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ABSTRACT

In this thesis, we develop mathematical tools to tackle important problems in metamaterials,
morphometrics, morphogenesis, and mappings. Specifically, we propose novel methods with a solid
theoretical foundation to control the geometry and topology of kirigami and origami metamaterials.
We also analyze the growth and form of biological shapes including insect wing and ferret brain
using computational geometry. We further propose physically-based methods for producing
mappings and deformations of two- and three-dimensional objects and explore their applications to
geometry processing, medical imaging and data visualization. Altogether, this thesis brings in new
mathematical insights and techniques for advancing our understanding of the physical world, the

biological world, and the digital world.
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Introduction

Mathematics is essential in the physical world, the biological world, and the digital world. In the

physical world, the physical properties of architected materials are closely related to their geometry
and topology. In the biological world, biological structures are distinguished by differences in their
geometry which may either be the cause or the consequence (or both) of their different functional

properties. In the digital world, mappings and deformations of two and three dimensional objects



are computed using geometric methods. In this thesis, we develop new mathematical models and
tools to advance our understanding of these three worlds. More specifically, we use discrete and
continuous geometry to tackle various important problems for interdisciplinary applications in
science and engineering. While geometry has been studied since antiquity, it still underpins many
questions in modern research areas including materials science, quantitative biology, medical
imaging and geometry processing.

The first part of this thesis, consisting of Chapter 1-4, focuses on mathematical metamaterial
design. Kirigami, the creative art of paper cutting originated in Japan, has recently emerged as
prototypical mechanical metamaterials. Kirigami tessellations are deployable structures formed by

introducing architected cuts on a flat, thin sheet of material. There has been a vast number of

58,56,57,110,138 108,109,98

studies on their geometry , topology *** and mechanics ** and their use as

materials with a range of unusual properties such as topological insulators7>'*? and auxetic
structures 3752, Moreover, kirigami has been applied for the design of graphene structures®,
nanocomposites''?, shape-morphing and super-stretchable sheets 75951 17:66,76,100,15 inflatable

structures’’, soft robots "

etc. However, almost without exception, the above works have focused
on the forward problem of quantifying the geometry and kinematics of deployment of a prescribed
kirigami pattern, where the prescribed pattern is usually motivated by ancient art or nature and
designed manually. From a mathematical and technological perspective, a more interesting question
is the inverse problem of designing new kirigami patterns that achieve some prescribed

shape-morphing properties. More specifically, can one design the geometry of the cuts in a given

planar kirigami structure, so that it can be deployed into a prescribed final shape in two or three



dimensions? In Chapter 1, we solve this problem by developing a novel inverse design framework
for generalizing the cut geometry of kirigami metamaterials. In particular, we identify geometric
constraints in lengths and angles for designing deployable structures with highly nontrivial shape
changes upon deployment, such as a square-to-circle transformation.

In recent years, several studies have focused on the design of reconfigurable metamaterials that
admit multiple folded states "> 34,46,102,36 inspired by origami, the art of paper folding. On the
contrary, the study of such reconfigurable structures for kirigami has only been limited to a few

periodic patterns '*>5°

. In Chapter 2, we extend our inverse design framework by further
identifying the geometric constraints that guarantee the reconfigurability and rigid-deployability of
generalized kirigami patterns. This allows us to create a wide range of kirigami structures that admit
multiple contracted states.

To complement our study on the geometric control of kirigami in the first two chapters, we
explore the topological control of kirigami in Chapter 3. Instead of changing the cut geometry, i.e.
the edge lengths and angles of the tiles in a kirigami structure to achieve different shapes, we change
the cut topology of the kirigami structure by connecting or disconnecting neighboring tiles, thereby
controlling the rigidity and connectivity of the structure. In particular, we propose a hierarchical
construction approach for creating minimum rigidifying and connecting link patterns of arbitrary
size using smaller patterns.

While the above-mentioned methods are capable of controlling the geometry and topology of

kirigami, the global design problems involve all nodes in a structure and hence are time-consuming.

In Chapter 4, we devise a method for the additive design of origami and kirigami as an alternative



approach for metamaterial design. Instead of solving the design problems over the entire structure,
we identify the constraints in lengths and angles at the growth front of any structure, thereby
reducing the global problems to much simpler local design problems.

The second part of this thesis, consisting of Chapter 5-6, focuses on morphometrics and
morphogenesis. A common approach to compare two two-dimensional (2D) shapes is to make use
of mathematical transformations '*. The Procrustes superimposition 5° uses rigid transformations
up to rescaling to match prescribed landmarks but does not allow for exact landmark or boundary
matching. The Thin Plate Spline (TPS) method'" uses non-rigid landmark-based transformations
to match two shapes but again does not allow for exact boundary matching or guarantee bijectivity.
While the Large Deformation Diffeomorphic Method (LDDMM) 5 allows for the
computation of diffeomorphic mappings of shapes with landmarks, the computation is expensive
and thus hinders the pairwise comparison between a large set of shapes. More recently, conformal
maps, which are angle-preserving maps, have been used for describing planar biological shape
changes''>"94. However, the rigidity of these maps imposed by the Riemann mapping theorem
limits their flexibility in matching prescribed landmarks exactly. To get around with this problem,

87:%8 have considered the use of quasi-conformal maps, a generalization of conformal

recent attempts
maps which allow certain degree of angular distortions with the presence of landmark constraints.
In Chapter s, we develop a landmark-matching mapping method for insect wing morphometry

using quasi-conformal theory, which enables the pairwise comparison between insect wing shapes

and provides a natural way for shape classification. We deploy the method for analyzing the

phenotypic variation of Drosophila wings and the temporal development of Lepidoptera wings,



thereby yielding new insights into the growth and form of planar biological shapes.

After studying 2D biological shapes, we consider three-dimensional (3D) biological shapes. A
prime example of 3D biological shapes are the highly convoluted brains. In Chapter 6, we study the
gyrification of ferret brains. In recent decades, ferret brains have been widely studied for
understanding neurodevelopmental processes '****»99449, By extending recent approaches based
on the theory of differential growth '35 3¢ we model the growth of ferret brains using a physical gel
model and a numerical simulation model. We compare the results with real ferret brain data to
understand the process of brain development.

The third part of this thesis, consisting of Chapter 7-9, focuses on mathematical mapping
techniques with applications to geometry processing and medical imaging. The problem of
generating maps has been extensively studied by scientists and cartographers for centuries. A
classical problem in map-making is about flattening the globe onto a plane. The well-known
Mercator projection creates a planar map of the globe in which angles and small objects are
well-preserved while the area near the poles is largely distorted. In recent decades, there has been a
vast number of works on cartogram generation >*+75%74_ In particular, Gastner and Newman 5>
proposed a method for producing cartograms based on density diffusion. The method deforms a
given map according to certain prescribed data defined on each part of the map by solving the
diffusion equation. This approach has been widely used for visualizing sociological and biological
data such as the global population, income and age-of-death *°, the disease evolution for
epidemics*°, the amphibian species diversity '+4, the democracies and autocracies of different

countries 5%, the race/ethnicity distribution of Twitter users??, the rate of obesity '**, and the world
y y



citation network '>>. Based on the above concept of diffusion-based map-making, we develop a
novel method for producing surface density-equalizing maps in Chapter 7. More specifically, our
method flattens any simply-connected open surfaces onto a free- or fixed-boundary domain on the
plane, with different parts magnified or shrunk according to the prescribed density. The
applications of the method to data visualization and surface remeshing are explored.

Noticing the importance of a flattened representation of organs in medical analysis, we develop
an area-preserving mapping method for carotid artery visualization in Chapter 8. Carotid artery
is highly related to stroke, a leading cause of death and disability worldwide that causes an annual
mortality of nearly 133,000 in United States® and over 1.6 million in China®*. For facilitating the
visualization and analysis of carotid plaques, various methods for flattening carotid artery surfaces
onto the plane have been developed '5»*":232415:25 We develop a carotid flattening method that
minimizes the area distortion and achieves a standardized boundary shape by extending the density-
equalizing map and combining it with the reference map technique”"'#"''4. Our method allows
for an accurate 2D representation of 3D carotid data, thereby aiding the prognosis and diagnosis of
carotid diseases.

After extending the concept of density-equalizing maps for surface mapping, we further
generalize it to 3D in Chapter 9. We develop a novel method for computing volumetric
density-equalizing maps in a solid domain. The proposed method can be effectively applied to
volumetric data visualization, deformation-based shape modeling, object morphing and adaptive

remeshing.
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A mathematician, like a painter or poet, is a maker of

pdtt{?}"}’l&.

G. H. Hardy

Inverse kirigami design

TRADITIONAL KIRIGAMI STRUCTURES CONSIST OF A PERIODIC TILING OF SOME PRESCRIBED
DEPLOYABLE UNIT CELL PATTERNS. It is well known that the only regular polygons that can tile
the plane are triangle, square and hexagon. All of them can used for the design of kirigami
metamaterials:

* Asshown in Figure 1.1a, the triangle kirigami tessellation (also known as the kagome
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Figure 1.1: Five example deployable patterns. a, A triangle kirigami tessellation. b, A quad kirigami tessellation.
¢, A hexagon kirigami tessellation. d,e, Two multiple-cell Islamic kirigami tessellations. Corresponding edge pairs are
connected by red dotted lines, and angles involved in the angle constraints are highlighted in blue.

pattern) is a floppy auxetic pattern with six triangles surrounding a single node.

* Asshown in Figure 1.1b, the quad kirigami tessellation is a four-fold auxetic pattern with

four squares surrounding a single node.

* Asshown in Figure 1.1¢, the hexagon kirigami tessellation is a six-fold auxetic pattern with

9
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Figure 1.2: A generalized quad kirigami pattern. By changing the geometry of the four quads, it can be observed
that the deployed shape (right) is no longer a simple enlarged version of the original kirigami structure (left).

six hexagons surrounding a hexagonal hole.

Besides the above simple tilings, there are many other more complex planar motifs’**'° that can
be the basis for a deployable kirigami pattern (e.g. the multiple-cell kirigami patterns derived from
Islamic decorative tilings''° as shown in Figure 1.1d,¢).

Note that the repetitive kirigami patterns introduced above are limited in the sense that their
deployed shape is fixed. No matter how we duplicate the unit cell along the vertical and the
horizontal directions, the resulting deployable structures can only undergo a simple shape change
upon deployment. For instance, the standard quad kirigami patterns can only be transformed from
a closed and compact contracted rectangular shape into an enlarged rectangular shape with holes. In
many situations, it is more desirable to have a kirigami structure that deploys and conforms to a
prescribed shape.

As shown in Figure 1.2, if we change the geometry of the four tiles of a2 X 2 quad kirigami

10
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Figure 1.3: Inverse design framework. a, A quad kirigami tessellation and its deployed configuration, with a zoom-

in of the unit cell of the quad kirigami tessellation and its deployed configuration. Every pair of corresponding edges

are connected by a red dotted line. The set of angles corresponding to the same node are highlighted in blue. In a valid
deployed configuration of a generalized kirigami pattern, every pair of edges should be equal in length,i.e.2 = b,and
every set of corresponding angles should add upto 27, i.e. &, + 6, + &3 + 0, = 27. b, Our inverse design framework.
Given a standard kirigami tessellation, we start with an initial guess in the deployed space. Here the initial guess shown

is a conformal map from the standard deployed configuration to the disk. The initial guess is usually invalid, violating
either the edge length constraint or the angle constraint, or not exactly matching the target boundary shape. We then
solve a constrained optimization problem to morph the initial guess until it becomes a valid deployed shape, satisfying all
constraints. Finally, we use a simple contraction procedure to obtain the generalized kirigami pattern.

pattern, the deployed shape will no longer be simply an enlarged version of the original pattern. This
motivates us to consider the problem of inverse kirigami design: Given a standard kirigami pattern
and a prescribed target boundary shape (such as a circle), how can we change the geometry of the
tiles (i.e. the cut geometry) so that the generalized kirigami pattern deploys and conforms to the

prescribed shape?

II1



To answer this question, we propose an inverse design framework that involves solving a
constrained optimization problem as outlined in Figure 1.3. More specifically, denote the fully
deployed configuration of the given standard kirigami pattern by D, and the target boundary shape
together with its interior by S. Our goal is to suitably deform D so that its boundary matches 0S5,

while ensuring that the deformed shape is a valid kirigami structure.

1.1  GENERALIZED KIRIGAMI TESSELLATIONS

In the following subsections, we introduce the constraints and then describe the procedure for

solving the inverse design problem for generalized kirigami tessellations.

1.1.1 CONTRACTIBILITY CONSTRAINTS

To search for potentially admissible patterns in the deployed space, we first need to determine the
constraints that allow a generalized deployed shape to be validly contracted (undeployed) into a
closed and compact state. In particular, there should not be any mismatch or overlap in lengths and
angles when the configuration is contracted. To achieve this, the following two contractibility
constraints should be satisfied in the deployed space:

* Edge length constraints: For every pair of edges with edge lengths 4, & in the deployed space
that correspond to the same cut (e.g. the edge pairs connected by red dotted lines in

Figure 1.1), we must have
-0 =0. (r.1)

* Angle sum constraints: Every set of angles in the deployed space that correspond to an

interior node (e.g. the angles in the deployed space highlighted in blue in Figure 1.1) must

12
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angles and edge lengths in the deployed space.

sum to 27:

Z 9; =2m. (1.2)

In particular, for the quad kirigami pattern, the four pairs of edges at each unit cell in the
deployed space (as shown in Figure 1.3) should be equal in length, and the four angles &;, &, 03, 04

at each unit cell in the deployed space should satisfy ¢; + 6, + 65 + 64, = 2.
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A MODIFIED VERSION OF THE ANGLE SUM CONSTRAINTS FOR PATTERNS WITH HOLES

Note that the angle sum constraints above are only applicable to kirigami base patterns that do not
contain any hole in the contracted state. For those base patterns with holes (such as the hexagon

tiling in Figure 1.1¢), the angle sum constraints should be replaced by the following constraints:

* One-ring angle sum constraints: For the hexagon kirigami pattern, every hexagonal hole is
surrounded by six hexagons. As the angle sum of an #-sided polygon is (z — 2), the six
angles of the hexagonal hole should add up to 47. Note that the explementary angles of them
can be expressed using the twelve angles in the hexagonal one-ring highlighted in blue in
Figure 1.1c. Therefore, in a valid deployed configuration of a generalized hexagon kirigami

pattern, we should have

12 12
6x2m—) G=4re ) 6;=8r, (1.3)
=1 =1

where ¢; are the angles in the deployed space highlighted in blue in Figure 1.1¢.

* Diagonal consistency constraints: The ring angle sum constraints are insufficient to guarantee
that the one-ring hexagonal faces form a closed loop, as there is no control on the edge
lengths of the hexagonal holes. To ensure the closed loop condition, we impose the diagonal
consistency constraints which involve the edge lengths of the hexagonal holes. As depicted in

Figure 1.4, at every hole enclosed by six hexagonal faces, we should have

di —d5 =0,
d; —d> =0, (1.4)
dz —di =0,

where each pair {dy, d> }, {d3,ds}, {ds, ds} refers to a diagonal of the hole calculated in two

ways. More explicitly, we have

2 . 2 .
2 _ . _bisiny, L _Gsing, . _bisiny . _Gsing, i
dl‘ - (a‘ sin(yj»v,)) + ([, sin(/tl#»v,)) +2 (d’ sin(‘ulﬁ»v,)) (“ sin({zﬁ»v,)) cos(‘ui + V1)7 (I S)

where

t =2 =Y, —; (1.6)

14



and
v =2 — @, — Y, (1.7)

Note that all the edge lengths 4;, 4;, ¢; and the angles ., 7;, @, ¥; are information in the
deployed space. Therefore, the diagonal consistency constraints can be imposed in our

constrained optimization problem, which takes place in the deployed space.

While the above constraints are discussed in the setting of hexagon kirigami patterns, similar

constraints can be established for other kirigami patterns with holes.

1.1.2 BOUNDARY SHAPE MATCHING CONSTRAINTS

Suppose we are given a target deployed shape in terms of a 2D curve dS (such as the circle as shown
in Figure 1.3), we need to enforce boundary shape matching constraints on the boundary of the
deployed configuration so that all boundary nodes lie on the target shape. More explicitly, for every

boundary node p;, we should have

||pz' - ﬁz’”z =0, (1'8)

where p; is the projection of p, onto dS and || - || is the Euclidean 2-norm.

1.1.3 NON-OVERLAP CONSTRAINTS

Note that the contractibility constraints ensure the consistency between corresponding angles and
edges but do not prevent the existence of overlapping tiles in the configuration. To avoid such
overlaps, we enforce the following non-overlapping constraints at every angle between two adjacent

tiles:

((b—a)x (c—a),n) >0. (1.9)

15



Here, a and b are two nodes of a tile, a and ¢ are two nodes of another tile, (b, a, ¢) form a positive

(right-hand ordered) angle between the two faces, and 7 = (0, 0, 1) is the outward unit normal.

I1.1.4 ADDITIONAL CONSTRAINTS FOR FURTHER CONTROLLING THE GEOMETRY OF

THE GENERALIZED KIRIGAMI PATTERNS

The three sets of constraints described above are necessary for guaranteeing an admissible deployed
configuration. Optionally, one can enforce additional constraints to further control the geometry
of the generalized kirigami pattern. Below, we propose constraints for achieving different effects for

each kirigami base pattern.

RECTANGULAR AND SQUARE BOUNDARY CONSTRAINTS FOR GENERALIZED QUAD

KIRIGAMI PATTERNS

For instance, for the generalized quad kirigami patterns, we can enforce the boundary of its
contracted configuration to be a rectangle or even a square. This is achieved by imposing the
following additional constraints.

* Boundary angle constraints: For every set of two angles £}, {5 in the deployed configuration

that correspond to the same boundary node in the contracted configuration, we enforce

ft+oh=m (1.10)

For the four angles &, £, &, £, in the deployed configuration that correspond to four corner

angles in the contracted pattern, we enforce

512522953:54:; (1.11)

16



The above constraints ensure that the deployed configuration corresponds to a rectangular
generalized kirigami pattern. To further enforce the shape to be a square, the following

constraints on boundary length are needed.

* Egual boundary length constraint: We further enforce the width and the height of the
generalized kirigami pattern to be equal in length, thereby producing a square. Denote the

edges in the deployed configuration that correspond to the top boundary edges in the

contracted pattern by €7,,7 = 1,. .., m, and those corresponding to the right boundary
edges by E’Rj, 7 =1,...,n Weenforce the following constraint:
lenll + el + -+ ller, || = ler |l + llér, Nl + -+ + llek, Il (r.12)

REGULAR BOUNDARY ANGLE SUM CONSTRAINTS FOR GENERALIZED KAGOME

KIRIGAMI PATTERNS

For the generalized kagome kirigami patterns, we can enforce them to be a rectangle up to a small
zig-zag effect on the left and the right boundaries, at which the angle sum is a multiple of /3. This

is achieved by impose the following regular boundary angle sum constraints. For each boundary

node, we denote the number of faces adjacent to it by £ and the angles by {7, {5, . . ., ;. We enforce
k
Z { = k; (1.13)

More specifically, the angle sum at the top and the bottom boundary nodes is enforced to be %” =z
and hence the top and the bottom boundaries will form two straight lines. The angle sum at the left

and the right boundary nodes will be either 277/3 or 47/3, the angle sum at the two corner nodes

17



on the left will be 27/3, and that at the two corner nodes on the right will be /3. As a result, the

pattern will be a rectangle up to a small zig-zag effect on the two sides.

REGULAR ANGLE CONSTRAINTS FOR GENERALIZED HEXAGON KIRIGAMI PATTERNS

For the generalized hexagon kirigami patterns, we can enforce the following regular angle
constraints to further regularize the geometry. For every angle & in the deployed configuration, we

enforce

b= —. (1.14)

Here, the choice of 277/3 is compatible with the one-ring angle sum constraints (1.3). Therefore,
even with such restrictions on all angles, we are still able to obtain valid generalized hexagon kirigami

patterns that deploy and conform to a large variety of shapes.

REGULAR SHAPE CONSTRAINTS FOR GENERALIZED MULTIPLE-CELL ISLAMIC KIRIGAMI

PATTERNS

For the generalized multiple-cell Islamic kirigami patterns, we can regularize their geometry by

imposing a few extra constraints.

* Non-self-intersecting constraints: When compared to the triangle, quad and hexagon
patterns, the two multiple-cell Islamic patterns involve polygonal tiles which are thinner and
with a larger number of sides. To avoid those tiles from having self-intersection, we can
enforce inequality constraints analogous to the non-overlap constraints at the angles of those
tiles. More specifically, we form vectors using the nodes of those tiles and enforce that the

cross product of the vectors is consistent with the face normal.

* Regular angle constraints:
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— Note that the four-fold Islamic pattern (Figure 1.1d) contains four sharp corners for
each I-shaped face. To avoid the corners from being squeezed in the generalized

patterns, we can enforce the following constraint for each of such angles &:

0= (1.15)

T

e

— Note that for the hex Islamic pattern (Figure 1.1€), each of the longer sides consists of
three nodes with angle sum being 7. To preserve this property in the generalized
patterns, we can simply enforce an additional angle sum constraint for those nodes.
Also, we can regularize the boundary of the generalized hex Islamic patterns by
enforcing that all the boundary angles remain unchanged in the generalized deployed

configuration.

I.I.§ CONSTRAINED OPTIMIZATION

Any configuration that satisfies all the above constraints will yield a valid generalized kirigami
pattern that conforms to the prescribed shape upon deployment. To search for such configurations,
we set up a constrained optimization problem in the deployed space with the above conditions being
the constraints.

Let X1, X, . . ., Xy be the coordinates of the nodes in the deployed space. To produce a smooth
generalized kirigami tessellation without large gradients in the shapes of the tiles, we consider

minimizing the following objective function:

M
]LW Z Z(“Z}' - ﬂl‘j)z + Z(ﬂz'k —b)? (1.16)
=1

J k
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where ;,, ﬂlf/‘ are a pair of corresponding angles in two adjacent cells and 4;,, b;, are corresponding
edge lengths in two adjacent cells, and A1 is the total number of pairs of adjacent cells, subject to the
constraints (1.1),(1.2),(1.8),(1.9), as well as any extra constraints described above if applicable. We
remark that the above objective function can be replaced with

The above objective function and all constraints can be expressed solely in terms of the 2N
coordinates of the nodes x; = (x1,%1),%X2 = (%2,%2),...,Xn = (xn, yn). Furthermore, all the
derivatives of them have a simple closed form in terms of the 2/ variables x1, . . ., x5, 31, . - ., Y-
Therefore, we can easily solve the constrained optimization problem using MATLAB’s built-in
optimization routine fmincon, with the derivatives of the objective function and all constraints

supplied through the SpecifyObjectiveGradient and SpecifyConstraintGradient options.

1.1.6 INITIAL GUESS IN THE DEPLOYED SPACE

To solve the constrained optimization problem, an initial guess of the configuration in the deployed
space is needed. Theoretically, any approximation that preserves the number and connectedness of
the input regular kirigami pattern can be used as an initial guess. Four choices that we have
considered are listed below:

* Standard deployed configuration: The standard fully deployed configuration D of a
regular kirigami pattern can be used as an initial guess. Note that it clearly satisfies the
contractibility constraints, while the boundary shape is usually very difterent from the target

boundary curve 0S.

* Standard deployed configuration with rescaling: One can also rescale D according to S

to reduce the boundary mismatch error and use it as an initial guess. Note that the rescaled
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configuration again satisfies the contractibility constraints, but the boundary mismatch error

is nonzero in general.

Conformal map: Another initial guess can be obtained by applying the Schwarz-Christoffel
map to produce a non-rigid transformation of D that matches its boundary matches 9S. As
conformal maps preserve angles, the violation in the angle sum constraints is usually small.
However, the edge length constraints are usually violated as lengths are not preserved under

conformal maps.

26,92 to

Quasi-conformal map: We combine recent conformal parameterization methods
obtain a conformalmapg : & — R from S to a rectangle R, and then apply a rescaling
transformation » : 'R — D to achieve the height and width of D. The composition map
f= (hog) ' : D — Sisthen aquasi-conformal map with flsgp = OS. Because of the
rescaling transformation, all angles will be distorted uniformly under the mapping and hence
the angles sum constraints are violated. Nevertheless, the distortion in edge lengths is smaller

than that of the conformal map in general.

1.1.7 CONTRACTION

After solving the above constrained optimization problem, we obtain a valid deployed configuration

of a generalized kirigami structure that yields a closed and compact tiling. To obtain the contracted

configuration of the structure, note that there is a 1-1 correspondence between every tile in the

pattern space and every tile in the deployed space, with each pair of corresponding tiles being

identical up to translation and rotation. Therefore, we can start with one tile in the optimization

result, and subsequently rotate and translate the adjacent tiles one by one to close the gaps between

every pair of corresponding edges. After all tiles are rotated and translated, we obtain the contracted

configuration of the generalized kirigami structure.
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Figure 1.5: Generalized quad kirigami patterns. a, Examples of generalized quad kirigami patterns produced by

our method for getting a circle or an egg shape from a square upon deployment. b, Examples of generalized kirigami
patterns produced by our method for achieving target shapes with mixed curvature or zero curvature. Our method is
capable of producing generalized kirigami patterns that matches boundary curves with different curvature properties
when deployed. ¢, Examples of circling the square with different resolutions (number of tiles =8 x 8,16 x 16,20 x 20),
together with a log-log plot of the boundary layer area against the number of tiles and the least-square regression line.

1.2 RESULTS

Using our proposed framework, we can obtain a large variety of generalized kirigami patterns. We

start by showcasing various novel generalized quad kirigami patterns obtained by our method. As
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Figure 1.6: More generalized quad kirigami patterns. a, Generalized quad kirigami patterns with different target
boundary shapes. b, Patterns obtained by imposing the additional rectangular or square boundary constraints described
in Section 1.1.4.

shown in Figure 1.5a, by changing the cut geometry of a simple periodic quad kirigami tiling on a
square, we can deploy a square and turn it into a circle or an egg. We can also use our method to
create generalized kirigami patterns that approximate boundary shapes with mixed or zero curvature
when deployed (Figure 1.5b). Note that the accuracy of the approximation can be improved by
using a large number of smaller tiles, with an accuracy-effort trade-off in matching a prescribed
shape. Figure 1.5¢ shows several generalized kirigami patterns of circling the square with different
resolutions. It can be observed qualitatively that the boundary of the deployed pattern gets closer to
a perfect circle as the number of tiles increases. To quantitatively assess the accuracy, we define the
boundary layer area (denoted by A4) of a generalized kirigami pattern by the total area of the gaps
between the target boundary shape and the boundary of the deployed configuration. From the

log-log plot, we observe that the boundary layer area decreases as the number of tiles (denoted by 72)
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Figure 1.7: Generalized quad kirigami patterns obtained with different initial guesses. Each row shows
the initial guess, the constrained optimization result, and the generalized kirigami pattern obtained. Left: The standard
deployed configuration of the quad kirigami pattern. Middle left: The standard deployed configuration with rescaling.
Middle right: Conformal map. Right: Quasi-conformal map.

increases, following the relation 4 o (n?)™/2 = »~!. This can be explained by approximating
every boundary gap by a triangle and measuring the change in the average triangle base length / and
average triangle height b for different resolutions. Note that / o 7! and b o 71, and hence the
average area of the trianglesz o< 772, As the total number of boundary gap triangles is
approximately 47, we have 4 ~ 4na n~ L. More generalized quad kirigami patterns can be found
in Figure 1.6.

It is noteworthy that the constrained optimization problem is in general underconstrained, and

hence different initial guesses can possibly lead to different valid deployed configurations. Figure 1.7
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boundary shapes and different resolutions obtained by our approach. b, Patterns obtained by imposing the additional

regular boundary angle sum constraints described in Section 1.1.4.

Figure

shows four generalized quad kirigami patterns of circling the square with the four different initial

guesses described in Section 1.1.6. It can be observed that all four resulting generalized patterns are

valid kirigami structures that can be deployed to approximate the same target circle, with a notable

difference in their cut geometry.
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Figure 1.9: Generalized hexagon kirigami patterns. a, Generalized hexagon kirigami patterns with different target
boundary shapes. b, Patterns obtained by imposing the additional regular angle constraints described in Section 1.1.4.
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Figure 1.10: Generalized multiple-cell Islamic kirigami patterns. a, Generalized multiple-cell Islamic kirigami
patterns whose deployed configurations approximate a circle. b, Patterns obtained by imposing the additional regular
angle constraints described in Section 1.1.4.

Besides quads, our inverse design framework is also applicable to other kirigami base patterns.

Figure 1.8, Figure 1.9, and Figure 1.10 show respectively various generalized kagome, hexagon, and
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Figure 1.11: A generalized kirigami pattern for fitting an egg shape with a fabricated model. The two
figures on the left show the undeployed and deployed configurations of the numerical optimization result obtained by our
inverse design method. The two figures on the right show a fabricated model of the pattern and its deployed state. Pins
are used to fix the position of the deployed fabricated model.

multiple-cell Islamic kirigami patterns that satisfy a large variety of target shapes when deployed.
The additional constraints described in Section 1.1.4 can also be effectively imposed to produce
more novel patterns.

For the realization of the generalized kirigami patterns obtained by our framework, we consider
fabricating a physical model for the pattern shown in Figure 1.11 that transforms from a rectangular
shape to an egg shape. The physical model was produced by laser cutting a thin sheet of
highly-stretchable abrasion-resistant natural rubber. We pin the deployed state of the model and
compare it with the pattern obtained by our framework. It can be observed that the physical model

resembles the numerical optimization result very well.
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Figure 1.12: Planar deployment of generalized kirigami tessellation. a, Energetics of the deployment
simulations of the square to circle example with different choices of 1. Here AL is the average displacement of the pulling
points and L is the average rest length of the extensional springs. The insets show the initial, intermediate and final
configurations of the generalized kirigami pattern under deployment. b, Snapshots of the deployment of a monostable
fabricated model.

1.3 DEPLOYMENT ENERGETIC ANALYSIS

Our inverse design framework focuses on the contracted and deployed configurations of the
generalized kirigami patterns but is agnostic to the path of the deployment. It is therefore natural to

study the deployment process of the generalized kirigami patterns and the energetics.

2.8



Consider a linear spring model where linear springs are set along the edges and diagonals of the
tiles of a generalized kirigami pattern, and simple torsional springs are set at the nodal hinges to
model the ligaments that hold the structure together. The total mechanical energy of the system is

given by

1 x;— x| —4;\* .1
E(X17X25 aXN) = ﬁ Z (HZJH]> +/1ﬁ Zezzﬂ (1'17)

iy
where x; are the coordinates of the nodes, ; are the angles between every pair of edges created under
the cuts, l,j are the rest lengths of the extensional springs, /\; is the total number of extensional
springs, I\, is the total number of torsional springs, and A is the ratio of the torsional spring constant
to the extensional spring constant. Note that a larger A corresponds to a thicker ligament, which has
a stronger tendency to close. We can then obtain a continuous deployment path of the system by
iteratively moving the boundary nodes to the target boundary shape and solving for the
intermediate deployed configurations, up to material deformations permitted by non-zero (1.17).
Figure 1.12a shows the energetics of the deployment simulations with different A. Note that if
A — 0, we see the presence of bistability, while if 1 / 0, monostability or multistability can be
observed. Figure 1.12b shows the deployment snapshots of a physical model fabricated by laser
cutting a sheet of super-stretchable abrasion-resistant natural rubber. It can be observed that the

simulated deployment path and real deployment have similar behaviors.
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1.4 INVERSE 3D KIRIGAMI DESIGN

While our inverse design approach has so far focused on approximating target planar shapes, it is in
fact applicable for fitting surfaces in R3 as well. To achieve this, we first replace the boundary shape
matching constraints (1.8) by the surface matching constraints so that every node X; in the deployed
configuration satisfies the condition

% —%* =0, (1.18)

where X; is the projection of X; onto the prescribed target surface Sand || - || is the Euclidean 2-norm.
Note that the contractibility constraints for surface fitting are the same as Eq. (1.1) and Eq. (1.2).
The additional constraints introduced in Section 1.1.4 for further controlling the pattern geometry
can also be directly extended to the three-dimensional case.

