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Abstract

In this thesis, we develop mathematical tools to tackle important problems in metamaterials,

morphometrics, morphogenesis, and mappings. Specifically, we propose novel methods with a solid

theoretical foundation to control the geometry and topology of kirigami and origami metamaterials.

We also analyze the growth and form of biological shapes including insect wing and ferret brain

using computational geometry. We further propose physically-based methods for producing

mappings and deformations of two- and three-dimensional objects and explore their applications to

geometry processing, medical imaging and data visualization. Altogether, this thesis brings in new

mathematical insights and techniques for advancing our understanding of the physical world, the

biological world, and the digital world.
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0
Introduction

Mathematics is essential in the physical world, the biological world, and the digital world. In the

physical world, the physical properties of architected materials are closely related to their geometry

and topology. In the biological world, biological structures are distinguished by differences in their

geometry which may either be the cause or the consequence (or both) of their different functional

properties. In the digital world, mappings and deformations of two and three dimensional objects
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are computed using geometric methods. In this thesis, we develop newmathematical models and

tools to advance our understanding of these three worlds. More specifically, we use discrete and

continuous geometry to tackle various important problems for interdisciplinary applications in

science and engineering. While geometry has been studied since antiquity, it still underpins many

questions in modern research areas including materials science, quantitative biology, medical

imaging and geometry processing.

The first part of this thesis, consisting of Chapter 1–4, focuses on mathematical metamaterial

design. Kirigami, the creative art of paper cutting originated in Japan, has recently emerged as

prototypical mechanical metamaterials. Kirigami tessellations are deployable structures formed by

introducing architected cuts on a flat, thin sheet of material. There has been a vast number of

studies on their geometry58,56,57,110,138, topology16,83 and mechanics134,108,109,98 and their use as

materials with a range of unusual properties such as topological insulators72,133 and auxetic

structures137,53. Moreover, kirigami has been applied for the design of graphene structures8,

nanocomposites119, shape-morphing and super-stretchable sheets75,95,117,66,76,100,15, inflatable

structures77, soft robots111 etc. However, almost without exception, the above works have focused

on the forward problem of quantifying the geometry and kinematics of deployment of a prescribed

kirigami pattern, where the prescribed pattern is usually motivated by ancient art or nature and

designed manually. From a mathematical and technological perspective, a more interesting question

is the inverse problem of designing new kirigami patterns that achieve some prescribed

shape-morphing properties. More specifically, can one design the geometry of the cuts in a given

planar kirigami structure, so that it can be deployed into a prescribed final shape in two or three
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dimensions? In Chapter 1, we solve this problem by developing a novel inverse design framework

for generalizing the cut geometry of kirigami metamaterials. In particular, we identify geometric

constraints in lengths and angles for designing deployable structures with highly nontrivial shape

changes upon deployment, such as a square-to-circle transformation.

In recent years, several studies have focused on the design of reconfigurable metamaterials that

admit multiple folded states120,134,46,102,36 inspired by origami, the art of paper folding. On the

contrary, the study of such reconfigurable structures for kirigami has only been limited to a few

periodic patterns129,50. In Chapter 2, we extend our inverse design framework by further

identifying the geometric constraints that guarantee the reconfigurability and rigid-deployability of

generalized kirigami patterns. This allows us to create a wide range of kirigami structures that admit

multiple contracted states.

To complement our study on the geometric control of kirigami in the first two chapters, we

explore the topological control of kirigami in Chapter 3. Instead of changing the cut geometry, i.e.

the edge lengths and angles of the tiles in a kirigami structure to achieve different shapes, we change

the cut topology of the kirigami structure by connecting or disconnecting neighboring tiles, thereby

controlling the rigidity and connectivity of the structure. In particular, we propose a hierarchical

construction approach for creating minimum rigidifying and connecting link patterns of arbitrary

size using smaller patterns.

While the above-mentioned methods are capable of controlling the geometry and topology of

kirigami, the global design problems involve all nodes in a structure and hence are time-consuming.

In Chapter 4, we devise a method for the additive design of origami and kirigami as an alternative

3



approach for metamaterial design. Instead of solving the design problems over the entire structure,

we identify the constraints in lengths and angles at the growth front of any structure, thereby

reducing the global problems to much simpler local design problems.

The second part of this thesis, consisting of Chapter 5–6, focuses on morphometrics and

morphogenesis. A common approach to compare two two-dimensional (2D) shapes is to make use

of mathematical transformations139. The Procrustes superimposition55 uses rigid transformations

up to rescaling to match prescribed landmarks but does not allow for exact landmark or boundary

matching. The Thin Plate Spline (TPS) method11 uses non-rigid landmark-based transformations

to match two shapes but again does not allow for exact boundary matching or guarantee bijectivity.

While the Large Deformation Diffeomorphic Method (LDDMM)29,69,5 allows for the

computation of diffeomorphic mappings of shapes with landmarks, the computation is expensive

and thus hinders the pairwise comparison between a large set of shapes. More recently, conformal

maps, which are angle-preserving maps, have been used for describing planar biological shape

changes113,1,94. However, the rigidity of these maps imposed by the Riemann mapping theorem

limits their flexibility in matching prescribed landmarks exactly. To get around with this problem,

recent attempts87,68 have considered the use of quasi-conformal maps, a generalization of conformal

maps which allow certain degree of angular distortions with the presence of landmark constraints.

In Chapter 5, we develop a landmark-matching mapping method for insect wing morphometry

using quasi-conformal theory, which enables the pairwise comparison between insect wing shapes

and provides a natural way for shape classification. We deploy the method for analyzing the

phenotypic variation ofDrosophilawings and the temporal development of Lepidoptera wings,
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thereby yielding new insights into the growth and form of planar biological shapes.

After studying 2D biological shapes, we consider three-dimensional (3D) biological shapes. A

prime example of 3D biological shapes are the highly convoluted brains. In Chapter 6, we study the

gyrification of ferret brains. In recent decades, ferret brains have been widely studied for

understanding neurodevelopmental processes122,123,99,4,49. By extending recent approaches based

on the theory of differential growth135,136, we model the growth of ferret brains using a physical gel

model and a numerical simulation model. We compare the results with real ferret brain data to

understand the process of brain development.

The third part of this thesis, consisting of Chapter 7–9, focuses on mathematical mapping

techniques with applications to geometry processing and medical imaging. The problem of

generating maps has been extensively studied by scientists and cartographers for centuries. A

classical problem in map-making is about flattening the globe onto a plane. The well-known

Mercator projection creates a planar map of the globe in which angles and small objects are

well-preserved while the area near the poles is largely distorted. In recent decades, there has been a

vast number of works on cartogram generation38,41,73,52,74. In particular, Gastner and Newman52

proposed a method for producing cartograms based on density diffusion. The method deforms a

given map according to certain prescribed data defined on each part of the map by solving the

diffusion equation. This approach has been widely used for visualizing sociological and biological

data such as the global population, income and age-of-death39, the disease evolution for

epidemics30, the amphibian species diversity144, the democracies and autocracies of different

countries54, the race/ethnicity distribution of Twitter users93, the rate of obesity142, and the world
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citation network103. Based on the above concept of diffusion-based map-making, we develop a

novel method for producing surface density-equalizing maps in Chapter 7. More specifically, our

method flattens any simply-connected open surfaces onto a free- or fixed-boundary domain on the

plane, with different parts magnified or shrunk according to the prescribed density. The

applications of the method to data visualization and surface remeshing are explored.

Noticing the importance of a flattened representation of organs in medical analysis, we develop

an area-preserving mapping method for carotid artery visualization in Chapter 8. Carotid artery

is highly related to stroke, a leading cause of death and disability worldwide that causes an annual

mortality of nearly 133,000 in United States6 and over 1.6 million in China82. For facilitating the

visualization and analysis of carotid plaques, various methods for flattening carotid artery surfaces

onto the plane have been developed3,152,21,23,24,18,25. We develop a carotid flattening method that

minimizes the area distortion and achieves a standardized boundary shape by extending the density-

equalizing map and combining it with the reference map technique71,141,114. Our method allows

for an accurate 2D representation of 3D carotid data, thereby aiding the prognosis and diagnosis of

carotid diseases.

After extending the concept of density-equalizing maps for surface mapping, we further

generalize it to 3D in Chapter 9. We develop a novel method for computing volumetric

density-equalizing maps in a solid domain. The proposed method can be effectively applied to

volumetric data visualization, deformation-based shape modeling, object morphing and adaptive

remeshing.
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Amathematician, like a painter or poet, is a maker of

patterns.

G. H. Hardy

1
Inverse kirigami design

Traditional kirigami structures consist of a periodic tiling of some prescribed

deployable unit cell patterns. It is well known that the only regular polygons that can tile

the plane are triangle, square and hexagon. All of them can used for the design of kirigami

metamaterials:

• As shown in Figure 1.1a, the triangle kirigami tessellation (also known as the kagome
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a

b

c

d

e

Figure 1.1: Five example deployable patterns. a, A triangle kirigami tessellation. b, A quad kirigami tessellation.

c, A hexagon kirigami tessellation. d,e, Twomultiple-cell Islamic kirigami tessellations. Corresponding edge pairs are
connected by red dotted lines, and angles involved in the angle constraints are highlighted in blue.

pattern) is a floppy auxetic pattern with six triangles surrounding a single node.

• As shown in Figure 1.1b, the quad kirigami tessellation is a four-fold auxetic pattern with
four squares surrounding a single node.

• As shown in Figure 1.1c, the hexagon kirigami tessellation is a six-fold auxetic pattern with
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Figure 1.2:A generalized quad kirigami pattern. By changing the geometry of the four quads, it can be observed
that the deployed shape (right) is no longer a simple enlarged version of the original kirigami structure (left).

six hexagons surrounding a hexagonal hole.

Besides the above simple tilings, there are many other more complex planar motifs59,110 that can

be the basis for a deployable kirigami pattern (e.g. the multiple-cell kirigami patterns derived from

Islamic decorative tilings110 as shown in Figure 1.1d,e).

Note that the repetitive kirigami patterns introduced above are limited in the sense that their

deployed shape is fixed. No matter how we duplicate the unit cell along the vertical and the

horizontal directions, the resulting deployable structures can only undergo a simple shape change

upon deployment. For instance, the standard quad kirigami patterns can only be transformed from

a closed and compact contracted rectangular shape into an enlarged rectangular shape with holes. In

many situations, it is more desirable to have a kirigami structure that deploys and conforms to a

prescribed shape.

As shown in Figure 1.2, if we change the geometry of the four tiles of a 2 × 2 quad kirigami
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a b

Standard

kirigami pattern

Generalized

kirigami pattern

Contraction

Initial guess

Pattern space Deployed space

Invalid deployed shape

Constrained 

optimization

Valid deployed shape

a b

θ1 θ2

θ3θ4

a b
θ1 θ2

θ4 θ3

Figure 1.3: Inverse design framework. a, A quad kirigami tessellation and its deployed configuration, with a zoom-

in of the unit cell of the quad kirigami tessellation and its deployed configuration. Every pair of corresponding edges

are connected by a red dotted line. The set of angles corresponding to the same node are highlighted in blue. In a valid

deployed configuration of a generalized kirigami pattern, every pair of edges should be equal in length, i.e. a = b, and
every set of corresponding angles should add up to 2π, i.e. θ1 + θ2 + θ3 + θ4 = 2π. b, Our inverse design framework.
Given a standard kirigami tessellation, we start with an initial guess in the deployed space. Here the initial guess shown

is a conformal map from the standard deployed configuration to the disk. The initial guess is usually invalid, violating

either the edge length constraint or the angle constraint, or not exactly matching the target boundary shape. We then

solve a constrained optimization problem tomorph the initial guess until it becomes a valid deployed shape, satisfying all

constraints. Finally, we use a simple contraction procedure to obtain the generalized kirigami pattern.

pattern, the deployed shape will no longer be simply an enlarged version of the original pattern. This

motivates us to consider the problem of inverse kirigami design: Given a standard kirigami pattern

and a prescribed target boundary shape (such as a circle), how can we change the geometry of the

tiles (i.e. the cut geometry) so that the generalized kirigami pattern deploys and conforms to the

prescribed shape?
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To answer this question, we propose an inverse design framework that involves solving a

constrained optimization problem as outlined in Figure 1.3. More specifically, denote the fully

deployed configuration of the given standard kirigami pattern byD, and the target boundary shape

together with its interior by S . Our goal is to suitably deformD so that its boundary matches ∂S ,

while ensuring that the deformed shape is a valid kirigami structure.

1.1 Generalized kirigami tessellations

In the following subsections, we introduce the constraints and then describe the procedure for

solving the inverse design problem for generalized kirigami tessellations.

1.1.1 Contractibility constraints

To search for potentially admissible patterns in the deployed space, we first need to determine the

constraints that allow a generalized deployed shape to be validly contracted (undeployed) into a

closed and compact state. In particular, there should not be any mismatch or overlap in lengths and

angles when the configuration is contracted. To achieve this, the following two contractibility

constraints should be satisfied in the deployed space:

• Edge length constraints: For every pair of edges with edge lengths a, b in the deployed space
that correspond to the same cut (e.g. the edge pairs connected by red dotted lines in
Figure 1.1), we must have

a2 − b2 = 0. (1.1)

• Angle sum constraints: Every set of angles in the deployed space that correspond to an
interior node (e.g. the angles in the deployed space highlighted in blue in Figure 1.1) must

12



Figure 1.4:An illustration of the diagonal consistency constraints for the generalized hexagon kirigami
patterns. Each row shows how the length of a diagonal of the hexagonal hole can be calculated in twoways using the

angles and edge lengths in the deployed space.

sum to 2π: ∑
i
θi = 2π. (1.2)

In particular, for the quad kirigami pattern, the four pairs of edges at each unit cell in the

deployed space (as shown in Figure 1.3) should be equal in length, and the four angles θ1, θ2, θ3, θ4

at each unit cell in the deployed space should satisfy θ1 + θ2 + θ3 + θ4 = 2π.
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Amodified version of the angle sum constraints for patterns with holes

Note that the angle sum constraints above are only applicable to kirigami base patterns that do not

contain any hole in the contracted state. For those base patterns with holes (such as the hexagon

tiling in Figure 1.1c), the angle sum constraints should be replaced by the following constraints:

• One-ring angle sum constraints: For the hexagon kirigami pattern, every hexagonal hole is
surrounded by six hexagons. As the angle sum of an n-sided polygon is (n − 2)π, the six
angles of the hexagonal hole should add up to 4π. Note that the explementary angles of them
can be expressed using the twelve angles in the hexagonal one-ring highlighted in blue in
Figure 1.1c. Therefore, in a valid deployed configuration of a generalized hexagon kirigami
pattern, we should have

6× 2π−
12∑
i=1

θi = 4π⇔
12∑
i=1

θi = 8π, (1.3)

where θi are the angles in the deployed space highlighted in blue in Figure 1.1c.

• Diagonal consistency constraints: The ring angle sum constraints are insufficient to guarantee
that the one-ring hexagonal faces form a closed loop, as there is no control on the edge
lengths of the hexagonal holes. To ensure the closed loop condition, we impose the diagonal
consistency constraints which involve the edge lengths of the hexagonal holes. As depicted in
Figure 1.4, at every hole enclosed by six hexagonal faces, we should have

d21 − d22 = 0,
d23 − d24 = 0,
d25 − d26 = 0,

(1.4)

where each pair {d1, d2}, {d3, d4}, {d5, d6} refers to a diagonal of the hole calculated in two
ways. More explicitly, we have

d2i =
(
ai − bi sin νi

sin(μi+νi)

)2
+
(
ci −

ci sin μi
sin(μi+νi)

)2
+ 2

(
ai − bi sin νi

sin(μi+νi)

)(
ci −

ci sin μi
sin(μi+νi)

)
cos(μi + νi), (1.5)

where
μi = 2π− γi − ηi (1.6)
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and
νi = 2π− φi − ψi. (1.7)

Note that all the edge lengths ai, bi, ci and the angles γi, ηi,φi,ψi are information in the
deployed space. Therefore, the diagonal consistency constraints can be imposed in our
constrained optimization problem, which takes place in the deployed space.

While the above constraints are discussed in the setting of hexagon kirigami patterns, similar

constraints can be established for other kirigami patterns with holes.

1.1.2 Boundary shape matching constraints

Suppose we are given a target deployed shape in terms of a 2D curve ∂S (such as the circle as shown

in Figure 1.3), we need to enforce boundary shape matching constraints on the boundary of the

deployed configuration so that all boundary nodes lie on the target shape. More explicitly, for every

boundary node pi, we should have

∥pi − p̃i∥2 = 0, (1.8)

where p̃i is the projection of pi onto ∂S and ∥ · ∥ is the Euclidean 2-norm.

1.1.3 Non-overlap constraints

Note that the contractibility constraints ensure the consistency between corresponding angles and

edges but do not prevent the existence of overlapping tiles in the configuration. To avoid such

overlaps, we enforce the following non-overlapping constraints at every angle between two adjacent

tiles:

⟨(b− a)× (c− a), n⃗⟩ ≥ 0. (1.9)
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Here, a and b are two nodes of a tile, a and c are two nodes of another tile, (b,a, c) form a positive

(right-hand ordered) angle between the two faces, and n⃗ = (0, 0, 1) is the outward unit normal.

1.1.4 Additional constraints for further controlling the geometry of

the generalized kirigami patterns

The three sets of constraints described above are necessary for guaranteeing an admissible deployed

configuration. Optionally, one can enforce additional constraints to further control the geometry

of the generalized kirigami pattern. Below, we propose constraints for achieving different effects for

each kirigami base pattern.

Rectangular and square boundary constraints for generalized quad

kirigami patterns

For instance, for the generalized quad kirigami patterns, we can enforce the boundary of its

contracted configuration to be a rectangle or even a square. This is achieved by imposing the

following additional constraints.

• Boundary angle constraints: For every set of two angles ζ1, ζ2 in the deployed configuration
that correspond to the same boundary node in the contracted configuration, we enforce

ζ1 + ζ2 = π. (1.10)

For the four angles ξ1, ξ2, ξ3, ξ4 in the deployed configuration that correspond to four corner
angles in the contracted pattern, we enforce

ξ1 = ξ2 = ξ3 = ξ4 =
π
2
. (1.11)
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The above constraints ensure that the deployed configuration corresponds to a rectangular
generalized kirigami pattern. To further enforce the shape to be a square, the following
constraints on boundary length are needed.

• Equal boundary length constraint: We further enforce the width and the height of the
generalized kirigami pattern to be equal in length, thereby producing a square. Denote the
edges in the deployed configuration that correspond to the top boundary edges in the
contracted pattern by e⃗Ti , i = 1, . . . ,m, and those corresponding to the right boundary
edges by e⃗Rj , j = 1, . . . , n. We enforce the following constraint:

∥⃗eT1∥+ ∥⃗eT2∥+ · · ·+ ∥⃗eTm∥ = ∥⃗eR1∥+ ∥⃗eR2∥+ · · ·+ ∥⃗eRn∥. (1.12)

Regular boundary angle sum constraints for generalized kagome

kirigami patterns

For the generalized kagome kirigami patterns, we can enforce them to be a rectangle up to a small

zig-zag effect on the left and the right boundaries, at which the angle sum is a multiple of π/3. This

is achieved by impose the following regular boundary angle sum constraints. For each boundary

node, we denote the number of faces adjacent to it by k and the angles by ζ1, ζ2, . . . , ζk. We enforce

k∑
i=1

ζi =
kπ
3
. (1.13)

More specifically, the angle sum at the top and the bottom boundary nodes is enforced to be 3π
3 = π

and hence the top and the bottom boundaries will form two straight lines. The angle sum at the left

and the right boundary nodes will be either 2π/3 or 4π/3, the angle sum at the two corner nodes
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on the left will be 2π/3, and that at the two corner nodes on the right will be π/3. As a result, the

pattern will be a rectangle up to a small zig-zag effect on the two sides.

Regular angle constraints for generalized hexagon kirigami patterns

For the generalized hexagon kirigami patterns, we can enforce the following regular angle

constraints to further regularize the geometry. For every angle θ in the deployed configuration, we

enforce

θ =
2π
3
. (1.14)

Here, the choice of 2π/3 is compatible with the one-ring angle sum constraints (1.3). Therefore,

even with such restrictions on all angles, we are still able to obtain valid generalized hexagon kirigami

patterns that deploy and conform to a large variety of shapes.

Regular shape constraints for generalized multiple-cell Islamic kirigami

patterns

For the generalized multiple-cell Islamic kirigami patterns, we can regularize their geometry by

imposing a few extra constraints.

• Non-self-intersecting constraints: When compared to the triangle, quad and hexagon
patterns, the two multiple-cell Islamic patterns involve polygonal tiles which are thinner and
with a larger number of sides. To avoid those tiles from having self-intersection, we can
enforce inequality constraints analogous to the non-overlap constraints at the angles of those
tiles. More specifically, we form vectors using the nodes of those tiles and enforce that the
cross product of the vectors is consistent with the face normal.

• Regular angle constraints:
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– Note that the four-fold Islamic pattern (Figure 1.1d) contains four sharp corners for
each I-shaped face. To avoid the corners from being squeezed in the generalized
patterns, we can enforce the following constraint for each of such angles θ:

θ =
π
4
. (1.15)

– Note that for the hex Islamic pattern (Figure 1.1e), each of the longer sides consists of
three nodes with angle sum being π. To preserve this property in the generalized
patterns, we can simply enforce an additional angle sum constraint for those nodes.
Also, we can regularize the boundary of the generalized hex Islamic patterns by
enforcing that all the boundary angles remain unchanged in the generalized deployed
configuration.

1.1.5 Constrained optimization

Any configuration that satisfies all the above constraints will yield a valid generalized kirigami

pattern that conforms to the prescribed shape upon deployment. To search for such configurations,

we set up a constrained optimization problem in the deployed space with the above conditions being

the constraints.

Let x1,x2, . . . ,xN be the coordinates of the nodes in the deployed space. To produce a smooth

generalized kirigami tessellation without large gradients in the shapes of the tiles, we consider

minimizing the following objective function:

1
M

M∑
i=1

∑
j
(αij − βij)

2 +
∑
k

(aik − bik)
2

 (1.16)
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where αij , βij are a pair of corresponding angles in two adjacent cells and aik , bik are corresponding

edge lengths in two adjacent cells, andM is the total number of pairs of adjacent cells, subject to the

constraints (1.1),(1.2),(1.8),(1.9), as well as any extra constraints described above if applicable. We

remark that the above objective function can be replaced with

The above objective function and all constraints can be expressed solely in terms of the 2N

coordinates of the nodes x1 = (x1, y1),x2 = (x2, y2), . . . ,xN = (xN, yN). Furthermore, all the

derivatives of them have a simple closed form in terms of the 2N variables x1, . . . , xN, y1, . . . , yN.

Therefore, we can easily solve the constrained optimization problem usingMATLAB’s built-in

optimization routine fmincon, with the derivatives of the objective function and all constraints

supplied through the SpecifyObjectiveGradient and SpecifyConstraintGradient options.

1.1.6 Initial guess in the deployed space

To solve the constrained optimization problem, an initial guess of the configuration in the deployed

space is needed. Theoretically, any approximation that preserves the number and connectedness of

the input regular kirigami pattern can be used as an initial guess. Four choices that we have

considered are listed below:

• Standard deployed configuration: The standard fully deployed configurationD of a
regular kirigami pattern can be used as an initial guess. Note that it clearly satisfies the
contractibility constraints, while the boundary shape is usually very different from the target
boundary curve ∂S .

• Standard deployed configuration with rescaling: One can also rescaleD according to ∂S
to reduce the boundary mismatch error and use it as an initial guess. Note that the rescaled
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configuration again satisfies the contractibility constraints, but the boundary mismatch error
is nonzero in general.

• Conformal map: Another initial guess can be obtained by applying the Schwarz-Christoffel
map to produce a non-rigid transformation ofD that matches its boundary matches ∂S . As
conformal maps preserve angles, the violation in the angle sum constraints is usually small.
However, the edge length constraints are usually violated as lengths are not preserved under
conformal maps.

