ if p has label -1.

It thus follows that P has a separation plane $\boldsymbol{w} \cdot \boldsymbol{x} + \boldsymbol{w'}[d+1] = 0$.