As for the non-overlap constraints, note that we have to prevent adjacent tiles in the deployed
configuration from overlapping or intersecting with each other. Therefore, we replace the unit
normal 7 in Eq. (1.9) with the normal computed using one of the two adjacent tiles. In other words,
we enforce the following inequality constraints for every pair of adjacent tiles in the deployed
configuration:

(b—a)x(c—a),(c—a)x(d—a)) >0, (1.19)

where a, b are two nodes of a tile, ¢, a, d are three nodes of another tile, (b, a, ¢) form a positive
(right-hand ordered) angle between the two tiles, and (c, a, d) also form a positive (right-hand

ordered) angle.
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Note that in the two-dimensional case, all tiles are always planar under the constrained
optimization process. However, in the three-dimensional case, the tiles are not necessarily planar.
Therefore, we need to enforce the following planarity constraints in the constrained optimization
problem. For every face Fin the deployed configuration, the volume of the polyhedron associated

with its vertices should vanish:

Volume(F) = 0. (1.20)

In particular, for generalized quad patterns, the above constraint becomes

((b—a)x (c—a),d—a)=0, (r.21)

where a, b, ¢, d are the four vertices of the quad £.

Finally, the objective function (1.16) and the contraction process can also be directly extended for
three-dimensional surface fitting. We can then obtain generalized kirigami patterns that deploy to
approximate a prescribed surface by solving a constrained optimization problem using fmincon in
MATLAB.

Figure 1.13 shows several generalized kirigami patterns that deploy to fit surfaces of varying
complexity. Additionally, just as for the two-dimensional problem, we can impose additional
boundary angle constraints to produce different pattern design effects, such as using rectangular
quad patterns to fit either a hyperbolic paraboloid (Figure 1.13a) or an elliptic paraboloid

(Figure 1.13b), or an egg-carton shape (Figure 1.13¢). Figure 1.13d shows an example of fitting a
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Figure 1.13: Generalized kirigami patterns for three-dimensional surface fitting. The target surfaces are a,

a hyperbolic paraboloid (with negative curvature), b, a paraboloid (with positive curvature), ¢, a periodic patch of an egg-
carton shape, and d, a bivariate Gaussian. Columns: The target surfaces (leftmost), the generalized kirigami patterns, the
deployed configurations of the patterns that fit the target surfaces, the top views of the deployed patterns with the holes
colored with the approximated mean curvature /, and the top views of the deployed patterns with the holes colored with
the approximated Gauss curvature K (rightmost).

bivariate Gaussian with a more significant shape change upon deployment. It is noteworthy that all
tiles in the deployed configurations are planar, while the surfaces are with non-zero curvature. This
suggests that the curvature of the holes between the piece-wise planar tilings must be non-zero. To

quantify this, we fit every hole by a bicubic Bézier surface and compute the mean curvature and the

Gaussian curvature of it. It can be observed in Figure 1.13 that the holes between the planar tilings
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Figure 1.14: A physical model of a generalized quad pattern fabricated using PDMS. The model achieves a
significant shape change and fits a hat-like surface (the underlying transparent sheet) upon deployment.

Figure 1.15: Generalized kagome kirigami patterns for surface fitting. The target surfaces are respectively a
hyperbolic paraboloid, a landscape surface with multiple peaks, a bivariate Gaussian and a Mexican hat. For each target
surface, the resulting generalized kirigami pattern and its deployed configuration are shown. It can be observed that
our approach is capable of controlling the boundaries and the shape of the triangular faces of the generalized kirigami
patterns for approximating different surfaces.

are indeed curved. Figure 1.14 shows a physical model of a generalized kirigami pattern, fabricated
using Polydimethylsiloxane (PDMS). It can be observed that the deployed configuration of the
fabricated model resembles our numerical optimization result very well. Figure 1.15 shows more

generalized kirigami patterns for surface fitting obtained by our method, with the tiles being
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Figure 1.16: 3D deployment of generalized kirigami tessellation. a, Energetics of the 3D deployment simulations
of the pattern in Figure 1.13a with different choice of 1. Here AL is the average displacement of the pulling points and L
is the average rest length of the extensional springs. The insets show the initial, intermediate and final configurations of
the pattern under deployment. b, Snapshots of the deployment of a monostable fabricated model, with thin threads used
for pulling the four sides. Both the numerical simulation and physical deployment results fit the hyperbolic paraboloid

shape very well.

triangles instead of quads.

To study the deployment process in the three-dimensional case, we extend the planar energetic
model to three dimensions, with an additional planarity constraint enforced to ensure that all tiles
remain planar throughout the simulations. Figure 1.16a shows the deployment simulations with the

four boundaries of a generalized kirigami pattern pulled towards the target positions for fitting a
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hyperbolic paraboloid. While the intermediate states are warped, the final deployed configuration
resembles the shape of a smooth hyperbolic paraboloid very well. As in the planar case, we see that
the stability depends on . Figure 1.16b shows the deployment of a physical model fabricated using
a thin sheet of natural rubber. It can be observed that the physical model also fits the target

hyperbolic paraboloid very well.

1.5 DiscussioN

Our inverse design approach allows us to create generalized kirigami patterns that deploy and
approximate any prescribed target shape in two- or three-dimensions. This is achieved by putting
the essential constraints in lengths and angles together in a constrained optimization framework,
with the flexibility of imposing additional constraints to further control the pattern geometry. More

broadly, Our method provides a new way of engineering shape using geometry and computation.
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1 am interested in mathematics only as a creative art.

G. H. Hardy

Reconfigurable kirigami

IN CHAPTER 1, we developed a novel inverse design framework for creating generalized kirigami
patterns by identifying certain geometric constraints involving angles and edge lengths. More
specifically, those patterns can be transformed from a closed and compact contracted shape to a

deployed shape that approximates any prescribed target shape. Note that this process is reversible,
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meaning that we can transform the deployed shape back to the original closed and compact
contracted shape, as the conditions on the edge lengths and angles are satisfied in both the
contracted and the deployed states.

A natural question that arises is as follows: Is it possible to design kirigami patterns that can be
transformed from its deployed configuration to a closed and compact contracted shape different
from the original one? In this chapter, we develop an inverse design framework for reconfigurable

generalized kirigami patterns.

2.1 CONSTRAINED OPTIMIZATION FOR RECONFIGURABLE KIRIGAMI DESIGN

2.1.1 FORMULATION

To simplify our discussion, we focus on the quad kirigami patterns (Figure 2.1a). As discussed in
Chapter 1, for guaranteeing that the deformed deployed configuration yields a valid kirigami
pattern, we need to enforce the contractibility constraints, which consist of the edge length
constraints (1.1) and the angle sum constraints (1.2).

To ensure that the deployed configuration can be contracted into another closed and compact
contracted shape, we exploit the underlying duality of the kirigami pattern and formulate the
tollowing reconfigurability constraints:

* (Dual edge length constraints) For each pair of adjacent edges {e;, 1, €, 2} wheree;, 1, €5, 2
belong to two different tiles and are not paired up in Eq. (1.1) (see the blue dotted lines in

Figure 2.1a), we must have

11‘271 - 11'272. (2.1)
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Given kirigami pattern Optimized valid deployed shape Contracted state 2

0,2 0, 416 5 0,4
9;2.| 6’\" 9’\»2 0»1.4

Initial guess l

Invalid deployed shape

Anstrained

optimization

Figure 2.1: Reconfigurable kirigami design. a, An enlargement of the unit cell of a quad kirigami tessellation
illustrating the constraints in edge lengths and angles to be satisfied. The red dotted lines indicate the ordinary edge
pairs corresponding the same cuts, and the blue dotted lines indicate the dual edge pairs for getting the other contracted
configuration. b, The inverse design framework for reconfigurable kirigami. Starting with a given kirigami pattern and

a prescribed target shape, we construct an initial guess in the deployed space and solve a constrained optimization
problem to obtain a valid deployed configuration that satisfies both the ordinary contractibility constraints and the new
reconfigurability constraints and matches the target shape. We then contract the deployed configuration in two ways,
one by following the cut edge pairs and one by following the dual edge pairs, and obtain two contracted states of it. The
angles are colored based on the correspondence in the given kirigami pattern.

* (Dual angle sum constraints) For every set of angles {8, z }}_; which are dual to the set of

angles {0, ¢ }}_, mentioned in Eq. (1.2) inside a unit cell (see Figure 2.1a), we must have

> Gu =27 (2.2)
k=1

The contractibility constraints and the reconfigurability constraints together enforce all edges
around each hole in the deployed configuration to be equal in length. In other words, all holes in
any reconfigurable generalized quad kirigami patterns must be rhombi. Also, the sum of all angles of
the tiles at two opposite corners of each rhombus hole should be 27.

Following the inverse design framework in Chapter 1, we obtain reconfigurable generalized
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kirigami patterns by solving a constrained optimization problem (Figure 2.1b). Again, given any
standard kirigami pattern and any target shape, we start by creating an initial guess in the deployed
space. Then, we solve a constrained optimization problem in the deployed space to turn the initial
guess into a valid deployed shape. This time, the constraints include the contractibility
constraints (1.1),(1.2), the reconfigurability constraints (2.1),(2.2), as well as the shape matching
constraints (1.8) and the non-overlap constraints (1.9). The objective function in Eq. (1.16) is used
for regularizing the geometry of the entire pattern. We solve the problem numerically using the
fmincon routine in MATLAB. Finally, different closed and compact contracted states can be
obtained from the optimized deployed configuration, as both the contractibility constraints and the
reconfigurability constraints are satisfied.

We remark that for symmetric target shapes, one can enforce an additional symmetry constraint
on the coordinates of the nodes so that the deployed configuration is symmetric. This allows us to

reduce the search space by half, with certain asymmetric admissible patterns neglected.

2.1.2 RESULTS

Figure 2.2a shows several examples of reconfigurable kirigami patterns obtained by our method,
where each of the kirigami patterns admits two distinct contracted states and the deployed
configuration conforms to a prescribed target shape. As with the framework in Chapter 1, our
method is capable of approximating target shapes with different curvature properties. Also, we can
turther control the boundary shape of a contracted state by introducing additional constraints on

the boundary edge lengths and angles, yielding a reconfigurable kirigami pattern that deploys from a
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Figure 2.2: Reconfigurable generalized quad kirigami patterns obtained by our framework. a, Examples
of reconfigurable generalized kirigami patterns that conform to prescribed target shapes with different curvature
properties. For each example, the top row shows the two contracted states and the bottom row shows the deployed
state. b, Results produced by further enforcing a symmetry constraint in the constrained optimization.

contracted rectangle to a circle and then contracts to another shape. As shown in Figure 2.2b, one
can enforce a symmetry constraint to produce reconfigurable generalized kirigami patterns that are

symmetric in the contracted and deployed states.

2.2 ENFORCING RIGID-DEPLOYABILITY

In Chapter 1, we studied the energetics of generalized kirigami patterns and observed that in general
the single degree-of-freedom of the generic quad kirigami pattern is lost after we change the cut
geometry. Motivated by the geometric constraints for achieving reconfigurability, it is natural to ask

whether rigid-deployability can be achieved by enforcing some other geometric constraints on the
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Figure 2.3: Rigid-deployability of kirigami patterns. a, Note that every negative space (blue) formed by a generic
deployed quad kirigami structure (not necessarily reconfigurable) is a four-bar linkage with two pairs of adjacent edges
having the same length. b, Such a linkage has two one-dimensional rigid deployments connected by a single branch

point, the configuration with all edges collinear and an angle of 7 between overlapping edge pairs at the common hinge
(red). The linkage can deploy rigidly from the branch point into either deployment paths, but cannot rigidly transform
directly between points on the deployment paths while remaining embedded in two dimensions. ¢, If the reconfigurability
constraints are enforced, all links in a four-bar linkage negative space have the same length. Such a linkage has three rigid
deployments, one non-trivial path in which all angles between links are activated and two degenerate paths connected by
branch points at the ends of the first path.

cut patterns.

2.2.1 FORMULATION

Here we propose a set of rigid-deployability constraints that further enforce the reconfigurable
kirigami patterns are rigid-deployable, i.e. there exists a single continuous path from one contracted

state to the deployed state and subsequently to another contracted state, such that none of the tiles
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deform throughout the deployment process. Around every negative space, we enforce that

91'1,1 + 61'1,2 = 51'2,1 + 61'2,2 =7, (2’3)

where the design angles are as shown in Figure 2.1. Below, we prove that Eq. 2.3 is indeed necessary
and sufhicient.

Lemma. Local rigid-deployability. We first note that Eq. (2.3) ensures that each negative space
forms a straight line in both contracted configurations. Taken in isolation, each negative space can
be thought of as a four-bar linkage (see Figure 2.3a). A negative space from a generic quad kirigami
pattern (i.e. not reconfigurable) has two unique edge lengths where edges with equal lengths are
incident to each other (see Figure 2.3b). Such a four-bar linkage has two one-dimensional
deployment paths in the plane connected to each other at two branch points, where the edges with
equal lengths overlap each other and all edges are collinear. In the plane, the four-bar linkage cannot
move from one deployment path to another except at a branch point. Thus, quad kirigami patterns
which do not satisty the rigid-deployability constraints (2.3) contain negative spaces which cannot
pass from pattern to deployed states in the plane without changing the edge lengths. And,
conversely, quad kirigami patterns which satisfy the rigid-deployability constraints (2.3) have only
negative spaces which can rigidly deform from their straight-line pattern configurations to their
solved, deployed configurations in the plane. Reconfigurable quad kirigami structures have negative
spaces/four-bar linkages with all equal lengths. Such linkages have three one-dimensional

deployment paths, one path in which all hinges are activated and the linkage forms a rhombus and
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two degenerate paths in which two of the four hinges in the linkage are activated, each connected to
the rhombus path at a respective branch point (see Figure 2.3¢). Thus, reconfigurable quad kirigami
patterns which satisfy the rigid-deployability constraints (2.3) have only negative spaces which can
rigidly deform from their two straight-line pattern configurations to their solved, deployed

configurations in the plane.

Theorem 2.1. A reconfigurable kirigami pattern is globally rigid-deployable if and only if the

constraints (2.3) are satisfied for all negative spaces.

Proof. The above lemma provides local rigid-deployability if and only if Eq. (2.3) are satisfied for
each negative space. To analyze global rigid-deployability, we construct a loop condition Faround
a single interior face in a generic (i.e. not necessarily reconfigurable) quad kirigami structure which
must be identity at all points along a rigid-deployment. As shown in Figure 2.3a, let §; ; be design
angles and ?; be deployment angles in a quad kirigami four-bar linkage negative space. Let f; be
the function that transfers a deployment angle g, , to the deployment angle ¢, ., | by composing

angle-sum transfer »; and four-bar kinematics transfer f; such that

P11 :ﬁ(gpm) :gi(hi@m)) (2.4)

Pin=hi(p,y) =2r— 0,1 — 01— bip (2.5)

b b
liosin ?is

\/lil + 122 - 2[1'7111',2 COS @z‘ 2

@z’-{-l,l :gi(¢1‘72) = ZSin_l
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If the loop condition

F(@l,l) :f‘t(ﬁ(ﬁ(ﬂ((%g))))) = P11 (27)

is satistied for every value of @, | € [0, 27— 61— ] for every interior quad, then the quad kirigami
pattern is globally rigid-deployable. In a reconfigurable quad kirigami pattern, 6;; + 6;, = wand

11'71 = 11'72 and

Py = /oi(gpl.’l) =7T—9; (2.8)
Pit11 :gz(%,z) =T P (2.9)
i1y =fi(P;1) = Pi1- (2.10)

Hence, Fis a composition of identity functions f; and is itself identity. Therefore, reconfigurable
quad kirigami patterns satisfying Eq. (2.3) are globally rigid-deployable. |
Therefore, we can obtain reconfigurable generalized kirigami patterns which are rigid-deployable

by simply adding Eq. (2.3) in the constrained optimization problem.

2.2.2 RESULTS

Figure 2.4a shows examples of rigid-deployable, reconfigurable generalized kirigami patterns
obtained by our method. It can be observed that our method is capable of producing a wide range
of patterns to approximate different shapes even after enforcing the additional rigid-deployability

constraints, and the accuracy of the approximation can be improved by increasing the resolution.
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Figure 2.4: Rigid-deployable, reconfigurable generalized quad kirigami patterns. a, Examples of rigid-
deployable, reconfigurable generalized quad kirigami patterns which conform approximately to a target shape when
deployed. Note that the accuracy of the approximation is improved as the number of tiles increases. b, The simulated
deployment of a pattern which is obtained by solving the constrained optimization problem directly on the contracted
configurations without caring about the intermediate states. ¢, More rigid-deployable, reconfigurable generalized
kirigami patterns obtained by this approach.

Moreover, in case the shape of the deployed configuration is not of our interest, it is possible for us

to perform the constrained optimization directly on the two contracted configurations without
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Figure 2.5: A physical model of a rigid-deployable, reconfigurable generalized kirigami pattern. It can be
observed that the model can be contracted in two ways without any geometrical frustration.

caring about the intermediate states (Figure 2.4b). Figure 2.4c shows more rigid-deployable,
reconfigurable generalized kirigami patterns obtained by this approach, including a pattern that can
transform from a closed and compact square to a closed and compact circle. Figure 2.5 shows a
physical model fabricated using cardboard papers with tape joints connecting the tiles. As the

pattern is rigid-deployable, we can freely deploy and contract it without any geometrical frustration.

2.3 DiscussioN

We have demonstrated the effectiveness of our proposed inverse kirigami design framework by
further incorporating additional geometric constraints that yield reconfigurability and
rigid-deployability. While the focus of this chapter has been on the quad kirigami pattern only, our
framework should also be applicable to other kirigami patterns. For instance, for the kagome
kirigami pattern (Figure 1.1a), one can set up a set of reconfigurability constraints on top of the
contractibility constraints. As shown in Figure 2.6, the two sets of edge length constraints together

enforce that all edges of every hexagonal hole in a reconfigurable generalized kagome pattern should
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Figure 2.6: The edge length constraints for reconfigurable kagome patterns. At each negative space, the surrounding
edges should all be equal in length.

be equal in length. Altogether, our study suggests that the cut geometry plays an important role in

determining the structure and function of kirigami patterns.

47



Divide each difficulty into as many parts as is feasible

and necessary to resolve it.

René Descartes

Topological control of kirigami

ANY STRUCTURE IS DETERMINED BY ITS GEOMETRY AND TOPOLOGY. In the previous two
chapters, we have studied the geometric control of kirigami. Specifically, given a cut topology, we
change the geometry of the tiles in order to achieve certain properties. In this chapter, we pose and

solve a closely related problem: Given a cut geometry, how can we change the cut topology to
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Figure 3.1: A kirigami system and two types of floppy modes. a-b, The cuts are along edges of square tiles
except at the vertices, so that the pattern is equivalent to a linkage. c-d, Removing certain links may increase the DoF

of the structure and add certain internal rotational mechanisms. e-f, Removing certain links may also increase the number
of connected components (NCC) and add certain translational and rotational rigid body modes.

achieve certain prescribed properties?

Consider introducing cuts on a thin sheet of material with width and height both equal L to
form a kirigami structure. To simplify our discussion, we assume that the material is cut using
vertical and horizontal cuts along the grid lines with equal spacing 1, so that we have a rotating
squares system with infinitesimally small corner hinges. Around the internal vertices, there are four
small segments which we can independently decide on cutting or not. As shown in Figure 3.1a, all
the black lines within this piece of paper have been cut, but near the vertices it is kept intact. This
cut diagram can be transformed into a link diagram as shown in Figure 3.1b, where each small quad
is separated, and each pair of neighbor nodes are connected via a “link”.

Now, keeping the geometry of the square tiles fixed, we change the topology of the kirigami by
determining how the cuts (links) are to be prescribed. More specifically, we would like to control the

rigidity (Figure 3.1¢-d) and connectivity (Figure 3.1e-f) of the kirigami system using the prescribed
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cuts (links).

3.1 RIGIDITY CONTROL FOR 2D QUAD KIRIGAMI

To study the rigidity of the kirigami system, we first note that the infinitesimal degree-of-freedom
(DoF) of a system is controlled by geometrical constraints associated with the tile geometry and

the links. In particular, for every square tile Q = {1, %2, 43, %4 }, we should have four edge length

constraints and one diagonal length constraint that enforce the tile to be rigid:

gedge(xth) = Hxl — szz — P2 = 0,
gedge(x27x3) = sz — x3H2 —P= 0,
gedge(x37x4) = Hx3 — x4H2 — P2 = 0, (3.1)

gedge(x/uxl) =||lxs —:|]> =2 =0,

gedge(x17x3) = Hxl - x3H2 - 212 = Oa

where / is the side length of the tile. Also, for each infinitesimal link connecting two nodes x; and xj,

we should have two link constraints:

Qlink, (%7, %) = x; —x;, =0,

Qlink, (%2, %) = x5, — x5, = 0,

where x; = (x;,%;,) and x5 = (x;, %;,).

Therefore, for an L x L kirigami system with 7 links, there are in total SL? length constraints and
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2n link constraints. These constraints determine the range of motions associated with infinitesimal
rigidity in terms of the rigidity matrix 4. Here, A isa (SL* 4 22) x 8L* matrix with 4;; = Og;/Ox;,
where g; is a length or link constraint (7 € [1,SL* + 2#]), and j ranges from 1 to 8L (as there are in
total 42 nodes in an L x L kirigami, and each node has two coordinates). Then, the infinitesimal

DoF of the kirigami system can be computed by subtracting the number of independent constraints

(i.e. the rank of A) from 8L%©"54;

DoF = 8L — rank(4). (3-3)

3.1.1 MINIMUM RIGIDIFYING LINK PATTERNS (MRPs)

From the discussion above, as each link is associated with two link constraints, the decrease in the
total DoF by adding one link must be either 0, 1 or 2. It is therefore natural to ask the following
questions: What is the minimum number of links required for rigidifying an L x L kirigami, i.e.
enforcing the system to have no extra DoF besides the global rigid body motion? How should these
links be placed?

Define (L) as the minimum number of links for rigidifying an L x L kirigami, and a minimum
rigidifying link pattern as alink pattern (a set of positions for links) that rigidifies the L x L kirigami
system with exactly d(L) links. It is easy to see that there are 3 DoF (2 translational and 1 rotational)
if all possible links are added, and 32? DoF if none of them is added (as each tile has 3 DoF). Since

each link reduces the DoF by at most 2, d(L) links can at most reduce the DoF 29(L). This implies
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Figure 3.2: Minimum rigidifying link patterns (MRPs). a, Explicit examples of MRPsfor L = 2,3, 4,5,7,
and for 3 X S.b, Anillustration of the hierarchical construction of MRPs. An MRP for L = 6 can be constructed by
decomposingthe 6 X 6 kirigami into four large blocks of size 3 X 3, and subsequently rigidifying every block using an
MRP for L. = 3 and then the four large rigid blocks using an MRP for L = 2. c. The hierarchical construction of an MRP
forL = 2k, k > 3 by decomposing the system into large blocks of size 3 X 3,5 X Sand3 X 5.d, The hierarchical
construction of an MRP for odd primes p > 11.

that

(3.4)

3L —23(L) <3=9(L) > [3L22—3" :

In the following, we show that this lower bound for §(Z) is in fact optimal (achievable), and it is

always possible to find a rigidifying link pattern with exactly {#W links for any L.

Theorem 3.1. For all positive integer L, (L) = PLZT_{‘ .

To prove Theorem 3.1, we first explicitly construct rigidifying link patterns with exactly [#W
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links for L = 2,3, 4,5,7 (Figure 3.2a). The rigidity of these patterns is verified using the rigidity
matrix computation described in Eq. (3.3). These explicit MRPs for small L form the building
blocks for tackling the larger patterns.

Here we develop a hierarchical construction method for constructing MRPs for any system size
L, where we combine the patterns for small L to construct the patterns for large L. For example, as
illustrated in Figure 3.2b, we can decompose a 6 x 6 kirigami system into 4 large blocks of 3 x 3
tiles. We can then use an MRP with 8(3) = 12 links to rigidify every 3 x 3 block, and then connect
and rigidify the 4 large rigid blocks using an MRP for 2 x 2 with 9(2) = 5 links. This resultsin a

rigidifying link pattern for a 6 X 6 kirigami with the total number of links being
3(6%) — 3
12x4+5:53:[(;w (3:5)

More rigorously, the above hierarchical construction method suggests the following theorem:

Theorem 3.2. For L = 28 [ pl where k = 0,1,2, p; are odd primes that satisfy 3(p;) = FP?T_{"

3L2—3—‘

and n; are nonnegative integers, we have (L) = { 5

Proof. For k = 0, we construct an MRP hierarchically as described below. Suppose L1, L, are

3033
2

two odd numbers satisfying (L) = [3%_3-‘ and d(L,) = [

-| (i.e. the lower bound for d'is
optimal for L; and L,). We construct a link pattern for L = L;L, by decomposing an L1 L, x LiL,
kirigami system into Ly X L; large blocks of Z; x L; tiles. For every block of L; X L tiles, we use an

MRP for L; to rigidify the block. Then, we connect and rigidify the L, x L, large rigid blocks using

an MRP for L. This results in a link pattern that rigidifies the entire L;L, X L; L, kirigami, with the
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total number of links being

12— 12—
LA(L) + (L) = L2 [31 3]%32 3]

2 2
3L} -3 3L3-3
_ 224 2 (3.6)
2yt
_3L3 -3 [3L{L5-3
2 2 '

This implies that d(L;L,) = {%—‘ . By induction, The statement holds for any L = [ p}".
Fork = 1, we first use the above argument to construct an MRP for L = []p}. Then, we

decompose the L X L = 2L x 2L kirigami system into 4 large blocks of L x L tiles. Using the MRP

for L to rigidify each large block and an MRP for 2 X 2 to connect and rigidify all four of them, we

obtain a rigidifying link pattern for the L x L kirigami with the total number of links being

22(L) +9(2) = 4 Fzzz_ 31 +5

_ B3 +5
~ (3.7)
_ 3(2L)* —12410
N 2
_3(2L)* -2 [3(2L)* -3
B 2 B { 2 w

Therefore, the statement holds for any L = 2 [ | p".
Similarly, for £ = 2, we first construct an MRP for L= I 27" Then, we decompose the L X L =
41 X 4 kirigami system into 16 large blocks of L x Ltilesand rigidify each of them. Then we

rigidity the entire structure using an MRP for a 4 X 4 kirigami, thereby producing a rigidifying link
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pattern with the total number of links being

- 12—
420(L) +9(4) = 16 F 3} +23
12 —
= 163 & + 23
. (3.8)
_ 3(4L)* — 48 + 46
B 2
C3(4L)*—2  [3(4L)* -3
2 2
By induction, The statement holds forany L = 4 [ p7". |

Then, the corollary below follows immediately from the above theorem:

3L273-|

Corollary 3.1. There exists infinitely many L such that 0(L) = { 5

We remark that the method used in the above proof cannot be directly extended for handling
higher powers of 2. The reason is that the rounding error in the ceiling function may accumulate
if the numerator is an odd number. To overcome this problem, we extend the definition of  for
general rectangular kirigami pattern by defining (A4, IN) as the minimum number of links required
for rigidifying a A1 x Nkirigami. It is easy to see that the lower bound for (M4, N) is

(3.9)

2

S(M, N) > FMN_ﬂ |

By explicit construction, we obtained a rigidifying link pattern fora3 x S kirigami system with 21
links (see Figure 3.2a). As {%—‘ = 21, such a link pattern is an MRP for 3 x 5. We now prove

the following theorem:
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Theorem 3.3. For any positive integer n, we have
, 3(2")2 -3
(2" = [()2—‘ . (3.10)

Proof. The explicit construction in Figure 3.2a proves the statement for » = 1, 2. We prove the

statement for the remaining 7 by induction. Suppose the statement is true for » = & — 2, i.e.

k—2\2
?%2)3} . (3.11)

322 =

@) = |32
Forn = k, we decompose the 2k % 2k kirigami system into 2k=2  pk—2 large blocks with size

3 x 3,5 % 3,3 x5,and 5 x 5 (see Figure 3.2¢ for an illustration for £ = 3). Using MRDPs explicitly

constructed for 3 x 3,3 X SandS x 5, we rigidify every large block. Then, by the induction

hypothesis, we have an MRP for 2k=2 % 2%=2 that can be used for connecting and rigidifying all

large blocks. This results in a rigidifying link pattern for the 2k « ok kirigami, with the total number

of links being
2/e—2 % 2k—2
< (03) +3(5,3) +4(3,5) +3(5)) + 3(2k2)
= 2276 x (124 21+ 21+ 36) + F(ZHZ)Z_B'W (3.12)
= 452270 4 3(2%70) —1=4802% ) — 1= 3(2k)22 —2_ F(Zk)zz — ﬂ
This implies that 5(2¢) = [ 22=2]. By induction, the statement holds for all . n

Combining Theorem 3.2 and Theorem 3.3, it follows that /(L) = [WT_{‘ forL = [[p”
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2_
where p; = 2,3,5,7,. .. are primes that satisfy d(p;) = [%1 and n, are nonnegative integers. It

remains to show that p; can in fact be any prime. We make use of the following lemma:

Lemma 3.1. Anyodd number L > 11 can be written as
L=3m+5n (3.13)

where m and n are nonnegative integers.

Proof: Note that11 =3 +3 45,13 =3+54+5,15=5+5+5and17 =3+3+3+3 +5.
For odd L > 19, we can express L = (L — 8) 4+ 3 + 5. The result follows easily from induction. W

The above lemma allows us to prove the following theorem:

Theorem 3.4. Forall primesp > 11,

CES (5.14)

Proof. Suppose the equality holds for all primes less than p. By Lemma 3.1, there exists
nonnegative integers 72, z such that 3m + Sn = p. Since pis odd, m + » is also odd. Also, since
m +n < 3m+ 5n = p, m + nis either an odd prime or a product of odd primes which are smaller

than p. Therefore, by the induction hypothesis as well as Theorem 3.2 and Theorem 3.3, we have

(3.15)

S(om+ ) = [3(”””} .

2
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Now, we decompose the p X p kirigami system into (7 + 7) X (m + n) large blocks with size
S X 5,5 % 3,3 x 5,3 x 3(see Figure 3.2d for an illustration for p = 11). Using MRPs explicitly
constructed for 3 X 3,3 x Sand 5 x S and an MRP for (m + 7) X (m + n) obtained above, we have

a rigidifying link pattern for the entire p X p kirigami, with the total number of links being

m*3(3) 4+ n*3(5) + mnd(5,3) + mnd(3,5) + d(m + »)

2 _
=12m? + 36n* + 42mn + ’VW-‘
; 2 s (3.16)
=12m* + 36n° + 42mn + (mJFZ”)_
_3(9m* + 250 4+ 30mn) —3 _ 33m+5n)* -3  [3p*—3
N 2 N 2 N 2 '
This implies that J(p) = FPZT_{‘ . By induction, the theorem holds for all primes p > 11. [ |

Finally, using Theorem 3.2, Theorem 3.3, Theorem 3.4 and induction, we prove that (L) =
{#W forall L: If L = 2F [1p; where k& < 2,by Theorem 3.2 we are done. If & > 3, we first
construct an MRP for [] g/ x []p/" and an MRP for 2¥ x 2% using the three theorems above.
Then, we decompose the L x L kirigami system into 2%¥ large blocks of [] p/* x [ p/* tiles. Using

the MRPs constructed for [ p7* x [] 7 2% x 2%, we obtain a rigidifying link pattern for the entire
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L x L system, with the total number of links being

23 ([ o) + a2 = 2% [mww NELEY

U100 7 R S TC 3 R

> +
X (3.17)
3 (2*T1p)" —3(2%) +3(2")* -2
B 2
3L —2  [3L*-3
2 2 '
This completes the proof of Theorem 3.1.
As aremark, we have
323
" L) , [ ) W " 3L%/2 3
im = lim —— = lim —— = =.
L—oo Total number of linksin an L x L quad kirigami ~ L—oo 4L(L —1)  L—oo 4L 8
(3.18)

In other words, the MRPs for any L x L kirigami system require approximately 3 /8 of the total

number of links as L is sufficiently large.

3.1.2 ALGORITHMIC PROCEDURE OF THE HIERARCHICAL CONSTRUCTION

Given any positive integer L > 2, the procedure for constructing an MRP foran L x L quad
kirigami system is as follows:

* (Prime factorization) Compute the prime factorization L = 2*F[[%, p/ where

P1, P2, - - pm are distinct odd primes, £ > 0 and #; > 1 for all 7 (see Figure 3.3, top left).