• Quasi-conformal map: We combine recent conformal parameterization methods26,92 to
obtain a conformal map g : S → R from S to a rectangleR, and then apply a rescaling
transformation h : R → D to achieve the height and width ofD. The composition map
f = (h ◦ g)−1 : D → S is then a quasi-conformal map with f|∂D = ∂S . Because of the
rescaling transformation, all angles will be distorted uniformly under the mapping and hence
the angles sum constraints are violated. Nevertheless, the distortion in edge lengths is smaller
than that of the conformal map in general.

1.1.7 Contraction

After solving the above constrained optimization problem, we obtain a valid deployed configuration

of a generalized kirigami structure that yields a closed and compact tiling. To obtain the contracted

configuration of the structure, note that there is a 1-1 correspondence between every tile in the

pattern space and every tile in the deployed space, with each pair of corresponding tiles being

identical up to translation and rotation. Therefore, we can start with one tile in the optimization

result, and subsequently rotate and translate the adjacent tiles one by one to close the gaps between

every pair of corresponding edges. After all tiles are rotated and translated, we obtain the contracted

configuration of the generalized kirigami structure.
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Figure 1.5:Generalized quad kirigami patterns. a, Examples of generalized quad kirigami patterns produced by
ourmethod for getting a circle or an egg shape from a square upon deployment. b, Examples of generalized kirigami
patterns produced by ourmethod for achieving target shapes withmixed curvature or zero curvature. Ourmethod is

capable of producing generalized kirigami patterns that matches boundary curves with different curvature properties

when deployed. c, Examples of circling the square with different resolutions (number of tiles = 8× 8, 16× 16, 20× 20),
together with a log-log plot of the boundary layer area against the number of tiles and the least-square regression line.

1.2 Results

Using our proposed framework, we can obtain a large variety of generalized kirigami patterns. We

start by showcasing various novel generalized quad kirigami patterns obtained by our method. As
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b

a

Figure 1.6:More generalized quad kirigami patterns. a, Generalized quad kirigami patterns with different target
boundary shapes. b, Patterns obtained by imposing the additional rectangular or square boundary constraints described
in Section 1.1.4.

shown in Figure 1.5a, by changing the cut geometry of a simple periodic quad kirigami tiling on a

square, we can deploy a square and turn it into a circle or an egg. We can also use our method to

create generalized kirigami patterns that approximate boundary shapes with mixed or zero curvature

when deployed (Figure 1.5b). Note that the accuracy of the approximation can be improved by

using a large number of smaller tiles, with an accuracy-effort trade-off in matching a prescribed

shape. Figure 1.5c shows several generalized kirigami patterns of circling the square with different

resolutions. It can be observed qualitatively that the boundary of the deployed pattern gets closer to

a perfect circle as the number of tiles increases. To quantitatively assess the accuracy, we define the

boundary layer area (denoted by A) of a generalized kirigami pattern by the total area of the gaps

between the target boundary shape and the boundary of the deployed configuration. From the

log-log plot, we observe that the boundary layer area decreases as the number of tiles (denoted by n2)
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Figure 1.7:Generalized quad kirigami patterns obtained with different initial guesses. Each row shows

the initial guess, the constrained optimization result, and the generalized kirigami pattern obtained. Left: The standard

deployed configuration of the quad kirigami pattern. Middle left: The standard deployed configuration with rescaling.

Middle right: Conformal map. Right: Quasi-conformal map.

increases, following the relation A ∝ (n2)−1/2 = n−1. This can be explained by approximating

every boundary gap by a triangle and measuring the change in the average triangle base length l̃ and

average triangle height h̃ for different resolutions. Note that l̃ ∝ n−1 and h̃ ∝ n−1, and hence the

average area of the triangles ã ∝ n−2. As the total number of boundary gap triangles is

approximately 4n, we have A ≈ 4nã ∝ n−1. More generalized quad kirigami patterns can be found

in Figure 1.6.

It is noteworthy that the constrained optimization problem is in general underconstrained, and

hence different initial guesses can possibly lead to different valid deployed configurations. Figure 1.7
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Figure 1.8:Generalized kagome kirigami patterns. a, Generalized kagome kirigami patterns with different target
boundary shapes and different resolutions obtained by our approach. b, Patterns obtained by imposing the additional
regular boundary angle sum constraints described in Section 1.1.4.

shows four generalized quad kirigami patterns of circling the square with the four different initial

guesses described in Section 1.1.6. It can be observed that all four resulting generalized patterns are

valid kirigami structures that can be deployed to approximate the same target circle, with a notable

difference in their cut geometry.
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a

b

Figure 1.9:Generalized hexagon kirigami patterns. a, Generalized hexagon kirigami patterns with different target
boundary shapes. b, Patterns obtained by imposing the additional regular angle constraints described in Section 1.1.4.

a

b

Figure 1.10:Generalized multiple-cell Islamic kirigami patterns. a, Generalizedmultiple-cell Islamic kirigami
patterns whose deployed configurations approximate a circle. b, Patterns obtained by imposing the additional regular
angle constraints described in Section 1.1.4.

Besides quads, our inverse design framework is also applicable to other kirigami base patterns.

Figure 1.8, Figure 1.9, and Figure 1.10 show respectively various generalized kagome, hexagon, and
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5 cm

Figure 1.11:A generalized kirigami pattern for fitting an egg shape with a fabricated model. The two
figures on the left show the undeployed and deployed configurations of the numerical optimization result obtained by our

inverse designmethod. The two figures on the right show a fabricatedmodel of the pattern and its deployed state. Pins

are used to fix the position of the deployed fabricatedmodel.

multiple-cell Islamic kirigami patterns that satisfy a large variety of target shapes when deployed.

The additional constraints described in Section 1.1.4 can also be effectively imposed to produce

more novel patterns.

For the realization of the generalized kirigami patterns obtained by our framework, we consider

fabricating a physical model for the pattern shown in Figure 1.11 that transforms from a rectangular

shape to an egg shape. The physical model was produced by laser cutting a thin sheet of

highly-stretchable abrasion-resistant natural rubber. We pin the deployed state of the model and

compare it with the pattern obtained by our framework. It can be observed that the physical model

resembles the numerical optimization result very well.
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Figure 1.12: Planar deployment of generalized kirigami tessellation. a, Energetics of the deployment
simulations of the square to circle example with different choices of λ. HereΔL is the average displacement of the pulling

points andL0 is the average rest length of the extensional springs. The insets show the initial, intermediate and final

configurations of the generalized kirigami pattern under deployment. b, Snapshots of the deployment of amonostable
fabricatedmodel.

1.3 Deployment energetic analysis

Our inverse design framework focuses on the contracted and deployed configurations of the

generalized kirigami patterns but is agnostic to the path of the deployment. It is therefore natural to

study the deployment process of the generalized kirigami patterns and the energetics.

28



Consider a linear spring model where linear springs are set along the edges and diagonals of the

tiles of a generalized kirigami pattern, and simple torsional springs are set at the nodal hinges to

model the ligaments that hold the structure together. The total mechanical energy of the system is

given by

E(x1,x2, ...,xN) =
1
Ns

∑
i,j

(∥xi − xj∥ − lij
lij

)2

+ λ
1
Nc

∑
i
θ2i , (1.17)

where xi are the coordinates of the nodes, θi are the angles between every pair of edges created under

the cuts, lij are the rest lengths of the extensional springs,Ns is the total number of extensional

springs,Nc is the total number of torsional springs, and λ is the ratio of the torsional spring constant

to the extensional spring constant. Note that a larger λ corresponds to a thicker ligament, which has

a stronger tendency to close. We can then obtain a continuous deployment path of the system by

iteratively moving the boundary nodes to the target boundary shape and solving for the

intermediate deployed configurations, up to material deformations permitted by non-zero (1.17).

Figure 1.12a shows the energetics of the deployment simulations with different λ. Note that if

λ → 0, we see the presence of bistability, while if λ ̸→ 0, monostability or multistability can be

observed. Figure 1.12b shows the deployment snapshots of a physical model fabricated by laser

cutting a sheet of super-stretchable abrasion-resistant natural rubber. It can be observed that the

simulated deployment path and real deployment have similar behaviors.
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1.4 Inverse 3D kirigami design

While our inverse design approach has so far focused on approximating target planar shapes, it is in

fact applicable for fitting surfaces inR3 as well. To achieve this, we first replace the boundary shape

matching constraints (1.8) by the surface matching constraints so that every node xi in the deployed

configuration satisfies the condition

∥xi − x̃i∥2 = 0, (1.18)

where x̃i is the projection of xi onto the prescribed target surface S and ∥ ·∥ is the Euclidean 2-norm.

Note that the contractibility constraints for surface fitting are the same as Eq. (1.1) and Eq. (1.2).

The additional constraints introduced in Section 1.1.4 for further controlling the pattern geometry

can also be directly extended to the three-dimensional case.

As for the non-overlap constraints, note that we have to prevent adjacent tiles in the deployed

configuration from overlapping or intersecting with each other. Therefore, we replace the unit

normal n⃗ in Eq. (1.9) with the normal computed using one of the two adjacent tiles. In other words,

we enforce the following inequality constraints for every pair of adjacent tiles in the deployed

configuration:

⟨(b− a)× (c− a), (c− a)× (d− a)⟩ ≥ 0, (1.19)

where a,b are two nodes of a tile, c,a,d are three nodes of another tile, (b,a, c) form a positive

(right-hand ordered) angle between the two tiles, and (c,a,d) also form a positive (right-hand

ordered) angle.
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Note that in the two-dimensional case, all tiles are always planar under the constrained

optimization process. However, in the three-dimensional case, the tiles are not necessarily planar.

Therefore, we need to enforce the following planarity constraints in the constrained optimization

problem. For every face F in the deployed configuration, the volume of the polyhedron associated

with its vertices should vanish:

Volume(F) = 0. (1.20)

In particular, for generalized quad patterns, the above constraint becomes

⟨(b− a)× (c− a),d− a⟩ = 0, (1.21)

where a,b, c,d are the four vertices of the quad F.

Finally, the objective function (1.16) and the contraction process can also be directly extended for

three-dimensional surface fitting. We can then obtain generalized kirigami patterns that deploy to

approximate a prescribed surface by solving a constrained optimization problem using fmincon in

MATLAB.

Figure 1.13 shows several generalized kirigami patterns that deploy to fit surfaces of varying

complexity. Additionally, just as for the two-dimensional problem, we can impose additional

boundary angle constraints to produce different pattern design effects, such as using rectangular

quad patterns to fit either a hyperbolic paraboloid (Figure 1.13a) or an elliptic paraboloid

(Figure 1.13b), or an egg-carton shape (Figure 1.13c). Figure 1.13d shows an example of fitting a
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Figure 1.13:Generalized kirigami patterns for three-dimensional surface fitting. The target surfaces are a,
a hyperbolic paraboloid (with negative curvature),b, a paraboloid (with positive curvature), c, a periodic patch of an egg-
carton shape, andd, a bivariate Gaussian. Columns: The target surfaces (leftmost), the generalized kirigami patterns, the
deployed configurations of the patterns that fit the target surfaces, the top views of the deployed patterns with the holes

colored with the approximatedmean curvatureH, and the top views of the deployed patterns with the holes colored with

the approximated Gauss curvatureK (rightmost).

bivariate Gaussian with a more significant shape change upon deployment. It is noteworthy that all

tiles in the deployed configurations are planar, while the surfaces are with non-zero curvature. This

suggests that the curvature of the holes between the piece-wise planar tilings must be non-zero. To

quantify this, we fit every hole by a bicubic Bézier surface and compute the mean curvature and the

Gaussian curvature of it. It can be observed in Figure 1.13 that the holes between the planar tilings
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3 cm3 cm

Figure 1.14:A physical model of a generalized quad pattern fabricated using PDMS. Themodel achieves a
significant shape change and fits a hat-like surface (the underlying transparent sheet) upon deployment.

Figure 1.15:Generalized kagome kirigami patterns for surface fitting. The target surfaces are respectively a
hyperbolic paraboloid, a landscape surface withmultiple peaks, a bivariate Gaussian and aMexican hat. For each target

surface, the resulting generalized kirigami pattern and its deployed configuration are shown. It can be observed that

our approach is capable of controlling the boundaries and the shape of the triangular faces of the generalized kirigami

patterns for approximating different surfaces.

are indeed curved. Figure 1.14 shows a physical model of a generalized kirigami pattern, fabricated

using Polydimethylsiloxane (PDMS). It can be observed that the deployed configuration of the

fabricated model resembles our numerical optimization result very well. Figure 1.15 shows more

generalized kirigami patterns for surface fitting obtained by our method, with the tiles being
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Figure 1.16: 3D deployment of generalized kirigami tessellation. a, Energetics of the 3D deployment simulations

of the pattern in Figure 1.13awith different choice of λ. HereΔL is the average displacement of the pulling points andL0
is the average rest length of the extensional springs. The insets show the initial, intermediate and final configurations of

the pattern under deployment. b, Snapshots of the deployment of amonostable fabricatedmodel, with thin threads used
for pulling the four sides. Both the numerical simulation and physical deployment results fit the hyperbolic paraboloid

shape very well.

triangles instead of quads.

To study the deployment process in the three-dimensional case, we extend the planar energetic

model to three dimensions, with an additional planarity constraint enforced to ensure that all tiles

remain planar throughout the simulations. Figure 1.16a shows the deployment simulations with the

four boundaries of a generalized kirigami pattern pulled towards the target positions for fitting a
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hyperbolic paraboloid. While the intermediate states are warped, the final deployed configuration

resembles the shape of a smooth hyperbolic paraboloid very well. As in the planar case, we see that

the stability depends on λ. Figure 1.16b shows the deployment of a physical model fabricated using

a thin sheet of natural rubber. It can be observed that the physical model also fits the target

hyperbolic paraboloid very well.

1.5 Discussion

Our inverse design approach allows us to create generalized kirigami patterns that deploy and

approximate any prescribed target shape in two- or three-dimensions. This is achieved by putting

the essential constraints in lengths and angles together in a constrained optimization framework,

with the flexibility of imposing additional constraints to further control the pattern geometry. More

broadly, Our method provides a new way of engineering shape using geometry and computation.
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I am interested in mathematics only as a creative art.

G. H. Hardy

2
Reconfigurable kirigami

In Chapter 1, we developed a novel inverse design framework for creating generalized kirigami

patterns by identifying certain geometric constraints involving angles and edge lengths. More

specifically, those patterns can be transformed from a closed and compact contracted shape to a

deployed shape that approximates any prescribed target shape. Note that this process is reversible,
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meaning that we can transform the deployed shape back to the original closed and compact

contracted shape, as the conditions on the edge lengths and angles are satisfied in both the

contracted and the deployed states.

A natural question that arises is as follows: Is it possible to design kirigami patterns that can be

transformed from its deployed configuration to a closed and compact contracted shape different

from the original one? In this chapter, we develop an inverse design framework for reconfigurable

generalized kirigami patterns.

2.1 Constrained optimization for reconfigurable kirigami design

2.1.1 Formulation

To simplify our discussion, we focus on the quad kirigami patterns (Figure 2.1a). As discussed in

Chapter 1, for guaranteeing that the deformed deployed configuration yields a valid kirigami

pattern, we need to enforce the contractibility constraints, which consist of the edge length

constraints (1.1) and the angle sum constraints (1.2).

To ensure that the deployed configuration can be contracted into another closed and compact

contracted shape, we exploit the underlying duality of the kirigami pattern and formulate the

following reconfigurability constraints:

• (Dual edge length constraints) For each pair of adjacent edges {ei2,1, ei2,2}where ei2,1, ei2,2
belong to two different tiles and are not paired up in Eq. (1.1) (see the blue dotted lines in
Figure 2.1a), we must have

li2,1 = li2,2. (2.1)
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Figure 2.1:Reconfigurable kirigami design. a, An enlargement of the unit cell of a quad kirigami tessellation
illustrating the constraints in edge lengths and angles to be satisfied. The red dotted lines indicate the ordinary edge

pairs corresponding the same cuts, and the blue dotted lines indicate the dual edge pairs for getting the other contracted

configuration. b, The inverse design framework for reconfigurable kirigami. Starting with a given kirigami pattern and
a prescribed target shape, we construct an initial guess in the deployed space and solve a constrained optimization

problem to obtain a valid deployed configuration that satisfies both the ordinary contractibility constraints and the new

reconfigurability constraints andmatches the target shape. We then contract the deployed configuration in twoways,

one by following the cut edge pairs and one by following the dual edge pairs, and obtain two contracted states of it. The

angles are colored based on the correspondence in the given kirigami pattern.

• (Dual angle sum constraints) For every set of angles {θi2,k}nk=1 which are dual to the set of
angles {θi1,k}nk=1 mentioned in Eq. (1.2) inside a unit cell (see Figure 2.1a), we must have

n∑
k=1

θi2,k = 2π. (2.2)

The contractibility constraints and the reconfigurability constraints together enforce all edges

around each hole in the deployed configuration to be equal in length. In other words, all holes in

any reconfigurable generalized quad kirigami patterns must be rhombi. Also, the sum of all angles of

the tiles at two opposite corners of each rhombus hole should be 2π.

Following the inverse design framework in Chapter 1, we obtain reconfigurable generalized
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kirigami patterns by solving a constrained optimization problem (Figure 2.1b). Again, given any

standard kirigami pattern and any target shape, we start by creating an initial guess in the deployed

space. Then, we solve a constrained optimization problem in the deployed space to turn the initial

guess into a valid deployed shape. This time, the constraints include the contractibility

constraints (1.1),(1.2), the reconfigurability constraints (2.1),(2.2), as well as the shape matching

constraints (1.8) and the non-overlap constraints (1.9). The objective function in Eq. (1.16) is used

for regularizing the geometry of the entire pattern. We solve the problem numerically using the

fmincon routine in MATLAB. Finally, different closed and compact contracted states can be

obtained from the optimized deployed configuration, as both the contractibility constraints and the

reconfigurability constraints are satisfied.

We remark that for symmetric target shapes, one can enforce an additional symmetry constraint

on the coordinates of the nodes so that the deployed configuration is symmetric. This allows us to

reduce the search space by half, with certain asymmetric admissible patterns neglected.

2.1.2 Results

Figure 2.2a shows several examples of reconfigurable kirigami patterns obtained by our method,

where each of the kirigami patterns admits two distinct contracted states and the deployed

configuration conforms to a prescribed target shape. As with the framework in Chapter 1, our

method is capable of approximating target shapes with different curvature properties. Also, we can

further control the boundary shape of a contracted state by introducing additional constraints on

the boundary edge lengths and angles, yielding a reconfigurable kirigami pattern that deploys from a
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a

b

Figure 2.2:Reconfigurable generalized quad kirigami patterns obtained by our framework. a, Examples
of reconfigurable generalized kirigami patterns that conform to prescribed target shapes with different curvature

properties. For each example, the top row shows the two contracted states and the bottom row shows the deployed

state. b, Results produced by further enforcing a symmetry constraint in the constrained optimization.

contracted rectangle to a circle and then contracts to another shape. As shown in Figure 2.2b, one

can enforce a symmetry constraint to produce reconfigurable generalized kirigami patterns that are

symmetric in the contracted and deployed states.

2.2 Enforcing rigid-deployability

In Chapter 1, we studied the energetics of generalized kirigami patterns and observed that in general

the single degree-of-freedom of the generic quad kirigami pattern is lost after we change the cut

geometry. Motivated by the geometric constraints for achieving reconfigurability, it is natural to ask

whether rigid-deployability can be achieved by enforcing some other geometric constraints on the

40



a b

c

Figure 2.3:Rigid-deployability of kirigami patterns. a, Note that every negative space (blue) formed by a generic
deployed quad kirigami structure (not necessarily reconfigurable) is a four-bar linkage with two pairs of adjacent edges

having the same length. b, Such a linkage has two one-dimensional rigid deployments connected by a single branch
point, the configuration with all edges collinear and an angle of π between overlapping edge pairs at the common hinge
(red). The linkage can deploy rigidly from the branch point into either deployment paths, but cannot rigidly transform

directly between points on the deployment paths while remaining embedded in two dimensions. c, If the reconfigurability
constraints are enforced, all links in a four-bar linkage negative space have the same length. Such a linkage has three rigid

deployments, one non-trivial path in which all angles between links are activated and two degenerate paths connected by

branch points at the ends of the first path.

cut patterns.

2.2.1 Formulation

Here we propose a set of rigid-deployability constraints that further enforce the reconfigurable

kirigami patterns are rigid-deployable, i.e. there exists a single continuous path from one contracted

state to the deployed state and subsequently to another contracted state, such that none of the tiles
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deform throughout the deployment process. Around every negative space, we enforce that

θi1,1 + θi1,2 = θi2,1 + θi2,2 = π, (2.3)

where the design angles are as shown in Figure 2.1. Below, we prove that Eq. 2.3 is indeed necessary

and sufficient.

Lemma. Local rigid-deployability. We first note that Eq. (2.3) ensures that each negative space

forms a straight line in both contracted configurations. Taken in isolation, each negative space can

be thought of as a four-bar linkage (see Figure 2.3a). A negative space from a generic quad kirigami

pattern (i.e. not reconfigurable) has two unique edge lengths where edges with equal lengths are

incident to each other (see Figure 2.3b). Such a four-bar linkage has two one-dimensional

deployment paths in the plane connected to each other at two branch points, where the edges with

equal lengths overlap each other and all edges are collinear. In the plane, the four-bar linkage cannot

move from one deployment path to another except at a branch point. Thus, quad kirigami patterns

which do not satisfy the rigid-deployability constraints (2.3) contain negative spaces which cannot

pass from pattern to deployed states in the plane without changing the edge lengths. And,

conversely, quad kirigami patterns which satisfy the rigid-deployability constraints (2.3) have only

negative spaces which can rigidly deform from their straight-line pattern configurations to their

solved, deployed configurations in the plane. Reconfigurable quad kirigami structures have negative

spaces/four-bar linkages with all equal lengths. Such linkages have three one-dimensional

deployment paths, one path in which all hinges are activated and the linkage forms a rhombus and
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two degenerate paths in which two of the four hinges in the linkage are activated, each connected to

the rhombus path at a respective branch point (see Figure 2.3c). Thus, reconfigurable quad kirigami

patterns which satisfy the rigid-deployability constraints (2.3) have only negative spaces which can

rigidly deform from their two straight-line pattern configurations to their solved, deployed

configurations in the plane.

Theorem 2.1. A reconfigurable kirigami pattern is globally rigid-deployable if and only if the

constraints (2.3) are satisfied for all negative spaces.

Proof. The above lemma provides local rigid-deployability if and only if Eq. (2.3) are satisfied for

each negative space. To analyze global rigid-deployability, we construct a loop condition F around

a single interior face in a generic (i.e. not necessarily reconfigurable) quad kirigami structure which

must be identity at all points along a rigid-deployment. As shown in Figure 2.3a, let θi,j be design

angles and φi,j be deployment angles in a quad kirigami four-bar linkage negative space. Let fi be

the function that transfers a deployment angle φi,1 to the deployment angle φi+1,1 by composing

angle-sum transfer hi and four-bar kinematics transfer fi such that

φi+1,1 = fi(φi,1) = gi(hi(φi,1)) (2.4)

φi,2 = hi(φi,1) = 2π− φi,1 − θi,1 − θi,2 (2.5)

φi+1,1 = gi(φi,2) = 2 sin−1

 li,2 sinφi,2√
l2i,1 + l2i,2 − 2li,1li,2 cosφi,2

 . (2.6)
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If the loop condition

F(φ1,1) = f4(f3(f2(f1((φ1,1))))) = φ1,1 (2.7)

is satisfied for every value of φ1,1 ∈ [0, 2π−θ1,1−θ1,2] for every interior quad, then the quad kirigami

pattern is globally rigid-deployable. In a reconfigurable quad kirigami pattern, θi,1 + θi,2 = π and

li,1 = li,2 and

φi,2 = hi(φi,1) = π− φi,1 (2.8)

φi+1,1 = gi(φi,2) = π− φi,2 (2.9)

φi+1,1 = fi(φi,1) = φi,1. (2.10)

Hence, F is a composition of identity functions fi and is itself identity. Therefore, reconfigurable

quad kirigami patterns satisfying Eq. (2.3) are globally rigid-deployable. �

Therefore, we can obtain reconfigurable generalized kirigami patterns which are rigid-deployable

by simply adding Eq. (2.3) in the constrained optimization problem.

2.2.2 Results

Figure 2.4a shows examples of rigid-deployable, reconfigurable generalized kirigami patterns

obtained by our method. It can be observed that our method is capable of producing a wide range

of patterns to approximate different shapes even after enforcing the additional rigid-deployability

constraints, and the accuracy of the approximation can be improved by increasing the resolution.
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Figure 2.4:Rigid-deployable, reconfigurable generalized quad kirigami patterns. a, Examples of rigid-
deployable, reconfigurable generalized quad kirigami patterns which conform approximately to a target shapewhen

deployed. Note that the accuracy of the approximation is improved as the number of tiles increases. b, The simulated
deployment of a pattern which is obtained by solving the constrained optimization problem directly on the contracted

configurations without caring about the intermediate states. c, More rigid-deployable, reconfigurable generalized

kirigami patterns obtained by this approach.

Moreover, in case the shape of the deployed configuration is not of our interest, it is possible for us

to perform the constrained optimization directly on the two contracted configurations without
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Figure 2.5:A physical model of a rigid-deployable, reconfigurable generalized kirigami pattern. It can be
observed that themodel can be contracted in twoways without any geometrical frustration.

caring about the intermediate states (Figure 2.4b). Figure 2.4c shows more rigid-deployable,

reconfigurable generalized kirigami patterns obtained by this approach, including a pattern that can

transform from a closed and compact square to a closed and compact circle. Figure 2.5 shows a

physical model fabricated using cardboard papers with tape joints connecting the tiles. As the

pattern is rigid-deployable, we can freely deploy and contract it without any geometrical frustration.

2.3 Discussion

We have demonstrated the effectiveness of our proposed inverse kirigami design framework by

further incorporating additional geometric constraints that yield reconfigurability and

rigid-deployability. While the focus of this chapter has been on the quad kirigami pattern only, our

framework should also be applicable to other kirigami patterns. For instance, for the kagome

kirigami pattern (Figure 1.1a), one can set up a set of reconfigurability constraints on top of the

contractibility constraints. As shown in Figure 2.6, the two sets of edge length constraints together

enforce that all edges of every hexagonal hole in a reconfigurable generalized kagome pattern should
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Figure 2.6: The edge length constraints for reconfigurable kagome patterns. At each negative space, the surrounding

edges should all be equal in length.

be equal in length. Altogether, our study suggests that the cut geometry plays an important role in

determining the structure and function of kirigami patterns.
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Divide each difficulty into as many parts as is feasible

and necessary to resolve it.

René Descartes

3
Topological control of kirigami

Any structure is determined by its geometry and topology. In the previous two

chapters, we have studied the geometric control of kirigami. Specifically, given a cut topology, we

change the geometry of the tiles in order to achieve certain properties. In this chapter, we pose and

solve a closely related problem: Given a cut geometry, how can we change the cut topology to

48



a b
c d

fe

①

②②

③
③

④④

⑤

⑥

⑦

⑧

①

⑧
⑥⑤

⑦
L

L

}} Internal Rotational Mode

Cuts Linkages

Rigid Body Mode

Figure 3.1:A kirigami system and two types of floppy modes. a-b, The cuts are along edges of square tiles
except at the vertices, so that the pattern is equivalent to a linkage. c-d, Removing certain links may increase the DoF
of the structure and add certain internal rotational mechanisms. e-f, Removing certain links may also increase the number
of connected components (NCC) and add certain translational and rotational rigid bodymodes.

achieve certain prescribed properties?

Consider introducing cuts on a thin sheet of material with width and height both equal L to

form a kirigami structure. To simplify our discussion, we assume that the material is cut using

vertical and horizontal cuts along the grid lines with equal spacing 1, so that we have a rotating

squares system with infinitesimally small corner hinges. Around the internal vertices, there are four

small segments which we can independently decide on cutting or not. As shown in Figure 3.1a, all

the black lines within this piece of paper have been cut, but near the vertices it is kept intact. This

cut diagram can be transformed into a link diagram as shown in Figure 3.1b, where each small quad

is separated, and each pair of neighbor nodes are connected via a “link”.

Now, keeping the geometry of the square tiles fixed, we change the topology of the kirigami by

determining how the cuts (links) are to be prescribed. More specifically, we would like to control the

rigidity (Figure 3.1c-d) and connectivity (Figure 3.1e-f) of the kirigami system using the prescribed
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cuts (links).

3.1 Rigidity control for 2D quad kirigami

To study the rigidity of the kirigami system, we first note that the infinitesimal degree-of-freedom

(DoF) of a system is controlled by geometrical constraints associated with the tile geometry and

the links. In particular, for every square tileQ = {xxx1, xxx2, xxx3, xxx4}, we should have four edge length

constraints and one diagonal length constraint that enforce the tile to be rigid:



gedge(xxx1, xxx2) = ||xxx1 − xxx2||2 − l2 = 0,

gedge(xxx2, xxx3) = ||xxx2 − xxx3||2 − l2 = 0,

gedge(xxx3, xxx4) = ||xxx3 − xxx4||2 − l2 = 0,

gedge(xxx4, xxx1) = ||xxx4 − xxx1||2 − l2 = 0,

gedge(xxx1, xxx3) = ||xxx1 − xxx3||2 − 2l2 = 0,

(3.1)

where l is the side length of the tile. Also, for each infinitesimal link connecting two nodes xxxiii and xxxjjj,

we should have two link constraints:


glinkx(xxxi, xxxj) = xi1 − xj1 = 0,

glinky(xxxi, xxxj) = xi2 − xj2 = 0,
(3.2)

where xxxi = (xi1 , xi2) and xxxjjj = (xj1 , xj2).

Therefore, for an L× L kirigami system with n links, there are in total 5L2 length constraints and
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2n link constraints. These constraints determine the range of motions associated with infinitesimal

rigidity in terms of the rigidity matrix AAA. Here, AAA is a (5L2 + 2n)× 8L2 matrix with Aij = ∂gi/∂xj,

where gi is a length or link constraint (i ∈ [1, 5L2 + 2n]), and j ranges from 1 to 8L2 (as there are in

total 4L2 nodes in an L × L kirigami, and each node has two coordinates). Then, the infinitesimal

DoF of the kirigami system can be computed by subtracting the number of independent constraints

(i.e. the rank of AAA) from 8L2 61,84:

DoF = 8L2 − rank(A). (3.3)

3.1.1 Minimum rigidifying link patterns (MRPs)

From the discussion above, as each link is associated with two link constraints, the decrease in the

total DoF by adding one link must be either 0, 1 or 2. It is therefore natural to ask the following

questions: What is the minimum number of links required for rigidifying an L × L kirigami, i.e.

enforcing the system to have no extra DoF besides the global rigid body motion? How should these

links be placed?

Define δ(L) as the minimum number of links for rigidifying an L × L kirigami, and aminimum

rigidifying link pattern as a link pattern (a set of positions for links) that rigidifies the L× L kirigami

system with exactly δ(L) links. It is easy to see that there are 3 DoF (2 translational and 1 rotational)

if all possible links are added, and 3L2 DoF if none of them is added (as each tile has 3 DoF). Since

each link reduces the DoF by at most 2, δ(L) links can at most reduce the DoF 2δ(L). This implies
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Figure 3.2:Minimum rigidifying link patterns (MRPs). a, Explicit examples ofMRPs forL = 2, 3, 4, 5, 7,
and for 3 × 5. b, An illustration of the hierarchical construction ofMRPs. AnMRP forL = 6 can be constructed by
decomposing the 6 × 6 kirigami into four large blocks of size 3 × 3, and subsequently rigidifying every block using an
MRP forL = 3 and then the four large rigid blocks using anMRP forL = 2. c. The hierarchical construction of anMRP

forL = 2k, k ≥ 3 by decomposing the system into large blocks of size 3 × 3, 5 × 5 and 3 × 5. d, The hierarchical
construction of anMRP for odd primes p ≥ 11.

that

3L2 − 2δ(L) ≤ 3⇒ δ(L) ≥
⌈
3L2 − 3

2

⌉
. (3.4)

In the following, we show that this lower bound for δ(L) is in fact optimal (achievable), and it is

always possible to find a rigidifying link pattern with exactly
⌈
3L2−3

2

⌉
links for any L.

Theorem 3.1. For all positive integer L, δ(L) =
⌈
3L2−3

2

⌉
.

To prove Theorem 3.1, we first explicitly construct rigidifying link patterns with exactly
⌈
3L2−3

2

⌉
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links for L = 2, 3, 4, 5, 7 (Figure 3.2a). The rigidity of these patterns is verified using the rigidity

matrix computation described in Eq. (3.3). These explicit MRPs for small L form the building

blocks for tackling the larger patterns.

Here we develop a hierarchical constructionmethod for constructingMRPs for any system size

L, where we combine the patterns for small L to construct the patterns for large L. For example, as

illustrated in Figure 3.2b, we can decompose a 6 × 6 kirigami system into 4 large blocks of 3 × 3

tiles. We can then use anMRP with δ(3) = 12 links to rigidify every 3 × 3 block, and then connect

and rigidify the 4 large rigid blocks using anMRP for 2 × 2 with δ(2) = 5 links. This results in a

rigidifying link pattern for a 6× 6 kirigami with the total number of links being

12× 4+ 5 = 53 =

⌈
3(62)− 3

2

⌉
. (3.5)

More rigorously, the above hierarchical construction method suggests the following theorem:

Theorem 3.2. For L = 2k
∏

pnii where k = 0, 1, 2, pi are odd primes that satisfy δ(pi) =
⌈
3p2i −3

2

⌉
,

and ni are nonnegative integers, we have δ(L) =
⌈
3L2−3

2

⌉
.

Proof. For k = 0, we construct anMRP hierarchically as described below. Suppose L1, L2 are

two odd numbers satisfying δ(L1) =
⌈
3L21−3

2

⌉
and δ(L2) =

⌈
3L22−3

2

⌉
(i.e. the lower bound for δ is

optimal for L1 and L2). We construct a link pattern for L = L1L2 by decomposing an L1L2 × L1L2

kirigami system into L2 × L2 large blocks of L1 × L1 tiles. For every block of L1 × L1 tiles, we use an

MRP for L1 to rigidify the block. Then, we connect and rigidify the L2 × L2 large rigid blocks using

anMRP for L2. This results in a link pattern that rigidifies the entire L1L2×L1L2 kirigami, with the
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total number of links being

L2
2δ(L1) + δ(L2) = L2

2

⌈
3L2

1 − 3
2

⌉
+

⌈
3L2

2 − 3
2

⌉
= L2

2
3L2

1 − 3
2

+
3L2

2 − 3
2

=
3L2

1L2
2 − 3
2

=

⌈
3L2

1L2
2 − 3
2

⌉
.

(3.6)

This implies that δ(L1L2) =
⌈
3L21L22−3

2

⌉
. By induction, The statement holds for any L =

∏
pnii .

For k = 1, we first use the above argument to construct anMRP for L̃ =
∏

pnii . Then, we

decompose the L× L = 2L̃× 2L̃ kirigami system into 4 large blocks of L̃× L̃ tiles. Using the MRP

for L̃ to rigidify each large block and anMRP for 2 × 2 to connect and rigidify all four of them, we

obtain a rigidifying link pattern for the L× L kirigami with the total number of links being

22δ(L̃) + δ(2) = 4
⌈
3L̃2 − 3

2

⌉
+ 5

= 4
3L̃2 − 3

2
+ 5

=
3(2L̃)2 − 12+ 10

2

=
3(2L̃)2 − 2

2
=

⌈
3(2L̃)2 − 3

2

⌉
.

(3.7)

Therefore, the statement holds for any L = 2
∏

pnii .

Similarly, for k = 2, we first construct anMRP for L̃ =
∏

pnii . Then, we decompose the L×L =

4L̃ × 4L̃ kirigami system into 16 large blocks of L̃ × L̃ tiles and rigidify each of them. Then we

rigidity the entire structure using anMRP for a 4 × 4 kirigami, thereby producing a rigidifying link

54



pattern with the total number of links being

42δ(L̃) + δ(4) = 16
⌈
3L̃2 − 3

2

⌉
+ 23

= 16
3L̃2 − 3

2
+ 23

=
3(4L̃)2 − 48+ 46

2

=
3(4L̃)2 − 2

2
=

⌈
3(4L̃)2 − 3

2

⌉
.

(3.8)

By induction, The statement holds for any L = 4
∏

pnii . �

Then, the corollary below follows immediately from the above theorem:

Corollary 3.1. There exists infinitely many L such that δ(L) =
⌈
3L2−3

2

⌉
.

We remark that the method used in the above proof cannot be directly extended for handling

higher powers of 2. The reason is that the rounding error in the ceiling function may accumulate

if the numerator is an odd number. To overcome this problem, we extend the definition of δ for

general rectangular kirigami pattern by defining δ(M,N) as the minimum number of links required

for rigidifying aM×N kirigami. It is easy to see that the lower bound for δ(M,N) is

δ(M,N) ≥
⌈
3MN− 3

2

⌉
. (3.9)

By explicit construction, we obtained a rigidifying link pattern for a 3 × 5 kirigami system with 21

links (see Figure 3.2a). As
⌈
3(3×5)−3

2

⌉
= 21, such a link pattern is anMRP for 3× 5. We now prove

the following theorem:
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Theorem 3.3. For any positive integer n, we have

δ(2n) =
⌈
3(2n)2 − 3

2

⌉
. (3.10)

Proof. The explicit construction in Figure 3.2a proves the statement for n = 1, 2. We prove the

statement for the remaining n by induction. Suppose the statement is true for n = k− 2, i.e.

δ(2k−2) =

⌈
3(2k−2)2 − 3

2

⌉
. (3.11)

For n = k, we decompose the 2k × 2k kirigami system into 2k−2 × 2k−2 large blocks with size

3× 3, 5× 3, 3× 5, and 5× 5 (see Figure 3.2c for an illustration for k = 3). UsingMRPs explicitly

constructed for 3 × 3, 3 × 5 and 5 × 5, we rigidify every large block. Then, by the induction

hypothesis, we have anMRP for 2k−2 × 2k−2 that can be used for connecting and rigidifying all

large blocks. This results in a rigidifying link pattern for the 2k × 2k kirigami, with the total number

of links being

2k−2 × 2k−2

4
× (δ(3) + δ(5, 3) + δ(3, 5) + δ(5)) + δ(2k−2)

= 22k−6 × (12+ 21+ 21+ 36) +
⌈
3(2k−2)2 − 3

2

⌉
= 45(22k−5) + 3(22k−5)− 1 = 48(22k−5)− 1 =

3(2k)2 − 2
2

=

⌈
3(2k)2 − 3

2

⌉
.

(3.12)

This implies that δ(2k) =
⌈
3(2k)2−3

2

⌉
. By induction, the statement holds for all n. �

Combining Theorem 3.2 and Theorem 3.3, it follows that δ(L) =
⌈
3L2−3

2

⌉
for L =

∏
pnii
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where pi = 2, 3, 5, 7, . . . are primes that satisfy δ(pi) =
⌈
3p2i −3

2

⌉
and ni are nonnegative integers. It

remains to show that pi can in fact be any prime. We make use of the following lemma:

Lemma 3.1. Any odd number L ≥ 11 can be written as

L = 3m+ 5n (3.13)

where m and n are nonnegative integers.

Proof. Note that 11 = 3+ 3+ 5, 13 = 3+ 5+ 5, 15 = 5+ 5+ 5 and 17 = 3+ 3+ 3+ 3+ 5.

For odd L ≥ 19, we can express L = (L− 8) + 3+ 5. The result follows easily from induction. �

The above lemma allows us to prove the following theorem:

Theorem 3.4. For all primes p ≥ 11,

δ(p) =
⌈
3p2 − 3

2

⌉
. (3.14)

Proof. Suppose the equality holds for all primes less than p. By Lemma 3.1, there exists

nonnegative integersm, n such that 3m + 5n = p. Since p is odd,m + n is also odd. Also, since

m+ n < 3m+ 5n = p,m+ n is either an odd prime or a product of odd primes which are smaller

than p. Therefore, by the induction hypothesis as well as Theorem 3.2 and Theorem 3.3, we have

δ(m+ n) =
⌈
3(m+ n)2 − 3

2

⌉
. (3.15)
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Now, we decompose the p × p kirigami system into (m + n) × (m + n) large blocks with size

5 × 5, 5 × 3, 3 × 5, 3 × 3 (see Figure 3.2d for an illustration for p = 11). UsingMRPs explicitly

constructed for 3× 3, 3× 5 and 5× 5 and anMRP for (m+ n)× (m+ n) obtained above, we have

a rigidifying link pattern for the entire p× p kirigami, with the total number of links being

m2δ(3) + n2δ(5) +mnδ(5, 3) +mnδ(3, 5) + δ(m+ n)

=12m2 + 36n2 + 42mn+
⌈
3(m+ n)2 − 3

2

⌉
=12m2 + 36n2 + 42mn+

3(m+ n)2 − 3
2

=
3(9m2 + 25n2 + 30mn)− 3

2
=

3(3m+ 5n)2 − 3
2

=

⌈
3p2 − 3

2

⌉
.

(3.16)

This implies that δ(p) =
⌈
3p2−3

2

⌉
. By induction, the theorem holds for all primes p ≥ 11. �

Finally, using Theorem 3.2, Theorem 3.3, Theorem 3.4 and induction, we prove that δ(L) =⌈
3L2−3

2

⌉
for all L: If L = 2k

∏
pnii where k ≤ 2, by Theorem 3.2 we are done. If k ≥ 3, we first

construct anMRP for
∏

pnii ×
∏

pnii and anMRP for 2k × 2k using the three theorems above.

Then, we decompose the L × L kirigami system into 22k large blocks of
∏

pnii ×
∏

pnii tiles. Using

the MRPs constructed for
∏

pnii ×
∏

pnii 2k × 2k, we obtain a rigidifying link pattern for the entire
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L× L system, with the total number of links being

22kδ
(∏

pnii
)
+ δ(2k) = 22k

⌈
3 (
∏

pnii )
2 − 3

2

⌉
+

⌈
3(2k)2 − 3

2

⌉

= 22k
3 (
∏

pnii )
2 − 3

2
+

3(2k)2 − 2
2

=
3
(
2k
∏

pnii
)2 − 3(22k) + 3(2k)2 − 2

2

=
3L2 − 2

2
=

⌈
3L2 − 3

2

⌉
.

(3.17)

This completes the proof of Theorem 3.1.

As a remark, we have

lim
L→∞

δ(L)
Total number of links in an L× L quad kirigami

= lim
L→∞

⌈
3L2−3

2

⌉
4L(L− 1)

= lim
L→∞

3L2/2
4L2 =

3
8
.

(3.18)

In other words, the MRPs for any L × L kirigami system require approximately 3/8 of the total

number of links as L is sufficiently large.

3.1.2 Algorithmic procedure of the hierarchical construction

Given any positive integer L ≥ 2, the procedure for constructing anMRP for an L × L quad

kirigami system is as follows:

• (Prime factorization) Compute the prime factorization L = 2k
∏m

i=1 p
ni
i where

p1, p2, . . . , pm are distinct odd primes, k ≥ 0 and ni ≥ 1 for all i (see Figure 3.3, top left).

• (MRPs for odd primes) For pi = 3, 5, 7, take the explicitly constructedMRP for pi × pi
given in Figure3.2a. For each pi ≥ 11, use the method in Theorem 3.4 to construct anMRP
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5 x 5

...

..
.

...

..
....

2200 = 23 x 52 x 11

11 x 11

5 x 5

5 x 5

2200

2200

(52 x 11) x (52 x 11)

11 x 11

23 x 23

2200 x 2200

5 x 5

5 x 5

11 x 11

Figure 3.3:A flowchart of the hierarchical construction algorithm. To construct anMRP for anL × L =
2200×2200 quad kirigami, we first compute the prime factorization 2200 = 23×52×11 (top left). Then, we take the
explicitly constructedMRP for 5×5 given in Figure 3.2a, and construct anMRP for 11× 11 using themethod in the proof
of Theorem 3.4 (top right). After gettingMRPs for all prime factors, we construct anMRP for (52 × 11) × (52 × 11),
i.e. the product of all odd prime powers ofL, using themethod in the proof of Theorem 3.2 (bottom right). Finally, we

use themethod in the proof of Theorem 3.3 to construct anMRP for 23 × 23, i.e. the largest even prime power ofL,
and subsequently apply themethod in the proof of Theorem 3.2 again to construct anMRP for the entireL × L =
2200× 2200 kirigami (bottom left).

for pi× pi by decomposing the pi× pi system into large blocks of size 3× 3, 5× 3, 3× 5, and
5× 5 (see Figure 3.3, top right).

• (MRP for the product of all odd prime powers) Use the approach in Theorem 3.2 to
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construct anMRP for pnii × pnii for every i, and then construct anMRP for∏m
i=1 p

ni
i ×

∏m
i=1 p

ni
i using the hierarchical construction method (see Figure 3.3, bottom

right).

• (MRP for the entire kirigami) If k = 0 we are done. If k = 1, 2, take the explicitly
constructedMRPs for the 2 × 2 and 4 × 4 kirigami systems given in Figure 3.2a. If k ≥ 3,
use the approach in Theorem 3.3 to construct anMRP for 2k × 2k by decomposing the
2k × 2k system into large blocks of size 3 × 3, 5 × 3, 3 × 5, and 5 × 5. Finally, apply
Theorem 3.2 again to construct anMRP for L × L by rigidifying the 2k × 2k large blocks
with size

∏m
i=1 p

ni
i ×

∏m
i=1 p

ni
i (see Figure 3.3, bottom left).

We remark that the order of the operations described above is important. For instance,

decomposing a 6 × 6 kirigami system into 4 large blocks of 3 × 3 tiles can yield anMRP, while

decomposing it into 9 large blocks of 2 × 2 tiles cannot. The reason is that the order of such

operations affects the parity of the numerator in the ceiling function in the calculation of the total

number of links, which may make the resulting rigidifying link patterns suboptimal.

3.1.3 Enumeration ofMRPs

Denote the number of MRPs for an L × L kirigami system by nr(L). Since the total number of

possible links is 4L(L − 1) and anMRPmust have exactly δ(L) =
⌈
3L2−3

2

⌉
links, there are in total( 4L(L−1)

⌈(3L2−3)/2⌉
)
possible combinations to examine for findingMRPs. For L = 2 and 3, it follows from

a direct enumeration that there are nr(2) = 12 and nr(3) = 140MRPs. Even for just L = 4 and

5, there are already
(80
36
)
≈ 3 × 1013 and

(80
36
)
≈ 7 × 1022 possibilities, making the enumeration

impossible.

The computation can be simplified to a certain extent by assuming that all boundary links are

connected. With this assumption, a direct enumeration shows that we have 4, 10 and 182280MRPs
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for L = 2, 3, 4 respectively. It can be observed that the number increases rapidly, and the

enumeration again becomes impossible for larger L. Nevertheless, the hierarchical construction

method provides us with a simple way to obtain a lower bound of nr(L) for composite L. For

instance, as a 6 × 6 kirigami system can be decomposed into 4 large blocks of 3 × 3 tiles, the

minimum number of MRPs for L = 6 is then 1404 × 12 ≈ 4.6× 109.

The above attempts for enumerating MRPs suggest that MRPs become extremely rare as L

increases. In other words, it is nearly impossible to obtain anMRP simply by trial and error. This

shows that the hierarchical construction is an effective method for obtainingMRPs.

3.1.4 Controlling rigidity usingMRPs

Using the MRPs obtained by the hierarchical construction method, we can easily obtain kirigami

systems with different rigidity properties. For instance, for odd L, since every link in an L × LMRP

decreases the DoF of the kirigami system by exactly 2, we can obtain a system with DoF = 2k+ 3 by

removing exactly k links from anMRP. Also, by adding a link which reduces the DoF by 1 to such

a kirigami system, we can obtain a system with DoF = 2k + 2. For even L, all but one links in an

L× LMRP reduce the DoF of the system by 2 (except one that reduces the DoF by 1). By removing

k links from anMRP, we can again obtain a kirigami with DoF = 2k+ 3 or 2k+ 2. Therefore, any

given DoF is achievable by suitably removing links from theMRPs.
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a b c

Figure 3.4:Minimum connecting link patterns (MCPs). Starting from anMCP forL = 2 (a), we add one link at
each edge on the top and the right boundary. This produces anMCP forL = 3 (b). Repeating the same procedure, we
obtain anMCP forL = 4 (c).