* (MRPs for odd primes) For p; = 3,5, 7, take the explicitly constructed MRP for p; X p;

given in Figure3.2a. For each p; > 11, use the method in Theorem 3.4 to construct an MRP
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Figure 3.3: A flowchart of the hierarchical construction algorithm. To constructanMRPforan L x L =
2200 x 2200 quad kirigami, we first compute the prime factorization 2200 = 23 %52 x11 (top left). Then, we take the
explicitly constructed MRP for 5 X 5 given in Figure 3.2a, and construct an MRP for 11 X 11 using the method in the proof
of Theorem 3.4 (top right). After getting MRPs for all prime factors, we construct an MRP for (5% x 11) x (5% x 11),
i.e. the product of all odd prime powers of L, using the method in the proof of Theorem 3.2 (bottom right). Finally, we

use the method in the proof of Theorem 3.3 to construct an MRP for 23 x 23ie.the largest even prime power of L,

and subsequently apply the method in the proof of Theorem 3.2 again to construct an MRP for theentire L X L =
2200 x 2200 kirigami (bottom left).

for p; x p; by decomposing the p; X p; system into large blocks of size 3 x 3,5 x 3,3 x 5, and
5 % 5 (see Figure 3.3, top right).

* (MRP for the product of all odd prime powers) Use the approach in Theorem 3.2 to
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construct an MRP for p?* X p/ for every 7, and then construct an MRP for
[TZ, pi x T1, pi* using the hierarchical construction method (see Figure 3.3, bottom

right).

* (MRP for the entire kirigami) If ¢ = 0 we are done. If & = 1, 2, take the explicitly
constructed MRPs for the 2 x 2 and 4 X 4 kirigami systems given in Figure 3.2a. It & > 3,
use the approach in Theorem 3.3 to construct an MRP for 2k x 2k by decomposing the
2k« 2k system into large blocks of size 3 x 3,5 x 3,3 x S,and 5 X S. Finally, apply
Theorem 3.2 again to construct an MRP for L x L by rigidifying the 2k x 2k large blocks
with size [ [, p* < T2, p7 (see Figure 3.3, bottom left).

We remark that the order of the operations described above is important. For instance,
decomposing a 6 X 6 kirigami system into 4 large blocks of 3 x 3 tiles can yield an MRP, while
decomposing it into 9 large blocks of 2 X 2 tiles cannot. The reason is that the order of such
operations affects the parity of the numerator in the ceiling function in the calculation of the total

number of links, which may make the resulting rigidifying link patterns suboptimal.

3.1.3 ENUMERATION OF MRPs

Denote the number of MRPs for an L X L kirigami system by 7,(L). Since the total number of

possible links is 4L(L — 1) and an MRP must have exactly (L) = {#W links, there are in total

4L(L—1)
(

[(312-3) /21) possible combinations to examine for finding MRDPs. For L = 2 and 3, it follows from

adirect enumeration that there are #,(2) = 12 and 7,(3) = 140 MRPs. Even for just L = 4 and

S, there are already (gg) ~ 3 x 1083 and (22) ~ 7 x 10%2 possibilities, making the enumeration
impossible.
The computation can be simplified to a certain extent by assuming that all boundary links are

connected. With this assumption, a direct enumeration shows that we have 4, 10 and 182280 MRDPs

61



forL = 2,3, 4respectively. It can be observed that the number increases rapidly, and the
enumeration again becomes impossible for larger L. Nevertheless, the hierarchical construction
method provides us with a simple way to obtain a lower bound of 7,(L) for composite L. For
instance, asa 6 X 6 kirigami system can be decomposed into 4 large blocks of 3 X 3 tiles, the
minimum number of MRPs for L = 6 is then 140% x 12 ~ 4.6 x 10°.

The above attempts for enumerating MRPs suggest that MR Ps become extremely rare as L
increases. In other words, it is nearly impossible to obtain an MRP simply by trial and error. This

shows that the hierarchical construction is an effective method for obtaining MRPs.

3.1.4 CONTROLLING RIGIDITY USING MRPs

Using the MRPs obtained by the hierarchical construction method, we can easily obtain kirigami
systems with different rigidity properties. For instance, for odd Z, since every link in an L x L MRP
decreases the DoF of the kirigami system by exactly 2, we can obtain a system with DoF = 24 + 3 by
removing exactly £ links from an MRP. Also, by adding a link which reduces the DoF by 1 to such

a kirigami system, we can obtain a system with DoF = 2k + 2. For even L, all but one links in an

L x L MRP reduce the DoF of the system by 2 (except one that reduces the DoF by 1). By removing
k links from an MRP, we can again obtain a kirigami with DoF = 2k 4 3 or 2k + 2. Therefore, any

given DoF is achievable by suitably removing links from the MRDPs.
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Figure 3.4: Minimum connecting link patterns (MCPs). Starting from an MCP for L = 2 (a), we add one link at
each edge on the top and the right boundary. This produces an MCP for L. = 3 (b). Repeating the same procedure, we
obtainan MCP for L = 4 (c).

3.2 CONNECTIVITY CONTROL FOR 2D QUAD KIRIGAMI

We then proceed to consider how the number of prescribed links aftects the connectivity of the

kirigami system.

3.2.1 MINIMUM CONNECTING LINK PATTERNS (MCPs)

Analogous to the study of rigidity control, here we first consider the minimum number of
prescribed links for making an L x L kirigami connected. Define y(L) as the minimum number of
links required for connecting an L X L kirigami, and a minimum connecting link partern (MCP) to
be alink pattern with exactly y(L) links which connects the L x L kirigami. Clearly we have the

following result:
Theorem 3.5. For all positive integer L, y(L) = L* — 1.

A few examples of MLPs are given in Figure 3.4. Note that the hierarchical construction we
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introduced for obtaining MRPs is also applicable for MCPs. Let 72, # be two positive integers.
Suppose we have an MCP for m X m and n X n. If we decompose a mn x mn kirigami into m X m
large blocks of 7 x 1 tiles, we can use the hierarchical construction method to obtain a connecting

link pattern for the mn x mn kirigami, with the total number of links being
m’y(n) + y(m) = m*(n* —=1) + (m* —1) = (mn)* - 1. (3.19)

This shows that the constructed link pattern is an MCP for mn X man.

As aremark, by Theorem 3.5 we have

, 7(L) . L*—1 L1
lim — — - = lim ——— = lim — = -.
L—oo Total number of linksin an L X L quad kirigami ~ L—oo 4L(L —1)  L—oo 40> 4

(3.20)
This implies that any MCDPs for an L x L quad kirigami require approximately 1/4 of the total
number of links as L is sufficiently large.

Combining Theorem 3.1 and Theorem 3.5, we have the following inequality for L > 2:

2 _
L) = [3L23—‘ > L[*—1=y(L). (3.21)

This implies that there is no MRP which is also an MCP for any L > 2, and rigidifying a kirigami

system requires more effort (links) compared to connecting it.
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3.2.2 ENUMERATION OF MCPs

Denote the number of MCPs in an L x L kirigami by 7.(L). Using the Kirchhoff’s matrix tree
theorem, we can obtain the exact value of 7,(L). Suppose we construct the Laplacian matrix of the
L x L kirigami system by treating the L? tiles as vertices and all the 4Z(L — 1) possible links as edges.

Then, by the Kirchhofl’s matrix tree theorem, the total number of MCPs is

ne(L) = % le& (3.22)

where 4; are the non-zero eigenvalues of the Laplacian matrix. Analogous to MRPs, it can be
observed that the ratio of 7,(L) to the number of all possible link patterns with exactly L* — 1 links
becomes extremely small as L increases. The hierarchical construction provides us with a simple way

for explicitly constructing MCPs for large L.

3.2.3 CONTROLLING CONNECTIVITY USING MCPs

The MCPs are useful for controlling the connectivity of a kirigami system. Note that every link in
an MCP decreases the number of connected components (NCC) by exactly 1. Therefore, by
removing any £ links from an MCP, we obtain a kirigami system with exactly # + 1 connected

components.

65



3.3 SIMULTANEOUS CONTROL OF RIGIDITY AND CONNECTIVITY

More interestingly, we can achieve a certain level of control in both rigidity and connectivity using

the MRPs and MCPs.

3.3.1 SIMULTANEOUS CONTROL OF NCC AND DoF using MRPs

Note that for any L x L MRP obtained by the hierarchical construction, adding or removing links
that connect the rigid sub-blocks does not change the NCC or DoF within the sub-blocks
themselves. Therefore, if d is a factor of L, it is possible for us to reverse the process of the
hierarchical construction and only remove certain “key links” (i.e. those connecting the rigid
sub-blocks) from the MRPs to control both the NCC and DoF precisely. More specifically, we can
achieve NCC =1,2,...,d?% and at the same time DoF can go from 3 to 34>.

For instance, consider an MRP for an 18 X 18 kirigami system constructed by combining §(2) =
S key links with the MRPs for the four sub-blocks of 9 x 9 tiles. Removing one of the five key
links increases the DoF by 1 or 2 while preserving the NCC. Removing two of the five key links
increases the DoF by 3 or 4, while the NCC either remains unchanged or increases by 1. As the
process continues, all the five key links are eventually removed and the DoF of each 9 x 9 sub-block
is 3, and hence the system is with NCC = 4 and DoF = 3 X 22 = 12. To summarize, we have the
following possible combinations of NCC and DoF:

* NCC = 1, DoF = 3 (the original MRP), 4, 5 (1 key link removed), 6 (2 key links removed);

* NCC = 2, DoF = 7 (2 key links removed), 8 (3 key links removed);
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* NCC = 3, DoF = 9 (3 key links removed), 10 (4 key links removed);

* NCC = 4, DoF = 12 (5 key links removed).

In other words, by controlling only s links out of the d(18) = 485 links in an MRP fora18 x 18
kirigami system, we can already achieve a large number of combinations of NCC and DoF.
Moreover, note that the above process can be repeated for each of the sub-blocks by manipulating
the key links in the MRPs. This shows that our hierarchical construction method for MRPs is
capable of simultaneously controlling the NCC and DoF of kirigami systems.

It is also possible to change the DoF while keeping the NCC as small as possible using the MR Ps.
Note that in our hierarchical construction method, we always rigidify sub-blocks with odd size, in
which each link changes the DoF by exactly 2. Hence, by removing any link from any rigid
sub-block in an MRP, we can increase the DoF of the system by exactly 2 while keeping the NCC
unchanged. This process can be continued until some tiles become disconnected. In other words,
we can simultaneously achieve NCC = 1and DoF = 2k + 3 by removing # links, with & being

sufficiently small.

3.3.2 SIMULTANEOUS CONTROL OF NCC AND DoF using MCPs

For any MCP of an L x L kirigami, clearly we have NCC = 1. Also, since there are L? — 1links
in the MCP and each link decreases the DoF by 2, we have DoF = 31> — 2(L* — 1) = L* + 2.
By removing any link from the MCP, we can increase the DoF and the NCC by 1 and 2 respectively.
Therefore, we achieve a kirigami system with NCC = & + 1 and DoF = L[>+ 2k+2 by removing

any k links.
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Note that adding any link to an MCP will not change the NCC, while the DoF will decrease by
2. The process can be continued until some of the links become redundant. In other words, we can
achieve NCC = 1and DoF = L? — 2k + 2 simultaneously by adding £ links to an MCP, where k is

sufficiently small.

3.4 EXTENSION TO 2D KAGOME KIRIGAMI

While so far we have focused on the quad kirigami system only, the study of rigidity and
connectivity can in fact be extended to kagome kirigami systems, for which the tiles are regular
triangles instead of squares. Again, to simplify our discussion, we fix the geometry of the tiles and
consider changing the links connecting them.

As shown in the previous sections, the MRPs and MCPs play an important role in controlling
the rigidity and connectivity of kirigami. It turns out that Theorem 3.1 and Theorem 3.5 also hold
for kagome kirigami systems.

To prove Theorem 3.1 for kagome kirigami systems, we start by constructing explicit examples of
MRPs for2 x 2,3 X 3,4 x 4,5 x 5,7 x 7,3 x 5and 5 x 3 (Figure 3.5a-g). Note that here we need
two MRDPs for 3 x 5and S x 3, while only one MRP is needed for the case of quad kirigami. Using
these MRPs, we can follow the proofs of Theorem 3.2, Theorem 3.3 and Theorem 3.4 to prove that
the same lower bound is achievable for all L in the case of kagome kirigami (see Figure 3.5h for an
illustration of the hierarchical construction for kagome kirigami).

Similarly, it is easy to see that Theorem 3.5 holds as each link reduces the NCC of a kagome
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Figure 3.5: Minimum rigidifying link patterns (MRPs) for kagome kirigami. a-g, Explicit construction of
MRPs for L X L kagome kirigami systemswith L = 2 (a),L = 3(b),L = 4(c),L = S(d),L = 7(e),and M x N
kagome kirigami systems with (44, N) = (3,5) (fland (M, N) = (5,3) (g). h, Anillustration of the hierarchical
construction for kagome kirigami. By decomposinga 6 X 6 kagome kirigami system into four large blocksof 3 X 3
triangles, we can rigidify each block using an MRP for L = 3 and the four large blocks using an MRP for L. = 2. This
results inan MRP for L = 6.

kirigami system by at most 1 (see Figure 3.6 for examples of MCPs for kagome kirigami).
Thus, the analysis of the rigidity and connectivity control in the previous sections can be

extended to kagome kirigami.

69



{
Figure 3.6: Minimum connecting link patterns (MCPs) for kagome kirigami. Starting from an MCP for L =
2 (a), we add one link at each edge on the top and the right boundary. This produces an MCP for L. = 3 (a). Repeating the

ava L9k
VA

same procedure, we obtain an MCP for L = 4 (c).
a b
Figure 3.7: Topological control of 3D prismatic assembly as a linkage problem. a, We decompose asolid into

L X M x Ncubes(here L = M = N = 2).b, All possible links for connecting neighboring cubesina2 x 2 x 2
system.

3.5 EXTENSION TO 3D PRISMATIC ASSEMBLIES

We further extend the study of the topological control of kirigami to 3D. Given a 3D solid prismatic
assembly formed by introducing vertical and horizontal cuts on a volumetric object (Figure 3.7), we
study the minimum number of links needed for rigidifying or connecting the polyhedral elements,
and how we can a target DoF or NCC using prescribed links. To simplify our discussion, we focus

on 3D rectangular prismatic assemblies consisting of identical cubic elements.
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3.5.1 MRDPs FOR 3D RECTANGULAR PRISMATIC ASSEMBLIES

We start by extending the rigidity matrix rank computation to 3D. Recall that the rigidity matrix in
the 2D case involves the edge length constraints and the diagonal length constraints for each square
tile. In the 3D case, by the Dehn’s rigidity theorem *#, any closed convex polyhedron with
infinitesimally rigid faces is infinitesimally rigid. Therefore, for every cube with side length /, there

are 12 edge length constraints in the form of

gedge<vl'7 Dj) = Hvi - ijZ - P = 0, (3-23)

where v; and v; are adjacent vertices, and 6 diagonal length constraints for the 6 faces of the cube:

gdiagonal(vi, 0]) = ||vi - ijz -2 = 0, (3'2'4)

where v, and v; are opposite vertices in a face.
As for the link constraints, note that adding a link between two vertices v; = (3,2, X3;-1, x3;)

and v; = (x3;2, 3,1, 43;) imposes three link constraints in the 3D case:

Qlink, (97, 9)) = w32 — w372 = 0,

Qlink, (07, 07) = x3;-1 — 231 = 0, (3.25)

Zlink, (03, 07) = %3, — 23, = 0.
Again, the above length constraints and link constraints are not necessarily independent. Therefore,
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we determine the DoF of the 3D rectangular prismatic assembly using the rigidity matrix 4 formed
by the above constraints. Since there are 8 vertices per cube and 3 coordinates per vertex, the DoF is
given by

d = 24LMN — rank(4). (3.26)

Denote d3p (L, M, N) as the minimum number of links for rigidifyingan L x M x N3D
rectangular prismatic assembly. Since every cube has 3 translational DoF and 3 rotational DoF, the
maximum and minimum values of the total DoF are respectively d = 6LAMN and d = 6. It follows

that

GLMN — 385p(L, M,N) < 6 = dp(L, M,N) > % — 2LMN — 2. (3.27)
Denote a link patterns with exactly 2LAN — 2 links which can rigidify an L x A1 x N rectangular
prismatic assembly as a minimum rigidifying link pattern (MRP).

Here we show that the hierarchical construction also works for the 3D case. We first consider the
case where L = M = Nand simplify the notation d3p(L, M, N) as d3p(L). Suppose the above
lower bound holds for L = /yand L = b, ie. 3p(h) = 25 — 2and d3p(L) = 25 — 2. By
decomposing an /1/, X i/, x l1/; rectangular prismatic assembly into /, X [, x /, large blocks with
size [y X l; x [1, we can rigidify each large block using an MRP for /; x /i x /; (with exactly d3p (/1)
links), and then connect and rigidity the large blocks using an MRP for /, x [, x [, (with exactly

93p(/>) links). This results in a rigidifying link pattern for the /i, x /i/, X /1/, rectangular prismatic
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Figure 3.8: Minimum rigidifying link patterns (MRDPs) for 3D rectangular prismatic assemblies. Left to
right: MRPs for 3D rectangular prismatic assemblies with size 2 X 2 X 2 (with exactly 2 X 222 =14 links),2 X 2 X 3
(withexactly2 X 2 X 2 X 3 —2 = 22links),2 X 3 X 3 (withexactly2 X 2 X 3 X 3 —2 = 34links),and3 X 3 X 3
(withexactly2 X 3 X 3 X 3 — 2 = 52links).

assembly, with the total number of links being

Bosp(h) + dsp(l) = BB —2) + (28 — 2) = 2(4h,)* — 2. (3-28)

This implies that 83 (/1/2) = 2(/142)* — 2. Similar to the 2D case, we have the following theorem:

Theorem 3.6. For all positive integer L > 2, we have

dp(L) =2L° - 2. (3.29)

Proof. By explicitly constructing MRPs for L x M X N =2 X 2 X 2,3 X3 X 3,2 X 2 x 3,
2 x 3 x 3 with exactly 2LMN — 2 links (see Figure 3.8), we have shown that the statement is true
for L = 2,3.

For L > 4, we prove the statement by induction. Suppose it is true for all positive integers less
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Figure 3.9: The hierarchical construction method for 3D rectangular prismatic assemblies. To construct an
MRPfora$S X S X 5 3D rectangular prismatic assembly, we decompose the assembly into blocks withsize 2 X 2 X 2,
2 X 2x3,2x3x3,and3 X 3 X 3 (withdifferent colors). We rigidify each block using an MRP shown in Figure 3.8
(the red links) and then the entire structure usingan MRP for 2 X 2 X 2 (the blue links).

than L. Note that for L > 4, there exists nonnegative integers #, b with 2 + & > 2 such that

L =2a+3b. (3.30)

More specifically, we have the following cases:

* If L = 0(mod 3), we can express LasL =2 x 0+ 3 x %

* IfL =1(mod 3), we can express Las L = 2 x 2 + 3 x L34,

* If L =2 (mod 3), wecanexpressLasL =2 x 1+ 3 X L%

S}

Now, we decompose the L X L x L rectangular prismatic assembly into (¢4 &) X (a+b) X (a+b)

large blocks with size 2 x 2 x 2,2 x2x 3,2 x3 x 3,and 3 x 3 x 3 (Figure 3.9). Since 2 < a+b < L,
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by the induction hypothesis and the hierarchical construction we have

dpla+0b) =2(a+b)® 2. (3.31)

Therefore, by rigidifying the large blocks using MRPs and then the entire structure using an
MRP for (a + b) x (a + b) x (a + b), we obtain a rigidifying link pattern for the L X L x L

rectangular prismatic assembly, with the total number of links

2°3p(2) + B 93p(3) + 34%633p(2,2,3) + 34b*93p(2,3,3) + d3p(a + b)
=14a> + 52b° + 664 + 1024b* + 2(a + b)* — 2
—=164> + 540> + 724°b + 108a6* — 2 (3.32)
=2(2a +3b)* — 2

=213 —2.

This implies that 83p(L) = 2L3 — 2. The result then follows from induction. [

We further prove the following result:

Theorem 3.7. For infinitely many positive integers L, M, N which are not all identical, we have

9p(L, M, N) = 2LMN — 2. (3.33)

Proof. Take any set of nonnegative integers a7, b;, a,, by, a,, b, such thata; + by = a,, + b,, =

ay + b, > 2,and L = 2a; + 3b;, M = 2a,, + 3b,,, N = 2a, + 3b, are not all identical (e.g.
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(a1, b1, am, by an, b,) = (1,6,2,5,3,4), with (L, M, N) = (20,19,18)). We decompose the

L x M x N 3D rectangular prismatic assembly into (a; + b;) X (a,, + by,) X (a, + b,) sub-blocks
ofsize2 X 2 X 2,2 X2 x%x3,2x3x3,and3 x 3 x 3. Sincea; + b, = a,, + b,, = a, + b,, we
follow the proof of Theorem 3.6 and rigidify each sub-block and subsequently the entire structure

using MRDPs, forming a rigidifying link pattern with the total number of links being

a1amand3p(2) + biby,b,05p(3) + (a1amby, + aja,by, + amanby)dsp(2,2,3)
+ (a1bmbn + ambib, + a,bib,,)03p(2,3,3) + d3pla; + b))

=l4ajana, + S2b1byb, + 22(a1a,n,b, + a1a,by, + amanb;) + 34(aibub, + anbib, + a,bib,,)
+ 2(a; + b)) (am + bm)(an + b,) — 2

=2(2a; + 3b;)(2an + 3by)(2a, + 3b,) — 2 = 2LMN — 2.

(3.34)

This implies that d3p(L, M, N) = 2LMN — 2. [ |
It is noteworthy that the above technique can be further exploited for constructing more MRPs.

For instance, using2 + 0 = 1+ 1 = 0 + 2 = 2, we first constructan MRP fora 4 x 5 x 63D

rectangular prismatic assembly (Figure 3.10a). Then, for any nonnegative integers

aj, by, ap, by, ay, b, witha; + by = 4,a,, + b,, = 5,a, + b, = 6, the same technique can be used

for constructing an MRP for a (24; + 36;) X (2a,, + 3b,,) % (2a, + 3b,) rectangular prismatic

assembly (Figure 3.10b).
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Figure 3.10: More examples of minimum rigidifying link patterns (MRPs) for 3D rectangular prismatic
assemblies obtained using the hierarchical construction. a, An MRPfor 4 X 5 X 6 constructed using four MRPs
for 3 X 3 X 2 (the pink cubes and the associated red links) and four MRPs for 3 X 2 X 2 (the pale brown cubes and the
associated red links), together with an MRP for 2 X 2 X 2 (the blue links). b, An MRP for 13 X 12 X 11 constructed using
the result in a, with each cube replaced with a systemwithsize2 X 2 X 2,2 X 2 X 3,2 X 3 X 2,0r3 X 3 X 3.

3.5.2 MOCPs FOR 3D RECTANGULAR PRISMATIC ASSEMBLIES

The study of MCPs can be easily extended to the 3D case. Denote y, (L, M, N) as the minimum
number of links needed for connectinga L x M x N 3D rectangular prismatic assembly. Since each

link reduces the NCC by at most 1, we have

Vsp(L,M,N) = LMN — 1. (3-35)

MCPs can be explicitly constructed using an approach analogous to the 2D construction
(Figure 3.11). Using MCDPs for small systems, we can hierarchically construct MCPs for larger

systems.

77



Figure 3.11: Minimum connecting link patterns (MCPs) for 3D rectangular prismatic assemblies. Left to
right: MCPsfor2 X 2 X 2,2 X 3 X 3,2 X 2 X 3,and3 X 3 X 3.

Interestingly, d3p(L) and y, (L) are related by a simple formula:

3p(L) = 2L — 2 =2(L> — 1) = 2y, (L). (3.36)

In other words, the minimum number of links for rigidifying any L x L X L 3D rectangular prismatic

assembly is exactly twice of the minimum number of links for connecting it.

3.5.3 CONTROLLING RIGIDITY AND CONNECTIVITY USING MRPs aND MCPs

Similar to the 2D case, we can easily control the rigidity and connectivity of 3D rectangular
prismatic assemblies by manipulating the links in the MRPs and MCPs.

For instance, note that for any MRP of an L X L X L 3D rectangular prismatic assembly, we
have DoF = 6 and NCC = 1. Since every link in the MRP is non-redundant, we can achieve DoF =
6 + 3k by removing any £ links from it. Note that NCC will remain unchanged for sufficiently small

L. Similarly, for any MCP of an L x L x L 3D cubic kirigami system, we have NCC = 1 and DoF
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=6L> — 3y, (L) = 3L + 3. By removing any £ links from it, we achieve a rectangular prismatic
assembly with NCC = £ 4+ 1and DoF 3L° + 3k + 3. The other approaches for simultaneously
controlling the DoF and NCC discussed in the 2D case can also be suitably extended for the 3D

case.

3.5.4 T|RIANGULAR PRISMATIC ASSEMBLIES

Our topological control framework does not only work for rectangular prismatic assemblies but also
structural assemblies formed by other space-filling prisms, such as the triangular prisms.

More specifically, for triangular prismatic assemblies, we again consider the length and link
constraints as discussed above. This time, the DoF of an L x A x N triangular prismatic assembly
is given by

d = 18LMN — rank(4), (3.37)

where 4 is the rigidity matrix. Since each prism has six vertices and each of them has three
coordinates, we have the factor 18 (instead of 24) for the first term.

Following the approach for rectangular prismatic assemblies, we construct several MRPS as the
building blocks for the hierarchical construction of MRPs for larger triangular prismatic assemblies
(Figure 3.12). Using these MRPs, we can show that Theorem 3.6 and Theorem 3.7 hold for

triangular prismatic assemblies. The connectivity control can be achieved similarly.
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Figure 3.12: Minimum rigidifying link patterns (MRPs) for triangular prismatic assemblies. a, An MRP for
2X2X2,with2 X2 X 2x2—2 = 14links.b, AnMRPfor2 X 2 X 3,with2 X 2 X 2 X 3—2 = 22 links. ¢, An MRP
for2 X 3 X 2,with2 X 2 X 3x2—2 = 22links.d, AnMRPfor3 X 2 X 2,with2 X 3 X 2 X 2 —2 = 22links. €, An
MRPfor2 X 3 X 3,with2 X 2 X 3 X 3 —2 = 34links. f, AnMRPfor3 X 2 X 3,with2 X 3 X 2 X 3 — 2 = 34 links.
g AnMRPfor3 X3 X 2,with2 X3 X3 x2—2= 34 links. h, AnMRPfor3 X 3 X 3,with2 X 3 Xx3Xx3—2 =52
links.

3.6 DiscussioN

We have explored the control of rigidity and connectivity of changing the cut topology of kirigami.
This complements our study of the geometric control of kirigami in the previous two chapters.
More broadly, our studies provide guidelines on the geometric and topological consideration for

designing mechanical metamaterials.

8o



The essence of mathematics lies entirely in its freedom.

Georg Cantor

Additive origami and kirigami

MOTIVATED BY THE RECENT ADVANCES IN ADDITIVE MANUFACTURING, we consider an
alternative approach for metamaterial design in this chapter. In the previous three chapters, we have
focused on the geometric and topological control of kirigami in a global perspective. While we can

effectively achieve prescribed target shapes, rigidity and connectivity using our proposed methods,
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the global design problems involve the consideration of the constraints in all nodes in a kirigami
pattern, making the computation time-consuming.

Here, we consider an additive design approach that creates a metamaterial structure in a
layer-by-layer manner. By identifying the constraints in lengths and angles at the growth front of a
partially built structure, we can simplify the global design problem as a series of local design

problems involving the nodes at the growth front only.

4.1 ADDITIVE ORIGAMI DESIGN

We start by considering the problem of additive origami design, i.c. the design of origami structures
in an additive manner. Suppose we are given a quad origami surface, such as the well-known Miura-
ori pattern as shown in Figure 4.1a. Our goal is to grow the origami surface by suitably adding new
quad strips along the boundary of the surface.

Note that one has to ensure that every quad in a newly added quad strip is compatible with the
existing pattern. This requires the consideration of all angles at the growth front. Nevertheless, we

can largely simplify the problem using the following result:

Theorem 4.1. The space of new interior edge directions along the entire growth front in a quad

origamsi is one-dimensional, i.e. uniquely determined by a single angle.
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Figure 4.1: Additive origami design. a-b, An existing quad origami surface with a growth front (green), and a zoom-
in of a single boundary vertex x;. ¢, An illustration of the flap angle #; (red), which sweeps from the ‘@l. face counter-
clockwise about ¢;. Inset view is along €;. d, The new design angle 19,"1 sweeps through the plane determined by «;, giving
the possible new edge directions 7;. The other new design angle &; » (dashed), between 77 and ¢, 1, is determined by

9; 1. €, Anillustration of the choices of 6, ; that satisfy the developability constraint. f, Note that two adjacent growth
directions 7; and ;7,~+1 must be coplanar, and hence ;7’,4_1 is determined by the intersection of this plane and Vi1 &

The secondary flap angle a; at x;, which sweeps from theﬁl, face counter-clockwise about E}_H, is determined by «;.
Consequently, the flap angle 2,y at x;1 is also determined by «;.

4.1.1 SINGLE VERTEX CONSTRUCTION

To prove Theorem 4.1, we start by considering the problem at a single boundary vertex x; along the
growth front (Figure 4.1a), with the two adjacent growth front vertices denoted by x;_1, x,41, the

two boundary design angles incident to x; in the existing surface denoted by &; 3 and ¢; 4, and the
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angle in space at x; along the growth front denoted by 8, = Z{—¢;,¢;11} € (0, z) (Figure 4.1b),
where é; = x; — x;—1 and €41 = x;41 — X5

To obtain a new edge direction vector 7; that gives the direction of an interior edge x;, x} in the
augmented quad origami surface, let2; € [0, 27) be the left-hand oriented flap angle about ¢; from
the &, plane to the plane of the new quad containing 7; and ¢; (Figure 4.1¢). Note that the single

vertex origami at x; should satisfy the local angle sum developability constraint

4

Z ez'd' = 2m, (4'1)
j=1

where §;; = cos™'(—7;-&)and 6,2 = cos™!(7 - €:1) are two new design angles implied by 7;
(Figure 4.1d). Since 6; 1, 6; 2 and 8, form a spherical triangle with «; being an interior spherical angle

opposite &; 2, it follows from the spherical law of cosines that
cos 0 p = cos ;1 cos B, + sin ;1 sin B, cos ;. (4.2)

Solving Eq. (4.1) and Eq. (4.2) for 6;; and &, », we are then able to create a single vertex origami at

—1  cos(8;348;4)—cos B,
sin (6;,3+06;,4)+sin B, cos a;?

f;1 = tan
(4-3)
‘91',2 =27 — 6)1’,1 - 51',3 - 6’1',4‘

One can further prove that the solutions ; 1, ; > to Eq. (4.1) and Eq. (4.2) exist and are unique for

any given 6; 3, 0; 4, 8, (angles intrinsic to the existing origami) and «; (the flap angle), modulo a finite
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number of singular configurations. The edge direction 7 can then be obtained from the two new

design angles ¢; 1, 6; » (Figure 4.1¢), which are uniquely determined by «;.

4.1.2 ADJACENT VERTICES

After understanding the geometry of a single vertex origami, we proceed to consider the relationship
between adjacent vertices at the growth front. More specifically, we show that the new edge
directions 7,41, 7,1 at the adjacent vertices x;1, x;—1 are also uniquely determined by «;.

Without loss of generality, we consider the new edge direction 7.1 (Figure 4.1f) and denote 2/ as
the left-hand oriented angle about €1 from the £, plane to the plane of the new quad containing
0; 2. Applying the spherical laws of sines and cosines on the spherical triangle formed by &; 1, &, » and
£, we have

sin ;1 (a;)

. / .
Sing; = Gq .2 (ar)

sina;,
(4.4)

cos ;1 (a;) —cos 8 2 (a;) cos B,

/
cosa; = sin §; 2 (a;) sin 3,

The two equations above yield a unique solution 2, € [0, 27). Since 6§, and ; , are functions of
a;, & is also a function of 2;. Now, note that «; and 2, are measured about a common axis. Hence,
they are thus related by a shift of the left-hand oriented angle ¢, from the 8, face to the 8, face.