3.2 Connectivity control for 2D quad kirigami

We then proceed to consider how the number of prescribed links affects the connectivity of the

kirigami system.

3.2.1 Minimum connecting link patterns (MCPs)

Analogous to the study of rigidity control, here we first consider the minimum number of

prescribed links for making an L × L kirigami connected. Define γ(L) as the minimum number of

links required for connecting an L × L kirigami, and aminimum connecting link pattern (MCP) to

be a link pattern with exactly γ(L) links which connects the L × L kirigami. Clearly we have the

following result:

Theorem 3.5. For all positive integer L, γ(L) = L2 − 1.

A few examples of MLPs are given in Figure 3.4. Note that the hierarchical construction we
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introduced for obtainingMRPs is also applicable for MCPs. Letm, n be two positive integers.

Suppose we have anMCP form×m and n× n. If we decompose amn×mn kirigami intom×m

large blocks of n × n tiles, we can use the hierarchical construction method to obtain a connecting

link pattern for themn×mn kirigami, with the total number of links being

m2γ(n) + γ(m) = m2(n2 − 1) + (m2 − 1) = (mn)2 − 1. (3.19)

This shows that the constructed link pattern is anMCP formn×mn.

As a remark, by Theorem 3.5 we have

lim
L→∞

γ(L)
Total number of links in an L× L quad kirigami

= lim
L→∞

L2 − 1
4L(L− 1)

= lim
L→∞

L2

4L2 =
1
4
.

(3.20)

This implies that anyMCPs for an L × L quad kirigami require approximately 1/4 of the total

number of links as L is sufficiently large.

Combining Theorem 3.1 and Theorem 3.5, we have the following inequality for L ≥ 2:

δ(L) =
⌈
3L2 − 3

2

⌉
> L2 − 1 = γ(L). (3.21)

This implies that there is noMRP which is also anMCP for any L ≥ 2, and rigidifying a kirigami

system requires more effort (links) compared to connecting it.
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3.2.2 Enumeration ofMCPs

Denote the number of MCPs in an L × L kirigami by nc(L). Using the Kirchhoff’s matrix tree

theorem, we can obtain the exact value of nc(L). Suppose we construct the Laplacian matrix of the

L× L kirigami system by treating the L2 tiles as vertices and all the 4L(L− 1) possible links as edges.

Then, by the Kirchhoff’s matrix tree theorem, the total number of MCPs is

nc(L) =
1
L2

∏
λi, (3.22)

where λi are the non-zero eigenvalues of the Laplacian matrix. Analogous to MRPs, it can be

observed that the ratio of nc(L) to the number of all possible link patterns with exactly L2 − 1 links

becomes extremely small as L increases. The hierarchical construction provides us with a simple way

for explicitly constructingMCPs for large L.

3.2.3 Controlling connectivity usingMCPs

TheMCPs are useful for controlling the connectivity of a kirigami system. Note that every link in

anMCP decreases the number of connected components (NCC) by exactly 1. Therefore, by

removing any k links from anMCP, we obtain a kirigami system with exactly k + 1 connected

components.
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3.3 Simultaneous control of rigidity and connectivity

More interestingly, we can achieve a certain level of control in both rigidity and connectivity using

the MRPs andMCPs.

3.3.1 Simultaneous control of NCC andDoF usingMRPs

Note that for any L × LMRP obtained by the hierarchical construction, adding or removing links

that connect the rigid sub-blocks does not change the NCC or DoF within the sub-blocks

themselves. Therefore, if d is a factor of L, it is possible for us to reverse the process of the

hierarchical construction and only remove certain “key links” (i.e. those connecting the rigid

sub-blocks) from theMRPs to control both the NCC and DoF precisely. More specifically, we can

achieve NCC = 1, 2, . . . , d2, and at the same time DoF can go from 3 to 3d2.

For instance, consider anMRP for an 18 × 18 kirigami system constructed by combining δ(2) =

5 key links with the MRPs for the four sub-blocks of 9 × 9 tiles. Removing one of the five key

links increases the DoF by 1 or 2 while preserving the NCC. Removing two of the five key links

increases the DoF by 3 or 4, while the NCC either remains unchanged or increases by 1. As the

process continues, all the five key links are eventually removed and the DoF of each 9 × 9 sub-block

is 3, and hence the system is with NCC= 4 and DoF= 3 × 22 = 12. To summarize, we have the

following possible combinations of NCC and DoF:

• NCC= 1, DoF= 3 (the original MRP), 4, 5 (1 key link removed), 6 (2 key links removed);

• NCC= 2, DoF= 7 (2 key links removed), 8 (3 key links removed);
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• NCC= 3, DoF= 9 (3 key links removed), 10 (4 key links removed);

• NCC= 4, DoF= 12 (5 key links removed).

In other words, by controlling only 5 links out of the δ(18) = 485 links in anMRP for a 18 × 18

kirigami system, we can already achieve a large number of combinations of NCC and DoF.

Moreover, note that the above process can be repeated for each of the sub-blocks by manipulating

the key links in the MRPs. This shows that our hierarchical construction method for MRPs is

capable of simultaneously controlling the NCC and DoF of kirigami systems.

It is also possible to change the DoF while keeping the NCC as small as possible using the MRPs.

Note that in our hierarchical construction method, we always rigidify sub-blocks with odd size, in

which each link changes the DoF by exactly 2. Hence, by removing any link from any rigid

sub-block in anMRP, we can increase the DoF of the system by exactly 2 while keeping the NCC

unchanged. This process can be continued until some tiles become disconnected. In other words,

we can simultaneously achieve NCC= 1 and DoF= 2k + 3 by removing k links, with k being

sufficiently small.

3.3.2 Simultaneous control of NCC andDoF usingMCPs

For anyMCP of an L × L kirigami, clearly we have NCC= 1. Also, since there are L2 − 1 links

in the MCP and each link decreases the DoF by 2, we have DoF= 3L2 − 2(L2 − 1) = L2 + 2.

By removing any link from theMCP, we can increase the DoF and the NCC by 1 and 2 respectively.

Therefore, we achieve a kirigami system with NCC= k + 1 and DoF= L2 + 2k + 2 by removing

any k links.
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Note that adding any link to anMCP will not change the NCC, while the DoF will decrease by

2. The process can be continued until some of the links become redundant. In other words, we can

achieve NCC= 1 and DoF= L2 − 2k+ 2 simultaneously by adding k links to anMCP, where k is

sufficiently small.

3.4 Extension to 2D kagome kirigami

While so far we have focused on the quad kirigami system only, the study of rigidity and

connectivity can in fact be extended to kagome kirigami systems, for which the tiles are regular

triangles instead of squares. Again, to simplify our discussion, we fix the geometry of the tiles and

consider changing the links connecting them.

As shown in the previous sections, the MRPs andMCPs play an important role in controlling

the rigidity and connectivity of kirigami. It turns out that Theorem 3.1 and Theorem 3.5 also hold

for kagome kirigami systems.

To prove Theorem 3.1 for kagome kirigami systems, we start by constructing explicit examples of

MRPs for 2× 2, 3× 3, 4× 4, 5× 5, 7× 7, 3× 5 and 5× 3 (Figure 3.5a-g). Note that here we need

twoMRPs for 3 × 5 and 5 × 3, while only oneMRP is needed for the case of quad kirigami. Using

these MRPs, we can follow the proofs of Theorem 3.2, Theorem 3.3 and Theorem 3.4 to prove that

the same lower bound is achievable for all L in the case of kagome kirigami (see Figure 3.5h for an

illustration of the hierarchical construction for kagome kirigami).

Similarly, it is easy to see that Theorem 3.5 holds as each link reduces the NCC of a kagome
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a b c d

f

g

e h

Figure 3.5:Minimum rigidifying link patterns (MRPs) for kagome kirigami. a-g, Explicit construction of
MRPs forL × L kagome kirigami systemswithL = 2 (a),L = 3 (b),L = 4 (c),L = 5 (d),L = 7 (e), andM × N
kagome kirigami systemswith (M,N) = (3, 5) (f) and (M,N) = (5, 3) (g). h, An illustration of the hierarchical
construction for kagome kirigami. By decomposing a 6 × 6 kagome kirigami system into four large blocks of 3 × 3
triangles, we can rigidify each block using anMRP forL = 3 and the four large blocks using anMRP forL = 2. This
results in anMRP forL = 6.

kirigami system by at most 1 (see Figure 3.6 for examples of MCPs for kagome kirigami).

Thus, the analysis of the rigidity and connectivity control in the previous sections can be

extended to kagome kirigami.
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a b c

Figure 3.6:Minimum connecting link patterns (MCPs) for kagome kirigami. Starting from anMCP forL =
2 (a), we add one link at each edge on the top and the right boundary. This produces anMCP forL = 3 (a). Repeating the
same procedure, we obtain anMCP forL = 4 (c).

a b

Figure 3.7:Topological control of 3D prismatic assembly as a linkage problem. a, We decompose a solid into

L ×M × N cubes (hereL = M = N = 2). b, All possible links for connecting neighboring cubes in a 2 × 2 × 2
system.

3.5 Extension to 3D prismatic assemblies

We further extend the study of the topological control of kirigami to 3D. Given a 3D solid prismatic

assembly formed by introducing vertical and horizontal cuts on a volumetric object (Figure 3.7), we

study the minimum number of links needed for rigidifying or connecting the polyhedral elements,

and how we can a target DoF or NCC using prescribed links. To simplify our discussion, we focus

on 3D rectangular prismatic assemblies consisting of identical cubic elements.
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3.5.1 MRPs for 3D rectangular prismatic assemblies

We start by extending the rigidity matrix rank computation to 3D. Recall that the rigidity matrix in

the 2D case involves the edge length constraints and the diagonal length constraints for each square

tile. In the 3D case, by the Dehn’s rigidity theorem34, any closed convex polyhedron with

infinitesimally rigid faces is infinitesimally rigid. Therefore, for every cube with side length l, there

are 12 edge length constraints in the form of

gedge(vvvi, vvvj) = ∥vvvi − vvvj∥2 − l2 = 0, (3.23)

where vvvi and vvvj are adjacent vertices, and 6 diagonal length constraints for the 6 faces of the cube:

gdiagonal(vvvi, vvvj) = ∥vvvi − vvvj∥2 − 2l2 = 0, (3.24)

where vvvi and vvvj are opposite vertices in a face.

As for the link constraints, note that adding a link between two vertices vvvi = (x3i−2, x3i−1, x3i)

and vvvj = (x3j−2, x3j−1, x3j) imposes three link constraints in the 3D case:



glinkx(vvvi, vvvj) = x3i−2 − x3j−2 = 0,

glinky(vvvi, vvvj) = x3i−1 − x3j−1 = 0,

glinkz(vvvi, vvvj) = x3i − x3j = 0.

(3.25)

Again, the above length constraints and link constraints are not necessarily independent. Therefore,
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we determine the DoF of the 3D rectangular prismatic assembly using the rigidity matrix A formed

by the above constraints. Since there are 8 vertices per cube and 3 coordinates per vertex, the DoF is

given by

d = 24LMN− rank(A). (3.26)

Denote δ3D(L,M,N) as the minimum number of links for rigidifying an L × M × N 3D

rectangular prismatic assembly. Since every cube has 3 translational DoF and 3 rotational DoF, the

maximum and minimum values of the total DoF are respectively d = 6LMN and d = 6. It follows

that

6LMN− 3δ3D(L,M,N) ≤ 6⇒ δ3D(L,M,N) ≥ 6LMN− 6
3

= 2LMN− 2. (3.27)

Denote a link patterns with exactly 2LMN − 2 links which can rigidify an L ×M × N rectangular

prismatic assembly as aminimum rigidifying link pattern (MRP).

Here we show that the hierarchical construction also works for the 3D case. We first consider the

case where L = M = N and simplify the notation δ3D(L,M,N) as δ3D(L). Suppose the above

lower bound holds for L = l1 and L = l2, i.e. δ3D(l1) = 2l31 − 2 and δ3D(l2) = 2l32 − 2. By

decomposing an l1l2 × l1l2 × l1l2 rectangular prismatic assembly into l2 × l2 × l2 large blocks with

size l1 × l1 × l1, we can rigidify each large block using anMRP for l1 × l1 × l1 (with exactly δ3D(l1)

links), and then connect and rigidity the large blocks using anMRP for l2 × l2 × l2 (with exactly

δ3D(l2) links). This results in a rigidifying link pattern for the l1l2 × l1l2 × l1l2 rectangular prismatic
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Figure 3.8:Minimum rigidifying link patterns (MRPs) for 3D rectangular prismatic assemblies. Left to
right: MRPs for 3D rectangular prismatic assemblies with size 2×2×2 (with exactly 2×23−2 = 14 links), 2×2×3
(with exactly 2× 2× 2× 3− 2 = 22 links), 2× 3× 3 (with exactly 2× 2× 3× 3− 2 = 34 links), and 3× 3× 3
(with exactly 2× 3× 3× 3− 2 = 52 links).

assembly, with the total number of links being

l32δ3D(l1) + δ3D(l2) = l32(2l31 − 2) + (2l32 − 2) = 2(l1l2)3 − 2. (3.28)

This implies that δ3D(l1l2) = 2(l1l2)3 − 2. Similar to the 2D case, we have the following theorem:

Theorem 3.6. For all positive integer L ≥ 2, we have

δ3D(L) = 2L3 − 2. (3.29)

Proof. By explicitly constructingMRPs for L ×M × N = 2 × 2 × 2, 3 × 3 × 3, 2 × 2 × 3,

2 × 3 × 3 with exactly 2LMN − 2 links (see Figure 3.8), we have shown that the statement is true

for L = 2, 3.

For L ≥ 4, we prove the statement by induction. Suppose it is true for all positive integers less
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Figure 3.9:The hierarchical construction method for 3D rectangular prismatic assemblies. To construct an
MRP for a 5 × 5 × 5 3D rectangular prismatic assembly, we decompose the assembly into blocks with size 2 × 2 × 2,
2 × 2 × 3, 2 × 3 × 3, and 3 × 3 × 3 (with different colors). We rigidify each block using anMRP shown in Figure 3.8

(the red links) and then the entire structure using anMRP for 2× 2× 2 (the blue links).

than L. Note that for L ≥ 4, there exists nonnegative integers a, bwith a+ b ≥ 2 such that

L = 2a+ 3b. (3.30)

More specifically, we have the following cases:

• If L ≡ 0 (mod 3), we can express L as L = 2× 0+ 3× L
3 .

• If L ≡ 1 (mod 3), we can express L as L = 2× 2+ 3× L−4
3 .

• If L ≡ 2 (mod 3), we can express L as L = 2× 1+ 3× L−2
3 .

Now, we decompose the L×L×L rectangular prismatic assembly into (a+b)×(a+b)×(a+b)

large blocks with size 2×2×2, 2×2×3, 2×3×3, and 3×3×3 (Figure 3.9). Since 2 ≤ a+b < L,
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by the induction hypothesis and the hierarchical construction we have

δ3D(a+ b) = 2(a+ b)3 − 2. (3.31)

Therefore, by rigidifying the large blocks using MRPs and then the entire structure using an

MRP for (a + b) × (a + b) × (a + b), we obtain a rigidifying link pattern for the L × L × L

rectangular prismatic assembly, with the total number of links

a3δ3D(2) + b3δ3D(3) + 3a2bδ3D(2, 2, 3) + 3ab2δ3D(2, 3, 3) + δ3D(a+ b)

=14a3 + 52b3 + 66a2b+ 102ab2 + 2(a+ b)3 − 2

=16a3 + 54b3 + 72a2b+ 108ab2 − 2

=2(2a+ 3b)3 − 2

=2L3 − 2.

(3.32)

This implies that δ3D(L) = 2L3 − 2. The result then follows from induction. �

We further prove the following result:

Theorem 3.7. For infinitely many positive integers L,M,Nwhich are not all identical, we have

δ3D(L,M,N) = 2LMN− 2. (3.33)

Proof. Take any set of nonnegative integers al, bl, am, bm, an, bn such that al + bl = am + bm =

an + bn ≥ 2, and L = 2al + 3bl,M = 2am + 3bm,N = 2an + 3bn are not all identical (e.g.
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(al, bl, am, bm, an, bn) = (1, 6, 2, 5, 3, 4), with (L,M,N) = (20, 19, 18)). We decompose the

L×M×N 3D rectangular prismatic assembly into (al + bl)× (am + bm)× (an + bn) sub-blocks

of size 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3, and 3 × 3 × 3. Since al + bl = am + bm = an + bn, we

follow the proof of Theorem 3.6 and rigidify each sub-block and subsequently the entire structure

using MRPs, forming a rigidifying link pattern with the total number of links being

alamanδ3D(2) + blbmbnδ3D(3) + (alambn + alanbm + amanbl)δ3D(2, 2, 3)

+ (albmbn + amblbn + anblbm)δ3D(2, 3, 3) + δ3D(al + bl)

=14alaman + 52blbmbn + 22(alambn + alanbm + amanbl) + 34(albmbn + amblbn + anblbm)

+ 2(al + bl)(am + bm)(an + bn)− 2

=2(2al + 3bl)(2am + 3bm)(2an + 3bn)− 2 = 2LMN− 2.

(3.34)

This implies that δ3D(L,M,N) = 2LMN− 2. �

It is noteworthy that the above technique can be further exploited for constructing more MRPs.

For instance, using 2 + 0 = 1 + 1 = 0 + 2 = 2, we first construct anMRP for a 4 × 5 × 6 3D

rectangular prismatic assembly (Figure 3.10a). Then, for any nonnegative integers

al, bl, am, bm, an, bn with al + bl = 4, am + bm = 5, an + bn = 6, the same technique can be used

for constructing anMRP for a (2al + 3bl) × (2am + 3bm) × (2an + 3bn) rectangular prismatic

assembly (Figure 3.10b).
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Figure 3.10:More examples of minimum rigidifying link patterns (MRPs) for 3D rectangular prismatic
assemblies obtained using the hierarchical construction. a, AnMRP for 4× 5× 6 constructed using fourMRPs

for 3 × 3 × 2 (the pink cubes and the associated red links) and fourMRPs for 3 × 2 × 2 (the pale brown cubes and the
associated red links), together with anMRP for 2× 2× 2 (the blue links). b, AnMRP for 13× 12× 11 constructed using
the result in a, with each cube replacedwith a systemwith size 2× 2× 2, 2× 2× 3, 2× 3× 2, or 3× 3× 3.

3.5.2 MCPs for 3D rectangular prismatic assemblies

The study of MCPs can be easily extended to the 3D case. Denote γ3D(L,M,N) as the minimum

number of links needed for connecting a L×M×N 3D rectangular prismatic assembly. Since each

link reduces the NCC by at most 1, we have

γ3D(L,M,N) = LMN− 1. (3.35)

MCPs can be explicitly constructed using an approach analogous to the 2D construction

(Figure 3.11). UsingMCPs for small systems, we can hierarchically construct MCPs for larger

systems.
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a b c d

Figure 3.11:Minimum connecting link patterns (MCPs) for 3D rectangular prismatic assemblies. Left to
right: MCPs for 2× 2× 2, 2× 3× 3, 2× 2× 3, and 3× 3× 3.

Interestingly, δ3D(L) and γ3D(L) are related by a simple formula:

δ3D(L) = 2L3 − 2 = 2(L3 − 1) = 2γ3D(L). (3.36)

In other words, the minimum number of links for rigidifying any L×L×L 3D rectangular prismatic

assembly is exactly twice of the minimum number of links for connecting it.

3.5.3 Controlling rigidity and connectivity usingMRPs andMCPs

Similar to the 2D case, we can easily control the rigidity and connectivity of 3D rectangular

prismatic assemblies by manipulating the links in the MRPs andMCPs.

For instance, note that for anyMRP of an L × L × L 3D rectangular prismatic assembly, we

have DoF = 6 and NCC = 1. Since every link in the MRP is non-redundant, we can achieve DoF =

6+3k by removing any k links from it. Note that NCCwill remain unchanged for sufficiently small

L. Similarly, for anyMCP of an L × L × L 3D cubic kirigami system, we have NCC = 1 and DoF
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= 6L3 − 3γ3D(L) = 3L3 + 3. By removing any k links from it, we achieve a rectangular prismatic

assembly with NCC = k + 1 and DoF 3L3 + 3k + 3. The other approaches for simultaneously

controlling the DoF and NCC discussed in the 2D case can also be suitably extended for the 3D

case.

3.5.4 Triangular prismatic assemblies

Our topological control framework does not only work for rectangular prismatic assemblies but also

structural assemblies formed by other space-filling prisms, such as the triangular prisms.

More specifically, for triangular prismatic assemblies, we again consider the length and link

constraints as discussed above. This time, the DoF of an L ×M × N triangular prismatic assembly

is given by

d = 18LMN− rank(A), (3.37)

where A is the rigidity matrix. Since each prism has six vertices and each of them has three

coordinates, we have the factor 18 (instead of 24) for the first term.

Following the approach for rectangular prismatic assemblies, we construct several MRPS as the

building blocks for the hierarchical construction of MRPs for larger triangular prismatic assemblies

(Figure 3.12). Using these MRPs, we can show that Theorem 3.6 and Theorem 3.7 hold for

triangular prismatic assemblies. The connectivity control can be achieved similarly.
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Figure 3.12:Minimum rigidifying link patterns (MRPs) for triangular prismatic assemblies. a, AnMRP for

2×2×2, with 2×2×2×2−2 = 14 links. b, AnMRP for 2×2×3, with 2×2×2×3−2 = 22 links. c, AnMRP

for 2×3×2, with 2×2×3×2−2 = 22 links. d, AnMRP for 3×2×2, with 2×3×2×2−2 = 22 links. e, An
MRP for 2× 3× 3, with 2× 2× 3× 3− 2 = 34 links. f, AnMRP for 3× 2× 3, with 2× 3× 2× 3− 2 = 34 links.
g, AnMRP for 3× 3×2, with 2× 3× 3×2−2 = 34 links. h, AnMRP for 3× 3× 3, with 2× 3× 3× 3−2 = 52
links.

3.6 Discussion

We have explored the control of rigidity and connectivity of changing the cut topology of kirigami.

This complements our study of the geometric control of kirigami in the previous two chapters.

More broadly, our studies provide guidelines on the geometric and topological consideration for

designing mechanical metamaterials.
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The essence of mathematics lies entirely in its freedom.

Georg Cantor

4
Additive origami and kirigami

Motivated by the recent advances in additive manufacturing, we consider an

alternative approach for metamaterial design in this chapter. In the previous three chapters, we have

focused on the geometric and topological control of kirigami in a global perspective. While we can

effectively achieve prescribed target shapes, rigidity and connectivity using our proposed methods,
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the global design problems involve the consideration of the constraints in all nodes in a kirigami

pattern, making the computation time-consuming.

Here, we consider an additive design approach that creates a metamaterial structure in a

layer-by-layer manner. By identifying the constraints in lengths and angles at the growth front of a

partially built structure, we can simplify the global design problem as a series of local design

problems involving the nodes at the growth front only.

4.1 Additive origami design

We start by considering the problem of additive origami design, i.e. the design of origami structures

in an additive manner. Suppose we are given a quad origami surface, such as the well-knownMiura-

ori pattern as shown in Figure 4.1a. Our goal is to grow the origami surface by suitably adding new

quad strips along the boundary of the surface.

Note that one has to ensure that every quad in a newly added quad strip is compatible with the

existing pattern. This requires the consideration of all angles at the growth front. Nevertheless, we

can largely simplify the problem using the following result:

Theorem 4.1. The space of new interior edge directions along the entire growth front in a quad

origami is one-dimensional, i.e. uniquely determined by a single angle.
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Figure 4.1:Additive origami design. a-b, An existing quad origami surface with a growth front (green), and a zoom-
in of a single boundary vertex xi. c, An illustration of the flap angle αi (red), which sweeps from the βi face counter-
clockwise about e⃗i. Inset view is along e⃗i. d, The new design angle θi,1 sweeps through the plane determined by αi, giving
the possible new edge directions r⃗i. The other new design angle θi,2 (dashed), between r⃗i and ⃗ei+1, is determined by

θi,1. e, An illustration of the choices of θi,1 that satisfy the developability constraint. f, Note that two adjacent growth
directions r⃗i and r⃗i+1 must be coplanar, and hence r⃗i+1 is determined by the intersection of this plane and γi+1. g,
The secondary flap angle α′i at xi, which sweeps from the βi face counter-clockwise about e⃗i+1, is determined by αi.
Consequently, the flap angle αi+1 at xi+1 is also determined by αi.

4.1.1 Single vertex construction

To prove Theorem 4.1, we start by considering the problem at a single boundary vertex xi along the

growth front (Figure 4.1a), with the two adjacent growth front vertices denoted by xi−1, xi+1, the

two boundary design angles incident to xi in the existing surface denoted by θi,3 and θi,4, and the

83



angle in space at xi along the growth front denoted by βi = ∠{−⃗ei, e⃗i+1} ∈ (0, π) (Figure 4.1b),

where e⃗i = xi − xi−1 and e⃗i+1 = xi+1 − xi.

To obtain a new edge direction vector r⃗i that gives the direction of an interior edge xi, x′i in the

augmented quad origami surface, let αi ∈ [0, 2π) be the left-hand oriented flap angle about e⃗i from

the βi plane to the plane of the new quad containing r⃗i and e⃗i (Figure 4.1c). Note that the single

vertex origami at xi should satisfy the local angle sum developability constraint

4∑
j=1

θi,j = 2π, (4.1)

where θi,1 = cos−1(−⃗ri · e⃗i) and θi,2 = cos−1(⃗ri · e⃗i+1) are two new design angles implied by r⃗i

(Figure 4.1d). Since θi,1, θi,2 and βi form a spherical triangle with αi being an interior spherical angle

opposite θi,2, it follows from the spherical law of cosines that

cos θi,2 = cos θi,1 cos βi + sin θi,1 sin βi cos αi. (4.2)

Solving Eq. (4.1) and Eq. (4.2) for θi,1 and θi,2, we are then able to create a single vertex origami at

xi: 
θi,1 = tan−1 cos (θi,3+θi,4)−cos βi

sin (θi,3+θi,4)+sin βi cos αi
,

θi,2 = 2π− θi,1 − θi,3 − θi,4.
(4.3)

One can further prove that the solutions θi,1, θi,2 to Eq. (4.1) and Eq. (4.2) exist and are unique for

any given θi,3, θi,4, βi (angles intrinsic to the existing origami) and αi (the flap angle), modulo a finite
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number of singular configurations. The edge direction r⃗i can then be obtained from the two new

design angles θi,1, θi,2 (Figure 4.1e), which are uniquely determined by αi.

4.1.2 Adjacent vertices

After understanding the geometry of a single vertex origami, we proceed to consider the relationship

between adjacent vertices at the growth front. More specifically, we show that the new edge

directions r⃗i+1, r⃗i−1 at the adjacent vertices xi+1, xi−1 are also uniquely determined by αi.

Without loss of generality, we consider the new edge direction r⃗i+1 (Figure 4.1f) and denote α′i as

the left-hand oriented angle about e⃗i+1 from the βi plane to the plane of the new quad containing

θi,2. Applying the spherical laws of sines and cosines on the spherical triangle formed by θi,1, θi,2 and

βi, we have 
sin α′i =

sin θi,1(αi)
sin θi,2(αi) sin αi,

cos α′i =
cos θi,1(αi)−cos θi,2(αi) cos βi

sin θi,2(αi) sin βi
.

(4.4)

The two equations above yield a unique solution α′i ∈ [0, 2π). Since θi,1 and θi,2 are functions of

αi, α′i is also a function of αi. Now, note that α′i and αi+1 are measured about a common axis. Hence,

they are thus related by a shift of the left-hand oriented angle φi from the βi face to the βi+1 face.

This gives the flap angle transfer function gi : [0, 2π)→ [0, 2π):

αi+1 = gi(αi) = mod(α′i(αi)− φi, 2π) (4.5)

as measured left-hand oriented about e⃗i+1 starting at the βi plane (Figure 4.1g). It is easy to see that
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g is bijective. Therefore, the new edge direction r⃗i+1 is uniquely determined by αi. Similarly, r⃗i−1 is

also uniquely determined by αi.

4.1.3 The entire growth front

It remains to establish a bijection between the flap angles αi and αj at arbitrary i, jwith i < j.

Consider the following composition of the transfer functions:

αj = gj(gj−1(gj−2(· · · gi(αi)))). (4.6)

Since each of the transfer functions gi, gi+1, . . . , gj is bijective, the composition of them is also

bijective. It follows that all new interior edge directions along the entire growth front are

parameterized by a single angle αi.

With the results in the three subsections above, we have completed the proof of Theorem 4.1.

4.1.4 Creating origami structures using the additive design

To apply Theorem 4.1 for creating an origami surface additively, we start by selecting a growth front

at an existing origami surface (Figure 4.2a). Suppose the growth front consists ofm + 1 vertices. By

choosing an arbitrary flap angle along one of the edges at the growth front, we determine the

orientation of one plane in the new strip. By Theorem 4.1, this choice propagates along the entire

growth front, thereby uniquely determining the angles of allm planes in the new strip, except for

the two boundary design angles (Figure 4.2b). The lengths of them + 1 new edges can then be set
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a b c

Figure 4.2:Construction of origami surfaces via additive origami design. a, An existing origami surface with a
growth front consisting ofm + 1 vertices (red). b, Starting from any edge along the growth front, we can choose the flap

angle for the new quad. The choice of the flap angle will then propagate along the entire growth front, thereby uniquely

determining all angles in the new strip (except for the two boundary ones). c, Any boundary of the origami surface can be
chosen as the growth front to extend the surface.

freely, with the condition that none of them intersects with each other. This determines the

geometry of the newly added strip. It is noteworthy that the process can be continued with any

boundary of the origami surface being the growth front (Figure 4.2c), which makes the design

largely flexible.

To demonstrate the effectiveness of our additive design approach, we apply it for creating origami

structures that approximate any prescribed surface inR3. We first construct an upper surface and a

lower surface of the prescribed surface40. Then, for every newly added strip, the angles and the edge

lengths are determined by enforcing adjacent vertices to lie on the upper and lower surfaces
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Figure 4.3:A gallery of surface fitting results obtained by our additive origami design.We apply ourmethod

to create origami surfaces that approximate a helicoid at two different resolutions (top left), cylinders with different

Gaussian curvatures (zero/negative/positive as shown in top right), a landscape surface withmixed curvature at four

different resolutions (themiddle row), a paraboloid at five different resolutions (bottom left), and a hyperbolic paraboloid

at five different resolutions (bottom right).

alternately. As shown in Figure 4.3, our additive design approach allows for the construction of

origami surfaces that approximate a large variety of surfaces with different curvature properties.

Furthermore, unlike the global inverse design approach40, the additive design approach only

requires solving a constrained optimization problem for each newly added strip, which is more

computationally feasible.

Besides the generalizedMiura-ori patterns, our method is capable of producing curved fold

models with the global mountain-valley patterns set to alternate in the direction transverse that of
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Figure 4.4:More origami models produced by our additive design approach. Ourmethod allows for the
design of curved foldmodels (left andmiddle) as well as disordered crumpled sheet models (right).

the curved folds, as well as disordered crumpled sheet models without any systematic

mountain-valley patterns (Figure 4.4). These examples again demonstrate the effectiveness of our

additive approach for origami design.

4.2 Additive kirigami design

The idea of additive design is also applicable to kirigami. Below, we outline two possible approaches

for the additive design of kirigami.
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Figure 4.5: Forward additive kirigami design. a, To augment a kirigami structure by adding two new layers, we

first determine all edges in the new quads incident to the existing pattern (green) and subsequently all edges not

incident to the existing structure (red). b, Note that some of the green edges are uniquely determined by their length
correspondence (blue) with edges in the existing pattern (DoF = 0). c, The other green edges at the interior of the new
strip are also uniquely determined by the angle sum constraint at the corresponding four-bar linkage (DoF = 0). d,
The positions of the two boundary vertices at the top strip can be chosen freely (DoF = 2 × 2), while the those at the
bottom strip are determined by the choice of the two deployment angles (DoF = 2). e, For each rigid wedge (solid red), 1
length and 1 orientation can be chosen (DoF = 2 × #wedges). The angle between the edges in each wedge is uniquely

determined by the angle sum constraint, and the remaining dashed red edges are also uniquely determined by the above

choices. f, The top strip has been completed determined, while the bottom strip has two boundary vertices that can be

placed freely (DoF = 2× 2).

4.2.1 Forward additive design

Analogous to the study of additive origami design, we explore the flexibility of controlling the

geometry of the newly added strip. Consider adding two layers of quads to an existing quad
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kirigami system (Figure 4.5a). The process can be decomposed into two steps: First, we determine

the edges in the new quads incident to the existing pattern. Then, we determine the edges not

incident to the existing pattern. We note that all edges incident to the existing pattern are either

uniquely determined by their length correspondence with edges in the existing pattern (Figure 4.5b)

or by the angle sum constraints (Figure 4.5c), except for the boundary points (Figure 4.5d). For the

edges not incident to the existing pattern, note that we have local control of their lengths and

orientations via the design of the wedges (Figure 4.5e). Finally, we have full control of certain

boundary points (Figure 4.5f).

In other words, if the growth front consists of 2k quads, then the DoF in determining the

geometry of the newly added strip is either 2 × 2 + 2 × k (for the top strip in Figure 4.5) or

2+ 2× (k− 1) + 2× 2 (for the bottom strip in Figure 4.5). Note that in both cases, the total DoF

equals 4 + 2k. We have thereby characterized the full design space for kirigami design. By changing

the 4+ 2k variables in each newly added strip, we can easily create large-scale kirigami patterns.

4.2.2 Inverse additive design

One can also perform the inverse design of kirigami in Chapter 1 additively. As illustrated in

Figure 4.6, given a target shape S ⊂ R2, we consider a series of nested shapes {Si}Ni=1 where

S1 ⊂ S2 ⊂ · · · ⊂ SN = S.

We first solve a simple constrained optimization problem to approximate S1 using a few kirigami

tiles. Then, for i = 2, 3, . . . ,N, we can subsequently approximate Si by keeping the result for Si−1

and solving the constrained optimization problem for the tiles inside Si \ Si−1. Here, the constraints
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the new layer
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optimization for 
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Figure 4.6: Inverse additive kirigami design.We start by solving the inverse design problem for a small pattern.

Then, we add a new layer at the boundary of the existing kirigami structure and construct an initial guess of the geometry

of the new layer in the deployed space. Keeping the existing optimization result (green) fixed, we solve a new constrained

optimization problem on the exterior region and obtain a valid kirigami structure. This process can be continued until a

target resolution is reached.

and objective function are the same as those introduced in Chapter 1, while the dimension of the

search space is largely reduced as the tiles inside Si−1 are fixed. As for the initial guess, the

quasi-conformal mapping method92 can be used for enforcing all deformed tiles to lie on Si \ Si−1.

It is natural to ask about the limit of the inverse additive design approach, i.e. to what extent we

can control the geometry of the newly added tiles in this approach. Consider adding a new layer

with width 1 to an existing n × n quad kirigami structure (Figure 4.7, left). The total DoF in the
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Figure 4.7:The limit of inverse additive kirigami design. Herewe consider adding a new layer with width 1 (left)

and 2 (right) to an existing kirigami structure. Note that the total number of variables in the new layer determines the

possibility of imposing shape constraints in the constrained optimization framework.

newly added layer is 2(2n + 2) + 4 + 8 = 4n + 16. Here, the first term is from the 2n + 2 ’V’

shapes at the boundary, the second term is from the four deployment angles at the four corners of

the existing structure, and the third term is from the four corner vertices of the new layer. Now, to

enforce that all boundary vertices of the augmented kirigami structure to lie on a target shape, we

have in total 2(2n+ 2) + 4 = 4n+ 8 constraints. Since 4n+ 16 > 4n+ 8, it is possible to impose

such boundary shape matching constraints to control the shape of the augmented structure.

However, in case we would like to enforce the contracted configuration of the augmented

structure to be a rectangle, we have 2(2n + 2) + 4 = 4n + 8 additional rectangular boundary

constraints. As 4n + 16 < 4n + 8 + 4n + 8, it is in general impossible for us to achieve this

requirement.

Nevertheless, if we consider adding a new layer with width 2 to an existing n × n quad kirigami

structure (Figure 4.7, right), a similar calculation suggests that the total DoF in the newly added
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layer is 4n + 16 + 4(n + 2) + 16 = 8n + 40. The number of the boundary shape matching

constraints is 4(n + 2) + 8 = 4n + 16, and the number of the rectangular boundary constraints is

also 4(n+ 2) + 8 = 4n+ 16. Since 8n+ 40 > 4n+ 16+ 4n+ 16, adding a new layer with width

2 is sufficient for enabling the control of both the contracted and the deployed boundary shapes.

4.3 Discussion

The additive design framework is advantageous over the global design approaches as it allows for the

flexibility of controlling the local geometry of the patterns without going through the global

optimization process. The reduction of computational complexity makes the additive design a

promising way for creating mechanical metamaterials at arbitrary scale.
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Cell and tissue, shell and bone, leaf and flower, are so

many portions of matter, and it is in obedience to the laws

of physics that their particles have been moved, moulded

and conformed. They are no exceptions to the rule that

God always geometrizes.

D’Arcy Thompson

5
Insect wing morphometry

Biological form both constrains and enables biological function. To quantify,

compare and classify biological shapes, morphometric tools are necessary. In geometric

morphometrics, landmark coordinates are widely used for shape quantification149. Note that a

planar shape may be quantified by its boundary, which determines its overall geometry.
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Additionally, specific features in its interior may be used as landmarks to capture its structural

features. It is therefore important to develop a method that takes both the overall shape and the

interior landmarks into consideration for quantifying shape variation.

In this work, we develop a landmark-matching, curvature-guided Teichmüller mapping for

planar morphometrics using quasi-conformal theory51 and functional data analysis127. Our

method allows for the exact matching of boundaries as well as the prescribed landmarks, thereby

overcoming all the above-mentioned problems. We deploy our method for quantifying the shape

variation of insect wings across developmental and evolutionary time scales.

5.1 Landmark-matching, curvature guided Teichmüller maps

Consider two simply-connected closed regions S1, S2 ⊂ C as two planar shapes that we want to

compare (Figure 5.1a). Let {lint1k }
m
k=1 and {l

int2
k }

m
k=1 be two sets of landmarks at the interior of S1

and S2 respectively, and {l
bdy1
k }

n
k=1 and {l

bdy2
k }nk=1 be two sets of landmarks on the boundaries ∂S1

and ∂S2. Our goal is to find a bijective map f : S1 → S2 satisfying

f(lint1k ) = lint2k , k = 1, 2, ...,m, (5.1)

and

f(lbdy1k ) = lbdy2k , k = 1, 2, ..., n, (5.2)

with the shape difference between S1 and S2 captured by f.
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5.1.1 Boundary matching based on curvature

To compute the map f, we start by determining the boundary correspondence ϕ : ∂S1 → ∂S2. A

natural way to match the boundaries of S1 and S2 is to use their curvatures. More specifically, the

highly curved parts of ∂S1 should correspond to the highly curved parts of ∂S2, while the relatively

flat parts of ∂S1 should correspond to the relatively flat parts of ∂S2. Define the accumulated arc

length and the accumulated curvature of a planar curve C by xt =
t∑

i=0
l(i) and yt =

t∑
i=0

κ(i). Here,

l(i) and κ(i) are respectively the arc length and the curvature approximated at the i-th point on C.

Then, the function ψ defined by ψ(xt) = yt for all t encodes the curvature distribution of C. Using

this idea, we obtain two functions ψ1,ψ2 that represent the curvature variations of ∂S1 and ∂S2,

with a reparameterization of the domains of ψ1,ψ2 to be [0, 1] and consider ψ1,ψ2 : [0, 1]→ R.

Now, we match the curvature variations of ∂S1 and ∂S2 by aligning ψ1 and ψ2. To do this in a

reparameterization independent way, we use the square root velocity function (SRVF) dynamic

warping method128,79 that considers a bijection from ψ1,ψ2 to the square root velocity functions

(SRVFs) q1, q2 : [0, 1]→ R defined by

q1 = sgn(ψ̇1)
√
|ψ̇1| and q2 = sgn(ψ̇2)

√
|ψ̇2|. (5.3)

Instead of aligning ψ1,ψ2 directly, the SRVF dynamic warping method finds the optimal alignment
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of ψ1,ψ2 by aligning the SRVFs q1, q2 using a warping function

γ∗ ∈ Γ := {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. (5.4)

To find the optimal γ∗, we solve the following minimization problem using dynamic programming:

γ∗ = argminγ∈Γ∥q1 − (q2 ◦ γ)
√
γ̇∥2, (5.5)

where ∥ · ∥2 denotes the Euclidean 2-norm. We obtain a curvature-guided correspondence

ψ1(t)↔ ψ2(γ(t)), t ∈ [0, 1]. (5.6)

This gives us the desired curvature-guided map ϕ : ∂S1 → ∂S2.

In case there are boundary landmark constraints as specified in Equation (5.2), one can partition

∂S1 and ∂S2 according to the boundary landmarks {lbdy1k }
n
k=1 and {l

bdy2
k }nk=1 and n pairs of

corresponding boundary segments. For each pair of segments, we deploy the above procedures and

match them based on their curvature variations. Ultimately, this results in a curvature-guided

boundary map ϕ : ∂S1 → ∂S2 satisfying

ϕ(lbdy1k ) = lbdy2k , k = 1, 2, ..., n. (5.7)
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5.1.2 Quasi-conformal theory and Teichmüller maps

Since conformal maps preserve angles, infinitesimal circles are mapped to infinitesimal circles under

any conformal maps. This condition is relaxed under quasi-conformal maps. Mathematically, a

quasi-conformal map f : D ⊂ C → C is a homeomorphism satisfying the Beltrami equation

∂f
∂z

= μf(z)
∂f
∂z

for some complex-valued function μf(z)with ∥μf(z)∥∞ < 1. Here, μf is called the

Beltrami coefficient of f. Intuitively, quasi-conformal maps send infinitesimal circles to infinitesimal

ellipses with bounded eccentricity. To see this, let z0 be a point inD. The first order approximation

of f around z0 is given by

f(z) ≈ f(z0) + fz(z0)(z− z0) + fz(z0)z− z0

= f(z0) + fz(z0)
(
z− z0 + μf(z0)z− z0

)
.

(5.8)

In other words, infinitesimal circles are mapped to infinitesimal ellipses with the maximum

magnification |fz|(1+ |μf|) and the maximum shrinkage |fz|(1− |μf|), so that the aspect ratio of the

ellipses, the dilatation, is
1+ |μf|
1− |μf|

. The maximal dilatation of the quasi-conformal map f is then

defined byKf =
1+ ∥μf∥∞
1− ∥μf∥∞

. Among all quasi-conformal maps, Teichmüller maps achieve a

constant |μf(z)| over the entire domainD, so that every infinitesimal circle onD is mapped to an

infinitesimal ellipse with a constant aspect ratio51.

Teichmüller maps are advantageous for morphometrics for the following reasons. First, given any

boundary correspondence ϕ : ∂S1 → ∂S2 and landmark constraints {l1i} ⊂ S1 ↔ {l2i } ⊂ S2,

there exists a unique landmark-matching Teichmüller map f that achieves the minimummaximal
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dilatation over the space of all landmark-matching quasi-conformal maps131, i.e.

f = argminh:h|∂S1=ϕ,h(l1i )=l2i
Kh. (5.9)

Second, the bijectivity of Teichmüller maps is guaranteed51. This gives a 1-1 correspondence

between every part of two shapes, thereby facilitating the pairwise comparison between shapes.

Third, as the norm of the Beltrami coefficient μf is constant over the entire domain, we have a

natural a measure of the dissimilarity between two shapes. Note that |μf| always lies within [0, 1),

and equals 0 if and only if f is conformal. Hence, if 1 − |μf| = 1, then the two shapes are identical

up to conformal maps. If 1 − |μf| ≪ 1, there is a large local quasi-conformal dissimilarity between

the two shapes. Besides, if we denote w = f(z), we have

0 = μf−1◦f =
(f−1 ◦ f)z
(f−1 ◦ f)z

=
((f−1)w ◦ f)fz + ((f−1)w ◦ f)fz
((f−1)w ◦ f)fz + ((f−1)w ◦ f)fz

=
μf + (μf−1 ◦ f)

fz
fz

1+ (μf−1 ◦ f)
fz
fz

. (5.10)

This implies that |μf(z)| = |μf−1(f(z))| for all z. Therefore, 1 − |μf| provides an inverse consistent

measurement of dissimilarity between any two planar shapes with prescribed landmarks.

For the computation of discrete Teichmüller maps, we make use of the QC Iteration

algorithm86,92, which is an efficient iterative algorithm with guaranteed convergence85. Using the

boundary correspondence f|∂S1 = ϕ, along with the QC Iteration algorithm, we can obtain a

curvature-guided Teichmüller map f : S1 → S2 satisfying the interior landmark constraints in

Equation (5.1). Since f is Teichmüller, the norm of the associated Beltrami coefficient |μf| is a
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Figure 5.1:An illustration of the landmark-matching Teichmüller mapping algorithm. a, Two planar
insect wing shapes to be compared. b, A flow chart describing the approach following theQC Iteration algorithm 86,92 for

computing discrete landmark-matching Teichmüller maps. We first discretize the insect wing images and use a curvature-

guided boundary correspondence to obtain a landmark-matching initial map. Thenwe iteratively solve for a landmark-

matching Teichmüller map. c, The resulting landmark-matching Teichmüller map, with small circles in the left shape
mapped to small ellipses with a uniform aspect ratio in the right shape. The red landmark points of vein intersections

on the source wing shape are exactly mapped to the corresponding landmark points on the target wing shape. Thewing

images are adapted from the Hawaiian DrosophilaWing Database 42.

constant, and the quantity 1 − |μf| is a measure of quasi-conformal similarity between S1 and S2.

The procedure is summarized as Algorithm 5.1. An illustration of the algorithm is given in
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Figure 5.1.

Algorithm 5.1: Landmark-matching curvature-guided Teichmüller map for planar
shapes
Input: Two planar shapes S1, S2, with interior landmarks {lint1k }mk=1, {l

int2
k }mk=1,

boundary landmarks {lbdy1k }nk=1, {l
bdy2
k }nk=1.

Output: A landmark-matching, curvature-guided Teichmüller mapping f : S1 → S2, a
similarity score s.

1 Compute a curvature-guided boundary mapping ϕ : ∂S1 → ∂S2 satisfying
ϕ(lbdy1k ) = lbdy2k for all k = 1, 2, ..., n;

2 With the boundary correspondence ϕ : ∂S1 → ∂S2, compute a landmark-matching
Teichmüller mapping f : S1 → S2 satisfying f|∂S1 = ϕ and f(lint1k ) = lint2k for all
k = 1, 2, ...,m;

3 Compute the Beltrami coefficient μf of the mapping f. The score s is given by 1− |μf|;

5.2 Statistical analysis of the quasi-conformal similarity matrix

Suppose we are given a set of planar shapes {Si}
p
i=1. Using the above mapping method, we can

construct a p × p similarity matrixM, where the (i, j)-th entry ofM represents a measure of

similarity between Si and Sj defined by 1 − |μfij |, with fij : Si → Sj being the desired

landmark-matching, curvature-guided Teichmüller map between Si and Sj. The values of all entries

ofM are within the range [0, 1], where a larger value indicates a higher level of similarity. We can

then use this similarity matrixM to perform a statistical analysis and cluster the set of shapes.

5.2.1 Adaptive thresholding

Note that the similarity matrixM is dense with p2 − p nonzero entries in general. To highlight the

important information in it, we propose an adaptive thresholding algorithm that iteratively modifies
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and sparsifiesM.