This gives the flap angle transfer function g; : [0, 27) — [0, 27):

a1 = gi(a;) = mod(ej(a) — P, 27) (4-5)

as measured left-hand oriented about ¢;4; starting at the 3, plane (Figure 4.1g). It is easy to see that
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gis bijective. Therefore, the new edge direction 7,4 is uniquely determined by «;. Similarly, 7;_; is

also uniquely determined by «;.

4.1.3 THE ENTIRE GROWTH FRONT

[t remains to establish a bijection between the flap angles «; and 2; at arbitrary 7, j with 7 < ;.

Consider the following composition of the transfer functions:

% = gi(g-1(g—2( -~ gi(@:))))- (4.6)

Since each of the transfer functions g;, gi+1, - - - , g is bijective, the composition of them is also
bijective. It follows that all new interior edge directions along the entire growth front are
parameterized by a single angle «;.

With the results in the three subsections above, we have completed the proof of Theorem 4.1.

4.1.4 CREATING ORIGAMI STRUCTURES USING THE ADDITIVE DESIGN

To apply Theorem 4.1 for creating an origami surface additively, we start by selecting a growth front
at an existing origami surface (Figure 4.2a). Suppose the growth front consists of 7 + 1 vertices. By
choosing an arbitrary flap angle along one of the edges at the growth front, we determine the
orientation of one plane in the new strip. By Theorem 4.1, this choice propagates along the entire
growth front, thereby uniquely determining the angles of all 7 planes in the new strip, except for

the two boundary design angles (Figure 4.2b). The lengths of the 7 + 1 new edges can then be set
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Figure 4.2: Construction of origami surfaces via additive origami design. a, An existing origami surface with a
growth front consisting of 72 + 1 vertices (red). b, Starting from any edge along the growth front, we can choose the flap
angle for the new quad. The choice of the flap angle will then propagate along the entire growth front, thereby uniquely
determining all angles in the new strip (except for the two boundary ones). ¢, Any boundary of the origami surface can be
chosen as the growth front to extend the surface.

freely, with the condition that none of them intersects with each other. This determines the
geometry of the newly added strip. It is noteworthy that the process can be continued with any
boundary of the origami surface being the growth front (Figure 4.2¢), which makes the design
largely flexible.

To demonstrate the effectiveness of our additive design approach, we apply it for creating origami
structures that approximate any prescribed surface in R?. We first construct an upper surface and a
lower surface of the prescribed surface*°. Then, for every newly added strip, the angles and the edge

lengths are determined by enforcing adjacent vertices to lie on the upper and lower surfaces
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Figure 4.3: A gallery of surface fitting results obtained by our additive origami design. We apply our method
to create origami surfaces that approximate a helicoid at two different resolutions (top left), cylinders with different
Gaussian curvatures (zero/negative/positive as shown in top right), a landscape surface with mixed curvature at four
different resolutions (the middle row), a paraboloid at five different resolutions (bottom left), and a hyperbolic paraboloid
at five different resolutions (bottom right).

alternately. As shown in Figure 4.3, our additive design approach allows for the construction of
origami surfaces that approximate a large variety of surfaces with different curvature properties.
Furthermore, unlike the global inverse design approach “°, the additive design approach only
requires solving a constrained optimization problem for each newly added strip, which is more
computationally feasible.

Besides the generalized Miura-ori patterns, our method is capable of producing curved fold

models with the global mountain-valley patterns set to alternate in the direction transverse that of
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Figure 4.4: More origami models produced by our additive design approach. Our method allows for the
design of curved fold models (left and middle) as well as disordered crumpled sheet models (right).

the curved folds, as well as disordered crumpled sheet models without any systematic
mountain-valley patterns (Figure 4.4). These examples again demonstrate the effectiveness of our

additive approach for origami design.

4.2 ADDITIVE KIRIGAMI DESIGN

The idea of additive design is also applicable to kirigami. Below, we outline two possible approaches

for the additive design of kirigami.
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Figure 4.5: Forward additive kirigami design. a, To augment a kirigami structure by adding two new layers, we
first determine all edges in the new quads incident to the existing pattern (green) and subsequently all edges not
incident to the existing structure (red). b, Note that some of the green edges are uniquely determined by their length
correspondence (blue) with edges in the existing pattern (DoF = 0). ¢, The other green edges at the interior of the new
strip are also uniquely determined by the angle sum constraint at the corresponding four-bar linkage (DoF = 0). d,

The positions of the two boundary vertices at the top strip can be chosen freely (DoF =2 X 2), while the those at the
bottom strip are determined by the choice of the two deployment angles (DoF = 2). e, For each rigid wedge (solid red), 1
length and 1 orientation can be chosen (DoF =2 X #wedges). The angle between the edges in each wedge is uniquely
determined by the angle sum constraint, and the remaining dashed red edges are also uniquely determined by the above
choices. f, The top strip has been completed determined, while the bottom strip has two boundary vertices that can be
placed freely (DoF =2 X 2).

4.2.1 FORWARD ADDITIVE DESIGN

Analogous to the study of additive origami design, we explore the flexibility of controlling the
geometry of the newly added strip. Consider adding two layers of quads to an existing quad
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kirigami system (Figure 4.5a). The process can be decomposed into two steps: First, we determine
the edges in the new quads incident to the existing pattern. Then, we determine the edges not
incident to the existing pattern. We note that all edges incident to the existing pattern are either
uniquely determined by their length correspondence with edges in the existing pattern (Figure 4.5b)
or by the angle sum constraints (Figure 4.5c), except for the boundary points (Figure 4.5d). For the
edges not incident to the existing pattern, note that we have local control of their lengths and
orientations via the design of the wedges (Figure 4.5e). Finally, we have full control of certain
boundary points (Figure 4.5f).

In other words, if the growth front consists of 2k quads, then the DoF in determining the
geometry of the newly added strip is either 2 x 2 + 2 X k (for the top strip in Figure 4.5) or
2+ 2 X (k—1) + 2 x 2 (for the bottom strip in Figure 4.5). Note that in both cases, the total DoF
equals 4 + 2k. We have thereby characterized the full design space for kirigami design. By changing

the 4 + 2k variables in each newly added strip, we can easily create large-scale kirigami patterns.

4.2.2 INVERSE ADDITIVE DESIGN

One can also perform the inverse design of kirigami in Chapter 1 additively. As illustrated in
Figure 4.6, given a target shape S C R, we consider a series of nested shapes {S;}2Y, where
S5CSHC---CSv=_S

We first solve a simple constrained optimization problem to approximate S; using a few kirigami
tiles. Then, for7 = 2,3,..., N, we can subsequently approximate S; by keeping the result for S;_;

and solving the constrained optimization problem for the tiles inside S; \ S;—;. Here, the constraints
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Figure 4.6: Inverse additive kirigami design. We start by solving the inverse design problem for a small pattern.
Then, we add a new layer at the boundary of the existing kirigami structure and construct an initial guess of the geometry
of the new layer in the deployed space. Keeping the existing optimization result (green) fixed, we solve a new constrained
optimization problem on the exterior region and obtain a valid kirigami structure. This process can be continued until a
target resolution is reached.

and objective function are the same as those introduced in Chapter 1, while the dimension of the
search space is largely reduced as the tiles inside S;_; are fixed. As for the initial guess, the
quasi-conformal mapping method®* can be used for enforcing all deformed tiles to lie on S, \ S;—;.
It is natural to ask about the limit of the inverse additive design approach, i.e. to what extent we
can control the geometry of the newly added tiles in this approach. Consider adding a new layer

with width 1 to an existing #z X 7 quad kirigami structure (Figure 4.7, left). The total DoF in the
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Figure 4.7: The limit of inverse additive kirigami design. Here we consider adding a new layer with width 1 (left)
and 2 (right) to an existing kirigami structure. Note that the total number of variables in the new layer determines the
possibility of imposing shape constraints in the constrained optimization framework.

newly added layeris 2(2% + 2) 4+ 4 + 8 = 4n + 16. Here, the first term is from the 2z + 2°V’
shapes at the boundary, the second term is from the four deployment angles at the four corners of
the existing structure, and the third term is from the four corner vertices of the new layer. Now, to
enforce that all boundary vertices of the augmented kirigami structure to lie on a target shape, we
have in total 2(27 + 2) 4+ 4 = 4n + 8 constraints. Since 4z + 16 > 4n + 8, it is possible to impose
such boundary shape matching constraints to control the shape of the augmented structure.

However, in case we would like to enforce the contracted configuration of the augmented
structure to be a rectangle, we have 2(27 + 2) + 4 = 4n + 8 additional rectangular boundary
constraints. As 47 + 16 < 4n + 8 + 4n + 8, itis in general impossible for us to achieve this
requirement.

Nevertheless, if we consider adding a new layer with width 2 to an existing # X 7 quad kirigami

structure (Figure 4.7, right), a similar calculation suggests that the total DoF in the newly added
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layeris 4n + 16 + 4(n + 2) + 16 = 8n + 40. The number of the boundary shape matching
constraints is 4(7 + 2) + 8 = 4n + 16, and the number of the rectangular boundary constraints is
also 4(n + 2) + 8 = 4n + 16. Since 8n + 40 > 4n + 16 + 4n + 16, adding a new layer with width

2 is sufficient for enabling the control of both the contracted and the deployed boundary shapes.

4.3 DiscussionN

The additive design framework is advantageous over the global design approaches as it allows for the
flexibility of controlling the local geometry of the patterns without going through the global
optimization process. The reduction of computational complexity makes the additive design a

promising way for creating mechanical metamaterials at arbitrary scale.
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Cell and tissue, shell and bone, leaf and flower, are so
many portions of matter, and it is in obedience to the laws
of physics that their particles have been moved, moulded
and conformed. They are no exceptions to the rule that

God always geometrizes.

D’Arcy Thompson

Insect wing morphometry

BIOLOGICAL FORM BOTH CONSTRAINS AND ENABLES BIOLOGICAL FUNCTION. To quantify,
compare and classify biological shapes, morphometric tools are necessary. In geometric
morphometrics, landmark coordinates are widely used for shape quantification "+°. Note thata

planar shape may be quantified by its boundary, which determines its overall geometry.
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Additionally, specific features in its interior may be used as landmarks to capture its structural
features. It is therefore important to develop a method that takes both the overall shape and the
interior landmarks into consideration for quantifying shape variation.

In this work, we develop a landmark-matching, curvature-guided Teichmiiller mapping for
planar morphometrics using quasi-conformal theory ' and functional data analysis **7. Our
method allows for the exact matching of boundaries as well as the prescribed landmarks, thereby
overcoming all the above-mentioned problems. We deploy our method for quantifying the shape

variation of insect wings across developmental and evolutionary time scales.

5.1 LANDMARK-MATCHING, CURVATURE GUIDED TEICHMULLER MAPS

Consider two simply-connected closed regions S7, 52 C C as two planar shapes that we want to
compare (Figure s5.1a). Let {£;"}?*_ and {£"*}7"_| be two sets of landmarks at the interior of S;
and S, respectively, and {lzdy '}r_, and {szy *};_, be two sets of landmarks on the boundaries 05}

and 055. Our goal is to find a bijective map f: §; — S, satistying

f([;:m) :ZZntz’/e:ljz’__.’m’ (S.I)

and

f(lzdyl) :szyzyk:Lz,...,n, (s.2)

with the shape difference between S; and S, captured by £.
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5.1.1 BOUNDARY MATCHING BASED ON CURVATURE

To compute the map f, we start by determining the boundary correspondence ¢ : 9S5; — 05,. A
natural way to match the boundaries of S and S, is to use their curvatures. More specifically, the
highly curved parts of 95 should correspond to the highly curved parts of 955, while the relatively
flat parts of 9S; should correspond to the relatively flat parts of 9S,. Define the accumulated arc
t t
length and the accumulated curvature of a planar curve Cby x; = Z [(i)and y, = Z x(7). Here,
i=0 i=0

/() and x(7) are respectively the arc length and the curvature approximated at the 7-th point on C.
Then, the function ¥ defined by ¥(x;) = y, for all z encodes the curvature distribution of C. Using
this idea, we obtain two functions ¥;, ¢, that represent the curvature variations of 95; and 955,
with a reparameterization of the domains of ¥;, ¥, to be [0, 1] and consider ¥;, ¥, : [0,1] — R.

Now, we match the curvature variations of 9S; and 95, by aligning ¢, and ;. To do thisin a

reparameterization independent way, we use the square root velocity function (SRVF) dynamic

warping method "**7? that considers a bijection from ¥, ¥, to the square root velocity functions

(SRVFs) 41,42 : [0,1] — R defined by

91 = sgn(;}l) \/ Wl‘ and ¢, = Sgn(%‘z) \/ ‘%2‘ (5.3)

Instead of aligning ¥;, ¥, directly, the SRVF dynamic warping method finds the optimal alignment
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of ¥, ¥, by aligning the SRVFs 41, 4, using a warping function

y'eT:={y:[0,1] = [0,1]]»(0) = 0,»(1) = 1, yis a diffecomorphism}. (5-4)

To find the optimal y*, we solve the following minimization problem using dynamic programming:

y" = argmin,[lg1 — (g2 0 ) V/72, (s-5)
where || - ||2 denotes the Euclidean 2-norm. We obtain a curvature-guided correspondence
() < ¥, (r(2), £ € [0,1]. (5.6)

This gives us the desired curvature-guided map ¢ : 9S; — 955.

In case there are boundary landmark constraints as specified in Equation (5.2), one can partition
051 and 05, according to the boundary landmarks {lzdy '}, and {szy *}¢_, and n pairs of
corresponding boundary segments. For each pair of segments, we deploy the above procedures and
match them based on their curvature variations. Ultimately, this results in a curvature-guided

boundary map ¢ : 9S; — 05, satistying

by, bd
¢(Zky):lky2,k:1,2,...,n. (5.7)
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5.1.2 QUASI-CONFORMAL THEORY AND TEICHMULLER MAPS

Since conformal maps preserve angles, infinitesimal circles are mapped to infinitesimal circles under
any conformal maps. This condition is relaxed under quasi-conformal maps. Mathematically, a
quasi-conformalmap f : D C C — Cisahomeomorphism satisfying the Beltrami equation

of of . . .

% f(z) py for some complex-valued function g f(z) with ||z f(z) loo < 1. Here, ,is called the
Beltrami coefficient of /. Intuitively, quasi-conformal maps send infinitesimal circles to infinitesimal

ellipses with bounded eccentricity. To see this, let 29 be a point in D. The first order approximation

of faround z is given by

Az) = flzo) + f2(20) (2 — 20) + f2(20)z — 20
(5-8)

= flz0) + f2(20) (Z — 20 +#f(zo)m> )

In other words, infinitesimal circles are mapped to infinitesimal ellipses with the maximum

magnification |f;|(1 + ][uf]) and the maximum shrinkage |£;|(1 — |« f‘)’ so that the aspect ratio of the

1+ |ud
ellipses, the dilatation, is - A k The maximal dilatation of the quasi-conformal map fis then
— e
1+ e

defined by Kf =

. Among all quasi-conformal maps, Teichmiiller maps achieve a
P
constant |y f(z) | over the entire domain D, so that every infinitesimal circle on D is mapped to an
infinitesimal ellipse with a constant aspect ratio’".

Teichmiiller maps are advantageous for morphometrics for the following reasons. First, given any

boundary correspondence ¢ : 9S; — 0S5, and landmark constraints {4} C $§ < {2} C Sy,

there exists a unique landmark-matching Teichmiiller map f'that achieves the minimum maximal

99



dilatation over the space of all landmark-matching quasi-conformal maps ">, i.e.

f: argminbb|651:¢7b(13):42Kb. (5'9)

Second, the bijectivity of Teichmiiller maps is guaranteed>*. This gives a 1-1 correspondence
between every part of two shapes, thereby facilitating the pairwise comparison between shapes.
Third, as the norm of the Beltrami coefficient ¢ fis constant over the entire domain, we have a
natural a measure of the dissimilarity between two shapes. Note that | f’ always lies within [0, 1),
and equals 0 if and only if fis conformal. Hence, if 1 — | f‘ = 1, then the two shapes are identical
up to conformal maps. If1 — | f‘ < 1, there is a large local quasi-conformal dissimilarity between

the two shapes. Besides, if we denote w = f{z), we have

soff _ bt e eff

= = = (5.10)
w Of)fz 1+ ([uf,l oﬂ%

0=pp = (f_l o f)z _ ((ffl)w o f)fs + ((]Cfl
flof (f_l of)z ((f—l)w Of)_fz + ((f_l

)
)
This implies that | f(z)| = |‘uf_1 (f(z))| for all z. Therefore,1 — | f| provides an inverse consistent
measurement of dissimilarity between any two planar shapes with prescribed landmarks.

For the computation of discrete Teichmiiller maps, we make use of the QC Iteration

8692 which is an efficient iterative algorithm with guaranteed convergencegs. Using the

algorithm
boundary correspondence flas, = ¢, along with the QC Iteration algorithm, we can obtain a

curvature-guided Teichmiller map f : §1 — S5 satistying the interior landmark constraints in

Equation (s.1). Since fis Teichmiiller, the norm of the associated Beltrami coefficient | f‘ isa
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Figure 5.1: An illustration of the landmark-matching Teichmiiller mapping algorithm. a, Two planar

insect wing shapes to be compared. b, A flow chart describing the approach following the QC Iteration algorithm 8692 for
computing discrete landmark-matching Teichmiller maps. We first discretize the insect wing images and use a curvature-
guided boundary correspondence to obtain a landmark-matching initial map. Then we iteratively solve for a landmark-
matching Teichmdller map. ¢, The resulting landmark-matching Teichmiller map, with small circles in the left shape
mapped to small ellipses with a uniform aspect ratio in the right shape. The red landmark points of vein intersections

on the source wing shape are exactly mapped to the corresponding landmark points on the target wing shape. The wing
images are adapted from the Hawaiian Drosophila Wing Database 2.

constant, and the quantity 1 — |« f’ is a measure of quasi-conformal similarity between Sj and S5.

The procedure is summarized as Algorithm 5.1. Anillustration of the algorithm is given in
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Figure 5.1.

Algorithm s.1: Landmark-matching curvature-guided Teichmiiller map for planar

shapes

Input: Two planar shapes S, S,, with interior landmarks {£"}7, {/7*}7,
boundary landmarks {Zﬁdy Y {Zﬁdy g vy
Output: A landmark-matching, curvature-guided Teichmiller mapping /: §; — 5, a
similarity score s.

1« Compute a curvature-guided boundary mapping ¢ : 9S) — 05, satistying
S(LPY =0 forallk = 1,2, ..., n;

> With the boundary correspondence ¢ : 9S) — 055, compute a landmark-matching
Teichmiiller mapping f/': S; — S, satisfying f]os, = ¢ and f(lf:“) = lzm for all
k=1,2,..., m;

3 Compute the Beltrami coefficient 2 of the mapping f. The score s is given by 1 — | U f‘ ;

5.2 STATISTICAL ANALYSIS OF THE QUASI-CONFORMAL SIMILARITY MATRIX

Suppose we are given a set of planar shapes {Sl»}le. Using the above mapping method, we can
constructap X p similarity matrix M, where the (7, /)-th entry of M represents a measure of
similarity between S; and S defined by 1 — |z ﬁ,-" withf;; © S; — §;being the desired
landmark-matching, curvature-guided Teichmiiller map between S; and S;. The values of all entries
of M are within the range [0, 1], where a larger value indicates a higher level of similarity. We can

then use this similarity matrix A to perform a statistical analysis and cluster the set of shapes.

§5.2.1 ADAPTIVE THRESHOLDING

Note that the similarity matrix A is dense with pz — p nonzero entries in general. To highlight the

important information in it, we propose an adaptive thresholding algorithm that iteratively modifies
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and sparsifies /1.

Consider A as the adjacency matrix of a weighted directed graph with p vertices, where every
vertex represents a shape in the set {SZ-}‘?ZI, and every pair of vertices are connected by two directed
weighted edges. The weight of the directed edge [£, /] is given by A};. Intuitively, from the
perspective of one of the shapes S}, a larger A1;; among all entries {My, My, ..., M ,7,} indicates a
higher level of similarity between S; and S; as compared to other shapes. Consider a weighted
directed graph with A1 being the weighted adjacency matrix. In other words, the weight of the
directed edge [7, ] from vertex 7 to vertex f is given by Mj;. Given a thresholding parameter 2, to
determine the importance of the directed edge |7, /] from vertex 7, we consider the quantity
v; = M; + da;, where M; and ; are respectively the mean and the standard deviation of {1}, }11';:1'
If My > »; weset M;; = 1. If not, we neglect the edge by setting M;; = 0. For a pair of directed
edges [7,7] and [, 7], there are exactly three possibilities: (i) M;; = Mj; = 1,i.e. S;and S; are similar
to each other, (ii) My = My = 0,ie. S;,S;are dissimilar, and (iii) M;; = 1, M; = Oor
My = 0, M;; = 1,1ie. itis not clear that whether S, §; are sufficiently similar to be grouped in one
community. To better represent this, we symmetrize M by taking M <— ZT , so that
My € {0, 1,1} indicates the relationship of Sy, ; forall 7,j = 1, . ., p. We repeat the thresholding
and symmetrizing steps on A4 until the result converges. The algorithm is summarized as

Algorithm s.2.

Now, we prove that Algorithm 5.2 converges for any A/ and any 1.

Theorem s.1. Algorithm 5.2 converges for any similarity matrix M and for any thresholding
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Algorithm s.2: Adaptive thresholding

Input: A n X » similarity matrix A4, a thresholding parameter 1.
Output: A thresholded matrix where all entries are 0, 2

2
: Set M° = M
2 Setk = 0;
3 repeat
4 Update k by £ + 1;
s For each row 7, denote Vf = M+ la{f‘, where M* and af are respectively the mean
1 it M >0
0 otherwise.

orl.

>

and the standard deviation of { A% }”_. Set Mg- = {

6 Update MF by AM;
, until M* = M+,

parameter A.

Proof. Note that at each iteration, we always havel — 1,0 — 0,and % — (lor%orO). Let n;,
I R o . .
be the number of 7 in the matrix A", It is easy to see that the sequence {7, }7°, is non-increasing.
Also, note that 0 < 7, < n; < |M| where | M| denotes the total number of entries in M. By
Monotone Convergence Theorem, {7;}7°, converges and 0 < limy_, oo 72 < 721.
Now, it is easy to see that if nx; = ng then MEH = MK which indicates the convergence. By
the symmetry of A1 k ifn Kk+1 < ng, then ng — ngy1 must be a multiple of 2. Hence, the maximum

number of iterations needed for achieving convergence is bounded above by 7; /2. [

5.2.2 CLUSTERING AND COMMUNITY DETECTION

Finally, to cluster all shapes into several communities based on the thresholded matrix A1, we apply

a recent community detection method®” that accounts for the non-locality and asymmetry of the
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connections between edges96. The method is briefly described below.

Denote the set of shapes {S;}>_, by S. The similarity between two communities C;, CrC Sis

: : 1
given by simy = sim™ — sim™, where sim™ = Gucp g gij represents the average
TN ecug
similarity score inside the communities, and
- out 1 o
sim™ = E E gij represents the average similarity score

ICUGTISNGUGT £ . S

outside the communities. At each iteration, the communities with a high s772;7 are combined until
the grouping result stabilizes. The final communities formed represent the clustering result based on

our Teichmiiller morphometric method. The procedure is summarized as Algorithm s.3.

Algorithm s.3: Cluster analysis of planar shapes via landmark-matching curvature-

guided Teichmiiller maps

Input: A set of planar shapes {S;}/_, with prescribed landmark correspondences.
Output: Community labels {/,}7_;.

« Apply Algorithm 5.1 for all pairs of shapes (S, 5;), 1 < 7,7 < p. Denote the similarity
score between them by s;;

> Constructap X p similarity matrix M = (s;);

3 Apply Algorithm 5.2 on A and obtain the thresholded matrix;

+ Apply the community detection method®” with the thresholded matrix and obtain the
community labels {/,}/_,;

This completes our Teichmiiller morphometric framework for planar shapes.
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5.3 QUANTIFYING WING SHAPE IN EVOLUTION AND DEVELOPMENT

5.3.1 PHENOTYPIC VARIATION OF HAWAIIAN DROSOPHILA WINGS

We deploy our Teichmiiller-map morphometric framework for studying the Drosophila wings in the
Hawaiian Drosophila Wing Database**, with a total of 128 wings drawn from four “picture wing”
phylogenetic groups, including the adiastola group, the planitibia group, the glabriapex group and
the grimshawi group (Table s.1). We discretize every wing image from the different species using
a triangle mesh with approximately 9ooo triangle elements. As shown in Figure 5.2, seven points
are manually chosen as boundary landmarks for each wing, including the intersections between
the longitudinal veins L2, L3, L4, Ls and the wing boundary. Also, three intersections between
the veins are manually chosen as interior landmarks, including the intersections between L4 and
the anterior cross-vein (ACV) and the posterior cross-vein (PCV), and the intersection between
Ls and PCV. Figure 5.3 shows the performance of our landmark-matching Teichmiiller mapping
method and some prior methods for comparing a pair of wings from the D. punalua and the D.
stlvestris species. It can be observed that our approach is capable of matching the boundary shapes
and interior landmarks of the two wings accurately, while the prior methods are unable to match all
landmarks and the wing boundaries exactly.

After demonstrating the effectiveness of our method for pairwise comparison, we compute the
128 x 128 similarity matrix M with M;; = 1 — \[uf(z',j)] for the entire set of shapes (Figure 5.4). We

then apply Algorithm .2 with the thresholding parameter A = 1 and the community detection
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Species Phylogenetic group | Specimen number
clavisetae adiastola -5
ornata adiastola 6—7
setosimentum adiastola 8-10
adiastola adiastola 11-14
cilifera adiastola 15-20
hamifera adiastola 21-26
spectabilis adiastola 27-32
beteronenra planitibia 33-37
planitibia planitibia 38
silvestris planitibia 39-40
nigribasis planitibia 41—42
cyrtoloma planitibia 43—46
melanocephala planitibia 47—48
neoperkinsi planitibia 49-51
neopicta planitibia 52-55
oabuensis planitibia 56—57
obscuripes planitibia 58—60
hemipeza planitibia 61-63
picticornis planitibia 64—65
aglaia glabriapex 66-67
basisetae glabriapex 68-70
digressa glabriapex 71-72
discreta glabriapex 73-74
Jfasciculisetae glabriapex 75
glabriapex glabriapex 7677
macrothrix glabriapex 78-80
montgomery: glabriapex 81-83
punalua glabriapex 84-87
affinidisjuncta grimshawi 88-89
balioptera grimshawi 90-91
bostrycha grimshawi 92-93
craddockae grimshawi 94
crucigera grz'm:bawz' 95—98
disjuncta grimshawi 99-103
grimshawi grimshawi 104
heedi grimshawi 105—106
stlvarentis grimshawi 107-108
limitata grimshawi 109-112
engyochracea grimshawi 113-115
bawaiiensis grimshawi 116-118
murphyi grimshawi 119-120
orphnopeza grimshawi 121-122
orthofascia grimshawi 123
recticilia grz'm:ha wi 124—125§
sproati grz'm;/m wi 126—127
villosipedis grimshawi 128

Table 5.1: The list of wing specimens adapted from the Hawaiian Drosophila Wing Database+*. The
specimen numbers represent the row/column numbers corresponding to the specimens in the similarity matrix.
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Figure 5.2: A Hawaiian Drosophila wing and the finite element discretization of it. Red: Landmark points
of the intersections between the longitudinal veins L2, L3, L4, L5, the anterior cross-vein (ACV), the posterior cross-vein
(PCV) and the boundary. The wing image is adapted from the Hawaiian Drosophila Wing Database *?

method®” on the thresholded similarity matrix for clustering the wing shapes (Algorithm s.3). To
visualize the result, we apply the multidimensional scaling (MDS) method to project the
information of the thresholded matrix onto the Euclidean plane, with the similarity information
preserved as distances between nodes. Every specimen in our dataset is visualized as a node on the
plane. The clustering result produced by our framework is shown in Figure s.5. It can be observed
that the nodes are clustered into three groups, with the species D. glabriapex (denoted by
Community 1), D. planitibia (denoted by Community 2) and D. grimshawi (denoted by
Community 3) being a representative in each of them.

Of the 22 specimens in the glabriapex phylogenetic group, 20 (91%) of them are clustered into
Community 1. Of the 33 specimens in the planitibia phylogenetic group, 28 (85%) of them are
clustered into Community 2. Of the 41 specimens in the grimshawr phylogenetic group, 21 (51%)
of them are clustered into Community 3 and 18 (44%) are clustered into Community 1. Of the 32
specimens in the adiastola phylogenetic group, 18 (56%) of them are clustered into Community 3

and 12 (38%) are clustered into Community 1. From the above, it can be observed that Community
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Figure 5.3: A comparison between our proposed method and four prior morphometric approaches. First
row: The D. punalua and D. silvestris wings. Second row: The landmark-matching Teichmller map of D. punalua onto D.
silvestris, and the intensity difference between the mapping result and the D. silvestris wing. The third and fourth rows:
The intensity differences computed using direct mapping, Procrustes superimposition 5 least-square conformal mapping
and Thin Plate Spline **. The D. punalua and D. silvestris wing images are adapted from the Hawaiian Drosophila Wing
Database 2.

2 primarily consists of wings from the planitibia phylogenetic group but not the other three groups.
This suggests that the wings in the planitibia phylogenetic group share highly similar phenotypic
features and are very different from the wings in all other phylogenetic groups. Noticing the high
percentage of specimens in the glabriapex phylogenetic group classified into Community 1, we
deduce that there is also a high level of similarity among the wings in the glabriapex phylogenetic

group. By contrast, the adiastola phylogenetic group and the grimshaw: phylogenetic group
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Figure 5.4: The similarity matrix for the 128 wings in the Hawaiian Drosophila Wing
Database **obtained by our landmark-matching, curvature-guided Teichmiiller mapping method.

demonstrate a higher level of shape diversity as both of the two groups are primarily clustered into
two communities.

Now, we further analyze the phenotypic features of the three communities qualitatively to
understand the community detection results. The images of the wings in Community 1,
Community 2 and Community 3 are respectively shown in Figure 5.6, Figure 5.7 and Figure 5.8.
There is a notable difference in the wing geometries of the three communities in terms of the wing
shapes and the relative locations of the landmarks. More specifically, for the wings in Community 1,
a relatively round shape at the bottom of the wing boundary and a relatively sharp wing tip can be
observed in general, and the intersection between Ls and PCV is relatively far away from the wing
boundary. For the wings in Community 2, they are in general with an elongated shape, and the

intersection between Ls and PCV is relatively close to the wing boundary. For the wings in
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Figure 5.5: The community detection result obtained by our proposed framework visualized on the
multidimensional scaling (MDS) coordinate plane. Every specimen is represented as a node on the plane
constructed by MDS. The nodes are color-coded by the community labels obtained by our framework. Blue: Community
1. Red: Community 2. Green: Community 3. The shapes of the nodes represent their phylogenetic groupings. Circle: The
adiastola group. Square: The planitibia group. Triangle: The glabriapex group. Diamond: The grimshawi group. The number
beside each node represents the specimen number specified in Table 5.1. The wing images shown are adapted from the
Hawaiian Drosophila Wing Database *

Community 3, we observe a round silhouette in general, and the intersection between L4 and ACV
is relatively distal when compared with that in the other two communities.

There are a few interesting exceptions in the community detection result for the planitibia
phylogenetic group. For the two species D. hemipeza and D. picticornis, which belong to the

planitibia phylogenetic group but are clustered into Community 3, it can be observed that their

II1I



basisetae clavisetae digressa discreta

=

engyochracea fasciculisetae glabriapex hawaiiensis

== T

montgomeryi orthofascia

limitata

punalua recticilia sproati villosipedis

Figure 5.6: The species clustered as Community 1 by our framework. The images are adapted from the
Hawaiian Drosophila Wing Database *? (not to scale).

wings are different from the other wings in the planitibia phylogenetic group. More specifically, the
D. picticornis wing has a relatively round shape and is more pigmented than all other wings in the
planitibia phylogenetic group. This can possibly be explained by the early division in the phylogeny
of the planitibia phylogenetic group® that separates D. picticornis from the other species. For D.
hemipeza, we observe that the intersection between L4 and ACV is distal relative to the same
landmark for the other wings in the planitibia phylogenetic group.