ConsiderM as the adjacency matrix of a weighted directed graph with p vertices, where every

vertex represents a shape in the set {Si}
p
i=1, and every pair of vertices are connected by two directed

weighted edges. The weight of the directed edge [i, j] is given byMij. Intuitively, from the

perspective of one of the shapes Si, a largerMij among all entries {Mi1,Mi2, ...,Mip} indicates a

higher level of similarity between Si and Sj as compared to other shapes. Consider a weighted

directed graph withM being the weighted adjacency matrix. In other words, the weight of the

directed edge [i, j] from vertex i to vertex j is given byMij. Given a thresholding parameter λ, to

determine the importance of the directed edge [i, j] from vertex i, we consider the quantity

νi = Mi + λσi, whereMi and σi are respectively the mean and the standard deviation of {Mik}
p
k=1.

IfMij > νi we setMij = 1. If not, we neglect the edge by settingMij = 0. For a pair of directed

edges [i, j] and [j, i], there are exactly three possibilities: (i)Mij = Mji = 1, i.e. Si and Sj are similar

to each other, (ii)Mij = Mji = 0, i.e. Si, Sj are dissimilar, and (iii)Mij = 1,Mji = 0 or

Mij = 0,Mji = 1, i.e. it is not clear that whether Si, Sj are sufficiently similar to be grouped in one

community. To better represent this, we symmetrizeM by takingM ←− M+MT

2
, so that

Mij ∈ {0, 1
2 , 1} indicates the relationship of Si, Sj for all i, j = 1, . . . , p. We repeat the thresholding

and symmetrizing steps onM until the result converges. The algorithm is summarized as

Algorithm 5.2.

Now, we prove that Algorithm 5.2 converges for anyM and any λ.

Theorem 5.1. Algorithm 5.2 converges for any similarity matrixM and for any thresholding
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Algorithm 5.2:Adaptive thresholding
Input: A n× n similarity matrixM, a thresholding parameter λ.
Output: A thresholded matrix where all entries are 0, 1

2 or 1.
1 SetM0 = M;
2 Set k = 0;
3 repeat
4 Update k by k+ 1;
5 For each row i, denote νki = Mk

i + λσki , whereMk
i and σki are respectively the mean

and the standard deviation of {Mk
it}nt=1. SetMk

ij =

{
1 ifMk−1

ij ≥ νk−1
i ,

0 otherwise. ;

6 UpdateMk by Mk+(Mk)T

2 ;
7 untilMk = Mk−1;

parameter λ.

Proof. Note that at each iteration, we always have 1 → 1, 0 → 0, and 1
2 → (1or 12or0). Let nk

be the number of
1
2
in the matrixMk. It is easy to see that the sequence {nk}∞k=1 is non-increasing.

Also, note that 0 ≤ nk ≤ n1 ≤ |M|where |M| denotes the total number of entries inM. By

Monotone Convergence Theorem, {nk}∞k=1 converges and 0 ≤ limk→∞ nk ≤ n1.

Now, it is easy to see that if nK+1 = nK thenMK+1 = MK, which indicates the convergence. By

the symmetry ofMk, if nK+1 < nK, then nK − nK+1 must be a multiple of 2. Hence, the maximum

number of iterations needed for achieving convergence is bounded above by n1/2. �

5.2.2 Clustering and community detection

Finally, to cluster all shapes into several communities based on the thresholded matrixM, we apply

a recent community detection method97 that accounts for the non-locality and asymmetry of the
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connections between edges96. The method is briefly described below.

Denote the set of shapes {Si}
p
i=1 by S . The similarity between two communities CI,CJ ⊂ S is

given by simIJ = simin − simout, where simin =
1

∥CI ∪ CJ∥2
∑

i,j∈CI∪CJ

gij represents the average

similarity score inside the communities, and

simout =
1

∥CI ∪ CJ∥ · ∥S \ CI ∪ CJ∥
∑

i∈S\CI∪CJ

∑
j∈CI∪CJ

gij represents the average similarity score

outside the communities. At each iteration, the communities with a high simIJ are combined until

the grouping result stabilizes. The final communities formed represent the clustering result based on

our Teichmüller morphometric method. The procedure is summarized as Algorithm 5.3.

Algorithm 5.3:Cluster analysis of planar shapes via landmark-matching curvature-
guided Teichmüller maps
Input: A set of planar shapes {Si}

p
i=1 with prescribed landmark correspondences.

Output: Community labels {li}
p
i=1.

1 Apply Algorithm 5.1 for all pairs of shapes (Si, Sj), 1 ≤ i, j ≤ p. Denote the similarity
score between them by sij;

2 Construct a p× p similarity matrixM = (sij);
3 Apply Algorithm 5.2 onM and obtain the thresholded matrix;
4 Apply the community detection method97 with the thresholded matrix and obtain the
community labels {li}

p
i=1;

This completes our Teichmüller morphometric framework for planar shapes.
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5.3 Quantifyingwing shape in evolution and development

5.3.1 Phenotypic variation of Hawaiian Drosophila wings

We deploy our Teichmüller-map morphometric framework for studying theDrosophilawings in the

Hawaiian Drosophila Wing Database42, with a total of 128 wings drawn from four “picture wing”

phylogenetic groups, including the adiastola group, the planitibia group, the glabriapex group and

the grimshawi group (Table 5.1). We discretize every wing image from the different species using

a triangle mesh with approximately 9000 triangle elements. As shown in Figure 5.2, seven points

are manually chosen as boundary landmarks for each wing, including the intersections between

the longitudinal veins L2, L3, L4, L5 and the wing boundary. Also, three intersections between

the veins are manually chosen as interior landmarks, including the intersections between L4 and

the anterior cross-vein (ACV) and the posterior cross-vein (PCV), and the intersection between

L5 and PCV. Figure 5.3 shows the performance of our landmark-matching Teichmüller mapping

method and some prior methods for comparing a pair of wings from theD. punalua and theD.

silvestris species. It can be observed that our approach is capable of matching the boundary shapes

and interior landmarks of the two wings accurately, while the prior methods are unable to match all

landmarks and the wing boundaries exactly.

After demonstrating the effectiveness of our method for pairwise comparison, we compute the

128× 128 similarity matrixMwithMij = 1− |μf(i, j)| for the entire set of shapes (Figure 5.4). We

then apply Algorithm 5.2 with the thresholding parameter λ = 1 and the community detection
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Species Phylogenetic group Specimen number
clavisetae adiastola 1–5
ornata adiastola 6–7

setosimentum adiastola 8–10
adiastola adiastola 11–14
cilifera adiastola 15–20
hamifera adiastola 21–26
spectabilis adiastola 27–32
heteroneura planitibia 33–37
planitibia planitibia 38
silvestris planitibia 39–40
nigribasis planitibia 41–42
cyrtoloma planitibia 43–46

melanocephala planitibia 47–48
neoperkinsi planitibia 49–51
neopicta planitibia 52–55
oahuensis planitibia 56–57
obscuripes planitibia 58–60
hemipeza planitibia 61–63
picticornis planitibia 64–65
aglaia glabriapex 66–67
basisetae glabriapex 68–70
digressa glabriapex 71–72
discreta glabriapex 73–74

fasciculisetae glabriapex 75
glabriapex glabriapex 76–77
macrothrix glabriapex 78–80
montgomeryi glabriapex 81–83
punalua glabriapex 84–87

affinidisjuncta grimshawi 88–89
balioptera grimshawi 90–91
bostrycha grimshawi 92–93
craddockae grimshawi 94
crucigera grimshawi 95–98
disjuncta grimshawi 99–103
grimshawi grimshawi 104

heedi grimshawi 105–106
silvarentis grimshawi 107–108
limitata grimshawi 109–112

engyochracea grimshawi 113–115
hawaiiensis grimshawi 116–118
murphyi grimshawi 119–120
orphnopeza grimshawi 121–122
orthofascia grimshawi 123
recticilia grimshawi 124–125
sproati grimshawi 126–127

villosipedis grimshawi 128

Table 5.1:The list of wing specimens adapted from the Hawaiian Drosophila Wing Database42. The
specimen numbers represent the row/column numbers corresponding to the specimens in the similarity matrix.
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L2

L3
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L5

ACV

PCV
1 mm

Figure 5.2:AHawaiian Drosophila wing and the finite element discretization of it. Red: Landmark points
of the intersections between the longitudinal veins L2, L3, L4, L5, the anterior cross-vein (ACV), the posterior cross-vein

(PCV) and the boundary. The wing image is adapted from the Hawaiian DrosophilaWing Database 42.

method97 on the thresholded similarity matrix for clustering the wing shapes (Algorithm 5.3). To

visualize the result, we apply the multidimensional scaling (MDS) method to project the

information of the thresholded matrix onto the Euclidean plane, with the similarity information

preserved as distances between nodes. Every specimen in our dataset is visualized as a node on the

plane. The clustering result produced by our framework is shown in Figure 5.5. It can be observed

that the nodes are clustered into three groups, with the speciesD. glabriapex (denoted by

Community 1),D. planitibia (denoted by Community 2) andD. grimshawi (denoted by

Community 3) being a representative in each of them.

Of the 22 specimens in the glabriapex phylogenetic group, 20 (91%) of them are clustered into

Community 1. Of the 33 specimens in the planitibia phylogenetic group, 28 (85%) of them are

clustered into Community 2. Of the 41 specimens in the grimshawi phylogenetic group, 21 (51%)

of them are clustered into Community 3 and 18 (44%) are clustered into Community 1. Of the 32

specimens in the adiastola phylogenetic group, 18 (56%) of them are clustered into Community 3

and 12 (38%) are clustered into Community 1. From the above, it can be observed that Community
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Figure 5.3:A comparison between our proposed method and four prior morphometric approaches. First
row: TheD. punalua andD. silvestriswings. Second row: The landmark-matching Teichmüller map ofD. punalua ontoD.
silvestris, and the intensity difference between themapping result and theD. silvestriswing. The third and fourth rows:
The intensity differences computed using direct mapping, Procrustes superimposition 55, least-square conformal mapping

and Thin Plate Spline 11. TheD. punalua andD. silvestriswing images are adapted from the Hawaiian DrosophilaWing

Database 42.

2 primarily consists of wings from the planitibia phylogenetic group but not the other three groups.

This suggests that the wings in the planitibia phylogenetic group share highly similar phenotypic

features and are very different from the wings in all other phylogenetic groups. Noticing the high

percentage of specimens in the glabriapex phylogenetic group classified into Community 1, we

deduce that there is also a high level of similarity among the wings in the glabriapex phylogenetic

group. By contrast, the adiastola phylogenetic group and the grimshawi phylogenetic group
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Figure 5.4:The similarity matrix for the 128 wings in the Hawaiian Drosophila Wing
Database42obtained by our landmark-matching, curvature-guided Teichmüller mapping method.

demonstrate a higher level of shape diversity as both of the two groups are primarily clustered into

two communities.

Now, we further analyze the phenotypic features of the three communities qualitatively to

understand the community detection results. The images of the wings in Community 1,

Community 2 and Community 3 are respectively shown in Figure 5.6, Figure 5.7 and Figure 5.8.

There is a notable difference in the wing geometries of the three communities in terms of the wing

shapes and the relative locations of the landmarks. More specifically, for the wings in Community 1,

a relatively round shape at the bottom of the wing boundary and a relatively sharp wing tip can be

observed in general, and the intersection between L5 and PCV is relatively far away from the wing

boundary. For the wings in Community 2, they are in general with an elongated shape, and the

intersection between L5 and PCV is relatively close to the wing boundary. For the wings in
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Figure 5.5:The community detection result obtained by our proposed framework visualized on the
multidimensional scaling (MDS) coordinate plane. Every specimen is represented as a node on the plane
constructed byMDS. The nodes are color-coded by the community labels obtained by our framework. Blue: Community

1. Red: Community 2. Green: Community 3. The shapes of the nodes represent their phylogenetic groupings. Circle: The

adiastola group. Square: The planiࢼbia group. Triangle: The glabriapex group. Diamond: The grimshawi group. The number
beside each node represents the specimen number specified in Table 5.1. The wing images shown are adapted from the

Hawaiian DrosophilaWing Database 42.

Community 3, we observe a round silhouette in general, and the intersection between L4 and ACV

is relatively distal when compared with that in the other two communities.

There are a few interesting exceptions in the community detection result for the planitibia

phylogenetic group. For the two speciesD. hemipeza andD. picticornis, which belong to the

planitibia phylogenetic group but are clustered into Community 3, it can be observed that their
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Figure 5.6:The species clustered as Community 1 by our framework. The images are adapted from the

Hawaiian DrosophilaWing Database 42 (not to scale).

wings are different from the other wings in the planitibia phylogenetic group. More specifically, the

D. picticorniswing has a relatively round shape and is more pigmented than all other wings in the

planitibia phylogenetic group. This can possibly be explained by the early division in the phylogeny

of the planitibia phylogenetic group9 that separatesD. picticornis from the other species. ForD.

hemipeza, we observe that the intersection between L4 and ACV is distal relative to the same

landmark for the other wings in the planitibia phylogenetic group.

While we have been focusing on landmarks based on wing venation network motifs, it is natural

to ask if our method might shed light on the pigmentation patterns, a trait that is controlled by just

a few genes104 and likely to be more labile. We observe three different pigment patterns in the three

communities we obtained. More specifically, the majority of Community 1 possesses a moderate
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Figure 5.7:The species clustered as Community 2 by our framework. The images are adapted from the

Hawaiian DrosophilaWing Database 42 (not to scale).

number of pigment spots, which occur near the top part of the wing, the intersection between L4

and PCV, and the intersection between L5 and PCV. The wings in Community 2 possess a small

number of pigment spots, which occur near the distal tips of L2, L3 and L4. For Community 3,

most wings in the community possess a high level of pigmentation. As our Teichmüller-based

classification method is solely based on wing boundary shape and venation landmark positions, it is

surprising that the communities formed show a clustering effect with respect to their pigment

patterns. This suggests that there may be a crosstalk between the genes encoding for both

phenotypes, which is worth exploring further using phylogenetic approaches in future works.

5.3.2 Temporal development of Lepidoptera wings

Besides studying the phenotypic variation ofDrosophilawings, we can also apply our proposed

Teichmüller morphometric method for analyzing the temporal development of Lepidoptera wings.
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Figure 5.8:The species clustered as Community 3 by our framework. The images are adapted from the

Hawaiian DrosophilaWing Database 42 (not to scale).

We deploy our method on the forewings of the speciesManduca sexta and Junonia coenia101 at the

larval, prepupal, pupal and adult stages. Between every two successive developmental stages, we

compute a Teichmüller map. The constant norm of the associated Beltrami coefficient between the

two stages, denoted by Δ|μ|, represents the local shear and the quasi-conformal dissimilarity between

them. While the local shear is a constant over the entire domain, the local area change and

orientation change may vary. To better analyze these quantities, We construct a circle packing on

the wing at the earlier temporal stage and map onto the wing at the latter stage using the

Teichmüller map. This produces a deformed packing on the wing at the latter stage, where the

circles are deformed to ellipses with different size and orientation. Then, the local area change under

the mapping can be captured by the change in size of the ellipses relative to the original circles, and
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the local orientation change can be captured by the change in the orientation of the ellipses relative

to the original circles. More explicitly, we quantify the change in size by ΔA =
Area of ellipse
Area of circle

for

each small circle, and the change in orientation by Δp =< 2 cos2 θ − 1 >which averages over the

1-ring neighborhood of every circle, where θ is the orientation change of the circle under the

Teichmüller map. The proximal-distal orientation of the major axis is denoted by Δp = 1 while an

anterior-posterior orientation of the major axis yields Δp = −1.

Figure 5.9 and Figure 5.10 show the Teichmüller maps between successive stages ofManduca

sexta and Junonia coeniawings respectively. We first analyze the overall change between every two

successive stages quantified by the quasi-conformal dissimilarity Δ|μ|, the average local area change

mean(ΔA) and the average local orientation change mean(Δp). We observe that the largest Δ|μ|

occurs between prepupa and pupa forManduca sexta, while Δ|μ| increases throughout the

development for Junonia coenia. It can also be observed that the average local area changes of the

two species are different. ForManduca sexta, mean(ΔA) decreases throughout the development,

while for Junonia coenia the greatest mean(ΔA) occurs between prepupa and pupa. Besides, it is

noteworthy that the magnitude of mean(ΔA) for Junonia coenia is greater than that forManduca

sexta between every two successive stages. For the local orientation change, bothManduca sexta and

Junonia coeniawings undergo an overall proximal-distal orientation change at the earlier stages of

the development, as mean(Δp) > 0. However, the two species are different in the overall

orientation change between pupa and adult. ForManduca sextawe have mean(Δp) ≈ 0, which

indicates that the overall orientation change is small. By contrast, for Junonia coenia there is a

notable overall proximal-distal orientation change.
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Figure 5.9:Analyzing the temporal development ofManduca sexta wings using Teichmüller map. Top
row: TheManduca sextawing images 101 at different developmental stages (displayed to scale). A Teichmüller map is

computed between every two successive stages. Second row: The quasi-conformal dissimilarityΔ|μ|, the average of

the local size changeΔA and the average of the local orientation changeΔp between every two successive stages. The

last three rows show the deformation of the circle packing under the Teichmüller map between every two successive

stages, visualized on the wing at the latter stage. The left column shows the resulting ellipses color-coded byΔA. The

right column shows the resulting ellipses color-coded byΔp. For visualization purpose, the shapes in the last three rows

are rescaled to have the same height, with their aspect ratio kept unchanged.

Now, we analyze the variation of the local area and orientation changes across each deformed

circle packing. From the heat maps of ΔA for bothManduca sexta and Junonia coenia, it can be

observed that the most significant local area change between pupa and adult occurs at the distal half

of the wings. However, there is a notable difference between the regions with the greatest ΔA at the
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Figure 5.10:Analyzing the temporal development of Junonia coenia wings using Teichmüller map. The
notation is the same as in Figure 5.9.

earlier stages for the two species. From the heat maps of Δp, we also observe a difference between the

patterns of the orientation change of the two species. ForManduca sexta, the wing primarily

undergoes a proximal-distal orientation change from larva to pupa, followed by a significant

anterior-posterior orientation change at the central region from pupa to adult. By contrast, for
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Junonia coenia, the wing undergoes a more diversified local orientation change from larva to pupa,

followed by an anterior-posterior change at the distal region from pupa to adult.

We note that the local change reflected by Teichmüller maps throughout the development of

Manduca sexta appears to be correlated with the local mitotic density101. More specifically, as

shown in Figure 5.9, the Teichmüller map between prepupa and pupa results in a small ΔA at the

top part of the wing and a large ΔA at the distal part, which agrees with the mitotic density

distribution at that period. We also observe that both ΔA and the mitotic density for the period

from pupa to adult achieve the greatest value around the tip of the wing and the smallest value at the

proximal part. By contrast, for Junonia coenia, the correlation between the local change reflected by

Teichmüller maps and the local mitotic density is less significant.

We remark that under Teichmüller maps, all local changes are captured by the three quantities

Δ|μ|, ΔA and Δp, where Δ|μ| and Δp together describe the shape change, and ΔA describes the size

change. Hence, shape and size can be analyzed separately. Therefore, Teichmüller maps provide a

way to assess, identify and remove allometry.

5.4 Discussion

Studying shape variation is an important problem in biology. By combining complex analysis,

computations and statistics, we have developed a new geometric morphometric approach for the

quantification, comparison and classification of planar biological shape. It improves on previous

methods by allowing for the mapping between two shapes with arbitrary boundary and landmark
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correspondences. More generally, this work enables us to link phenotypes to genotypes by applying

the proposed method for analyzing wing shape across species, as well as to describe the process of

wing shape developmentally by applying the proposed method for analyzing wing shape over time.
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If nature were not beautiful, it would not be worth

knowing, and if nature were not worth knowing, life

would not be worth living.

Henri Poincaré

6
Ferret brain morphogenesis

Understanding the growth and form of normal and abnormal cortical

convolutions is important for the study of human neurodevelopmental diseases.

In our recent works, we proposed a model for explaining gyrification based on a simple mechanical

instability driven by tangential expansion of the gray matter constrained by the white matter135 and
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Figure 6.1:Time course of morphogenesis of ferret and gel brains. a, Whole brain samples from ferret. b, MRI

ferret brain data. c, The development of themajor sulci of the ferret brain defined in the literature 122,123,99,4,49.

deployed it to simulate normal human cortical convolution136. However, studies of cerebral cortical

malformations (MCDs) are limited by our ability to identify ongoing malformation of the human

fetal brain in utero. This limits our understanding of MCDs developmental trajectory.

Unlike human brain, there is a progressive development of the cortical gyri and sulci in ferret

brain from postnatal day 0 (P0) to adolescence122,123,99,4,49 (Figure 6.1). This suggests that ferret

121



is a good candidate for the study of normal and abnormal neurodevelopmental processes. In this

chapter, we first simulate the growth of normal ferret brain using a gel model and a computational

model based on the principle of constrained cortical expansion and show that the simulation results

agree with the real brain development. We then proceed to use the models to reproduce defective

developmental processes of ferret brain.

6.1 Physical gel model of ferret brain folding

We constructed a physical simulacrum of ferret brain folding using the observation that soft physical

gels swell superficially when immersed in solvents. We first reconstructed surfaces of pre-swelling

brain states from T2-weighted motion corrected anatomical MR images of ferret brains at postnatal

days: P0, P4, P8 and P16. Then, we produced bilayer gel models of the ferret brain at various ages

through a combination of 3D printing and replica molding based on the reconstructed brain

surfaces135,136. We passed two reconstructed surfaces (pial surface and inner cortical surface) to a 3D

printer to obtain a 3D printed mold. Then we used the 3D printed mold to cast a negative mold

made of supersoft silicone. We used the inner cortical surface mold to produce the core (white

matter) composed of lightly cross-linked polydimethylsiloxane (PDMS) elastomer. We assembled

the PDMS elastomer prepolymer by mixing the separated base and cross linker components in a

45:1 (base to cross-linker) mass ratio, degassed it in a vacuum to eliminate air bubbles, and poured it

into the inner cortical surface negative mold. We brought the poured prepolymer to 75o C for 45 to

75 minutes to form a PDMS core with a partially cured surface, which we then extracted from the
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mold. We then used the pial surface mold to cast the outer layer around the partially cured PDMS

core. We prepared a new PDMS prepolymer mixture with a base to cross-linker mass ratio of 28 : 1.

We degassed the prepolymer and pour it into the pial surface mold with the previously cured core

suspended inside. We brought the fully assembled two-layer gel brain model to 75o C for a

minimum of 2 hours such that it was completely cured. To mimic tangential cortical growth, we

immersed the two-layer gel brain model in an organic solvent that permeated the outer (cortical)

layer by diffusion and induced it to swell. We chose hexanes as the solvent based on its compatibility

with PDMS and resultant ability to induce a high degree of swelling. Figure 6.2 shows the gel brains

evolve folds via swelling between stages P8 and P16 in a ferret kit.

6.2 Computational model of ferret brain folding

For the numerical simulation of ferret brain development, we follow the approach in Ref.135,136 and

consider a material consisting of a layer of gray matter on top of a deep layer of white matter. The

material is assumed to be neo-Hookean with volumetric strain energy density

W =
μ
2

[
Tr(FFT)J−2/3 − 3

]
+

K
2
(J− 1)2, (6.1)

whereF is the deformation gradient, J = det(F), μ is the shear modulus andK is the bulk modulus.

We assume thatK = 5μ for a modestly compressible material.

Three geometrical parameters of the 3D brain models are the brain sizeR, the cortical thickness

T and the tangential expansion g2. For ferret brain development, we follow the empirical scaling law
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Figure 6.2:Gel model of ferret brain morphogenesis. (Left) Axial, coronal, and sagittal views of 3D-printed brain
model at postnatal day 8 (P8) (top), replicated gel brain (middle), and gel brain after swelling (bottom). (Right) Physical gel

models of ages P4, P8, and P16 are nonuniformly swollen tomimic progression to states that roughly resemble ages P8,

P16, and P32, respectively.

for gray-matter volume to thickness and setR/T ≈ 10 with the tangential expansion ratio g ≈ 1.9.

An indicator function

θ(y) =
1

1+ e10(y/T−1) (6.2)

is applied for distinguishing between the cortical layer (with θ = 1) and white matter zone (with

θ = 0). Here, y is the distance from surface in material coordinates.

The brains are discretized in the form of tetrahedral meshes with over 1 million tets using Netgen.
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Figure 6.3:Numerical model of ferret brain morphogenesis. a, Continuous growth. b, Stepwise growth from P0

to P4, P4 to P8, P8 to P16, and P16 to P32.

The energy of the system is minimized by quasistatic equilibration using an explicit scheme. Growth

is applied by expanding the tetrahedral elements with inversion handling130 and nodal pressure

formulation10. Self-avoidance of the surface is handled using the penalty based vertex-triangle

contact processing45. We further enforce that there is no growth at the central part as well as the

bottom portion of the brain to better simulate the development of ferret brains.

We consider both continuous simulations from P0 to P32 (Figure 6.3a) and stepwise simulations
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Figure 6.4:Mesh independence of the numerical simulation. It can be observed that the folding patterns
produced from tetrahedral meshes with different number of tetrahedral elements are similar in shape.

from P0 to P4, from P4 to P8, from P8 to P16 and from P16 to P32 (Figure 6.3b). Comparing the

stepwise numerical simulations, the stepwise gel simulations and the real brains, it can be observed

that the folding patterns are highly similar.

It is natural to ask if the folding simulation is robust to the mesh resolution. Figure 6.4 shows

the folding patterns produced frommeshes with different number of tetrahedral elements. It can be

observed that the results are not affected by the mesh resolution.

Figure 6.5 shows a comparison between the actual ferret brain gyrification, the numerical brain

simulation, and the physical gel brain simulation from P8 to P16. It can be observed that

development of major sulci such as the cruciate sulcus (crs), coronal sulcus (cns) and suprasylvian

sulcus (sss) is captured by both the numerical model and the physical gel brain model. For a more
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Figure 6.5:Actual and simulated gyrification from P8 to P16. (Left) The top row shows the development of the

major sulci of the ferret brain 122,123,99,4,49 from P8 to P16. Themiddle row shows a numerical model of a P8 brain and its

deformed statemimicking progression to P16. The bottom row shows a physical gel model of P8 and its post-swelling

statemimicking progression to P16. The P8 initial states have invaginations corresponding to the cruciate sulcus (crs),

coronal sulcus (cns) and suprasylvian sulcus (sss), and both the numerical deformed state and the physical post-swelling

state have sulci corresponding in location and self-contacting nature to the crs, cns, sss, lateral sulcus (ls), and ansate

sulcus (as) observed in P16 real ferrets. (Right) The real and simulated P16 brains and their spherical parameterizations.

quantitative comparison between the gyrification of the numerical simulation of ferret brain

development and the real data, we evaluate the curvature difference using the spherical mappings

produced by the FLASHmethod27 (Figure 6.5, right). After obtaining the spherical

parameterizations with landmarks optimally aligned, we compare the folding patterns of the two

brain surfaces by evaluating their curvature-based intensity difference via the two spherical domains.

More specifically, we compute the average intensity difference between the two spherical domains

with a normalization such that the difference d is always between 0 and 1. For the simulated P16

brain and real P16 brain , the intensity difference between their spherical parametrizations is

d ≈ 0.1, which suggests that the folding pattern produced by our simulation is similar to the actual
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Figure 6.6:Modeling structural abnormalities associated with a pathogenic SCN3A gene. a, In vivo
electroporation of pathogenic SCN3A in healthy ferret brain at P0. Left (control) and right (electroporated) hemispheres
of the ferret brain at P30. b, Immunofluorescent analysis of cortical layer markers at P0, P15, and P30. c-d, Gel brain and
simulated brain with localizedmodification of cortical layer. Modification of the cortical layer thickness and growth rate is

found to induce variant folding patterns in a localized region. Dashed circles indicatemodified region.

folding pattern.

6.3 Ferret cortical malformations

To study whether our model based on differential growth can capture malfunction in ferret brains,

we consider the structural abnormalities associated with the MCD causing gene SCN3A125.

Molecular analysis of cell-type and cortex layer specific markers provided a pathological basis of the

structural malformations, informing physical and simulacrummodels (Figure 6.6b). By modifying
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the thickness and the growth rate at a localized region in the gel brain model and the numerical

brain model, we see that we can qualitatively capture the variations seen in the real brain in both the

gel model and in computations (Figure 6.6c,d).

6.4 Discussion

We have identified developmental mechanisms and morphological manifestations associated with

genetic mutations in ferret models, validated extrapolation from these transgenic models to human

neurodevelopment, and improved the comprehensiveness of the MCD classification scheme for

facilitating more efficient and precise diagnosis and treatment. A natural next step is to move

towards human brain and use the model to study cortical malformations.
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It is through science that we prove, but through intuition

that we discover.

Henri Poincaré

7
Density-equalizing maps for surfaces

Surface parameterization, the process of mapping a complicated surface to a simpler domain,

is a problem in computer graphics closely related to cartogram production. In recent decades,

three-dimensional (3D) graphics have become widespread in the computer industry. To create

realistic textures on 3D shapes, it is common to parameterize the 3D shapes ontoR2, design the
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textures on the plane, and map them back onto the 3D shapes. Analogous to the map-making

problem, the surface parameterization problem involves distorting the shapes to a certain extent,

determined by a prescribed criterion. Two major classes of surface parameterization algorithms are

conformal (angle-preserving) parameterization67,148,27,28 and authalic (area-preserving)

parameterization153,151,132 (see Refs.48,118,64 for a discussion on the prior parameterization

algorithms). In this chapter, we develop a new surface parameterization method inspired by the

diffusion-based map-making method by Gastner and Newman (denoted asGN )52. Specifically, we

propose a finite-element algorithm for computing density-equalizing flattening maps of

simply-connected open surfaces inR3 onto the plane, based on certain quantities prescribed at every

part of the surface. Different surface flattening effects can then be produced by altering the input

quantities. For instance, area-preserving parameterizations can be easily achieved.

7.1 Diffusion-based cartogram

Given a planar map and a quantity called the population defined on every part of the map, define

the density field ρ by the quantity per unit area. GN deforms the map by equalizing ρ using the

advection equation

∂ρ
∂t

= −∇ · j⃗. (7.1)

Here, the flux is given by Fick’s law:

j⃗ = −∇ρ, (7.2)
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yielding the diffusion equation

∂ρ
∂t

= Δρ. (7.3)

Then, any tracers carried by this density flux will move with velocity

v⃗(⃗r, t) =
j⃗
ρ
= −∇ρ

ρ
. (7.4)

Hence, the deformation of the map can be tracked using the tracers r⃗(t) that follow the velocity

field:

r⃗(t) = r⃗(0) +
∫ t

0
v⃗(⃗r, τ)dτ. (7.5)

As t → ∞, Eq. (7.3) is solved to steady state, and the corresponding deformed map produced by

Eq. (7.5) achieves equalized density per unit area. In particular, regions with a higher density expand,

while those with a lower density shrink (Figure 7.1). As a remark, GNmakes use of a large

rectangular auxiliary region surrounding the region of interest, called the sea, to avoid infinite

expansion of the map. By defining the density at the sea as the average density of the region of

interest, one can ensure that the total area of the map is kept constant under the deformation.

7.2 Surface density-equalizing maps

In the following, we develop a method for surface parameterization based on the idea of density

diffusion as described above. Let S be a simply-connected open surface inR3, and ρ be a prescribed

density distribution. Our method computes a flattening map f : S → R2 such that the Jacobian Jf
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Figure 7.1:An illustration of the density-equalizing maps. Regions with a higher density expand, while those
with a lower density shrink.

satisfies Jf ∝ ρ. Equivalently, the final density per unit area in the flattening map is a constant. Our

method primarily consists of three steps, including the creation of an initial flattening map (in case

the input surface is non-planar), the construction of the sea, and an iterative finite-element scheme

for computing density-equalizing maps.

In the following discussion, S is discretized as a triangle mesh (V, E ,F)where V is the set of all

vertices, E is the set of all edges, andF is the set of all triangular faces. The input density

distribution ρ is discretized as ρF on every triangle element T ⊂ F .

7.2.1 Curvature-based initial flattening map

We start by developing a method that flattens S ontoR2 efficiently. To keep the flattened shape as

close to S as possible, it is natural to consider flattening the surface boundary onto the plane based

on its curvature.
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Curvature-based flattening of the surface boundary

Let γ be the boundary of S. As γ is a simple closed curve inR3, it can be written as an arc-length

parameterized curve γ = γ(t) : [0, lγ] → R3, where lγ is the total arc length of γ. Our goal is to find

a map ϕ : [0, lγ] → R2 to flatten γ ontoR2, and then obtain the entire flattening map for S. Two

important geometric quantities for γ are the curvature κγ and the torsion τγ, which respectively

measure the deviation of γ from a straight line and from a planar curve. By the fundamental

theorem of space curves37, γ is completely determined by κγ and τγ up to rigid motion.

Now, we consider a map ϕ such that κγ ≈ κϕ(γ) and τϕ(γ) = 0. In other words, ϕ projects γ

onto the space of planar convex curves, with the curvature of γ preserved as much as possible. By

Frenet–Serret formulas37,

T⃗′(t) = κγ(t)∥γ′(t)∥N⃗(t) (7.6)

where T⃗ and N⃗ are the unit tangent and unit normal of γ respectively. We have

κγ(t) =
∥T⃗′(t)∥
∥γ′(t)∥

. (7.7)

Note that for any simple closed plane curve C ⊂ R2, the total signed curvature of C is a constant37:

∫
C
kC(t)dt = 2π. (7.8)

To construct a closed plane curve ϕ(γ)with total arclength lγ, we set the target signed curvature k to
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be

k(s) =
2πκγ(s)∫
γ κγ(t)dt

≥ 0. (7.9)

Then, we consider the map

ϕ(s) =
(∫ s

0
cos θ(u)du,

∫ s

0
sin θ(u)du

)
, (7.10)

where

θ(u) =
∫ u

0
k(t)dt. (7.11)

We can easily check that

ϕ′(s) = (cos θ(s), sin θ(s)), (7.12)

and hence ϕ is an arc-length parameterized curve. Moreover, we have

kϕ(s) = θ′(s) = k(s) ≥ 0. (7.13)

However, ϕmay not be a closed curve as there may be a discrepancy between ϕ(0) and ϕ(lγ)with

0 ≤ ∥ϕ(lγ)− ϕ(0)∥ ≪ L, where L is the total arclength of ϕ. To fix this issue, we update ϕ by

ϕ(s)← ϕ(s)− s
lγ
(
ϕ(lγ)− ϕ(0)

)
. (7.14)

Then, ϕwill be a simple closed convex plane curve.
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Proposition 7.1. Let ϕ : [0, lγ] → R2 be the arc-length parameterized curve defined above. If we

define a new curveΦ : [0, lγ]→ R2 by

Φ(s) = ϕ(s)− s
lγ
(
ϕ(lγ)− ϕ(0)

)
. (7.15)

Then,Φ is a simple closed convex plane curve.

Proof. First, note that Φ(0) = ϕ(0) = Φ(lγ) and henceΦ is closed. Since ϕ is arc-length

parameterized, for any 0 ≤ a < b ≤ lγ, we have

∥ϕ(b)− ϕ(a)∥ ≤
∫ b

a
∥ϕ′(s)∥ds = b− a. (7.16)

The equality holds if and only if ϕ([a, b]) is a straight line. In particular, as γ is the boundary of S, by

our construction of ϕwe have ∥ϕ(lγ)− ϕ(0)∥ ≪ lγ.

Now, we prove that the signed curvature of Φ, denoted by kΦ, is non-negative for all s ∈ [0, lγ].

Denote ϕ(s) = (x(s), y(s)) and Φ(s) = (X(s),Y(s)). We have

Φ′ = (X′,Y′)

=

(
x′(s)− 1

lγ
(
x(lγ)− x(0)

)
, y′(s)− 1

lγ
(
y(lγ)− y(0)

))
=

(
cos θ(s)− 1

lγ
(
x(lγ)− x(0)

)
, sin θ(s)− 1

lγ
(
y(lγ)− y(0)

))
(7.17)

and

Φ′′ = (X′′,Y′′) = (x′′, y′′) =
(
−kϕ(s) sin θ(s), kϕ(s) cos θ(s)

)
. (7.18)
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Therefore, we have

X′Y′′ − X′′Y′ = kϕ(s)

(
1−

(
x(lγ)− x(0)

)
cos θ(s)−

(
y(lγ)− y(0)

)
sin θ(s)

lγ

)
. (7.19)

Recall that by Eq. (7.9), kϕ(s) ≥ 0 for all s. Also, we have

(
x(lγ)− x(0)

)
cos θ(s)−

(
y(lγ)− y(0)

)
sin θ(s)

≤
√(

x(lγ)− x(0)
)2

+
(
y(lγ)− y(0)

)2√cos2 θ(s) + sin2 θ(s)

=

√(
x(lγ)− x(0)

)2
+
(
y(lγ)− y(0)

)2
=
∥∥ϕ(lγ)− ϕ(0)

∥∥
≤lγ,

(7.20)

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality

follows from Eq. (7.16). Hence, we have

1−
(
x(lγ)− x(0)

)
cos θ(s)−

(
y(lγ)− y(0)

)
sin θ(s)

lγ
≥ 0 for all s ∈ [0, lγ], (7.21)

yielding

kΦ(s) =
X′Y′′ − X′′Y′

(X′2 + Y′2)3/2
≥ 0 for all s ∈ [0, lγ]. (7.22)

To show that Φ is simple, note that as Φ is a closed plane curve, the total curvature ofΦ should
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satisfy ∫ lϕ

0
kΦ(s)ds = 2πnΦ, (7.23)

where nΦ is the turning number ofΦ. It follows from the above results that

2πnΦ =

∫ lϕ

0

kϕ(s)
(
1− (x(lγ)−x(0)) cos θ(s)−(y(lγ)−y(0)) sin θ(s)

lγ

)
(X′2 + Y′2)3/2

ds

≤

(∫ lϕ

0
kϕ(s)ds

)
max
s∈[0,lγ]

∣∣∣∣∣∣∣∣
(
1− (x(lγ)−x(0)) cos θ(s)−(y(lγ)−y(0)) sin θ(s)

lγ

)
(X′2 + Y′2)3/2

∣∣∣∣∣∣∣∣
= 2π max

s∈[0,lγ]

(
1− A cos θ(s) + B sin θ(s)

(1+ A2 + B2 − 2A cos θ(s)− 2B sin θ(s))3/2

)
,

(7.24)

where A =
x(lγ)−x(0)

lγ and B =
y(lγ)−y(0)

lγ . We can further simplify the above equation as

2π max
s∈[0,lγ]

(
1− C cos(θ(s) + η)

(1+ C2 − 2C cos(θ(s)− η)))3/2

)
, (7.25)

where C =
√
A2 + B2 = ∥ϕ(lγ)−ϕ(0)∥

lγ ≪ 1 and η = tan−1 B
A = tan−1 y(lγ)−y(0)

x(lγ)−x(0) . It is therefore easy

to see that

max
s∈[0,lγ]

(
1− C cos(θ(s) + η)

(1+ C2 − 2C cos(θ(s)− η)))3/2

)
≤ 1+ C

(1− C)3
< 2, (7.26)

which implies that

2πnΦ < 4π⇒ nΦ < 2. (7.27)

Therefore, nΦ = 1 andΦ is simple. As a simple closed curve is convex if and only if its signed
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Figure 7.2:The proposed curvature-based curve flattening procedure. Given a closed curve representing the
surface boundary, we first construct a plane curve using Eq. (7.10). Then, we use Eq. (7.14) to obtain a simple closed
convex curve.

curvature does not change sign, the result follows from Eq. (7.22). �

An illustration of the curve flattening procedure is provided in Figure 7.2. The algorithm is

summarized in Algorithm 7.1.

Algorithm 7.1:Curvature-based curve flattening
Input: The boundary γ of a simply-connected open surface S inR3.
Output: A simple closed convex plane curve ϕ.

1 Let γ = {vj}bj=1 be the boundary vertices of S in anti-clockwise order. Compute the
curvature κ = ∥T⃗′∥

∥γ′∥ ;
2 Rescale κ using Eq. (7.9);
3 Obtain a plane curve ϕ(s) by solving Eq. (7.10);
4 Adjust ϕ(s) using Eq. (7.14) to obtain a simple closed convex curve;

After obtaining ϕ, we use it as a boundary constraint and compute a flattening map φ : S → R2

for the entire surface S as an initialization. Two methods for obtaining φ are discussed below.
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Curvature-based Tutte flattening map

The graph embedding method proposed by Tutte140,which has been widely used as an initialization

for surface parameterization60,124, is capable of producing a bijective planar map. One possible

method for obtaining φ is to combine the Tutte mapping method with our curvature-based curve

flattening result.

The adjacency matrix M is a |V| × |V|matrix with

Mij =


1 if [i, j] ∈ E ,

0 otherwise.
(7.28)

Remarkably, there exists a bijective map φ between any simply-connected open triangulated surface

S inR3 and any convex polygon P onC140. More explicitly, by representing φ as a |V| × 1 column

vector with complex entries, we can obtain φ by solving the complex linear system


MTutteφ(v) = 0 if v ∈ S \ ∂S,

φ(∂S) = ∂P,
(7.29)

where

MTutte
ij =



Mij if [xi, xj] ∈ E ,

−
∑

t ̸=iMit if j = i,

0 otherwise.

(7.30)

Here, the boundary correspondence φ(∂S) = ∂P can be any prescribed bijective map. Now, since
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the curvature-based curve flattening map ϕ resembles the shape of the surface boundary well, we use

ϕ as the convex boundary constraint and obtain a bijective Tutte flattening map φ : S → P. The

procedure is summarized in Algorithm 7.2.

Algorithm 7.2:Curvature-based Tutte flattening map
Input: A simply-connected open surface S inR3.
Output: A curvature-based surface flattening map φ : S→ P ⊂ R2.

1 Let γ = {vj}bj=1 be the boundary vertices of S. Compute the curvature-based curve
flattening map ϕ : γ→ C using Algorithm 7.1;

2 Compute the Tutte matrixMTutte;
3 Obtain the desired map φ by solving the linear system 7.29, with the boundary
constraint given by ϕ;

Curvature-based locally authalic flattening map

Another way to obtain a surface flattening map φ is to use a variant of the matrixMTutte. Desbrun

et al.35 proposed a mapping scheme that minimizes the following quadratic Chi energy

Eχ(φ) =
∑
j∈N(i)

cot γij + cot δij
|xi − xj|2

|φ(xi)− φ(xj)|2, (7.31)

where γij and δij are the two angles at xj as illustrated in Figure 7.3. This gives a locally authalic map

φ : S → R2 that preserves the local 1-ring area at every vertex as much as possible. The associated
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Figure 7.3:The angles γij and δij in the authalic matrix.

authalic matrix is given by

Mχ
ij =



cot γij+cot δij
|xi−xj|2 if [xi, xj] ∈ E ,

−
∑

t ̸=iM
χ
it if j = i,

0 otherwise.

(7.32)

Now, we replaceMTutte in Algorithm 7.2 with the authalic matrixMχ and solve for a new surface

flattening map. More explicitly, we obtain φ by solving the following complex linear system with our

curvature-based boundary constraint:


Mχφ(v) = 0 if v ∈ S \ ∂S,

φ(∂S) = ϕ.
(7.33)

While the minimizer of the Chi energy is not a globally optimal area-preserving map, this approach

provides a reasonably good initialization with the local area taken into account. However, it is

noteworthy that unlike the Tutte map, the bijectivity of the locally authalic map is only guaranteed

when the input mesh satisfies the convex combination mapping property, i.e. all cot γij + cot δij in
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Figure 7.4:An example for which the locally authalic map contains overlaps. Left: Amesh that contains many

sliver triangles and violates the convex combinationmapping property 48. Right: The curvature-based locally authalic

flatteningmap, with triangle overlaps observed.

Mχ are nonnegative48, which is equivalent to that γij + δij ≤ π for all i, j. Figure 7.4 shows a mesh

violating this condition, and it can be observed that the locally authalic flattening map contains

mesh fold-overs. In this case, we can simply resort to the Tutte flattening map for ensuring the

bijectivity. The method is summarized in Algorithm 7.3.

Algorithm 7.3:Curvature-based locally authalic flattening map
Input: A simply-connected open surface S inR3.
Output: A curvature-based locally authalic flattening map φ : S→ R2.

1 Let γ = {vj}bj=1 be the boundary vertices of S. Compute the curvature-based curve
flattening ϕ : γ→ C;

2 Compute the authalic matrixMχ;
3 Obtain the desired map φ by solving the linear system 7.33, with the boundary
constraint given by ϕ;

4 In case φ contains overlaps, resort to the Tutte map in Algorithm 7.2;

143



7.2.2 Construction of sea via reflection

One important step in GN is to construct a sea surrounding the region of interest so that it can

deform freely. Here, we propose a newmethod for the construction of such a sea. If the simply-

connected open surface S is non-planar, then the curvature-based flattening methods give us an

initial flattening map r⃗0 = φ(S) inR2. If S is planar, we can simply skip the above step and treat S

itself as the initial flattening map, i.e. setting r⃗0 = S.

Now, we rescale the initial flattening map r⃗0 and put it inside the unit circle

S1 := {z ∈ C : |z| = 1}. Denote the edge length of the shrunk flattening map by l. Then, we fill up

the gaps between the rescaled initial flattening map and the circular boundary using uniformly

distributed points with distance l. This gives us a set of evenly distributed points over the unit disk

D := {z ∈ C : |z| ≤ 1}. We triangulate the new points using the Delaunay triangulation and

obtain a triangulationDT.

To construct a sea surrounding the unit disk, we consider the reflection mapping g : D→ C \ D

defined by

g(z) =
1
z̄
. (7.34)

It is easy to see that g is bijective. In the discrete case, gmaps the triangulated unit diskDT to a large

polygonal regionR subsetCwith the unit diskD punctured. We can then glueDT and g(DT) along
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the circular boundary ∂DT. Denote the glued mesh by S̃ = (Ṽ, Ẽ , F̃). We have

Ṽ = {z}z∈DT ∪
{
1
z̄

}
z∈DT\∂(DT)

, (7.35)

F̃ = F ∪
{[

1
z̄i
,
1
z̄j
,
1
z̄k

]
: [zi, zj, zk] ∈ F

}
, (7.36)

and

Ẽ = {[zi, zj] : [zi, zj] is an edge of a face T ∈ F̃}. (7.37)

In practice, the extremely large triangles at the outermost part of the glued mesh produced by the

reflection may cause numerical instability in the subsequent computations. Therefore, we remove

them by a simple truncation of the part far away fromD. More specifically, we remove all vertices

and faces of S̃ outside {z : |z| > η}, where η is a thresholding parameter. According to GN, having

a sea with dimensions a few times the linear extent of the domain of interest is sufficient. Therefore,

we set η = 5. Finally, the glued mesh is rescaled in order to restore the size of the flattening map. By

an abuse of notation, we use r⃗0 to represent the entire region. Algorithm 7.4 summarizes the above

procedures. An graphical illustration is given in Figure 7.5.

Our construction is advantageous in the sense that the mesh size of the resulting sea is adaptive.

Unlike the approach in GN, which used a uniform finite difference grid for constructing the sea, our

approach produces a natural distribution of points at the sea that avoids redundant computation.

To see this, let z1, z2 be two points at the interior ofD. Under the reflection mapping z 7→ 1
z , we
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Algorithm 7.4:Construction of sea via reflection.
Input: An initial flattening map r⃗0, a thresholding parameter η.
Output: An updated map r⃗0 with a sea surrounding the original domain.

1 Rescale r⃗0 to lie inside the unit circle S1;
2 Fill up the gaps between the unit circle and the rescaled map by uniformly distributed
points with spacing l, where l is the average edge length of r⃗0;

3 Perform a constrained Delaunay triangulation that triangulates the unit disk with the
newly added points, with the connectivity of r⃗0 unchanged;

4 Apply the reflection map g(z) = 1
z to the triangulated unit diskDT;

5 GlueDT and g(DT), and update r⃗0 by the glued result;
6 Remove all vertices and faces of r⃗0 outside {z : |z| > η};
7 Rescale r⃗0 to restore the size of the flattening map;

Figure 7.5:An illustration of our algorithm for constructing the sea. Left: the initial flatteningmap. We rescale

it to lie inside the unit circle, and fill up the gaps with uniformly distributed points. Right: the sea constructed via the

reflectionmapping (in cyan) and the initial flatteningmap (in yellow).

have ∣∣∣∣ 1z1 − 1
z2

∣∣∣∣ = |z1 − z2|
|z1z2|

=
|z1 − z2|
|z1z2|

. (7.38)

Therefore, the edges formed under the reflection are shorter near the unit disk boundary, and get

longer further away. The outermost part of the sea, which stays far away fromD, then consists of

the coarsest triangulations. By contrast, the innermost part of the sea closest toD consists of the
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densest triangulations. This natural transition of mesh sparsity reduces the number of points

needed for the subsequent computation without affecting the numerical accuracy.