While we have been focusing on landmarks based on wing venation network motifs, it is natural
to ask if our method might shed light on the pigmentation patterns, a trait that is controlled by just
a few genes '°* and likely to be more labile. We observe three different pigment patterns in the three

communities we obtained. More specifically, the majority of Community 1 possesses a moderate
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cyrtoloma heteroneura melanocephala neoperkinsi

neopicata nigribasis oahuensis obscuripes

planitibia silvestris

Figure 5.7: The species clustered as Community 2 by our framework. The images are adapted from the
Hawaiian Drosophila Wing Database *? (not to scale).

number of pigment spots, which occur near the top part of the wing, the intersection between L4
and PCV, and the intersection between Ls and PCV. The wings in Community 2 possess a small
number of pigment spots, which occur near the distal tips of L2, L3 and L4. For Community 3,
most wings in the community possess a high level of pigmentation. As our Teichmiiller-based
classification method is solely based on wing boundary shape and venation landmark positions, it is
surprising that the communities formed show a clustering effect with respect to their pigment
patterns. This suggests that there may be a crosstalk between the genes encoding for both

phenotypes, which is worth exploring further using phylogenetic approaches in future works.

5.3.2 TEMPORAL DEVELOPMENT OF LEPIDOPTERA WINGS

Besides studying the phenotypic variation of Drosophila wings, we can also apply our proposed

Teichmiiller morphometric method for analyzing the temporal development of Lepidoptera wings.
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hemipeza picticornis silvarentis

Figure 5.8: The species clustered as Community 3 by our framework. The images are adapted from the
Hawaiian Drosophila Wing Database 42 (not to scale).

We deploy our method on the forewings of the species Manduca sexta and Junonia coenia*°" at the
larval, prepupal, pupal and adult stages. Between every two successive developmental stages, we
compute a Teichmiiller map. The constant norm of the associated Beltrami coefficient between the
two stages, denoted by A}, represents the local shear and the quasi-conformal dissimilarity between
them. While the local shear is a constant over the entire domain, the local area change and
orientation change may vary. To better analyze these quantities, We construct a circle packing on
the wing at the earlier temporal stage and map onto the wing at the latter stage using the
Teichmiiller map. This produces a deformed packing on the wing at the latter stage, where the
circles are deformed to ellipses with difterent size and orientation. Then, the local area change under

the mapping can be captured by the change in size of the ellipses relative to the original circles, and
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the local orientation change can be captured by the change in the orientation of the ellipses relative

to the original circles. More explicitly, we quantify the change in sizeby A4 = M or

Area of circle
each small circle, and the change in orientation by A, =< 2 cos? 8 — 1 > which averages over the
1-ring neighborhood of every circle, where @ is the orientation change of the circle under the
Teichmiiller map. The proximal-distal orientation of the major axis is denoted by A, = 1 while an
anterior-posterior orientation of the major axis yields A, = —1.

Figure 5.9 and Figure 5.10 show the Teichmiiller maps between successive stages of Manduca
sexta and Junonia coenia wings respectively. We first analyze the overall change between every two
successive stages quantified by the quasi-conformal dissimilarity A‘ 4> the average local area change
mean(A ) and the average local orientation change mean(4,,). We observe that the largest A
occurs between prepupa and pupa for Manduca sexta, while A | increases throughout the
development for Junonia coenia. It can also be observed that the average local area changes of the
two species are different. For Manduca sexta, mean(A 4) decreases throughout the development,
while for Junonia coenia the greatest mean(A 4) occurs between prepupa and pupa. Besides, it is
noteworthy that the magnitude of mean(A ) for Junonia coenia is greater than that for Manduca
sexta between every two successive stages. For the local orientation change, both Manduca sexta and
Junonia coenia wings undergo an overall proximal-distal orientation change at the earlier stages of
the development, as mean(A,) > 0. However, the two species are different in the overall
orientation change between pupa and adult. For Manduca sexta we have mean(A,) = 0, which

indicates that the overall orientation change is small. By contrast, for Junonia coenia there is a

notable overall proximal-distal orientation change.
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Figure 5.9: Analyzing the temporal development of Manduca sexta wings using Teichmiiller map. Top
row: The Manduca sexta wing images 101 at different developmental stages (displayed to scale). A Teichmiller map is
computed between every two successive stages. Second row: The quasi-conformal dissimilarity A|[u| ,the average of
the local size change A 4 and the average of the local orientation change AP between every two successive stages. The
last three rows show the deformation of the circle packing under the Teichmuiller map between every two successive
stages, visualized on the wing at the latter stage. The left column shows the resulting ellipses color-coded by A 4. The
right column shows the resulting ellipses color-coded by AZ" For visualization purpose, the shapes in the last three rows

are rescaled to have the same height, with their aspect ratio kept unchanged.

Now, we analyze the variation of the local area and orientation changes across each deformed
circle packing. From the heat maps of A 4 for both Manduca sexta and Junonia coenia, it can be
observed that the most significant local area change between pupa and adult occurs at the distal half

of the wings. However, there is a notable difference between the regions with the greatest A 4 at the
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Figure 5.10: Analyzing the temporal development of Junonia coenia wings using Teichmiiller map. The
notation is the same as in Figure 5.9.

earlier stages for the two species. From the heat maps of A, we also observe a difference between the
patterns of the orientation change of the two species. For Manduca sexta, the wing primarily
undergoes a proximal-distal orientation change from larva to pupa, followed by a significant

anterior-posterior orientation change at the central region from pupa to adult. By contrast, for
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Junonia coenia, the wing undergoes a more diversified local orientation change from larva to pupa,
followed by an anterior-posterior change at the distal region from pupa to adult.

We note that the local change reflected by Teichmiiller maps throughout the development of
Manduca sexta appears to be correlated with the local mitotic density "°*. More specifically, as
shown in Figure 5.9, the Teichmiiller map between prepupa and pupa results in a small A 4 at the
top part of the wing and a large A 4 at the distal part, which agrees with the mitotic density
distribution at that period. We also observe that both A 4 and the mitotic density for the period
from pupa to adult achieve the greatest value around the tip of the wing and the smallest value at the
proximal part. By contrast, for Junonia coenia, the correlation between the local change reflected by
Teichmiiller maps and the local mitotic density is less significant.

We remark that under Teichmiiller maps, all local changes are captured by the three quantities
Al Ba and A, where A 4 and A, together describe the shape change, and A4 describes the size
change. Hence, shape and size can be analyzed separately. Therefore, Teichmiiller maps provide a

way to assess, identify and remove allometry.

5.4 DISCUSSION

Studying shape variation is an important problem in biology. By combining complex analysis,
computations and statistics, we have developed a new geometric morphometric approach for the
quantification, comparison and classification of planar biological shape. It improves on previous

methods by allowing for the mapping between two shapes with arbitrary boundary and landmark
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correspondences. More generally, this work enables us to link phenotypes to genotypes by applying
the proposed method for analyzing wing shape across species, as well as to describe the process of

wing shape developmentally by applying the proposed method for analyzing wing shape over time.
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If nature were not beautiful, it would not be worth
knowing, and if nature were not worth knowing, life

would not be worth living.

Henri Poincaré

Ferret brain morphogenesis

UNDERSTANDING THE GROWTH AND FORM OF NORMAL AND ABNORMAL CORTICAL
CONVOLUTIONS IS IMPORTANT FOR THE STUDY OF HUMAN NEURODEVELOPMENTAL DISEASES.
In our recent works, we proposed a model for explaining gyrification based on a simple mechanical

instability driven by tangential expansion of the gray matter constrained by the white matter '** and
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Figure 6.1: Time course of morphogenesis of ferret and gel brains. a, Whole brain samples from ferret. b, MRI

ferret brain data. ¢, The development of the major sulci of the ferret brain defined in the literature

122,123,99,4,49

deployed it to simulate normal human cortical convolution '**. However, studies of cerebral cortical

malformations (MCDs) are limited by our ability to identify ongoing malformation of the human

fetal brain 7% utero. This limits our understanding of MCDs developmental trajectory.

Unlike human brain, there is a progressive development of the cortical gyri and sulci in ferret

brain from postnatal day o (Po) to adolescence '*****99#42 (Figure 6.1). This suggests that ferret
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is a good candidate for the study of normal and abnormal neurodevelopmental processes. In this
chapter, we first simulate the growth of normal ferret brain using a gel model and a computational
model based on the principle of constrained cortical expansion and show that the simulation results
agree with the real brain development. We then proceed to use the models to reproduce defective

developmental processes of ferret brain.

6.1 PHYSICAL GEL MODEL OF FERRET BRAIN FOLDING

We constructed a physical simulacrum of ferret brain folding using the observation that soft physical
gels swell superficially when immersed in solvents. We first reconstructed surfaces of pre-swelling
brain states from 75-weighted motion corrected anatomical MR images of ferret brains at postnatal
days: Po, P4, P8 and P16. Then, we produced bilayer gel models of the ferret brain at various ages
through a combination of 3D printing and replica molding based on the reconstructed brain
surfaces 5136, We passed two reconstructed surfaces (pial surface and inner cortical surface) to a 3D
printer to obtain a 3D printed mold. Then we used the 3D printed mold to cast a negative mold
made of supersoft silicone. We used the inner cortical surface mold to produce the core (white
matter) composed of lightly cross-linked polydimethylsiloxane (PDMS) elastomer. We assembled
the PDMS elastomer prepolymer by mixing the separated base and cross linker components in a
45:1 (base to cross-linker) mass ratio, degassed it in a vacuum to eliminate air bubbles, and poured it
into the inner cortical surface negative mold. We brought the poured prepolymer to 75° C for 45 to

75 minutes to form a PDMS core with a partially cured surface, which we then extracted from the
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mold. We then used the pial surface mold to cast the outer layer around the partially cured PDMS
core. We prepared a new PDMS prepolymer mixture with a base to cross-linker mass ratio of 28 : 1.
We degassed the prepolymer and pour it into the pial surface mold with the previously cured core
suspended inside. We brought the fully assembled two-layer gel brain model to 75° C for a
minimum of 2 hours such that it was completely cured. To mimic tangential cortical growth, we
immersed the two-layer gel brain model in an organic solvent that permeated the outer (cortical)
layer by diffusion and induced it to swell. We chose hexanes as the solvent based on its compatibility
with PDMS and resultant ability to induce a high degree of swelling. Figure 6.2 shows the gel brains

evolve folds via swelling between stages P8 and P16 in a ferret kit.

6.2 COMPUTATIONAL MODEL OF FERRET BRAIN FOLDING

For the numerical simulation of ferret brain development, we follow the approach in Ref.*3513¢ and
consider a material consisting of a layer of gray matter on top of a deep layer of white matter. The

material is assumed to be neo-Hookean with volumetric strain energy density

W:

NI

[Tr(FFT)fZ/3 — 3} + §(1— 1)?, (6.1)

where F' is the deformation gradient, / = det(F), u is the shear modulus and K is the bulk modulus.
We assume that K = Sg for a modestly compressible material.
Three geometrical parameters of the 3D brain models are the brain size R, the cortical thickness

T'and the tangential expansion g*. For ferret brain development, we follow the empirical scaling law
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Figure 6.2: Gel model of ferret brain morphogenesis. (Left) Axial, coronal, and sagittal views of 3D-printed brain
model at postnatal day 8 (P8) (top), replicated gel brain (middle), and gel brain after swelling (bottom). (Right) Physical gel
models of ages P4, P8, and P16 are nonuniformly swollen to mimic progression to states that roughly resemble ages P8,
P16, and P32, respectively.

for gray-matter volume to thickness and set R /7" ~ 10 with the tangential expansion ratio g ~ 1.9.

An indicator function

1

o) = 1+ A00/T-D) (6.2)

is applied for distinguishing between the cortical layer (with ¢ = 1) and white matter zone (with
¢ = 0). Here, y is the distance from surface in material coordinates.

The brains are discretized in the form of tetrahedral meshes with over 1 million tets using Netgen.
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Figure 6.3: Numerical model of ferret brain morphogenesis. a, Continuous growth. b, Stepwise growth from PO
to P4,P4to P8,P8to P16,and P16 to P32.

The energy of the system is minimized by quasistatic equilibration using an explicit scheme. Growth
is applied by expanding the tetrahedral elements with inversion handling "> and nodal pressure
formulation *°. Self-avoidance of the surface is handled using the penalty based vertex-triangle
contact processing*>. We further enforce that there is no growth at the central part as well as the
bottom portion of the brain to better simulate the development of ferret brains.

We consider both continuous simulations from Po to P32 (Figure 6.3a) and stepwise simulations
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Figure 6.4: Mesh independence of the numerical simulation. It can be observed that the folding patterns
produced from tetrahedral meshes with different number of tetrahedral elements are similar in shape.

from Po to P4, from P4 to P8, from P8 to P16 and from P16 to P32 (Figure 6.3b). Comparing the
stepwise numerical simulations, the stepwise gel simulations and the real brains, it can be observed
that the folding patterns are highly similar.

It is natural to ask if the folding simulation is robust to the mesh resolution. Figure 6.4 shows
the folding patterns produced from meshes with different number of tetrahedral elements. It can be
observed that the results are not affected by the mesh resolution.

Figure 6.5 shows a comparison between the actual ferret brain gyrification, the numerical brain
simulation, and the physical gel brain simulation from P8 to P16. It can be observed that
development of major sulci such as the cruciate sulcus (crs), coronal sulcus (cns) and suprasylvian

sulcus (sss) is captured by both the numerical model and the physical gel brain model. For a more
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P8 P16

cns
Real brain 555 . P16 Simulated P16

Numerical
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Figure 6.5: Actual and simulated gyrification from P8 to P16. (Left) The top row shows the development of the
major sulci of the ferret brain 12212399449 from P8 to P16. The middle row shows a numerical model of a P8 brain and its
deformed state mimicking progression to P16. The bottom row shows a physical gel model of P8 and its post-swelling
state mimicking progression to P16. The P8 initial states have invaginations corresponding to the cruciate sulcus (crs),
coronal sulcus (cns) and suprasylvian sulcus (sss), and both the numerical deformed state and the physical post-swelling
state have sulci corresponding in location and self-contacting nature to the crs, cns, sss, lateral sulcus (Is), and ansate
sulcus (as) observed in P16 real ferrets. (Right) The real and simulated P16 brains and their spherical parameterizations.

quantitative comparison between the gyrification of the numerical simulation of ferret brain
development and the real data, we evaluate the curvature difference using the spherical mappings
produced by the FLASH method*” (Figure 6.5, right). After obtaining the spherical
parameterizations with landmarks optimally aligned, we compare the folding patterns of the two
brain surfaces by evaluating their curvature-based intensity difference via the two spherical domains.
More specifically, we compute the average intensity difference between the two spherical domains
with a normalization such that the difterence d is always between o and 1. For the simulated P16
brain and real P16 brain , the intensity difference between their spherical parametrizations is

d ~ 0.1, which suggests that the folding pattern produced by our simulation is similar to the actual
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Figure 6.6: Modeling structural abnormalities associated with a pathogenic SCN3.4 gene. a, In vivo
electroporation of pathogenic SCN3A in healthy ferret brain at PO. Left (control) and right (electroporated) hemispheres
of the ferret brain at P30. b, Immunofluorescent analysis of cortical layer markers at PO, P15, and P30. c-d, Gel brain and
simulated brain with localized modification of cortical layer. Modification of the cortical layer thickness and growth rate is
found to induce variant folding patterns in a localized region. Dashed circles indicate modified region.

folding pattern.

6.3 FERRET CORTICAL MALFORMATIONS

To study whether our model based on differential growth can capture malfunction in ferret brains,
we consider the structural abnormalities associated with the MCD causing gene SCN3.4 '*5.
Molecular analysis of cell-type and cortex layer specific markers provided a pathological basis of the

structural malformations, informing physical and simulacrum models (Figure 6.6b). By modifying
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the thickness and the growth rate at a localized region in the gel brain model and the numerical
brain model, we see that we can qualitatively capture the variations seen in the real brain in both the

gel model and in computations (Figure 6.6¢,d).

6.4 DiscussioNn

We have identified developmental mechanisms and morphological manifestations associated with
genetic mutations in ferret models, validated extrapolation from these transgenic models to human
neurodevelopment, and improved the comprehensiveness of the MCD classification scheme for
facilitating more efficient and precise diagnosis and treatment. A natural next step is to move

towards human brain and use the model to study cortical malformations.
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1t is through science that we prove, but through intuition

that we discover.

Henri Poincaré

Density-equalizing maps for surfaces

SURFACE PARAMETERIZATION, the process of mapping a complicated surface to a simpler domain,
is a problem in computer graphics closely related to cartogram production. In recent decades,
three-dimensional (3D) graphics have become widespread in the computer industry. To create

realistic textures on 3D shapes, it is common to parameterize the 3D shapes onto R?, design the
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textures on the plane, and map them back onto the 3D shapes. Analogous to the map-making
problem, the surface parameterization problem involves distorting the shapes to a certain extent,
determined by a prescribed criterion. Two major classes of surface parameterization algorithms are

conformal (angle-preserving) parameterization ©7-'4%27:28

and authalic (area-preserving)
parameterization '53"5 213> (see Refs. #*"%:%4 for a discussion on the prior parameterization
algorithms). In this chapter, we develop a new surface parameterization method inspired by the
diffusion-based map-making method by Gastner and Newman (denoted as GIV')>*. Specifically, we
propose a finite-element algorithm for computing density-equalizing flattening maps of
simply-connected open surfaces in R3 onto the plane, based on certain quantities prescribed at every

part of the surface. Different surface flattening effects can then be produced by altering the input

quantities. For instance, area-preserving parameterizations can be easily achieved.

7.1 DIFFUSION-BASED CARTOGRAM

Given a planar map and a quantity called the population defined on every part of the map, define
the density field p by the quantity per unit area. GN deforms the map by equalizing p using the

advection equation

Op o
- =_-V -7. .
o J (7.1)
Here, the flux is given by Fick’s law:
j=-Vp. (7.2)

131



yielding the diffusion equation

8f’
= = Ap. .

Then, any tracers carried by this density flux will move with velocity

Hence, the deformation of the map can be tracked using the tracers #(#) that follow the velocity

field:

() = #(0) —|—/0 (7, 7)dr. (7-5)

Ast — 00, Eq. (7.3) is solved to steady state, and the corresponding deformed map produced by
Eq. (7.5) achieves equalized density per unit area. In particular, regions with a higher density expand,
while those with a lower density shrink (Figure 7.1). As a remark, GN makes use of a large
rectangular auxiliary region surrounding the region of interest, called the sez, to avoid infinite
expansion of the map. By defining the density at the sea as the average density of the region of

interest, one can ensure that the total area of the map is kept constant under the deformation.

7.2 SURFACE DENSITY-EQUALIZING MAPS

In the following, we develop a method for surface parameterization based on the idea of density
diffusion as described above. Let S be a simply-connected open surface in R3, and o be a prescribed

density distribution. Our method computes a flattening map f : § — R? such that the Jacobian /5
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Figure 7.1: An illustration of the density-equalizing maps. Regions with a higher density expand, while those
with a lower density shrink.

satisfies /s o _p. Equivalently, the final density per unit area in the flattening map is a constant. Our
method primarily consists of three steps, including the creation of an initial flattening map (in case
the input surface is non-planar), the construction of the sea, and an iterative finite-element scheme
for computing density-equalizing maps.

In the following discussion, S'is discretized as a triangle mesh (V, £, F) where V is the set of all
vertices, £ is the set of all edges, and F is the set of all triangular faces. The input density

distribution p is discretized as ﬁf on every triangle element 7' C F.

7.2.1 CURVATURE-BASED INITIAL FLATTENING MAP

We start by developing a method that flattens S onto R? efficiently. To keep the flattened shape as
close to S'as possible, it is natural to consider flattening the surface boundary onto the plane based

on its curvature.
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CURVATURE-BASED FLATTENING OF THE SURFACE BOUNDARY

Let y be the boundary of S. As  is a simple closed curve in R, it can be written as an arc-length
parameterized curve y = (¢) : [0,4,] — R3, where /, is the total arc length of y. Our goal is to find
amap ¢ : [0,/,] — R toflatten y onto R?, and then obtain the entire flattening map for S. Two
important geometric quantities for y are the curvature x, and the torsion 7,, which respectively
measure the deviation of y from a straight line and from a planar curve. By the fundamental
theorem of space curves 7, y is completely determined by x, and 7, up to rigid motion.

Now, we consider a map ¢ such thatx, & x4(,) and 74(,) = 0. In other words, ¢ projects y
onto the space of planar convex curves, with the curvature of y preserved as much as possible. By

Frenet—Serret formulas?7,

T'(2) = x, ()1 (¢) | N(2) (7.6)
where 7'and N are the unit tangent and unit normal of y respectively. We have

17l
%0 = ol 77)

Note that for any simple closed plane curve C C R?, the total signed curvature of C is a constant >’

//ec(t)dt = 2. (7.8)
c

To construct a closed plane curve $(y) with total arclength Z,, we set the target signed curvature £ to
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be

Then, we consider the map

4(5) = ( /0 " cos B(u)du, /0 sin e<u)du> ,

where

8(u) = /O C k()

We can easily check that

¢'(s) = (cos b(s), sin §(s)),

and hence ¢ is an arc-length parameterized curve. Moreover, we have

(7.10)

(7.11)

(7.12)

(7.13)

However, ¢ may not be a closed curve as there may be a discrepancy between ¢(0) and ¢(Z,) with

0 < [|g(Z,) — #(0)|| < L, where L is the total arclength of 4. To fix this issue, we update ¢ by

#(s) + 9(9) — 1 (#(4) — 9(0)) -

e

Then, ¢ will be a simple closed convex plane curve.
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Proposition 7.1. Let ¢ : [0,1,) — R? be the arc-length parameterized curve defined above. If we

define a new curve @ : [0,1,] — R* by

() = $(s) = 7 (¢() — ¢(0)) (7.15)

Then, D is a simple closed convex plane curve.

Proof. First, note that #(0) = ¢(0) = &(/,) and hence & is closed. Since ¢ is arc-length

parameterized, forany 0 < a2 < b < 17,, we have

b
Hﬂw—ﬂ@\s/’wwmw:b—a (7.16)

The equality holds if and only if ¢( [z, &]) is a straight line. In particular, as y is the boundary of S, by
our construction of ¢ we have [|(Z,) — 4(0)|| < 4.

Now, we prove that the signed curvature of @, denoted by kg, is non-negative for all s € [0, Z},].

Denote ¢(s) = (x(s), y(s)) and @(5) = (X(s), ¥(s)). We have

:(ﬂo—iwm—mmmﬂ»—;ww—ﬂmﬂ (717)

and
" = (X", Y") = («",y") = (—ky(s) sin 6(s), ky(s) cos 6(s)) - (7.18)

136



Therefore, we have

XY = X"Y = ky(s) <1 G
Recall that by Eq. (7.9), k4(s) > 0 for alls. Also, we have

((L,) — x(0)) cos 6(s) — (y(L,) — (0)) sin &(s)
<\ (508 = (0))> + (1) — 5(0))? ycos? 66) + sin? 611
—\/(3() = 3(0))* + (4(1) - 3(0))? (7.20)

=l¢(&) — #(0)]

<,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality

follows from Eq. (7.16). Hence, we have

(v(L,) — x(0)) cos 6(s) — (y(L,) — y(0)) sin &(s)

1— ) > 0 foralls € [0,7,], (7.21)
yielding
oy
ke (s) = Xt — X'y > Oforalls € [0,4,]. (7.22)

(X2 + Y2)3/2

To show that @ is simple, note that as @ is a closed plane curve, the total curvature of @ should
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satisfy

Iy
/ ko (s)ds = 27ng, (7.23)
0

where ¢ is the turning number of @. It follows from the above results that

s 7,
2rne =
e /0 (X2 + 12)3/2

< - (x(ly) —x(0) ) cos 8(s) — (y(L,)—(0) ) sin 6(s) )

/€¢ (5) <1 _ (x(ly) —x(())) cos 6(s)— (y(ly) —y(O)) sin 4(s) >
ds

< l¢k (s)d " (7.24)
=\ ) o (X2 + Y2)3/2

1 — A cosb(s) + Bsinb(s)
(1 +A2 +BZ — 24 cos 5(;) — 2Bsin 5(1))3/2 ,

= 27 max
s€ [0,1},]

where 4 = w and B = y(b)li;y(o). We can further simplify the above equation as

max 1— Ccos(8(s) +7) .
Zﬂje[on] ((1 + - ZCCOS(e(S) _ 7)))3/2) ) (7.25)

where C = VA? + B2 = [l @] < landy =tan' 2 = tan~! }'(Zy):y(o). It is therefore easy
Z 4 () —=x(0)

to see that
1— Ccos(@ 14 C
lo) ((1 Iy zéiso(s((;z;j );7)))3/2> = . op < (7.26)
which implies that
2ang < 47 = ng < 2. (7.27)
Therefore, np = 1and & is simple. As a simple closed curve is convex if and only if its signed
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Figure 7.2: The proposed curvature-based curve flattening procedure. Given a closed curve representing the

surface boundary, we first construct a plane curve using Eq. (7. Io). Then, we use Eq. (7. 14) to obtain a simple closed
convex curve.

curvature does not change sign, the result follows from Eq. (7.22). |

An illustration of the curve flattening procedure is provided in Figure 7.2. The algorithm is

summarized in Algorithm 7.1.

Algorithm 7.1: Curvature-based curve flattening

Input: The boundary y of a simply-connected open surface S'in R>.
Output: A simple closed convex plane curve ¢.

1 Lety = {vj}][-’zl be the boundary vertices of §'in anti-clockwise order. Compute the

— 171,
curvature £ = s

> Rescale « using Eq. (7.9);
3 Obtain a plane curve ¢(s) by solving Eq. (7.10);
+ Adjust ¢(s) using Eq. (7.14) to obtain a simple closed convex curve;

After obtaining @, we use it as a boundary constraint and compute a flattening map ¢ : S — R?

for the entire surface S as an initialization. Two methods for obtaining @ are discussed below.
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CURVATURE-BASED TUTTE FLATTENING MAP

The graph embedding method proposed by Tutte *4°;which has been widely used as an initialization
for surface parameterization ®>**4, is capable of producing a bijective planar map. One possible
method for obtaining ¢ is to combine the Tutte mapping method with our curvature-based curve
flattening result.
The adjacency matrix M is a|V| x |V| matrix with
1 iffz,j] €€,
qi= (7.28)
0 otherwise.
Remarkably, there exists a bijective map @ between any simply-connected open triangulated surface
Sin R3 and any convex polygon P on C'#°. More explicitly, by representing @ asa || x 1 column

vector with complex entries, we can obtain @ by solving the complex linear system

MMp(y) =0 ifve S\ IS,

(7-29)
@(0S) = oP,
where
M if [x;, ] € E,
Mg'utte - - Zt;ﬁi M ifj =i, (7.30)
0 otherwise.

Here, the boundary correspondence ¢(0S) = OP can be any prescribed bijective map. Now, since
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the curvature-based curve flattening map ¢ resembles the shape of the surface boundary well, we use
¢ as the convex boundary constraint and obtain a bijective Tutte flattening map @ : § — P. The

procedure is summarized in Algorithm 7.2.

Algorithm 7.2: Curvature-based Tutte flattening map

Input: A simply-connected open surface S in R>.
Output: A curvature-based surface flatteningmap ¢ : § — P C R%.

1 Lety = {vj}le be the boundary vertices of S. Compute the curvature-based curve
flattening map ¢ : ¥ — C using Algorithm 7.1;
» Compute the Tutte matrix Mo,

3 Obtain the desired map @ by solving the linear system 7.29, with the boundary
constraint given by ¢

CURVATURE-BASED LOCALLY AUTHALIC FLATTENING MAP

Another way to obtain a surface flattening map ¢ is to use a variant of the matrix A", Desbrun

et al.?>S proposed a mapping scheme that minimizes the following quadratic Chi energy

cot Vi + cot Sij 5

’2 ‘@(xl) - @(xj” ) (7.31)

z(@) = Z

v —
JEN() i J

where z and J;; are the two angles at x; as illustrated in Figure 7.3. This gives a locally authalic map

p:S— R? that preserves the local 1-ring area at every vertex as much as possible. The associated
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%

Figure 7.3: The angles z and 5,]‘ in the authalic matrix.

authalic matrix is given by

coty, +cot 5/]- .
W if [x;, %] € &,
A T~ .
My=4 — Z#Z.Mi«i ifj =1, (7.32)
0 otherwise.

Now, we replace MM Turee ) Algorithm 7.2 with the authalic matrix A4 and solve for a new surface
flattening map. More explicitly, we obtain @ by solving the following complex linear system with our
curvature-based boundary constraint:

Mip() =0 ifveS)\as,
(7.33)

p(9S) = ¢.
While the minimizer of the Chi energy is not a globally optimal area-preserving map, this approach
provides a reasonably good initialization with the local area taken into account. However, it is
noteworthy that unlike the Tutte map, the bijectivity of the locally authalic map is only guaranteed

when the input mesh satisfies the convex combination mapping property, i.e. all cot Yy T cot J; in
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Figure 7.4: An example for which the locally authalic map contains overlaps. Left: A mesh that contains many

sliver triangles and violates the convex combination mapping property48. Right: The curvature-based locally authalic
flattening map, with triangle overlaps observed.

M are nonnegative**, which is equivalent to that Vi + 9 < mforallZ,j. Figure 7.4 shows a mesh
violating this condition, and it can be observed that the locally authalic flattening map contains

mesh fold-overs. In this case, we can simply resort to the Tutte flattening map for ensuring the

bijectivity. The method is summarized in Algorithm 7.3.

Algorithm 7.3: Curvature-based locally authalic flattening map

Input: A simply-connected open surface Sin R*.
Output: A curvature-based locally authalic flattening map ¢ : § — R*.

1 Lety = {vj}le be the boundary vertices of S. Compute the curvature-based curve
flattening ¢ : y — C;
» Compute the authalic matrix A47%;

3 Obtain the desired map @ by solving the linear system 7.33, with the boundary
constraint given by ¢;

4+ In case @ contains overlaps, resort to the Tutte map in Algorithm 7.2;
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7.2.2 CONSTRUCTION OF SEA VIA REFLECTION

One important step in GN is to construct a sea surrounding the region of interest so that it can
deform freely. Here, we propose a new method for the construction of such a sea. If the simply-
connected open surface S'is non-planar, then the curvature-based flattening methods give us an
initial flattening map 7% = @(S) in R?. If Sis planar, we can simply skip the above step and treat S
itself as the initial flattening map, i.e. setting 7y = S.

Now, we rescale the initial flattening map 7y and put it inside the unit circle
S' := {z € C: |z| = 1}. Denote the edge length of the shrunk flattening map by /. Then, we fill up
the gaps between the rescaled initial flattening map and the circular boundary using uniformly
distributed points with distance /. This gives us a set of evenly distributed points over the unit disk
D := {z € C : |5 < 1}. We triangulate the new points using the Delaunay triangulation and
obtain a triangulation D7.

To construct a sea surrounding the unit disk, we consider the reflection mapping ¢ : D — C \ D

defined by

(7.34)

x| =

glz) =

It is easy to see that ¢ is bijective. In the discrete case, ¢ maps the triangulated unit disk D7 to a large

polygonal region R subsetC with the unit disk D punctured. We can then glue D7 and g(ID7) along
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the circular boundary 9D 7. Denote the glued mesh by§ = (]7, g , F ). We have

~ 1
V = {z}zep, U {} ; (7:35)
% ) zeD\O(D7)

- 111
J—“—J-‘u{[,,} 21, 2, 2] 6.7:}, (7.36)

2/ Zj Zf

and

£= {[z ] : [2:, %] is an edge of a face T € F}. (7.37)

In practice, the extremely large triangles at the outermost part of the glued mesh produced by the
reflection may cause numerical instability in the subsequent computations. Therefore, we remove
them by a simple truncation of the part far away from ID. More specifically, we remove all vertices
and faces of S outside {z : |z| > 7}, where 7 is a thresholding parameter. According to GN, having
a sea with dimensions a few times the linear extent of the domain of interest is sufficient. Therefore,
we set 7 = 5. Finally, the glued mesh is rescaled in order to restore the size of the flattening map. By
an abuse of notation, we use 7y to represent the entire region. Algorithm 7.4 summarizes the above
procedures. An graphical illustration is given in Figure 7.5.

Our construction is advantageous in the sense that the mesh size of the resulting sea is adaptive.
Unlike the approach in GN, which used a uniform finite difference grid for constructing the sea, our
approach produces a natural distribution of points at the sea that avoids redundant computation.

To see this, let 21, 25 be two points at the interior of D. Under the reflection mapping z ~ 1, we
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Algorithm 7.4: Construction of sea via reflection.

Input: An initial flattening map 7, a thresholding parameter 7.
Output: An updated map 7, with a sea surrounding the original domain.

: Rescale 7, to lie inside the unit circle S';

» Fill up the gaps between the unit circle and the rescaled map by uniformly distributed
points with spacing /, where / is the average edge length of 7;

3 Perform a constrained Delaunay triangulation that triangulates the unit disk with the
newly added points, with the connectivity of 7, unchanged;

4+ Apply the reflection map g(z) = 1 to the triangulated unit disk Dy;

s Glue Dy and ¢g(ID7), and update 7, by the glued result;

¢ Remove all vertices and faces of 7, outside {z : |z| > 7};

7 Rescale 7 to restore the size of the flattening map;

wavadl
¢g;<vm§= IRNEKE

PISK NP
KOS v thy
RPN

SRR
CRAEY

KX
X

Figure 7.5: An illustration of our algorithm for constructing the sea. Left: the initial flattening map. We rescale
it to lie inside the unit circle, and fill up the gaps with uniformly distributed points. Right: the sea constructed via the
reflection mapping (in cyan) and the initial flattening map (in yellow).

have

1 1

21 2

_m—m a2

(7.38)

Fz2l  |azl

Therefore, the edges formed under the reflection are shorter near the unit disk boundary, and get
longer further away. The outermost part of the sea, which stays far away from I, then consists of

the coarsest triangulations. By contrast, the innermost part of the sea closest to ID consists of the
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densest triangulations. This natural transition of mesh sparsity reduces the number of points
needed for the subsequent computation without affecting the numerical accuracy.

Another advantage of our approach is about the improvement of the shape of the sea. In GN, a
rectangular sea is used. The four corners are usually unimportant for the subsequent deformation,
and hence computational efforts are wasted there. By contrast, in our reflection-based construction,
the reflection together with the truncation produces a sea with a more regular shape, thereby

utilizing the use of every part of the sea and reducing redundant computations.

7.2.3 ITERATIVE SCHEME FOR PRODUCING DENSITY-EQUALIZING MAPS

Suppose we are given a population on each triangle element of the input surface mesh. Define the

. . Populati .
density Jof on each triangle element of the flattened map ¢ by e OPUation e interpolate Jo]:

Area of the triangle
on the vertices and develop an iterative scheme for deforming the flattened map based on density
diffusion.

To solve the diffusion equation on triangle meshes, it is important to discretize the Laplacian. Let

u 1V — Rbeafunction. To compute the Laplacian of # at every vertex 7, we use the following

discrete finite-element Laplacian ''*

Bu(i) =~ 3 (covay + corg, ) (u(i) — u(), (7.39)

) &

where V(7) is the one-ring vertex neighborhood of 7, #;; and B3, are the two angles opposite to the
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edge [7, /], and A(7) is the vertex area of the vertex :

> Area(T), (7.40)

where N7 (7) is the one-ring face neighborhood of 7. It is easy to see that

ZA(Z‘) = Z Area(7). (7.41)

i€y TeF

Therefore, the vertex area is a good discretization of the total surface area at the vertices. We remark
that the sea we constructed has an additional purpose of complementing the use of the FEM
Laplacian (7.39), which assumes the natural boundary condition V« - n = 0 in its derivation'"*.
The region of interest is not restricted by the above natural boundary condition and hence can
deform freely.

Note that the density p is originally defined on the triangle faces, while the above Laplacian is
defined at the vertices. To interpolate p” at the vertices, we note that for every vertex v € V, p¥ (v)
should only depend on the value of p” within its one-ring face neighborhood. This property is
related to the Whitney forms *#7, which were originally introduced for algebraic topology and

subsequently used as finite elements **. The Whitney 2-forms are piecewise-constant functions
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supported on triangle elements*3:

m ifxlieson T,

pr (v) = (7.42)
0 otherwise.
Now, any face-valued function f/: 7 — R can be interpolated at all vertices v € V by
Z A0 Area(T)
ﬂv) — ZTE}— fTﬂT)¢T dA TeENT (v ) Area(T) _ ZTEN}_ U)f‘(']’*) (7 43)
Yorer Jr ot (v)dd ZTEN]: )Area(T)Area(T) N (0)]

It is noteworthy that the above interpolation only depends on the connectivity but not the
geometry of the mesh. In our case, since p is related to the deformation of the face area, it is desirable
to emphasize on the weight of different faces in the interpolation. Therefore, we consider the

following modified Whitney 2-forms

— 1 ifxlieson T,
Py (%) = (7.44)
0 otherwise,

which gives the desired interpolation

Srer Jer” T)¢T )dA _ ZTeNF(u)ﬁ}KT)Area(T)'
doreF fT@T ZTe/\/f(u) Area(T)

OB (7.45)

By treating p¥ asa || X 1 matrix and p” asa | F| X 1 matrix, we can represent the above formula
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as a matrix multiplication

PV =WV (7.46)

where W7V isa |V| x |F| sparse matrix

W/l
W /W,
wrY = : (7.47)
W/ W)l

Area(T;)  if the j-th triangle 7} contains the 7-th vertex,

0 otherwise.

After computing j)V at the initial flattening map ¢, we extend Jov to the sea surrounding the
region of interest. As suggested in GN, the density at the sea should equal the average density at the

region of interest. Therefore, for every vertex ¢/ at the sea, we set

V() = mean,p” (v). (7.48)

We remark that the density at the boundary of ¢ may be affected by the density at the sea if we
perform the interpolation with the sea included. Hence, it is important to perform the interpolation
and obtain Jov at ¢ first, and then set the density at the sea. By an abuse of notation, we continue

using V, F without tilde in the following discussions whenever referring to the discrete mesh



structure with the sea included.
With the density interpolated and set at all vertices, we use the following semi-discrete backward
Euler scheme to solve the diffusion equation (7.3):

ﬁ?f *ﬁ5—1

Lol Aprp) = pY = (I—dth, 1) 'Y, (7.49)

where fanv is the value of Jov at the z-th iteration, A, is the FEM Laplacian of the deformed map 7,,
and d¢ is the timestep. Note that A, can be represented as A, = —4, 'L, where 4, isa [V| x |V
diagonal matrix containing the vertex area of each vertex, and L, isa |V| X |V| sparse symmetric
matrix containing the cotangent components in Eq. (7.39). Therefore, we can rewrite the above

equation as

P = (s + 0Ly ) (dyyp? ). (7.50)

The above semi-discrete backward Euler scheme is unconditionally stable. Also, the matrix 4, _; +
dtL,_1 is a symmetric sparse matrix and hence Eq. (7.50) can be efficiently solved.

After discretizing the diffusion equation, we consider the induced vector field. To discretize the
gradient operator V, let (V) () be the face-based discretization defined on every triangle
element 7' = [7, 7, k] at the n-th iteration. Denote the three directed edges of 7'in the form of vectors

bye; = [i,7], e = [j, k], & = [k, 7], and the unit normal vector of 7'by N. We can then derive a
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formula for (V)7 (7) using the Whitney o-forms*3, which are hat functions at the vertices:

1 ifp =4,

2/ (7)) =1 o if p is outside N” (), (7.51)

i affine  if p lies on N7 (7).

Give any vertex-based function £, we can interpolate fat any point x lying on the triangle face 7' =
7.7, #] by

f) = fipl () + fip)” () + figi (), (7.52)

where f;, £, fi are the values of fat the vertices 7, 7, k. Using the property that VgDZ.W = Zivr::(n 33 we

have

(VAL =V (el +220)e) + L Bl

=pr Ve +p, )V + ) (k)V e, (7.53)

— # V. ) Vi ' v )
N 2Area(T)N x (ﬁn (@)eie + 2, (e + 2, (/e)el]) )

The above formula provides us with an accurate approximation of the gradient (V)7 on

triangulated surfaces. We can then use the Whitney 2-forms (7.45) to obtain (V)Y at the vertices.
With all differential operators discretized, we now introduce our iterative scheme for computing

density-equalizing maps. At each iteration, we update the density by solving Eq. (7.50) and

compute the induced gradient (V)Y using the above-mentioned procedures. Then, we deform the

152



map by

P = Fust — 3t(Vp)Y JpY. (7.54)

For the stopping criterion, note that the standard deviation sd(p) measures the dispersion of the
updated density oY . To remove the effect of scaling of o, we divide the standard deviation by
mean(pY ). Also, note that the normalized quantity sd(s)) /mean(p)’) equals o if and only if the
density is completely equalized. Therefore, this normalized quantity can be used for determining
the convergence of the iterative scheme. Finally, we rescale the mapping result so that the total area
of S remains unchanged under the algorithm.

For the timestep Jz, by dimensional analysis of the diffusion equation (7.3), we can see that an
appropriate dimension of 3¢ would be L. Also, d¢ should be independent of the magnitude of 4.

Therefore, we set

N { min(py) mean(sY)

mean(oY)’ max(oY)

} x Area(S), (7-55)

where the first term is a dimensionless quantity taking extreme relative density ratios into account,
and the second term is a natural quantity with dimension 2. One may also rescale ¢ by a constant.
Our proposed method for producing density-equalizing maps (DEM) of simply-connected open
surfaces is summarized in Algorithm 7.s.

The proposed algorithm can be easily modified to obtain a flattening map with a prescribed
simple boundary shape such as a rectangle or a unit disk. To achieve such a shape-prescribed
density-equalizing map, we first replace the initialization (line 1—4) in Algorithm 7.5 with an initial

map with the desired boundary shape, such as a disk Tutte map or a rectangular Tutte map. The
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Algorithm 7.5: Density-equalizing map (DEM) for simply-connected open surfaces

Input: A simply-connected open triangulated surface S, a population defined on each
triangle, and a stopping parameter e.
Output: A density-equalizing flattening map f/: S — R

v if S'is planar then

2 | Set# =8

3 else

4 Compute a curvature-based flattening map ¢ : § — C using Algorithm 7.2 or
L Algorithm 7.3. Denote 7, = ¢(S);

. Gi lati
s Define the density Joof — e popurarion

= m on each trlangle of 705

¢ Computep; = WfVJo()F;
7 Update 7, with the sea constructed using Algorithm 7.4;
s Extend p} to the whole domain by setting o} at the sea to be the average value of p};

o Set df = min { min(r}) mem(p‘\)})} X Area(S);

mean(p) )’ max(py)

o Setn = 0;

11 repeat

12 Update n = n + 1;

13 SOIVC_/OX = (An—l + gt['n—l)il (An—l_/ozj_l)5

4 Compute the face-based gradient

(VE)i (1) = s N % (0} (D) + 2y (e +.p), (k)ey)s
s Compute (Vp)Y = W7V (Vp)7;

16 Update 7, = 7,1 — 9t(Vp)) /pY;

o sd(pY
17 until mi’ﬂ(:(’ja‘)”) < g
is Obrain f{S) = 7, x Feald;

construction of the sea (line 7-8) can be skipped as we do not need to change the overall boundary
shape of the initial map in this situation.
Note that the density-equalizing process is driven by the density gradient field V. To preserve

the overall boundary shape of the initial map throughout the iterations, the following Neumann
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boundary condition is needed:

(Vp)-n=0. (7.56)

In fact, the above condition is implicitly enforced in the derivation of the contangent Laplacian
formulation (7.39) (see Ref."** for the detailed derivation). This suggest that the iterative scheme is
theoretically applicable to this problem.

However, in the discrete case, the numerical error in approximating the density gradient may lead
to a small nonzero normal component in Vp at the boundary. To fix this issue, we can simply
project all boundary vertices onto the prescribed boundary shape at the end of each iteration.
thereby ensuring that all boundary vertices stay on the prescribed boundary while having the
freedom to slide along it throughout the density-equalizing process. Algorithm 7.6 summarizes the

procedure for computing shape-prescribed density-equalizing maps (SPDEM).

7.2.4 THE CHOICE OF POPULATION AND ITS EFFECTS

We conclude this section by listing some possible choices of the initial population and the

corresponding effects on the final mapping result by our density-equalizing mapping algorithm:

* Setting a relatively high population at a certain region of the input surface will lead to an

expansion of that region in the final density-equalizing mapping result.

* Similarly, setting a relatively low population at a certain region of the input surface will lead

to a shrinkage of that region in the final density-equalizing mapping result.

* Setting the population to be the area of every triangle element of the input surface will lead

to an area-preserving parameterization of the input surface, as we have

Initial area  Given population

= = Density = Constant. .
Final area Final area Y (7.57)
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Algorithm 7.6: Shape-prescribed density-equalizing map (SPDEM) for simply-
connected open surfaces

Input: A simply-connected open triangulated surface S, a prescribed boundary shape, a
population on each triangle, and a stopping parameter ¢.
Output: A shape-prescribed density-equalizing map £: § — R*.

1 Compute an initial map ¢ : § — C with the prescribed boundary shape. Denote
7o = (S);
2 Define the density ﬁof =

" Area of the triangle
F.
0 J

+ Set 9t = min { min(r{) mem(p“’})} X Area(S);

mean(py )’ max(p) )

Gi lati . =
~ PP on each triangle of 7

3 Compute p,; = W]:VJO

s Setn = 0;

6 repeat

” Updaten = n + 1;

8 Solveﬁlj = (4,1 + StL,L_l)_l (An_yo:_l);

9 Compute the face-based discrete gradient

(Vo)a (1) = smeeeN % (o) (D)ee + 2 (ews + ) (k)ey);

10 Compute (V)Y = W7V (Vp)7;

11 Update 7, = 7,1 — 0t(Vp)Y /p”;

12 Project all boundary vertices onto the prescribed boundary shape;

_rd(,oy) .
mean(p)) <&

14 Obtall’lﬂS) = 7,1 X Area(7p)

Area(7,)>

13 until

7.3 EXPERIMENTAL RESULTS

The proposed algorithms are implemented in MATLAB. The backslash operator in MATLAB
is used for solving the linear systems, and the Fast InPolygon detection MEX custom MATLAB
function” is used for constructing the sea. We demonstrate the effectiveness of our algorithms using

various experiments. All experiments are performed on a PC with Intel i7-6700K CPU and 16 GB

*https 1/ /www.mathworks.com/matlabcentral/fileexchange/20754-fast-inpolygon-detection-mex
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RAM. Some of the surface meshes in the experiments are adapted from the AIM@SHAPE Shape

Repository'. In all experiments, the stopping parameter ¢ of our algorithms is set to be 102.

7.3.1 ExAMPLES OF DENSITY-EQUALIZING MAPS PRODUCED BY OUR ALGORITHM

Figures 7.6 and 7.7 respectively show the density-equalizing maps of a square and a hexagon with a

Given population hlghly

prescribed population on every triangle element. The final density —— "

concentrates at 1 for both examples, which indicates that our proposed DEM algorithm effectively

sd(p);)

equalizes the density. Also, the plots of — >y Versus the number of iterations show that the
n

proposed algorithm converges rapidly.

Figure 7.8 shows the mapping result of a Gaussian shape in R3. The domain of the shape is
[0,1] x [0,1]. The population is given by 2.2 — |x| — |y|, where (z, y) are the x- and y-coordinates of
the centroid of each triangle element. Algorithm 7.2 is used for the initialization for computing the
density-equalizing map. It can again be observed that the density is well equalized.

It is noteworthy that the curvature-based initial flattening map and the final density-equalizing
map can be significantly different in shape (Figure 7.9). In particular, a convex initial map can
become non-convex under the algorithm.

Our algorithm is capable of producing area-preserving flattening maps. Figure 7.10 shows a
surface with multiple peaks in R3 and the mapping result. Here, we set the population as the area of
each triangle element on the initial surface and use Algorithm 7.2 for the initialization. It can be

observed that the flattening map eftectively preserves the area ratios.

Thttp://visiona‘i r.ge.imati.cnr.it/ontologies/shapes/
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Figure 7.6: Density—equalization on a square. Top row (left to right): the initial shape colored with a given
population distribution, and the resulting density-equalizing map colored with the final area of each triangle element.

d V . .
Middle row (left to right): the values of ("Wl) the histogram of the initial density %

element, and the histogram of the final density % on each triangle element (see Table 7.1 for statistics). Bottom:
V)

A semilog plot of (ﬁv) versus time with a stronger threshold of ¢ = 107 showing rapid convergence.

on each triangle

Another example of area-preserving maps produced by our algorithm is shown in Figure 7.11.
This time, we use Algorithm 7.3 for the initialization and then compute the density-equalizing map

with the population being the area of the triangle elements. It can be observed that the locally
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Figure 7.7: Density-equalization ona hexagon. Refer to the caption of Figure 7.6 for the description of the plots.

authalic initialization does not preserve the global area ratio, with the eyes and nose of the lion

significantly shrunk. By contrast, the final density-equalizing map effectively achieves area

preservation.

By changing the input population, we can use our proposed DEM algorithm for producing

density-equalizing flattening maps with different eftects. Two examples are provided in Figure 7.12.
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shape colored with a given population distribution, the curvature-based Tutte flattening initialization colored with the

area of each flattened triangle element, and the final density-equalizing map colored with the final area of each triangle

element. Middle row (left to right): the values of %&;) the histogram of the density m
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Final area
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triangle element after the Tutte flattening initialization, and the histogram of the density on each triangle

d v
element of the final result. See Table 7.1 for statistics. Bottom: A semilog plot of %&3) versus time with a stronger

threshold of ¢ = 10> showing rapid convergence.

For the Niccold da Uzzano model, by setting the input population at the eyes to be twice the area of
the triangles there and that at the remaining parts to be the area of each triangle element, we can
achieve a flattening map with the eyes magnified. Similarly, for the Max Planck model, by setting the

input population at the nose to be 1.5 times the area of the triangles there and that at the remaining
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Figure 7.9: Two more examples of density-equalizing maps. Here we set the population according to the height
of different parts of the surfaces, aiming to achieve an expansion at the peaks. Left: The original surfaces. Middle: The

curvature-based initial flattening maps. Right: The density-equalizing mapping results. Note that the convex boundaries
in the initialization can become non-convex under DEM.

parts to be the area of each triangle element, we can eftectively magnify the nose in the flattening
map.

As discussed in Section 7.2.3, the proposed SPDEM algorithm is capable of producing
density-equalizing maps with a prescribed target shape. Figure 7.13 shows four examples, including

two examples of mapping the square with the prescribed population in Figure 7.6 to a square and a
rectangle with aspect ratio 2

3 respectively, and two examples of mapping the hexagon with

prescribed population in Figure 7.7 to a circle and an ellipse with aspect ratio 2 : 1 respectively. It
can be observed that the target shapes are effectively achieved, with the boundary vertices optimally

moved along the boundary to achieve density-equalization. Besides, similar to the proposed DEM
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the initial surface colored with the area of each triangle element, the curvature-based Tutte flattening map colored

with the area of each flattened triangle element, and the final density-equalizing map colored with the final area of each
triangle element. Middle row (left to right): the values of
flattened triangle element after the Tutte initialization, and the histogram of the density
of the final result (see Table 7.1 for statistics). Bottom: A semilog plot of ﬂ

¢ = 107> showing rapid convergence.
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Initial area

al flattened area
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versus time with a stronger threshold of

algorithm, the SPDEM algorithm can be used for computing area-preserving parameterizations

onto a prescribed domain such as a disk or a rectangle (Figure 7.14). We can further achieve the

effects shown in Figure 7.12 with the boundary shape prescribed (Figure 7.15).

For surfaces with a highly convoluted boundary, it may be difficult to directly compute the
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Figure 7.11: Area-preserving parameterization of a lion face in R>. Top row (left to right): the initial surface, the
curvature-based locally authalic flattening map, and the final density-equalizing map. All meshes are colored with the
mean curvature of the input lion face. Refer to the caption of Figure 7.10 for the description of the four remaining plots.

curvature-based flattening map. To overcome this problem, a simply remedy is to extend our sea
approach and prescribe a sea with a simpler shape around the given surface. With the simpler overall
shape, the new surface can be easily flattened, and the density-equalizing map can then be computed

for achieving different desired eftects. Figure 7.16 shows a simply-connected open torus surface with

max(population) __ 25

a space-filling curve pattern. Here, we define the population on the mesh with — —
min(population)

to produce a large deformation under density-equalization. By prescribing a sea to fill up the gaps
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Figure 7.12: Density-equalizing flattening maps with different effects obtained by our density-equalizing
map (DEM) algorithm. Left: The Niccolé da Uzzano model and the mapping result with the eyes magnified. Right:
The Max Planck model and the mapping result with the nose magnified (see Table 7.1 for statistics).

«10%
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Final result

Final result

Final result

Figure 7.13: Density-equalizing maps produced by our SPDEM algorithm. Top row: We compute two density-
equalizing maps for the example in Figure 7.6 with the target shapes being a square and a rectangle with aspect ratio 2:3

respectively. Bottom row: We compute two density-equalizing maps for the example in Figure 7.7 with the target shapes
being a disk and an ellipse with aspect ratio 2:1 respectively (see Table 7.2 for statistics).

on the torus, we can flatten the entire shape onto a rectangle and compute the density-equalizing

map, thereby achieving the desired mapping effect of the original surface. It is also noteworthy that
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Figure 7.14: Area-preserving parameterizations produced by our SPDEM algorithm. Left: The human
face model and the area-preserving parameterization of it onto a disk. Right: The lion model and the area-preserving
parameterization onto a square (see Table 7.2 for statistics).

Figure 7.15: shape-prescribed density-equalizing flattening maps with the effects in Figure 7.12. Left: The
Niccolo da Uzzano model and the disk mapping result with the eyes magnified. Right: The Max Planck model and the
rectangular mapping result with the nose magnified (see Table 7.2 for statistics).

the sea helps regularize the deformation and avoid mesh overlaps. As the density information at two
geometrically close but topologically distant regions on a convoluted surface can be transmitted
between each other via the sea directly without going through the complicated domain, the two

regions can coordinate with each other and find a non-overlapping direction for the expansion.
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Figure 7.16: Density-equalizing map for a simply-connected open torus surface with a space-filling curve
pattern. Top: The torus surface color-coded with the input population. Middle: We prescribe a sea with a simpler shape
around the surface and flatten the new surface for computing the density-equalizing map. Bottom: The resulting density-

equalizing map.

7.3.2 QUANTITATIVE RESULTS OF OUR ALGORITHM

We then analyze the performance of our DEM algorithm more quantitatively (Table 7.1). It can be

observed that the convergence of DEM is fast. Also, from the median and the inter-quartile range of

166



No. of . No. of Medianof | IQR of
Surface . Time (s) ) ) . .
triangles iterations density density
Square 10368 0.6983 6 1.0120 0.0705
Hexagon 6144 0.3123 6 1.0232 0.0549
Gaussian 10368 0.4088 4 1.0040 0.0309
Peaks 4108 0.1493 4 1.0018 0.1322
Lion 33369 1.4443 5 1.0169 0.1266
Niccold da 25900 2.0740 8 1.02 0.0801
Uzzano 59 -074 -0247 .
Max Planck 26452 2.4307 11 1.0203 0.0631
Human face 6912 0.7933 6 1.0069 0.0573
US Map
658 7946 .0018 .
(Romney) 46587 3.794 3 1.00T 0.0145
USM
(Obarr?f) 46587 3.7801 3 1.0004 0.0145
USM
(Trumi)p) 46587 5.2797 4 1.0017 0.0176
US Map
658 76 . .
(Clinton) 46587 3.7643 3 1.0001 0.0244

Table 7.1: The performance of our density-equalizing map (DEM) algorithm. The number of triangle
elements, the time taken (in seconds) for the entire algorithm (including the computation of the initial map and the

construction of sea), the number of iterations taken, and the median and interquartile range of the density defined on
Given population

- are recorded.
Final area

each triangle element by

the density, it can be observed that the density is well-equalized. The experiments show that DEM is
efficient and accurate.

Table 7.2 shows the performance of the proposed SPDEM algorithm. Since SPDEM does not
involve the sea, it is faster than DEM. However, because of the extra shape constraints, SPDEM is
not as accurate as DEM.

We now compare the performance of our proposed algorithm and GN (with the implementation
available online*). As GN only works on finite difference grids, we deploy the two methods on a

100 x 100 square grid {(x,y) € Z?* : 0 < x,y < 99} for a fair comparison. For our triangle-based

Ihttp ¢/ /www-personal.umich.edu/~mejn/cart/
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S No. of Target . No. of | Median of IQR of
urface . Time (s) | . . . .
triangles shape iterations| density density
Square 10368 Square 0.1891 5 1.0044 0.1097
Square 10368 Rectangle 0.2260 6 1.0042 0.1367
Hexagon 6144 Circle 0.1560 6 1.0011 0.0538
Hexagon 6144 Ellipse 0.2431 9 1.0053 0.0549
Peaks 4108 Circle 0.0615 4 0.9979 0.1362
Human face 6912 Circle 0.2642 5 1.0068 0.1125
Lion 33369 Square 0.8491 6 1.0109 0.1302
Niccold da ,
Uszano 25900 Circle 1.3215 14 1.0054 0.0751
Max Planck 26452 Rectangle 1.2847 13 1.0164 0.0804

Table 7.2: The performance of our shape-prescribed density-equalizing map (SPDEM) algorithm.

Time by our
Ti M
Input population ime by GN DEM method 2P
(s) (s) difference
S 4+ % 4.843 0.639 0.0016
_ =92+

1+e¢ 1000 4.452 0.848 0.0008
2.5 +sin”(x27jc) 4.959 0.855 0.0012
1.5 + sin ”“27;’?) sin %?) 4.592 0.597 0.0026

Table 7.3: The performance of our density-equalizing map (DEM) algorithm and GN deployed on a
100 x 100 square mesh with different input population functions. Here, we evaluate the map difference by

| Zorev —Zours | . . . .
mean (Side length of square ,where 2., and 2z, are the complex coordinates of the density-equalizing mapping results by

GN and our method respectively. X and y denote the mean of the x- and y-coordinates of the square.

DEM algorithm, we divide each square into two right-angled triangles. For GN, the dimension

of the sea is set to be two times the linear extent of the square grid. We test the two methods with
various population functions (Table 7.3). It can be observed that our DEM algorithm is faster than
GN by over 80%, while the mapping results produced by the two methods are nearly identical (see
also Figure 7.17). The experiments suggest that our proposed method is advantageous over GN

even for computing density-equalizing maps on 2D grids.
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Figure 7.17: The density-equalizing maps produced by our DEM algorithm and GN with various input
population functions. Each column shows a set of results color-coded by an input population function in Table 7.3.
Top row: The mapping results by GN. Bottom row: The mapping results by our DEM algorithm.

7.3.3 COMPARISON WITH OTHER PARAMETERIZATION METHODS

We first qualitatively compare our DEM algorithm with the various prior parameterization
algorithms 35151726 for parameterizing a surface with multiple peaks (Figure 7.18). It can be
observed that the peaks are substantially shrunk under the free-boundary conformal
parameterization *5 and the disk conformal parameterization *°. Also, the boundary of the
free-boundary conformal parameterization is significantly distorted. By contrast, the peaks are
flattened without being shrunk under our DEM algorithm, as well as the optimal mass transport
(OMT) map **" and the scalable locally injective map (SLIM) 7. More mapping results produced
by our DEM algorithm, OMT and SLIM are shown in Figure 7.19, from which we observe that
DEM and OMT are more capable than SLIM in avoiding squeezed regions in the mapping results

(such as the peak of the Gaussian surface and the nose of the human face).
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Figure 7.18: Comparison of different parameterization methods for a surface with multiple peaks in R>.
Top left: The input surface. Top middle: The free-boundary conformal parameterization *>. Top right: The disk conformal

parameterization?®. Bottom left: The area-preserving parameterization by our DEM algorithm. Bottom middle: The
optimal mass transport (OMT) map *°*. Bottom right: The scalable locally injective map (SLIM) 1%7.

We then quantitatively compare our DEM algorithm with OMT? and SLIMY, in terms of the
efficiency and accuracy, for computing area-preserving parameterizations. The parameterization
results computed by the three algorithms are rescaled so that the total area of each map is the same

as that of the input surface. We then evaluate the area-preserving property of the three algorithms by

computing the absolute relative error in triangle area for every triangle 7+

Area of T on the parameterization
E = —1]. .58
alT) Area of T on the original surface (7.58)

§http ://www3.cs.stonybrook.edu/~gu/software/omt/index.html
Shttp ://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings
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Surface NO' of Measure OMT ! SLIM 7 DEM
triangles
Time (s) 0.956 3.413 0.333
# iterations 22 20 3
Gaussian 10368 mean(£y) 0.1014 0.2678 0.0164
std(Ey) 0.0791 0.2041 0.0233
median(E,) 0.1065 0.2104 0.0101
IQR(E,) 0.1157 0.2839 0.0154
Time (s) 0.466 0.998 0.149
# iterations 24 20 4
Peaks 4108 mean(E,) 0.1108 0.3214 0.092.8
std(Ey4) 0.1015 0.1791 0.1027
median(E,) 0.0863 0.3107 0.0649
IQR(Ey) 0.1106 0.1892 0.0934
Time (s) 3.278 14.791 1.444
# iterations 22, 20 S
Lion 33369 mean(E4) 0.1285 0.1857 0.0938
std(Ey) 0.1062 0.1298 0.0981
median(E,) 0.1050 0.1612 0.0640
IQR(E,) 0.1299 0.1934 0.0982
Time (s) 2.469 9.211 2.020
# iterations 22 20 8
Niccolod da 25900 mean(£E,) 0.1282 0.1400 0.0737
Uzzano std(Ey) o.1101I 0.0970 0.1461
median(E,) 0.1037 0.1266 0.0369
IQR(E,) 0.1293 0.1250 0.0589
Time (s) 3.035 9.762 2.021
# iterations 26 20 9
Max 26452 mean(E,) 0.1223 0.1075 0.0754
Planck std(Ey4) 0.1015 0.1078 0.1839
median(E,) 0.0991 0.0786 0.0333
IQR(E,) 0.1243 0.1174 0.0540
Time (s) 1.700 3.844 0.793
# iterations 30 20 6
Human 33369 mean(£,) 0.I15I1 0.0830 0.0612
face std(Ey) 0.1386 0.082.4 0.1438
median(E,) 0.1174 0.0613 0.0291
IQR(E,) 0.1507 0.0830 0.0481

Table 7.4: The performance of our DEM algorithm compared with the state-of-the-art nonlinear
parameterization algorithms for computing area-preserving parameterizations. For the optimal mass

transport (OMT) map *°* and the scalable locally injective map (SLIM) 107

, the default parameter settings in their
implementation are used: The error threshold for OMT is set to be 0.0001, and the number of iterations for SLIM is

set to be 20.
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7.3.4 ON THE USE AND CONSTRUCTION OF THE SEA

Note that most prior parameterization methods do not involve the construction of a sea
surrounding the given surface. In our proposed DEM algorithm, the sea is useful not only for aiding
the density-equalization process but also for analyzing the physical phenomenon of density
propagation around the region of interest.

Here, we consider the deformation of the sea from a physical point of view. Let 7 be the distance
of a tracer particle at the sea from the origin before the deformation, and Ar = rg,, — 7be the
change in the distance of it under the density-equalization process. We analyze the density
propagation under the proposed DEM algorithm by tracking A7 for all vertices at the sea. From the
log-log plots Ar against 7 outside the unit circle shown in Figure 7.20, it can be observed that
Ar o 72 at the outer part of the sea. In other words, the effect of density diffusion on the
displacement of particles at the sea decays quadratically. From an algorithmic point of view, this
observation suggests that the construction of a coarser sea at the outermost part by reflection does
not affect the accuracy of the density-equalizing map.

We now compare our reflection-based construction of an adaptive sea and other standard
construction approaches. Here, we replace our adaptive sea with a sea consisting of uniformly
spaced nodes with various choices of spacing, and analyze the performance of the
density-equalization algorithm.

More specifically, we consider three choices of node spacing at the sea. From Table 7.5, it can be

observed that the mapping results with our adaptive sea is as accurate as those with a uniform dense
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Figure 7.20: The log—log plot of the displacement of tracer particles at the sea under our density-
equalizing map (DEM) algorithm. ris the distance of a point at the sea from the origin, and Aris the change in the
distance under the density-equalizing map. Each cross represents a node at the sea, and the red line is the least-squares
line. Here we only consider the region outside the unit circle and hence the x-axis starts from O. Left: The square example.
Middle: The hexagon example. Right: The human face example.

S Adaptive Uniform Uniform Uniform
urface Measure sea
sea sea (coarse) sea (dense)
(moderate)

Square # points at sea 23882 16148 44463 389182
DEM Time (s) 0.6983 0.5838 1.2037 10.4504

median(dpdy) 1.0057 1.0148 1.0413 1.0137

IQR (ddy) 0.0707 0.6781 0.1351 0.0689

Hexagon # points at sea 10022 6437 17511 150677
DEM Time (s) 0.3123 0.2615 0.5022 3.8555

median(dpdy) 1.0290 1.0630 1.0239 1.0163

IQR(ddy) 0.0695 0.3504 0.1754 0.0676

Gaussian # points at sea 18676 15187 43688 364657
DEM Time (s) 0.4088 0.3820 0.7674 6.1897

median(dpgy) 0.9684 1.5254 1.1205 0.9646

IQR(ddy) 0.1442 1.7124 0.6226 0.1478

Max Planck # points at sea 31444 15187 41714 364737
DEM Time (s) 2.4307 1.7412 2.9786 19.5934

median(dpgy) 1.1282 1.3877 1.2603 1.1387

IQR (dbay) 0.2898 1.1896 0.6747 0.2510

Table 7.5: The performance of the density-equalizing maps with our adaptive sea and a uniformly sea.
The point spacing at the coarse, moderate, and dense level are respectively S, 32 and 4, where 4 is the average spacing
of the vertices of the initial flattening maps. For a fair comparison, the overall size of the uniform sea is set to be 5, which
is consistent with our choice of 7 = 5 in our reflection-based construction. dbdy is defined by Given population ¢ e

Final area
boundary elements of the surfaces under the density-equalizing maps.

sea consisting of over 10 times of nodes, and the computational time is over 90% shorter. While the

computation with a coarse sea is faster than that with our adaptive sea, the accuracy of the mapping
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Figure 7.21: Percentage of popular vote in each state visualized on density-equalizing US maps (only
including the contiguous 48 states) in the 2012 and 2016 US presidential elections. For enhancing the
visual quality, the triangulations are not shown.

results is much lower. The experiments suggest that our reflection-based sea construction is capable

of accelerating the computation without sacrificing the accuracy.

7.4 APPLICATIONS

Below, we discuss two applications of our proposed density-equalizing mapping algorithm.

7.4.1 DATA VISUALIZATION

Similar to GN, our proposed algorithm can be utilized for data visualization. Here we consider

visualizing the percentage of popular vote for the Republican party and the Democratic party in the
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Figure 7.22: Visualizing the vote power of different states (only including the contiguous 48 states). Left: The normal US

N

-

map color coded by the number of electoral votes. Right: The area cartogram generated by DEM that accurately reflects
the vote power of all states.

contiguous 48 states in the 2012 and 2016 US presidential elections. The population on each state
on a triangulated US map is set to be the percentage of popular vote obtained by the two parties.
From the density-equalizing mapping results shown in Figure 7.21, it can be observed that the east
coast and west coast are significantly shrunk for the Republican party. This reflects the relatively low
percentage of popular vote obtained at those regions. By contrast, the corresponding regions are
significantly enlarged in the mapping results for the Democratic party, which reflects the relative
high percentage of popular vote there. Comparing the 2012 and the 2016 mapping results, we
observe that the area of California becomes more extreme in the 2016 maps when compared to
those in the 2012 maps. More specifically, it has further shrunk on the Trump map while further
expanded on the Clinton map. The area of West Virginia has reduced in the map for Clinton when
compared to that for Obama, while it has increased in the map for Trump when compared to that
for Romney.

One can also use our DEM algorithm to analyze the electoral college system for the US
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presidential elections. Noticing that the number of electoral votes is different at different states, we

evaluate the vote power of each popular vote at each state by

Number of electoral votes
Number of popular votes

Vote power = (7.59)

Number of electoral votes ) '

mean ( Number of popular votes

To visualize the vote power using our DEM algorithm, we note that this quantity is not related to
the area of each state. Therefore, we remove the effect of the original area of each state by running

our DEM algorithm with the input population being Vote power

Areaof the sre ON the contiguous US map. The

resulting area cartogram then solely reflects the vote power (Figure 7.22). When compared to the
ordinary contiguous US map, the area cartogram produced by DEM provides a more intuitive view
of the vote power. For instance, it can be observed that Wyoming is much bigger than Texas in the
area cartogram as the vote power there is significantly larger. The two examples show that our DEM

algorithm is useful for data visualization.

7.4.2 ADAPTIVE SURFACE REMESHING

In our DEM algorithm, the input population affects the size of different regions in the resulting
density-equalizing maps, with regions corresponding to a higher population magnified and those
corresponding to a lower population shrunk. Using this property, we can utilize our DEM
algorithm for adaptive surface remeshing.

More specifically, let S be a simply-connected open surface to be remeshed. We first compute the

density-equalizingmap /* : S — C based on a given population. Then, we consider a set of
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Figure 7.23: Remeshing a human face. Top left: The input human face. Top middle: The remeshing result via our
DEM algorithm. Top right: The remeshing result via the free-boundary conformal parameterization 35 Bottom left: The
density-equalizing map by our DEM algorithm. Bottom right: The free-boundary conformal parameterization >°.

uniformly distributed points P on the mapping result and triangulate the points. Denote the
triangulation by 7. Finally, using the inverse mapping f!, we interpolate PP onto S and the

resulting mesh (£71(P), T') is a remeshed version of S.
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Note that we can increase the level of detail at a region of S by setting a larger population there.
As the region is enlarged in the density-equalizing mapping result and P is uniformly distributed,
more points will lie on that part. Therefore, more points will be mapped onto that particular region
of S under the inverse mapping.

Figure 7.23 shows the results of remeshing a triangulated human face via our DEM algorithm
and the free-boundary conformal parameterization*>. For our algorithm, we set the population to
be the triangle area of the original mesh. It can be observed that the eyes and the nose of the human
face are enlarged in our density-equalizing mapping result, while those features are shrunk in the
conformal parameterization. Therefore, in the remeshing results via conformal parameterization,
the representation of the nose is poor. By contrast, the remeshing result via our DEM algorithm
consists of points which are more evenly distributed on the surface. This demonstrates the strength

of our algorithm in surface remeshing.

7.5 DiscussioN

In this work, we have proposed two density-equalizing mapping algorithms (DEM and SPDEM) for
simply-connected open surfaces, with numerical experiments showing the effectiveness of them for
different applications.

As the discretization accuracy of the cotangent Laplacian is affected by the mesh regularity, a
possible method for further improving the accuracy of the density-equalizing maps is to introduce

an extra step of recomputing a Delaunay triangulation at every iteration in Algorithm 7.5. Since
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the density values are vertex-based, changing the triangulation will not lead to any ambiguity in the
computation. Also, as the deformation is based onr,, = 1,1 — 9(Vp)Y /pY, one may prevent the
occurrence of fold-overs by changing the timestep d adaptively throughout the iterations.

While the proposed algorithms focus on simply-connected open surfaces in R, they can be
naturally extended for mapping general surfaces. For instance, one can compute density-equalizing
maps of multiply-connected surfaces by filling up the holes and treating them as the sea. The entire
surface then will become simply-connected and hence we can apply the proposed algorithms.

Similarly, we can handle multiple disconnected surfaces by connecting them using a sea.
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Where there is matter, there is geometry.

Johannes Kepler

Area-preserving map of 3D carotid models

ATHEROSCLEROSIS IS A FOCAL DISEASE WITH PLAQUES OCCURRING AT BENDS AND
BIFURCATIONS (BFS) OF THE CAROTID ARTERY PREDOMINANTLY, CAUSING ISCHEMIC
STROKE **. It is therefore important to monitor the local changes in the vessel-wall-plus-plaque

thickness (VWT) of carotid artery, which is defined as the pointwise distance between the
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lumen-intima boundary (LIB) and the media-adventitia boundary (MAB)**, for aiding the
development of sensitive biomarkers that can identify high-risk patients with rapid plaque
progression in a shorter time frame. Instead of visualizing the VW T-Change distribution for an
individual patient on a three-dimensional (3D) surface, it is more preferable to have a flattened
representation of the carotid artery surface so that clinicians can examine the distribution
systematically without having to rotate and interact with the 3D surface '*. Also, since the geometry
of the carotid artery surfaces is highly subject-specific, having a standardized two-dimensional (2D)
template facilitates quantitative local comparisons of the VWT-Change distributions among
subjects.

Chiu ez al.*> developed the arc-length scaling (ALS) mapping method for flattening the 3D
carotid surfaces onto a standardized 2D non-convex L-shaped domain (Figure 8.1), with the external
carotid artery (ECA) (i.e. the left branch above the bifurcation point) excluded as plaques at ECA
are not directly related to stroke. The ALS method has been applied for the development of sensitive

2329 and B Vitamins '®. However,

biomarkers in clinical trials evaluating the effect of atorvastatin
the ALS method does not minimize any local geometric distortion by the flattening procedure. It is
well-known that surface flattening always introduces distortions in either angle or area (or both)
unless the Gaussian curvature of the surface is zero*%.

Conformal (angle-preserving) flattening methods have been proposed for tubular

surfaces 152302152

, with the local geometry of the surfaces taken into account. However, these
methods produce 2D maps with shapes depending on the geometry of the input surfaces, making

the flattened domain subject-specific. Antiga and Steinman® developed a method for producing a
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Figure 8.1: An illustration of the 2D arc-length scaling (ALS) map*>. a, A carotid surface is first cut by two
planes, denoted by Pcs and Pcca. b, The surface is then unfolded to a 2D L-shaped non-convex domain. The arc-length

of transverse contours segmented from 2D transverse images is rescaled such that all vertices on the carotid surface
correspond to uniformly spaced grid points on the 2D domain. The bifurcation (BF) is mapped to the non-convex corner of
the domain, and the carotid boundaries o1, >, 73 are mapped to the horizontal boundaries.

standardized 2D map by decomposing the common, internal and external carotid arteries (CCA,
ICA and ECA) into three topological cylinders, with each of them subsequently flattened onto the
2D plane by solving a Dirichlet problem*. However, the flattened maps for the CCA, ICA and
ECA are generated independently and displayed in three discontinuous sections, which hampers
clinical interpretation of the VWT-Change map at the bifurcation and the carotid bulb.

As areal and volumetric measurements of plaques are related to the stroke risk of patients 245,
area-preserving flattening methods are more preferable. However, while some area-preserving
carotid flattening methods have been developed ">**" and applied to clinical studies#>78, these
methods result in 2D maps with shapes depending on the geometry of the input surfaces. The
inability of these methods in producing a standardized 2D template makes them not suitable for
quantitative analysis of VWT-Change.

In Chapter 7, we developed two surface density-equalizing map methods (DEM and SPDEM)

for flattening simply-connected open surfaces based on density diffusion 5*. In particular, our
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SPDEM method allows for the computation of area-preserving maps of surfaces onto a standardized
convex planar domain such as a disk or a rectangle. However, the carotid mapping problem involves
a non-convex target 2D domain, for which the bijectivity of SPDEM is not guaranteed. To
overcome this issue, in this chapter we develop a novel method called the density-equalizing
reference map (DERM) for computing area-preserving carotid flattening maps onto the 2D
non-convex L-shaped domain. The proposed method extends the diffusion-based formulation and
further combines it with the reference map technique”"*#""*# in solid mechanics. With the
bijectivity ensured and the area distortion minimized, the flattening maps produced by our method
provide an accurate and consistent collective representation of carotid surfaces, thereby enabling
unbiased quantitative comparisons of the extent of carotid diseases among patients in population

studies.

8.1 THE REFERENCE MAP TECHNIQUE

Rycroft, Kamrin, and coworkers”">'#" 4 developed the reference map technigue (RMT) for
simulating large-strain solid mechanics. The RMT uses the reference map as the basis for a fully
Eulerian formulation, which provides a simple method to describe arbitrary deformations of a body
in R4,

Suppose the material initially located at the position X of the body is moved to the position x at
time z. The deformation can then be described by the motion function x(X, t), which keeps track of

the motion of the material initially at X. The reference map is defined as the inverse of the motion
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§(x,t)

Reference Deformed
Configuration Configuration
attime O at time t

Figure 8.2: An illustration of the reference map. The reference map is the inverse of the motion function, which
indicates the reference location of the material occupying X at time ¢.

function X = £(x, ), which can be regarded as a vector field in the deformed body indicating

the reference location at time o of the material occupying the position x at time # (Figure 8.2). In
particular, £(x,0) = X as the initial configuration is undeformed. Now, note that for any tracer
particle, the reference location of it is the same at all time # under the deformation. Therefore, we

have

which yields the advection equation

i;sj—FV-Vf:O. (8.2)

Solving the above equation as # — 00, we obtain the final reference map &(Xg,1, 00) which gives the

reference location of the material occupying the final position Xy, of the deformed body. In the

185



Figure 8.3: Reconstruction of the carotid surfaces from the ultrasound images. The white and black
contours represent repeated segmentations of the lumen-intima boundary (LIB) and media-adventitia boundary (MAB)
respectively, and the red contours represent the mean LIB and MAB. Each blue line connects a pair of correspondence
points matched using the symmetric correspondence algorithm 22, and the local vessel-wall-plus-plaque thickness (VWT)
is given by the distance between each correspondence pair.

2D case, we can obtain Xg,,| from &by tracking the contour lines of the x- and y- coordinates of £

8.2 MATERIALS AND METHODS

8.2.1 STUDY SUBJECTS AND 3D ULTRASOUND IMAGE ACQUISITION

Here we consider ten subjects with carotid atherosclerosis recruited from The Premature
Atherosclerosis Clinic and the Stroke Prevention Clinic at the London Health Science Center,
London, Canada and the Stroke Prevention & Atherosclerosis Research Center, Robarts Research
Institute, London, Canada. 20 carotid images were obtained by scanning each subject at baseline
and two weeks later using a 3D ultrasound carotid imaging system*°. All ten patients have stable
atherosclerosis, and no physiological changes were expected to increase the inter-scan variability of
VWT.

3D carotid surfaces were reconstructed from the ultrasound images as described in Refs.>">'%*5
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Figure 8.4: The 20 3D carotid surfaces color-coded and superimposed by their VWT distributions (with
both front and back views). The models at baseline and follow-up are labeled as 77 and T respectively.

(Figure 8.3). The VWT was measured by computing the distance between each pair of
corresponding points (i.e. the length of blue lines in Figure 8.3), and the 3D VWT map was
constructed by superimposing the pointwise VWT on the MAB surface. The 20 resulting carotid

surfaces are shown in Figure 8.4.

8.2.2 2D ARC-LENGTH SCALING (ALS) MAP

Here we briefly describe the ALS method ** for flattening a carotid surface onto a 2D non-convex
L-shaped domain. The input surface is first translated and rotated such that the bifurcation (BF) is
at the origin, the longitudinal direction of the common carotid artery (CCA) is aligned with the
z-axis, and the internal carotid artery (ICA) is located at the upper half space. The surface is then cut
by two planes (Figure 8.1a) and unfolded to a 2D L-shaped non-convex domain (Figure 8.1b), with
the ICA and the CCA respectively mapped to the top part and the bottom part of the planar

domain. The method then rescales the arc-length of transverse contours segmented from 2D
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transverse images resliced from 3D ultrasound images, so that the vertices on the input surface
correspond to uniformly spaced grid points on the L-shaped domain. This results in a standardized
2D template for analyzing the carotid surfaces.

However, the ALS method does not minimize any local geometric distortion produced by the
flattening process. In the following section, we further deform the ALS mapping result and generate

an area-preserving 2D carotid template.

8.2.3 AREA-PRESERVING MAP VIA DENSITY-EQUALIZING REFERENCE MAP (DERM)

Denote the 2D L-shaped domain obtained using the ALS method by D. Here, we deform D based
on a prescribed density distribution. Denote the density at the location x on D at time 7 as p(X, 7).
We set p(x, 0) to be the area of each face of the carotid surface in order to achieve area-preservation
under a diffusion-based deformation.

The following more general version of the diffusion process with diffusivity x is considered:

?ﬁ = V- (xVp) = xAp+ V- Vp. (8.3)

Note that here we introduce an additional differentiable function x for handling the non-convex
corner of the L-shaped domain. More specifically, to regularize the deformation around the non-

convex corner, we slow down the diffusion process there by setting x to be such that ¥ < 1 around
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the non-convex corner and x ~ 1 at the regions distant from it:

1 _ &= +0-9)?
k(x,y) =1— 1_ﬁ e Va , (8.4)

where (p, ¢) are the coordinates of the bifurcation point on D and 4 is the total area of D. Note that
Vi« in Eq. (8.3) can be expressed explicitly by taking partial derivatives on Eq. (8.4). On the
boundary edges of D, we enforce the no-flux boundary conditionn - Vp = 0 where n is the unit
outward normal. This ensures that the diffusion occurs within D, and hence the subsequent
diffusion-based deformation will not change the overall shape of it. The velocity field (7.4) is then
given by

v(x,t) = ——=. (8.5)

Now, we treat D as a solid body and consider its deformation under the velocity field v(x, 7)
induced by the density gradient. The reference map £(x, #) can be obtained by solving the advection
equation
o¢
@(X, t) +v(x,z) - V&x,1) = 0. (8.6)
Ast — 00, p(X, t) is equalized over D and the associated reference map field &(Xgp,1, 00) is a density-
equalizing reference map. Denote the VWT at the location X on the initial 2D ALS map as 7(X).

The VWT on the final area-preserving map is given by 7(£(X, 00)). In other words, we can obtain

the final area-preserving map Xy, by considering the contour lines of constant x- and y- coordinates

of &
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In the discrete case, suppose we use a rectangular grid consisting of A4 x N grid points with grid
spacing / in both the x- and y-directions to represent D with the top left empty space of it included
(which is just for simplicity of the discretization and can be omitted in the computations). Let the
coordinates of the grid points be (75, jb), where 0 < 7 < M —1and 0 < ;7 < N — 1. We discretize
the diffusion equation (8.3), the velocity field (8.5) and the advection equation (8.6) and solve them
iteratively. Denote the step size as o¢ and the density at the grid point (zb, jb) at the n-th step as JOZ?J.
We can similarly write the discrete version of v and X.

Note that x and its derivatives xy, x, can be easily discretized. The diffusion equation (8.3) is

solved by the implicit Euler method, with the central difference scheme used for approximating Vp:

n n—1 n n n n n
Pij ~Piy FPit1y +ﬁz‘—1J‘ +J°z‘,j+1 +/’id‘—1 - 4J°i,j
ot — b?

Pir1y ~Fie1y Priv1 T Pii1

(8.7)

To enforce the the no-flux boundary condition for the diffusion equation, we use the following
ghost node approach. At the four rectangular boundaries

(x,7) = (0,7b), (M —1)b,jb), (ih,0), (0, (N —1)h) where 0 <7 < M —1and0 <; < N—1,
and the two L-shaped boundaries (x, y) = (p,jb), (ib,q) where 0 < ih < pand 0 < jh < g, we
suitably replace the terms P P P Pl OD the right hand side in Eq. (8.7) by P such
that there is no density flux orthogonal to the boundaries, thereby maintaining the L-shape
throughout the density-equalization process. By representing p” as a column vector of size

MN x 1,we can simplify Eq. (8.7) as p” = A~'p" !, where 4 isan MN x MN matrix with
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((M = Dh, (N - 1)h)

m
Pij+1
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Figure 8.5: The discretization of the proposed DERM method. On a grid with spacing , we update the density
/J:?J. at the grid point (l’]g’]'h) at the 7-th step by solving the diffusion equation (8.7)./);“1]. depends onjo;?ilz],,_pzjil at the

neighboring grid points at the 7-th step,ﬂzj_1 at (ih, jb) atthe (n — 1)-th step, as well as x and its derivatives at (¢4, /).

The density flux causes a velocity field (8.8), and we update the reference map ffj using the advection equation (8.9).

A = I—0t(kA + K, + K,), K, + K, being the matrix representation of Vx - V. A is a sparse matrix
independent of 7, and hence it is needed to be computed only once throughout the iterations.

As for the discretization of the velocity field (8.5 ), we again use the central difference scheme:

. Pir1j ~FPie1y
(Vo = iy 2hpr;
’ (8.8)
Jozj—',-l .plj 1
n o __
(kg =~ 2he;

We solve the advection equation (8.6) for updating £(x, #) using the following upwind method:

g 5” g 5"_ :
—(vo)i, = W = (V)= - if (vi)7; > 0and (v,)7; > 0,
: 5._5” il
g -2 1 - —(Vx)f‘,j% — (V)1 T if (v)7; < 0and (v,)7; > 0, .
ot N n 571758?:111‘ n 9&71111757171 ; n n (59)
_(Vx)z',jﬁ - (Vy)z‘,j% 1f(Vx)z'Z/ > 0and (V}/)i,j <0,
f?‘d.——f?fﬂ ;nfd "f?fl )
—(vi)i; e — (v y)zj% if (vx)7; < 0and (V}/)Zj <0.

Figure 8.5 shows a schematic for the discretization. By solving (8.7), (8.8), (8.9) iteratively until
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the density is fully equalized on D, we obtain the desired density-equalizing reference map £ Denote
£ = (§,%). We obtain the associated area-preserving map X, as follows. For every grid point
(¢b,jh) on the ALS map, where7 = 0,1,--- ,M —land;j = 0,1,--- , N — 1, the corresponding
point of it in Xgy, is given by the intersection of the contour lines § = 7hand & = jb. In the
discrete case, each contour line is represented as a piecewise linear curve. Therefore, to check
whether a line segment { (%, %), (& *1, #+1)} of a £-contour intersects with another line segment
{(&,95), (55T} of a £ -contour, we solve the following system of four linear equations in

four unknowns x*, y*, #1, £2:

(x/f+1 _lee)tl =x" —x/f,
k *
O = =y =k,

(B =) =2,

(8.10)

0L = =y
The two line segments intersect at (x*, y*) if and only if 51,2, € [0, 1]. Hence, we can obtain the
area-preserving map X, by tracking the intersection points of all pairwise contour lines.

To choose a suitable step size ¢, note that the implicit Euler scheme for the diffusion equation
is unconditionally stable. By performing a dimensional analysis on Eq. (7.3), we can see that an
appropriate dimension of 3¢ is (length)?. Also, note that d¢ should be independent of the magnitude

of p as the density diffusion process is invariant under uniform rescaling of p. Therefore, we set

_ std(p)
o= mean(p)

X ac, (8.11)
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sd(e”)

where ¢ is a dimensionless constant. The convergence criterion is set to be ——- ) < ¢, wheree

is the error threshold. Algorithm 8.1 summarizes the proposed density-equalizing reference map

(DERM) method for computing area-preserving carotid mapping.

Algorithm 8.1: Area-preserving carotid mapping via density-equalizing reference map
(DERM)
Input: A carotid surface S, the error threshold ¢, the maximum number of iterations

nmax-

Output: An area-preserving map Xy, on the 2D non-convex L-shaped domain.

1 Use the ALS method** to compute an initial map /: § — R? onto the 2D L-shaped
domain;
> Set the density p as the area of every face of S;

3 Setdt = ;zig(;) X ac;

4 Compute 4 = I — 0t(xA + K, + K,);

s Setn = 0and p’ = p;

6 repeat

7 Solve p" ™ = 477

8 Compute the velocity field v using Eq. (8.8);
9 Update the reference map £ using Eq. (8.9);
1o Updaten = n + 1;

sd(p")
mean(p”)
12 Obtain the desired map Xg,, by tracking the intersections of the contour lines & = 7b

and &, = jhof £ = (§,&,) foralli, j;

11 until <ceorn 2 npu

Recall that the method by Gastner and Newman (GN)* iteratively solves Eq. (7.3) with uniform
diffusivity, obtains the velocity field (7.4), and tracks the displacement of every tracer particle by
Eq. (7.5). To track the displacement of a tracer, an interpolation of the velocity field at its current
location is required at every iteration. By contrast, DERM keeps track of the reference map field by

Eq. (8.6), which is fully Eulerian. Therefore, no interpolation is needed throughout the iterations.
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Figure 8.6: Carotid flattening by ALS*? and our area-preserving DERM method. a-c, The results for three
subjects. The carotid models constructed from the baseline and follow-up 3D ultrasound images for each subject are
denoted by 77 and 7T, respectively. The left column shows the 3D carotid surfaces color-coded and superimposed by
their vessel-wall-plus-plaque thickness (VWT) distributions (with both front and back views). The middle column shows
the 2D maps generated by ALS and DERM. The right column shows the area distortion of the flattening maps.

8.3 RESULTS

The ALS mapping method is implemented in C++. The proposed DERM method is also

implemented in C++ with OpenMP parallelization (with grid spacing » = 1, maximum number of
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Figure 8.7: Histograms of the logged area distortion ratio d. d is evaluated on the 150360 quadrilateral faces
(7518 per carotid model X 20 carotid models) in the ALS maps and the area-preserving DERM maps. a, The histogram for

ALS. b, The histogram for DERM.

iterations 7y, = S00, step size constant ¢ = 0.01, and error threshold ¢ = 10~2). The biconjugate
gradient stabilized method (B1CGSTAB) in the C++ library Eigen is used for solving the sparse linear
systems. The experiments are performed on a PC with an Intel i7-6700K quad-core processor and
16 GB R AM. For each arterial model, the ALS initialization takes 1 second and DERM takes
8 seconds.

Figure 8.6 (left) shows the front and back views of six carotid surfaces at baseline and follow-
up from three subjects. The mapping results by ALS and DERM for three subjects are shown in
Figure 8.6 (middle). To quantitatively assess the area distortion of the two methods, we compute the
following logged area distortion ratio associated with each quadrilateral face of the models:

Area of the face on the flattened map

d=1 . 8.
8¢ Arca of the face on the 3D carotid model (8.12)

Note that d represents enlargement and shrinkage in an equal magnitude. For a perfectly

area-preserving map, we haved = 0 for all faces. A positive d at a local region indicates that the
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Figure 8.8: Average absolute area distortion mean(|d|) for ALS and DERM for the 20 carotid surfaces.
For each subject, the carotid models at baseline and follow-up are denoted by 77 and 75 respectively.

region is enlarged on the 2D domain, while a negative d indicates that the region is shrunken. The
symmetric property of d makes it easier to interpret than the linear ratio. Figure 8.6 (right) shows
the 2D maps with d color-coded and superimposed, from which it can be observed that the area
distortion exhibited in the ALS initialization is eftectively corrected by DERM. Figure 8.7 shows the
histograms of d for ALS and DERM evaluated on the 150360 quadrilateral elements of the 20
carotid surfaces (7518 per surface X 20 surfaces). The histogram for DERM is much more
concentrated atd = 0, which indicates that the area distortion associated with DERM is smaller
than that associated with ALS. We further calculate the average value of |d| over the 2D maps
produced by ALS and DERM for each of the 20 carotid models (Figure 8.8). The result shows that
DERM reduces the average absolute area distortion by over 80%, and a two-sample #test shows that
the reduction is significant (P < 10~°).

Besides minimizing the area distortion, DERM is advantageous in preventing overlaps in the 2D
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Figure 8.9: Comparison between the flattening maps produced by four methods. a, We consider zooming
into the non-convex corner of the 2D L-shaped domain. b-e, The mapping results at that region produced by ALS 2 GN>?,
SPDEM (Chapter 7) and DERM. Our method is advantageous in adjusting for the geometric variability of the carotid
surfaces without causing any overlaps.

non-convex domain. Here, we compare DERM with ALS, GN and SPDEM. For both GN and
SPDEM, we set the density to be the face area for computing area-preserving flattening maps and
enforce the no-flux boundary condition for preserving the L-shape throughout the iterations. By
zooming into the non-convex corner of the 2D maps produced by the four methods (Figure 8.9),
we observe that GN and SPDEM result in overlaps around the non-convex corner due to the large
density gradient between the ICA and CCA, while DERM is free of overlaps because of the use of a
non-constant diftusion coeflicient x in the diffusion process. We quantify the total overlapping area
Aoverlap for each of the 20 carotid models and for each method by taking the difference between the
sum of the area of all quadrilateral faces in the 2D map and the area enclosed by the boundary of the
L-shaped domain. The mean and the standard deviation of 4 oyerlap for GN and SPDEM are 2.1 +
1.3 and 2.8 & 2.1 mm? respectively. By contrast, Aoverlap = 0 for DERM for all surfaces.

The average area distortion mean(||) and the total overlapping area Aqyerlap for the four
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Carotid model ALS* GN s> SPDEM (Ch. 7) DERM
mean(ldD onerlap mean(ldD onerlap mean(ldl) onerlap mean(ldl) oner]ap
Subject 1 Time 1 0.29 o 0.15 4.27 0.04 8.88 0.04 o
Subject 1 Time 2 0.18 o 0.07 1.97 0.03 4.57 0.03 o
Subject 2 Time 1 0.16 o 0.06 2.47 0.02 3.55 0.02 o
Subject 2 Time 2 0.19 o 0.06 2.43 0.03 3.03 0.02 o
Subject 3 Time 1 0.19 o 0.08 2.87 0.02 4.52 0.02 o
Subject 3 Time 2 0.13 o 0.05 2.18 0.02 3.09 0.02 o
Subject 4 Time 1 0.17 o 0.05 1.29 0.02 1.65 0.03 o
Subject 4 Time 2 0.24 o 0.09 3.01 0.03 4.82 0.04 o
Subject 5 Time 1 0.08 o 0.02 0.36 0.01 0.49 0.02 o
Subject 5 Time 2 0.19 o 0.05 1.89 0.02 2.61 0.03 o
Subject 6 Time 1 0.23 o 0.11 4.58 0.03 5.40 0.03 o
Subject 6 Time 2 0.21 o 0.08 3.19 0.03 3.39 0.03 o
Subject 7 Time 1 0.15 o 0.03 0.83 0.02 1.21 0.02 o
Subject 7 Time 2 o.12 o 0.04 1.49 0.01 2.31 0.02 o
Subject 8 Time 1 0.18 o 0.05 1.65 0.02 1.57 0.03 o
Subject 8 Time 2 0.17 o 0.06 2.97 0.02 1.57 0.02 o
Subject 9 Time 1 0.15 o 0.02 o 0.02 0.22 0.02 o
Subject 9 Time 2 0.14 o 0.02 o 0.02 o 0.02 o
Subject 10 Time 1 0.20 o 0.04 1.87 0.02 1.01 0.03 o
Subject 10 Time 2 0.22 o 0.08 3.32 0.03 1.91 0.03 o

Table 8.1: The area distortion mean(|d|) and the total overlapping area Aoyertap for ALS*3, GN 52,

SPDEM (Chapter 7), and the proposed DERM method for the 20 carotid models.

methods (ALS, GN, SPDEM, and DERM) are recorded in Table 8.1. It can be observed that
DERM achieves a reduction in area distortion comparable to SPDEM and outperforms it in terms
of the bijectivity.

After assessing the area-preservation and bijectivity of DERM, we consider the improvement of
the accuracy of the plaque size representation in the 2D carotid template produced by DERM. As
the latest European Society of Hypertension (ESH) and European Society of Cardiology (ESC)
hypertension guidelines®? lists intima-media thickness (IMT) > 0.9 mm as a risk factor of
asymptomatic organ damage, we define the plaque regions in a carotid model to be the regions with
VWT > 0.9 mm (see Figure 8.10 for the binary 2D VWT maps constructed for two carotid models
by ALS and DERM, with white and black representing the plaque regions and the background

respectively).
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Figure 8.10: Binary 2D VWT maps by ALS and DERM, with white representing the plaque regions (i.e.
with VWT > 0.9 mm) and black otherwise. Each column corresponds to one carotid model.

To evaluate the accuracy of the plaque area change for each patient from baseline to follow-up
exhibited in the 2D VWT maps produced by ALS and DERM, we consider the plaque area change

error associated with the two methods:

eapa, = APA; — APA,p, (8.13)

where7 € {ALS, DERM} represents the mapping method (ALS or DERM), APA; is plaque area
change estimated using method 7 and APA,p is the plaque area change obtained on the 3D VWT
map. Computing the plaque area change errors for all 10 subjects, we have |eapa,, | = 13.8 £
24.9 mm? and |eapapgry | = 7-2 £ 12.9 mm?. The mean error is reduced by 48% using DERM,
and the difference is statistically significant (2 = 0.01). This suggests that DERM is advantageous in
reducing the error in plaque size representation.

Note that the location and the size of plaques are the two major determinants of stroke
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risk 1°®126:145 " A previous study has shown that ALS provides good anatomic correspondence for
carotid arteries "*. While we have shown that DERM significantly reduces the error in plaque region
area estimation when compared to ALS, one may ask whether the anatomic correspondence would
be negatively affected under DERM. As no physiological change is expected between the two
scanning sessions for the ten subjects, we assess the anatomic correspondence in terms of the
inter-scan variability by computing AVWT between the 2D maps of the two sessions. More
specifically, we compare AVWTs associated with ALS and DERM based on the following three
parameters:

* Percentage of vertices with AVWT < 0.35 mm for each subject.

* Visual comparison between the mean AVWT maps generated by ALS and DERM for the

ten subjects.

* The subject-based mean |[AVWT| for each of the ten subjects.

Here, we choose 0.35 mm as the threshold because the axial, lateral and elevational resolutions of
the 3D imaging system are 0.6, 0.8 and 2 mm repsectively at the depth of 40 mm, which is
approximately the depth of the carotid artery '#. The average in-plane resolution is 0.7 mm, and half
of which (0.35 mm) can be considered as a small change. For ALS the percentage is 80.7% =+ 6.7%,
and for DERM the percentage is 80.9% =+ 6.4%. A two-sample paired #-test shows no significant
difference between them (P = 0.85). Figure 8.11 shows the mean AVWT maps generated by ALS
and DERM for the ten subjects, from which it can be observed that the two AVWT patterns are
similar. As for the subject-based mean [AVWT/, the two-sample paired z-test shows no significant

difference between the results produced by ALS and DERM (£ = 0.80). The above experiments
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Figure 8.11: The average AVW'T map between the baseline and the follow-up generated by ALS and
DERM for the ten subjects.

suggest that DERM effectively improves the accuracy of plaque area change estimation without
compromising inter-scan reproducibility, thereby facilitating the collective analysis of the location

and the size of plaques on the standardized 2D carotid template.

8.4 DiscussioN

One limitation of GN and SPDEM is the lack of bijectivity for non-convex 2D domains. Our
proposed DERM method overcomes this limitation by allowing for a non-constant diffusivity that
effectively regularizes the density gradient around the non-convex corner of the 2D L-shaped
domain. Another limitation of the two methods is that they track the deformation of each node on
the domain individually without considering the neighboring spatial information, and hence a large
deformation will result in an unsmooth mapping. By integrating the reference map technique
(RMT) with the density-equalization process, DERM is capable of generating a smooth and
area-preserving flattening map.

Although the carotid surfaces in our experiments are generated from 3D carotid ultrasound

images, the proposed DERM method is equally applicable to any imaging modality that allows the
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segmentation of the LIB and MAB. Also, while we have primarily focused on carotid mapping, the
proposed DERM method can be applied for flattening other organs such as brain ventricles and
kidneys** for facilitating the interpretation of spatial distributions on the surfaces. The resulting

standardized 2D template will allow for unbiased quantitative comparisons of the organs.
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One should always generalize.

Carl Jacobi

Volumetric density-equalizing map

AFTER STUDYING THE USE OF THE DENSITY-EQUALIZING MAPS FOR MAPPING SURFACES ONTO
2D DOMAINS, it is natural to ask if it is possible to extend density-equalizing maps to 3D. In this
chapter, we develop a novel method called the volumetric density-equalizing reference map

(VDERM) that produces volumetric deformations based on a prescribed density distribution. Our
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method combines and extends the method by Gastner and Newman (GN)>* and the reference map
technique (RMT)7""4"" "4, The proposed method can be utilized for volumetric data visualization,
shape modeling, adaptive remeshing etc. To the best of our knowledge, this is the first work on
higher dimensional density-equalizing maps. Furthermore, all prior works on density-equalizing
maps only focused on the use of them for producing a single final output. With the observation that
density-equalizing map is a continuous deformation, we introduce the first use of density-equalizing

map for time-dependent applications such as shape morphing.

9.1 FORMULATION

9.1.1 ITERATIVE SCHEME FOR VOLUMETRIC DEFORMATION

Let D C R3 be a rectangular solid domain discretized asa L x M x N 3D grid with grid spacing
b in all the x-, y- and z-directions. The coordinates of the grid points are given by (zb, jb, kb), where
0</<L-1,0<;<M-1,0<k<N-1L LetJo0 :Joo(x) be a prescribed density defined
in D, with discretization given by Jo?% = P (ih, jb, kb) for all 7, j, k. Denote p(x, t) as the density at
time ¢, with p(x, 0) = p°(x). The diffusion of p follows from the diffusion equation

)
é(x, 1) = Ap(x, 1). (9.1)
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Figure 9.1: A illustration of density diffusion and reference map update in our proposed volumetric
density-equalizing reference map method. a, The diffusion of p is computed iteratively by solving Eq. (9.2.) based
on the six neighboring nodes. b, The density gradient is then used for updating £via Eq. (9.7).

We discretize Eq. (9.1) using the backward Euler scheme (Figure 9.1):

n—1
‘P?J"k _‘pl'ka 1 n n n n n n n
5t 2 <loz‘+lzj,k F Pk TP T Pijrk T Pijprr TPk T 6p; ,j,/e) ) (9-2)
where 0¢ is the timestep to be determined, and 7 = /¢ is the iteration number. We further simplify
Eq. (9.2) as

P=(I—h)"p (9.3)

where A is an LMN x LMN seven-point Laplacian stencil. Here, 7 — d¢A is a sparse symmetric
positive definite matrix independent of 7. Hence, after setting up the matrix 4 = I — JrA based
on the backward Euler scheme (9.2) and preconditioning the system once, we can efficiently solve

Eq. (9.3) at each iteration with both the matrix 4 and the preconditioner reused.
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The density gradient of p induces a velocity field

(9-4)

which can be discretized using the following central difference scheme:

n _n
Pivijke —Pi-1jk
7
Zbﬁz'y‘,k
n n
Pijrre ~Pij-1k

n _
(V)i === W (9.5)

(Vx)?y',k =

)

n n
Pije+1 ~ Pijr—1
n
Zbﬁz'y‘,k

(VZ)?J',k =

We then track the deformation of D under the velocity field using the reference map £(x, z),

discretized as &, = £((7h, jb, kb), ndt). £ can be computed by solving the advection equation

of

Ve(x, )
Ot (x,2) -

P(x,2)

: v‘f(xa t) =0, (96)

which we discretize using the second-order upwind scheme:

g8
1yfs 2y _
o d. + dy +d,, (9-7)

where

(Vx)zj',/edx_ if (vi)7;

ik > 0

(Ve)ijuds (Vi) <0,
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()l ), > 0,
(V}’)zj,kd; if (vy)7; <0,

(o)l de i (va)!, >0,
d, = & ot (9.10)

(Vo)fpds i (Va)7;, <0,

withd, ,d},d; ,d},d; ,d; being the three-point finite-difference discretization of the spatial

YTy
derivative V&
—1 —1
d- = T it o
X 2}7 )
-1 -1 —1
d+ _ _5+2,J',/e+4§?+11/,k_3§zj,/€
x - 2h ’
- 1
PR o VL
y - )
. (9.11)
4t = Y e AT AT
y - 2h ’
1
i = 34 /c e
z - )
-1 -1 —
d+ _ 75:’,]',k+2+4f;‘1/',/€+173f?,j,k
z 2h :

The above discretization worksfor2 <7 < L —1,2 <; < M —1,2 < k < N — 1. For

i =1,L — 2, we use the two-point difference

—1 -1
d— — fZ/'vk _54;*1%/6
X h )
gl e (9.12)
d-l,— — i+1,7,k  %ik
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Similarly, forj = 1, M — 2, we use

d— _ t;/:_gz;fll,k
T (9:13)
9-13
LA
-+ _ CijHlk i,k
dy = 5 ,
and for k£ = 1, N — 2 we use
d* _ 5:1716175:2;161—1
z - b )
P (9.14)
dJr — ikt %6k .

To choose a suitable timestep d¢, we note that Eq. (9.2) is unconditionally stable. A necessary
condition for the convergence of the second-order upwind scheme (9.7) is given by the Courant-
Friedrichs-Lewy (CFL) condition*’, which states that the numerical domain of dependence must
include the physical domain of dependence. Consider multiplying oz on both sides in Eq. (9.7) and

making & & s the subject. The remaining terms involving f:‘;kl are

PN N o R el L
Lk 2h 2h 2h

=& (1—o 3’<Vx):;’/e‘ + 3‘("})?%’@‘ + 3‘(‘,2)?7]3/6
ik 2h 2} 2 .

H 3 n n n
Here we have the absolute signs because for a negative (vx)l.% k(vy)i% 4> OF (Vz)i% 4> the

(9.15)

corresponding dj, d;’, or d;' involves a negative sign in the coefficient of ff J_’kl . Now, as the full

numerical domain of dependence of the scheme must contain the physical domain of dependence,
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the coefficient of f:‘j_kl must satisfy the following condition for all , 7, &, n:

3|(vi)Zial BI(v)E Rl 3I(ve)2 4l
0<1—20 th b YRl <1 16
= < A = (9:16)

which implies that

(9.17)

3[(vi)7ial BI(V)E Rl 3I(va)2 4l
5t Sk Tk ) <1,
2 2 2

As diffusion smooths out sharp gradients in density, the magnitude of the velocity field decreases as

7 increases and we have

ot < 2h (9.18)

= Bman (V)L 1)+ (V)2

Therefore, we can take the upper bound and set the timestep J¢ as follows:

2h
= S man ()0 1) V0D
SENINEVFFY ik 2lijk

(9.19)

Ast — 00, the density p(x, #) is equalized over the entire domain D, and hence the associated
reference map &;,,1(x) = &(x, 00) is a density-equalizing reference map. In the discrete case, we use

the following convergence criterion:

H/On _ﬁn_IHZ
< .
mean(p”~1) © (9:20)

where ¢ is the error threshold. The proposed algorithm is summarized in Algorithm 9.1.
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Algorithm 9.1: Volumetric density-equalizing reference map (VDERM)

Input: A volumetric domain D C R3 of size L X M x N, a prescribed density ﬁo, the
error threshold ¢, and the maximum number of iterations 7,,.
Output: A density-equalizing reference map &, ;-

Set 9t = 25 ;
' (AL CA LM CALE

Compute 4 = I — JtA;

»

3 Setn = 0;

4+ repeat

s Update n = n + 1;

6 Solve p* = A7 p" ! as discussed in Eq. (9.3);

7 Compute the velocity field v” using Eq. (9.5);
8 Update the reference map * using Eq. (9.7);

n__ n—1
o until WT,k <ceorn 2 Nmas

1o Obtain fﬁnal = fﬂ;

The volumetric density-equalizing reference map provides us with the information of the
diffusion-based volumetric deformation. In particular, if we denote &,.,; = (&,£,,4;), one can
obtain the forward mapping of the grid points of D by tracking the intersections of the contour
planes & = ih, &, = jhand & = kb. More specifically, after computing the density-equalizing
reference map, we build an interpolant for each of the x-, y-, and z-coordinates of the undeformed
grid using (£, &, &), where the £ values are the abscissa and the x; y, z values are the ordinate. In

other words, we have three interpolant functions /i (x, y, 2), L2 (x, y, 2), I3(x, y, 2) where

L(&(ih, jb, kb), &, (ih, jb, kb), & (ih, jb, kb)) = ib,

L(&(ih,jb, kb), & (i, jb, kb), & (b, jb, kb)) = jb, (9.21)

I3 (&b, jb, kb), & (ih, jb, kb), &(ib, jb, kb)) = kb,
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for all 7, , k. The three interpolants allow us to compute a forward deformation of the given domain.
In practice, we we compute a Delaunay triangulation of the given points and then perform a linear
interpolation in each tetrahedral element. It is noteworthy that throughout the density-equalizing
iterations it suffices to work on a grid, and the interpolation is only needed once at the end. On the
contrary, a direct extension of the original density-equalizing map °* would involve interpolating the
velocity field at every iteration. Therefore, the use of the reference map technique here is

advantageous.

9.1.2 BOUNDARY CONDITIONS

Note that boundary conditions are needed for solving Eq. (9.2). Three possible boundary

conditions are discussed below.

NO-FLUX BOUNDARY CONDITION

To keep the boundary shape of the 3D domain unchanged, we enforce the following no-flux
boundary condition

n-Vp=0 (9.22)

at the boundaries 0D, where n is the outward unit normal. This condition ensures that the density
gradient at the boundaries is zero in the normal direction, thereby keeping all the boundary planes
to be planar throughout the density-equalization process.

In the discrete case, the above no-flux boundary condition can be incorporated in the diffusion
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Figure 9.2: Three possible choices of boundary conditions. a, The no-flux boundary condition can be imposed by
placing a ghost node (red) at the neighborhood of each boundary node on 0.D, with the density being the same as that

at the boundary node. No density flux will be orthogonal to the boundary faces. b, The free boundary condition can be
imposed by creating a larger solid domain B and setting the density at l~) \ D (the “sea”) to be the average value of p. This
ensures that the original boundary 0D can deform freely.

equation (9.2) using the following ghost node approach. At the six boundary faces 7 = 0,7 = L — 1,
j=0j=M-1k=0k=N-—1, wereplace the termSJO;lflJ,k’ﬁ;;ly',k’ﬂ;}fl,/e’ﬂzy'LJ'Jrl,/e’ﬂ;lJ,/efl’
Pl respectively on the right hand side of Eq. (9.2) by Piike Then, there will be no density flux
orthogonal to the six boundary faces (Figure 9.2a).

As a consequence, for each boundary node, one of its coordinates will remain unchanged under
the update by the advection equation (9.7), while the other coordinates can vary. In other words, the
boundary nodes can freely slide along the six boundary faces to achieve density equalization while

preserving the rectangular shape of D throughout the iterations.
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FREE BOUNDARY CONDITION

Another possibility is to let the domain deform freely. To achieve this, the “sea” approach in GN**
can be used. We put the entire solid domain D with the prescribed density p° inside a larger
rectangular solid domain D and define the density 2° on Dby
0

P on D,

mean(p’) onD\ D.
We can then impose the no-flux boundary condition on D and compute the density-equalizing
map on D (Figure 9.2b). As there is no boundary condition imposed on D, D can deform freely
under the deformation of D without any components of the reference map £on 0D being fixed. As

a remark, setting 5° = mean(°) at the “sea” D \ D prevents D from expanding infinitely.

MIXED BOUNDARY CONDITION

One may also combine different boundary conditions to achieve other deformations. For instance,
to keep the top and the bottom boundary planes planar while allowing the other boundary planes
to deform freely, one can place the L x A x N domain in a larger LxMxN domain, where
L > Land M > M. Then, one can use the above-mentioned “sea” approach to enforce the no-
flux boundary condition on the z-boundary planes and the free boundary condition on the x- and

y-boundary planes. This results in the desired effect.
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9.2 EXPERIMENTAL RESULTS

For the implementation of the proposed iterative scheme, we use C++ with OpenMP parallelization
(with grid size » = 1, maximum number of iterations 7m,x = 10000, and error threshold ¢ = 1072).
The sparse linear systems are solved using the conjugate gradient method (ConjugateGradient)in
the C++ library Eigen, with the default preconditioner DiagonalPreconditioner used. The
experiments are performed on a PC with an Intel i7-6700K quad-core processor and 16 GB RAM.
The statistics and the visualization are done using MATLAB. In the following, we assess the
performance of the proposed method.

Consider a cubic solid D of grid size L X M x N = 32 x 32 x 32 with a smooth input density

47t 27j 27k
07+ - _ . T]
P (7,7, k) =10 4+ 9.99sin (L — 1) cos (M— 1> cos (N— 1> , (9.24)

withz,7,k = 0,1,...,31, as shown in Figure 9.3a. We compute the volumetric density-equalizing
maps with the no-flux boundary condition (Figure 9.3b), the free boundary condition (Figure 9.3¢),
and the mixed-boundary condition (Figure 9.3d). For the experiment with the free boundary
condition imposed, we place the solid in a circumscribed 48 x 48 x 48 cubic grid. For the
experiment with the mixed boundary condition imposed, we also make use of a circumscribed

48 x 48 x 32 rectangular grid. It can be observed from Figure 9.3b that different regions are
enlarged or shrunk according to the prescribed density. Also, the boundary shape of the deformed

domain can be eftectively controlled by imposing difterent boundary conditions. For instance, for
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Figure 9.3: An example of volumetric density-equalizing maps ona 32 x 32 x 32 grid, with the
prescribed density being a periodic function with multiple peaks. The mapping results are visualized by
the deformed contour planes in the X, 95 and z-directions. a, The initial state. b, The forward mapping with the no-flux
boundary condition and the histogram of the volume-density mismatch error ¢. ¢, The forward mapping with the free
boundary condition and the histogram of ¢. d, The forward mapping with the mixed boundary condition where only the
top and bottom boundary planes are enforced to be planar, and the histogram of e. All of them are color-coded with the
prescribed density. For better visualization, only some of the contour planes are drawn.

the map with the free boundary condition (Figure 9.3¢), the domain deforms freely while not
maintaining a cubic shape. For the map with the mixed boundary condition (Figure 9.3d), the top
and the bottom of the solid domain remain to be planar, while the other sides of the boundary are

deformed freely.
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We assess the accuracy of the proposed method by defining the volume-density mismatch error as

log det(F(x))/ [[[p det(F(x))

) =log = 5z ) [Tl (5:25)

where F(x) = (%if) B is the Jacobian. The integrals [[ [, det(F(x)) and [[ [}, o° are computed
using the trapezoidal method. In other words, ¢ is the logged ratio of the volumetric scale factor to
the prescribed density with a normalization, and it is equal to o if and only if the final volume
distribution matches the prescribed density distribution perfectly. It can be observed from
Figure 9.3 that the histograms of ¢ highly concentrate at 0 regardless of the choice of the boundary
conditions. This shows that our method is accurate.

Figure 9.4a shows another example of a 3D grid of size L X M X N = 32 x 32 x 32, with the

prescribed density being discontinuous:

1 if7 <1Lfa,j< M2k <N,
3 ifi>1Lf i< M2k < N2,
S ifi < Lfa,j> Mk < N,
. 7 ifi>1L)2j> Mh k< N,
£t k) = (9-26)
9 ifi < 1Lfaj <M/ k>N,

11 if7 > L2, j < Mf2 k> Nf2,

13 if7 < Lf2,j> M[2 k> Nf2,

15 ifi> L/ ;> M)a k> Nfa.
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Figure 9.4: Another example of volumetric density-equalizing maps on a 32 x 32 x 32 grid, with eight
different density values defined on eight regions. See Figure 9.3 for the description of a-d.

As shown in Figure 9.4, our VDERM method effectively deforms difterent regions according to the
input density, with different boundary conditions satisfied. While the input density is
discontinuous, the histograms of ¢ show that the error is still concentrated at 0. This shows that our
method is capable of handling a large wide of input densities.

To further examine the performance of VDERM, we consider different resolutions L X L X L
with the density given by Eq. (9.24). An additional diffusion coefficient x = L/64 is introduced on

the right-hand side of Eq. (9.1) and Eq. (9.4) to rescale the rate of diffusion proportionally, thereby
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No. of vertices (L x L x L) | Time (s) | # iterations | mean(|e|)

8§ X 8§ Xx 8§ =512 0.02 105 0.8868

16 X 16 x 16 = 4096 0.20 323 0.4468
24 X 24 X 24 = 13824 1.14 504 0.2774
32 X 32 x 32 = 32768 4.43 637 0.1972
40 X 40 X 40 = 64000 12.13 727 0.1577
48 X 48 x 48 = 110592 26.65 784 0.1356
56 X 56 X 56 = 175616 59.59 816 0.1262
64 X 64 X 64 = 262144 I11.53 856 0.1241

Table 9.1: The performance of the proposed method. The time required for the iterative scheme (with four
OpenMP threads used), the number of iterations needed, and the average of the absolute volume-density mismatch
error mean(|¢|) are recorded.

ensuring the fairness of the comparison. It can be observed from Table 9.1 that mean(|e|) decreases
linearly with L, which suggests that the accuracy of the density-equalizing reference map increases

with the resolution.

9.3 APPLICATIONS

9.3.1 VOLUMETRIC DATA VISUALIZATION

The 2D density-equalizing maps have been widely applied to sociological and biological data
visualization on planar maps. Analogously, we can apply our VDERM method to data visualization

in 3D, as illustrated by two following medical and sociological examples.

MEDICAL DATA VISUALIZATION

In neurology, the cortical homunculus (also known as the cortex man) is a distorted 3D human

model with different parts of the body enlarged or shunk for representing the proportion of the
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human brain used for processing sensory or motor functions there”" (Figure 9.5). Our VDERM

method is naturally applicable for generating the cortical homunculus. To visualize the spatial acuity

for pain in human body, we consider deforming a 3D human body model with the prescribed

density being the reciprocal of the 2-point discrimination (2PD) threshold of each part of the

body“° divided by the volume of the part:

(1/0.6) /Volume of the fingers
(1/1-1)/Volume of the hand palms
(1/2-7)/Volume of the dorsum of the hands
(1/2-1)/Volume of the arms
(1/1-2)/V01ume of the head

£ = (1/1-4)/V01ume of the shoulders
(1/2'5)/Volume of the lower back
(1/2'9)/Volume of the thighs
(1/3~3)/Volume of the calves
(1/3~5)/Volume of the dorsum of the foot

(1/1-3)/V01ume of the foot soles

for the fingers,

for the palms,

for the dorsum of the hands,

for the arms,

for the head,

for the shoulders, (9.27)
for the lower back,

for the thighs,

for the calves,

for the dorsum of the foot,

for the foot soles.

For the remaining parts of the human body, we define the density using the closest parts with data

available. The region surrounding the human body is set as the “sea” for achieving a free-boundary

deformation.
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Figure 9.5: Sensory and motor homunculus sculptures at the Museum of Natural History, London, UK.
The image is adopted online*under the CC BY-SA 3.0 license.

Figure 9.6 shows the deformed model proposed by VDERM, from which it can be observed that
the parts with the highest spatial acuity (the hands) are significantly enlarged. The deformed model
is highly similar to the cortical homunculus sculptures in Figure 9.5, except for the regions without

available acuity data (such as the mouth/lips).

SOCIOLOGICAL DATA VISUALIZATION

It is also possible to visualize sociological data using VDERM. It is well known that the ticket price
of different flight classes can be significantly different due to the different levels of service and
accommodation. Here, we apply DERM for visualizing the ticket price of a round-trip direct flight
between New York (JFK) and Hong Kong (HKG) (departure date: March 1, 2020; returning date:
March 8, 2020; data retrieved on December 3, 2019 from the American Airlines website'). Both the

departure flight and the returning flight are operated on a Boeing 777-300ER aircraft, which

*https://en.wikipedia.org/wiki/Cortical_homunculus
Thttps://www.aa.com
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Figure 9.6: A cortical homunculus produced by our VDERM method. a, The input 3D human body model. b,
The deformed model highlighting the spatial acuity of pain in human body %,

typically consists of 6 first class seats, 53 business class seats, 34 premium economy class seats and

182 economy class seats*. The ticket prices are $16039, $6922, $2542, and $941 for a first, business,

premium economy, and economy class seat respectively.

We first apply VDERM to deform a 3D model of the Boeing 777-300ER aircraft (Figure 9.7a)

with the density being the ticket price divided by the volume of each cabin:

16039/ Volume of the first class cabin
6922/ Volume of the business class cabin

2542/ Volume of the premium economy class cabin

941/ Volume of the economy class cabin

ihttps t//www.seatguru.com
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for the first class cabin,
for the business class cabin,
for the premium economy class cabin,

for the economy class cabin.

(9-28)


https://www.seatguru.com

a Original aircraft

Deformed aircraft based on ticket price of each class

c
Deformed aircraft based on total revenue of each class

Figure 9.7: Visualizing the economics of airline class using VDERM. a, A 3D model of the Boeing 777-300ER
aircraft. b, The deformed model produced by VDERM based on the ticket price for different travel classes. ¢, The
deformed aircraft produced by VDERM based on the total revenue for each travel class.

Again, we set the surrounding region as the “sea” to allow for a free-boundary deformation. Here
we remark that the dividing the ticket price by the volume of the cabin ensures that the ticket price
ratio equals the ratio of the volume of the entire cabins. The resulting deformed model (Figure 9.7b)

shows a significant enlargement at the front of the aircraft and a shrinkage at the end of it, reflecting
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the large ticket price difference between the seats at the first class and the economy class.
We then estimate the total revenue of each ticket class by multiplying the ticket price by the
number of seats, which gives $96234, $366866, $86428, and $171262 for the four classes

respectively. We apply VDERM with the following density:

96234/V01ume of the first class cabin for the first class cabin,

366866/Volume of the business class cabin for the business class cabin,
= (9.29)

86428/V01ume of the premium economy class cabin for the premium economy class cabin,

171‘262/Volume of the economy class cabin for the economy class cabin.

From the resulting deformed aircraft shown in Figure 9.7¢, it can be observed that the economy class
cabin is slightly shrunk, while the business class cabin is slightly expanded. Overall, the deformed
aircraft is not significantly different from the input model, which suggests that the total revenue of

each travel class is in fact similar.

9.3.2 DEFORMATION-BASED SHAPE MODELING

The proposed VDERM method can also be utilized for deformation-based shape modeling. More
specifically, to deform a mesh in R?, we can prescribe a density function on an underlying 3D grid
and compute the volumetric density-equalizing map of it. The deformation of the grid then induces
a deformation of the mesh.

We first consider deforming a dragon model adapted from The Stanford 3D Scanning
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Figure 9.8: Deforming a dragon model using VDERM. a, The input dragon model. b, The deformed dragon with
its head enlarged.

Repository® (Figure 9.8) to enlarge its head while maintaining the shape of its body. We use an
underlying 3D grid of size 32 x 32 x 32 and the following density:
o 10 around the head of the dragon,
r= (9.30)
1 elsewhere.
It can be observed that the head of the dragon is magnified under the deformation, and the body

shape is basically unchanged.

§h'c‘l:p ://graphics.stanford.edu/data/3Dscanrep/
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Figure 9.9: Deforming a lion vase model using VDERM. a, The input lion vase. b, The deformed lion vase with the
facial expression changed.

We now consider another experiment on deforming a lion vase model adapted from the 3D
Segmentation Benchmark? (Figure 9.9). This time, we change the facial expression of the lion by
setting a smaller density value around its forehead and a larger density value around its chin. It can
be observed that facial expression of the lion is effectively changed under the deformation. The two

examples demonstrate the effectiveness of VDERM for deformation-based shape modeling.

9.3.3 SHAPE MORPHING

As our proposed method deforms the underlying grid continuously using an iterative scheme, we
can utilize the intermediate states of the deformation for producing a continuous change of the 3D
model. As shown in Figure 9.10, our method is capable of changing changing the facial expression

of the lion vase using a diffusion-based deformation. This shows that our method is advantageous

Ihttp://193.48.251.101/3dsegbenchmark/bust.html
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Initial n=10 n=20 n=30 Final

Figure 9.10: A continuous change in the facial expression produced using DERM.

for object morphing.

9.3.4 ADAPTIVE REMESHING

Remeshing aims at improving the discretization of meshes. Suppose we would like to construct a
tetrahedral mesh for a genus-o closed surface, with the mesh density of certain prescribed regions
desired to be higher. By applying VDERM on the input domain D with a larger density p° at those
regions, we obtain a volumetric density-equalizing reference map &, ,;. We can then construct a
uniform tetrahedral mesh in the deformed domain using prior methods such as DistMesh "%, and
map the uniform mesh back to D using &, ;. This results in more tetrahedral elements being
mapped to the regions with a larger prescribed density ¢, and hence we obtain a tetrahedral mesh
with the desired mesh density.

Figure 9.11a shows an example with the central part of the solid desired to be with a higher mesh

density. The remeshed solid is achieved by applying our VDERM method with the following
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density:

o 10 around the center of the domain,
P = (9:31)

1 elsewhere.

Figure 9.11b shows another example, with the input density given by Eq. (9.26). Our approach
produces eight different tetrahedral mesh densities at the eight corners. Figure 9.11¢ shows a more
complicated example, with the mesh density inside a 7 shape being much higher than the other
regions of the domain. This is achieved by applying VDERM with ¢° being 10 inside the 7 shape
and 1 otherwise. The three examples demonstrate the effectiveness of our method for adaptive
remeshing.

We remark that DistMesh **5 also allows for adaptive remeshing, by specifying an edge length
function expression that yields the target adaptive resolution. However, to achieve complicated
effects such as the example shown in Figure 9.1 1¢, it may be very difficult to specify an appropriate
edge length function expression. By contrast, our approach combining both DistMesh and
VDERM allows us to precisely control element volume by exactly specifying the volumes of mesh
elements, so that such effects can be easily achieved. This shows the advantage of our approach for

generating meshes with added precision in certain regions for numerical computations.

9.4 DiscussioN

Our proposed VDERM method is the first work on the density-equalizing maps in 3D for
volumetric deformations. We have demonstrated the effectiveness of the method for volumetric data

visualization, deformation-based shape modeling and remeshing. The intermediate process can also
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Figure 9.11: Remeshing results produced by our VDERM method. Each example is displayed in a cross-
sectional view, with the surface colored in blue and the interior tetrahedral mesh elements colored in purple. a, A cube
with a higher tetrahedral mesh density at the center. b, A cube with eight different tetrahedral mesh densities at eight
regions. ¢, A cube with a higher tetrahedral mesh density inside a 77 shape.

be utilized for object morphing. Overall, our novel 3D generalization opens up a wide range of new

applications of the density-equalizing maps.
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Conclusion

In this thesis, we have developed mathematical approaches for advancing our understanding of
mechanical metamaterials, biological shapes, and computational mappings using discrete and
continuous geometry.

By proposing novel frameworks for the design of kirigami structures with prescribed geometric,

topological and physical properties, we have provided a class of new ways to connect shape and
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function of mechanical metamaterials. A natural next step is to explore how we can couple our
kirigami design frameworks with their counterparts in origami*>'” to obtain more flexible
deployable structures. We have taken the first step of connecting the two design problems locally at
the growth front of origami and kirigami structures in our additive design approaches, and it will be
interesting to see how our methods can complement other recent approaches in the design and
tabrication of physical kirigami 108,11 L,7,134,150 and origami 140, 116,47,143, 121,115 gepyctures. Also, with

102,:65,79 another natural future direction is to

the increasing interest in 3D metamaterial design
extend our design frameworks for creating deployable structures using 3D solids instead of flat, thin
sheets. While we have extended our hierarchical construction method for the topological control of
3D structural assemblies, the extension of the geometric design approaches has yet to be established.

We have also studied growth and form using advanced computational tools involving geometry
and mechanics. These tools allow us to analyze a wide range of complex biological shapes in nature,
with varying size, dimension, and curvature. While our quasi-conformal mapping method enables
us to assess the change in the local size, eccentricity and orientation in a mapping between two
shapes, it is limited by the boundary correspondence prescribed. A natural next step is to explore
how we can remove the requirement and produce quasi-conformal flows that simulate and explain
the growth of shapes, possibly by solving some time-dependent PDEs related to the Beltrami

87,88 or some variants of the Ricci Aow 7748,

equation such as the Beltrami holomorphic flow
Another possible future direction is to combine our geometric tools with topological methods and

assess the interplay between gene and shape.

Using the physical principle of diffusion, we have developed several mapping algorithms for two-
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and three-dimensional objects with applications to computer graphics, geometry processing, as well
as sociological and medical data visualization. While our methods effectively produce deformations
related to the area or volume of the mesh elements, they do not allow for extra eftects such as
rotation, shear or landmark-matching. A possible future direction is to extend our methods by

09,8681 \which would

incorporating other deformation energies®? or landmark-matching approaches
allow us to create a wider range of shape deformations.

More broadly, the three major fields covered in this thesis are closely related: Nature inspires
engineering; engineering realizes computation; and computation quantifies nature. Our works fuse

ideas and tools from all these fields, yielding important insight into interdisciplinary mathematical

sciences.
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