Another advantage of our approach is about the improvement of the shape of the sea. In GN, a

rectangular sea is used. The four corners are usually unimportant for the subsequent deformation,

and hence computational efforts are wasted there. By contrast, in our reflection-based construction,

the reflection together with the truncation produces a sea with a more regular shape, thereby

utilizing the use of every part of the sea and reducing redundant computations.

7.2.3 Iterative scheme for producing density-equalizing maps

Suppose we are given a population on each triangle element of the input surface mesh. Define the

density ρF on each triangle element of the flattened map ϕ by Population
Area of the triangle . We interpolate ρF

on the vertices and develop an iterative scheme for deforming the flattened map based on density

diffusion.

To solve the diffusion equation on triangle meshes, it is important to discretize the Laplacian. Let

u : Ṽ → R be a function. To compute the Laplacian of u at every vertex i, we use the following

discrete finite-element Laplacian112

Δu(i) = − 1
2A(i)

∑
j∈N (i)

(
cot αij + cot βij

)
(u(i)− u(j)), (7.39)

whereN (i) is the one-ring vertex neighborhood of i, αij and βij are the two angles opposite to the
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edge [i, j], and A(i) is the vertex area of the vertex i:

A(i) =
1
3

∑
T∈N F̃ (i)

Area(T), (7.40)

whereN F̃ (i) is the one-ring face neighborhood of i. It is easy to see that

∑
i∈Ṽ

A(i) =
∑
T∈F̃

Area(T). (7.41)

Therefore, the vertex area is a good discretization of the total surface area at the vertices. We remark

that the sea we constructed has an additional purpose of complementing the use of the FEM

Laplacian (7.39), which assumes the natural boundary condition∇u · n = 0 in its derivation112.

The region of interest is not restricted by the above natural boundary condition and hence can

deform freely.

Note that the density ρ is originally defined on the triangle faces, while the above Laplacian is

defined at the vertices. To interpolate ρF at the vertices, we note that for every vertex v ∈ V , ρV(v)

should only depend on the value of ρF within its one-ring face neighborhood. This property is

related to the Whitney forms147, which were originally introduced for algebraic topology and

subsequently used as finite elements13. TheWhitney 2-forms are piecewise-constant functions
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supported on triangle elements33:

φWT (x) =


1

Area(T) if x lies on T,

0 otherwise.
(7.42)

Now, any face-valued function f : F → R can be interpolated at all vertices v ∈ V by

f(v) =
∑

T∈F
∫
T f(T)φ

W
T (v)dA∑

T∈F
∫
T φ

W
T (v)dA

=

∑
T∈NF (v)

f(T)
Area(T)Area(T)∑

T∈NF (v)
1

Area(T)Area(T)
=

∑
T∈NF (v) f(T)
|NF (v)|

. (7.43)

It is noteworthy that the above interpolation only depends on the connectivity but not the

geometry of the mesh. In our case, since ρ is related to the deformation of the face area, it is desirable

to emphasize on the weight of different faces in the interpolation. Therefore, we consider the

following modifiedWhitney 2-forms

φ̃WT (x) =


1 if x lies on T,

0 otherwise,
(7.44)

which gives the desired interpolation

ρV(v) =
∑

T∈F
∫
T ρ

F (T)φ̃WT (v)dA∑
T∈F

∫
T φ̃

W
T (v)dA

=

∑
T∈NF (v) ρF (T)Area(T)∑

T∈NF (v) Area(T)
. (7.45)

By treating ρV as a |V| × 1 matrix and ρF as a |F| × 1 matrix, we can represent the above formula
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as a matrix multiplication

ρV := WFVρF , (7.46)

whereWFV is a |V| × |F| sparse matrix

WFV :=



W1,:/∥W1,:∥1

W2,:/∥W2,:∥1
...

W|V|,:/∥W|V|,:∥1


. (7.47)

withWij =


Area(Tj) if the j-th triangle Tj contains the i-th vertex,

0 otherwise.

After computing ρV at the initial flattening map ϕ, we extend ρV to the sea surrounding the

region of interest. As suggested in GN, the density at the sea should equal the average density at the

region of interest. Therefore, for every vertex v′ at the sea, we set

ρV(v′) = meanvρV(v). (7.48)

We remark that the density at the boundary of ϕmay be affected by the density at the sea if we

perform the interpolation with the sea included. Hence, it is important to perform the interpolation

and obtain ρV at ϕ first, and then set the density at the sea. By an abuse of notation, we continue

using V ,F without tilde in the following discussions whenever referring to the discrete mesh
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structure with the sea included.

With the density interpolated and set at all vertices, we use the following semi-discrete backward

Euler scheme to solve the diffusion equation (7.3):

ρVn − ρVn−1
δt

= Δn−1ρVn ⇐⇒ ρVn = (I− δtΔn−1)
−1ρVn−1, (7.49)

where ρVn is the value of ρV at the n-th iteration, Δn is the FEM Laplacian of the deformed map r⃗n,

and δt is the timestep. Note that Δn can be represented as Δn = −A−1
n Ln, where An is a |V| × |V|

diagonal matrix containing the vertex area of each vertex, and Ln is a |V| × |V| sparse symmetric

matrix containing the cotangent components in Eq. (7.39). Therefore, we can rewrite the above

equation as

ρVn = (An−1 + δtLn−1)
−1 (An−1ρVn−1

)
. (7.50)

The above semi-discrete backward Euler scheme is unconditionally stable. Also, the matrix An−1 +

δtLn−1 is a symmetric sparse matrix and hence Eq. (7.50) can be efficiently solved.

After discretizing the diffusion equation, we consider the induced vector field. To discretize the

gradient operator∇, let (∇ρ)Fn (T) be the face-based discretization defined on every triangle

element T = [i, j, k] at the n-th iteration. Denote the three directed edges of T in the form of vectors

by eij = [i, j], ejk = [j, k], eki = [k, i], and the unit normal vector of T byN. We can then derive a

151



formula for (∇ρ)Fn (T) using the Whitney 0-forms33, which are hat functions at the vertices:

φWi (p) =



1 if p = i,

0 if p is outsideNF (i),

affine if p lies onNF (i).

(7.51)

Give any vertex-based function f, we can interpolate f at any point x lying on the triangle face T =

[i, j, k] by

f(x) = fiφWi (x) + fjφWj (x) + fkφWk (x), (7.52)

where fi, fj, fk are the values of f at the vertices i, j, k. Using the property that∇φWi =
N×ejk

2Area(T)
33, we

have

(∇ρ)Fn (T) = ∇
(
ρVn (i)φ

W
i + ρVn (j)φ

W
j + ρVn (k)φ

W
k

)
= ρVn (i)∇φ

W
i + ρVn (j)∇φ

W
j + ρVn (k)∇φ

W
k

=
1

2Area(T)
N×

(
ρVn (i)ejk + ρVn (j)eki + ρVn (k)eij

)
.

(7.53)

The above formula provides us with an accurate approximation of the gradient (∇ρ)Fn on

triangulated surfaces. We can then use the Whitney 2-forms (7.45) to obtain (∇ρ)Vn at the vertices.

With all differential operators discretized, we now introduce our iterative scheme for computing

density-equalizing maps. At each iteration, we update the density by solving Eq. (7.50) and

compute the induced gradient (∇ρ)Vn using the above-mentioned procedures. Then, we deform the
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map by

r⃗n = r⃗n−1 − δt(∇ρ)Vn /ρVn . (7.54)

For the stopping criterion, note that the standard deviation sd(ρVn )measures the dispersion of the

updated density ρVn . To remove the effect of scaling of ρVn , we divide the standard deviation by

mean(ρVn ). Also, note that the normalized quantity sd(ρVn )/mean(ρVn ) equals 0 if and only if the

density is completely equalized. Therefore, this normalized quantity can be used for determining

the convergence of the iterative scheme. Finally, we rescale the mapping result so that the total area

of S remains unchanged under the algorithm.

For the timestep δt, by dimensional analysis of the diffusion equation (7.3), we can see that an

appropriate dimension of δtwould be L2. Also, δt should be independent of the magnitude of ρ.

Therefore, we set

δt = min

{
min(ρV0 )
mean(ρV0 )

,
mean(ρV0 )
max(ρV0 )

}
× Area(S), (7.55)

where the first term is a dimensionless quantity taking extreme relative density ratios into account,

and the second term is a natural quantity with dimension L2. One may also rescale δt by a constant.

Our proposed method for producing density-equalizing maps (DEM) of simply-connected open

surfaces is summarized in Algorithm 7.5.

The proposed algorithm can be easily modified to obtain a flattening map with a prescribed

simple boundary shape such as a rectangle or a unit disk. To achieve such a shape-prescribed

density-equalizing map, we first replace the initialization (line 1–4) in Algorithm 7.5 with an initial

map with the desired boundary shape, such as a disk Tutte map or a rectangular Tutte map. The
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Algorithm 7.5:Density-equalizing map (DEM) for simply-connected open surfaces
Input: A simply-connected open triangulated surface S, a population defined on each

triangle, and a stopping parameter ε.
Output: A density-equalizing flattening map f : S→ R2.

1 if S is planar then
2 Set r⃗0 = S; ;
3 else
4 Compute a curvature-based flattening map φ : S→ C using Algorithm 7.2 or

Algorithm 7.3. Denote r⃗0 = φ(S);

5 Define the density ρF0 = Given population
Area of the triangle on each triangle of r⃗0;

6 Compute ρV0 = WFVρF0 ;
7 Update r⃗0 with the sea constructed using Algorithm 7.4;
8 Extend ρV0 to the whole domain by setting ρV0 at the sea to be the average value of ρV0 ;
9 Set δt = min

{
min(ρV0 )
mean(ρV0 )

,
mean(ρV0 )
max(ρV0 )

}
× Area(S);

10 Set n = 0;
11 repeat
12 Update n = n+ 1;
13 Solve ρVn = (An−1 + δtLn−1)

−1
(
An−1ρVn−1

)
;

14 Compute the face-based gradient
(∇ρ)Fn (T) = 1

2Area(T)N×
(
ρVn (i)ejk + ρVn (j)eki + ρVn (k)eij

)
;

15 Compute (∇ρ)Vn = WFV(∇ρ)Fn ;
16 Update r⃗n = r⃗n−1 − δt(∇ρ)Vn /ρVn ;
17 until sd(ρVn )

mean(ρVn )
< ε;

18 Obtain f(S) = r⃗n × Area(⃗r0)
Area(⃗rn) ;

construction of the sea (line 7–8) can be skipped as we do not need to change the overall boundary

shape of the initial map in this situation.

Note that the density-equalizing process is driven by the density gradient field∇ρ. To preserve

the overall boundary shape of the initial map throughout the iterations, the following Neumann
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boundary condition is needed:

(∇ρ) · n = 0. (7.56)

In fact, the above condition is implicitly enforced in the derivation of the contangent Laplacian

formulation (7.39) (see Ref.112 for the detailed derivation). This suggest that the iterative scheme is

theoretically applicable to this problem.

However, in the discrete case, the numerical error in approximating the density gradient may lead

to a small nonzero normal component in∇ρ at the boundary. To fix this issue, we can simply

project all boundary vertices onto the prescribed boundary shape at the end of each iteration.

thereby ensuring that all boundary vertices stay on the prescribed boundary while having the

freedom to slide along it throughout the density-equalizing process. Algorithm 7.6 summarizes the

procedure for computing shape-prescribed density-equalizing maps (SPDEM).

7.2.4 The choice of population and its effects

We conclude this section by listing some possible choices of the initial population and the

corresponding effects on the final mapping result by our density-equalizing mapping algorithm:

• Setting a relatively high population at a certain region of the input surface will lead to an
expansion of that region in the final density-equalizing mapping result.

• Similarly, setting a relatively low population at a certain region of the input surface will lead
to a shrinkage of that region in the final density-equalizing mapping result.

• Setting the population to be the area of every triangle element of the input surface will lead
to an area-preserving parameterization of the input surface, as we have

Initial area
Final area

=
Given population

Final area
= Density = Constant. (7.57)
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Algorithm 7.6: Shape-prescribed density-equalizing map (SPDEM) for simply-
connected open surfaces
Input: A simply-connected open triangulated surface S, a prescribed boundary shape, a

population on each triangle, and a stopping parameter ε.
Output: A shape-prescribed density-equalizing map f : S→ R2.

1 Compute an initial map φ : S→ Cwith the prescribed boundary shape. Denote
r⃗0 = φ(S);

2 Define the density ρF0 = Given population
Area of the triangle on each triangle of r⃗0;

3 Compute ρV0 = WFVρF0 ;
4 Set δt = min

{
min(ρV0 )
mean(ρV0 )

,
mean(ρV0 )
max(ρV0 )

}
× Area(S);

5 Set n = 0;
6 repeat
7 Update n = n+ 1;
8 Solve ρVn = (An−1 + δtLn−1)

−1
(
An−1ρVn−1

)
;

9 Compute the face-based discrete gradient
(∇ρ)Fn (T) = 1

2Area(T)N×
(
ρVn (i)ejk + ρVn (j)eki + ρVn (k)eij

)
;

10 Compute (∇ρ)Vn = WFV(∇ρ)Fn ;
11 Update r⃗n = r⃗n−1 − δt(∇ρ)Vn /ρVn ;
12 Project all boundary vertices onto the prescribed boundary shape;
13 until sd(ρVn )

mean(ρVn )
< ε;

14 Obtain f(S) = r⃗n × Area(⃗r0)
Area(⃗rn) ;

7.3 Experimental results

The proposed algorithms are implemented inMATLAB. The backslash operator in MATLAB

is used for solving the linear systems, and the Fast InPolygon detectionMEX customMATLAB

function* is used for constructing the sea. We demonstrate the effectiveness of our algorithms using

various experiments. All experiments are performed on a PC with Intel i7-6700K CPU and 16 GB

*https://www.mathworks.com/matlabcentral/fileexchange/20754-fast-inpolygon-detection-mex
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RAM. Some of the surface meshes in the experiments are adapted from the AIM@SHAPE Shape

Repository†. In all experiments, the stopping parameter ε of our algorithms is set to be 10−3.

7.3.1 Examples of density-equalizing maps produced by our algorithm

Figures 7.6 and 7.7 respectively show the density-equalizing maps of a square and a hexagon with a

prescribed population on every triangle element. The final density Given population
Final area highly

concentrates at 1 for both examples, which indicates that our proposed DEM algorithm effectively

equalizes the density. Also, the plots of sd(ρVn )
mean(ρVn )

versus the number of iterations show that the

proposed algorithm converges rapidly.

Figure 7.8 shows the mapping result of a Gaussian shape inR3. The domain of the shape is

[0, 1]× [0, 1]. The population is given by 2.2− |x| − |y|, where (x, y) are the x- and y-coordinates of

the centroid of each triangle element. Algorithm 7.2 is used for the initialization for computing the

density-equalizing map. It can again be observed that the density is well equalized.

It is noteworthy that the curvature-based initial flattening map and the final density-equalizing

map can be significantly different in shape (Figure 7.9). In particular, a convex initial map can

become non-convex under the algorithm.

Our algorithm is capable of producing area-preserving flattening maps. Figure 7.10 shows a

surface with multiple peaks inR3 and the mapping result. Here, we set the population as the area of

each triangle element on the initial surface and use Algorithm 7.2 for the initialization. It can be

observed that the flattening map effectively preserves the area ratios.

†http://visionair.ge.imati.cnr.it/ontologies/shapes/
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Figure 7.6:Density-equalization on a square. Top row (left to right): the initial shape colored with a given

population distribution, and the resulting density-equalizingmap colored with the final area of each triangle element.

Middle row (left to right): the values of
sd(ρVn )

mean(ρVn )
, the histogram of the initial density Given population

Initial area
on each triangle

element, and the histogram of the final density Given population
Final area

on each triangle element (see Table 7.1 for statistics). Bottom:

A semilog plot of
sd(ρVn )

mean(ρVn )
versus timewith a stronger threshold of ε = 10−5 showing rapid convergence.

Another example of area-preserving maps produced by our algorithm is shown in Figure 7.11.

This time, we use Algorithm 7.3 for the initialization and then compute the density-equalizing map

with the population being the area of the triangle elements. It can be observed that the locally
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Figure 7.7:Density-equalization on a hexagon. Refer to the caption of Figure 7.6 for the description of the plots.

authalic initialization does not preserve the global area ratio, with the eyes and nose of the lion

significantly shrunk. By contrast, the final density-equalizing map effectively achieves area

preservation.

By changing the input population, we can use our proposed DEM algorithm for producing

density-equalizing flattening maps with different effects. Two examples are provided in Figure 7.12.
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Figure 7.8:Density-equalizing map for a surface in R3 with Gaussian shape. Top row (left to right): the initial

shape colored with a given population distribution, the curvature-based Tutte flattening initialization colored with the

area of each flattened triangle element, and the final density-equalizingmap colored with the final area of each triangle

element. Middle row (left to right): the values of
sd(ρVn )

mean(ρVn )
, the histogram of the density Given population

Initial flattened area
on each flattened

triangle element after the Tutte flattening initialization, and the histogram of the density Given population
Final area

on each triangle

element of the final result. See Table 7.1 for statistics. Bottom: A semilog plot of
sd(ρVn )

mean(ρVn )
versus timewith a stronger

threshold of ε = 10−5 showing rapid convergence.

For the Niccolò da Uzzano model, by setting the input population at the eyes to be twice the area of

the triangles there and that at the remaining parts to be the area of each triangle element, we can

achieve a flattening map with the eyes magnified. Similarly, for the Max Planck model, by setting the

input population at the nose to be 1.5 times the area of the triangles there and that at the remaining
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Figure 7.9:Two more examples of density-equalizing maps. Herewe set the population according to the height
of different parts of the surfaces, aiming to achieve an expansion at the peaks. Left: The original surfaces. Middle: The

curvature-based initial flatteningmaps. Right: The density-equalizingmapping results. Note that the convex boundaries

in the initialization can become non-convex under DEM.

parts to be the area of each triangle element, we can effectively magnify the nose in the flattening

map.

As discussed in Section 7.2.3, the proposed SPDEM algorithm is capable of producing

density-equalizing maps with a prescribed target shape. Figure 7.13 shows four examples, including

two examples of mapping the square with the prescribed population in Figure 7.6 to a square and a

rectangle with aspect ratio 2 : 3 respectively, and two examples of mapping the hexagon with

prescribed population in Figure 7.7 to a circle and an ellipse with aspect ratio 2 : 1 respectively. It

can be observed that the target shapes are effectively achieved, with the boundary vertices optimally

moved along the boundary to achieve density-equalization. Besides, similar to the proposed DEM
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Figure 7.10:Area-preserving parameterization of a surface with multiple peaks in R3. Top row (left to right):

the initial surface colored with the area of each triangle element, the curvature-based Tutte flatteningmap colored

with the area of each flattened triangle element, and the final density-equalizingmap colored with the final area of each

triangle element. Middle row (left to right): the values of
sd(ρVn )

mean(ρVn )
, the histogram of the density Initial area

Initial flattened area
on each

flattened triangle element after the Tutte initialization, and the histogram of the density Initial area
Final area

on each triangle element

of the final result (see Table 7.1 for statistics). Bottom: A semilog plot of
sd(ρVn )

mean(ρVn )
versus timewith a stronger threshold of

ε = 10−5 showing rapid convergence.

algorithm, the SPDEM algorithm can be used for computing area-preserving parameterizations

onto a prescribed domain such as a disk or a rectangle (Figure 7.14). We can further achieve the

effects shown in Figure 7.12 with the boundary shape prescribed (Figure 7.15).

For surfaces with a highly convoluted boundary, it may be difficult to directly compute the
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Figure 7.11:Area-preserving parameterization of a lion face in R3. Top row (left to right): the initial surface, the

curvature-based locally authalic flatteningmap, and the final density-equalizingmap. All meshes are colored with the

mean curvature of the input lion face. Refer to the caption of Figure 7.10 for the description of the four remaining plots.

curvature-based flattening map. To overcome this problem, a simply remedy is to extend our sea

approach and prescribe a sea with a simpler shape around the given surface. With the simpler overall

shape, the new surface can be easily flattened, and the density-equalizing map can then be computed

for achieving different desired effects. Figure 7.16 shows a simply-connected open torus surface with

a space-filling curve pattern. Here, we define the population on the mesh with max(population)
min(population) ≈ 25

to produce a large deformation under density-equalization. By prescribing a sea to fill up the gaps
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Figure 7.12:Density-equalizing flattening maps with different effects obtained by our density-equalizing
map (DEM) algorithm. Left: The Niccolò da Uzzanomodel and themapping result with the eyesmagnified. Right:
TheMax Planckmodel and themapping result with the nosemagnified (see Table 7.1 for statistics).

Figure 7.13:Density-equalizing maps produced by our SPDEM algorithm. Top row: We compute two density-

equalizingmaps for the example in Figure 7.6 with the target shapes being a square and a rectangle with aspect ratio 2:3

respectively. Bottom row: We compute two density-equalizingmaps for the example in Figure 7.7 with the target shapes

being a disk and an ellipse with aspect ratio 2:1 respectively (see Table 7.2 for statistics).

on the torus, we can flatten the entire shape onto a rectangle and compute the density-equalizing

map, thereby achieving the desired mapping effect of the original surface. It is also noteworthy that
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Figure 7.14:Area-preserving parameterizations produced by our SPDEM algorithm. Left: The human
facemodel and the area-preserving parameterization of it onto a disk. Right: The lionmodel and the area-preserving

parameterization onto a square (see Table 7.2 for statistics).

Figure 7.15: shape-prescribed density-equalizing flattening maps with the effects in Figure 7.12. Left: The
Niccolò da Uzzanomodel and the diskmapping result with the eyesmagnified. Right: TheMax Planckmodel and the

rectangular mapping result with the nosemagnified (see Table 7.2 for statistics).

the sea helps regularize the deformation and avoid mesh overlaps. As the density information at two

geometrically close but topologically distant regions on a convoluted surface can be transmitted

between each other via the sea directly without going through the complicated domain, the two

regions can coordinate with each other and find a non-overlapping direction for the expansion.
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Figure 7.16:Density-equalizing map for a simply-connected open torus surface with a space-filling curve
pattern. Top: The torus surface color-codedwith the input population. Middle: We prescribe a sea with a simpler shape

around the surface and flatten the new surface for computing the density-equalizingmap. Bottom: The resulting density-

equalizingmap.

7.3.2 Quantitative results of our algorithm

We then analyze the performance of our DEM algorithmmore quantitatively (Table 7.1). It can be

observed that the convergence of DEM is fast. Also, from the median and the inter-quartile range of
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Surface No. of
triangles Time (s) No. of

iterations
Median of
density

IQR of
density

Square 10368 0.6983 6 1.0120 0.0705
Hexagon 6144 0.3123 6 1.0232 0.0549
Gaussian 10368 0.4088 4 1.0040 0.0309
Peaks 4108 0.1493 4 1.0018 0.1322
Lion 33369 1.4443 5 1.0169 0.1266

Niccolò da
Uzzano 25900 2.0740 8 1.0247 0.0801

Max Planck 26452 2.4307 11 1.0203 0.0631
Human face 6912 0.7933 6 1.0069 0.0573
USMap
(Romney) 46587 3.7946 3 1.0018 0.0145

USMap
(Obama) 46587 3.7801 3 1.0004 0.0145

USMap
(Trump) 46587 5.2797 4 1.0017 0.0176

USMap
(Clinton) 46587 3.7643 3 1.0001 0.0244

Table 7.1:The performance of our density-equalizing map (DEM) algorithm. The number of triangle
elements, the time taken (in seconds) for the entire algorithm (including the computation of the initial map and the

construction of sea), the number of iterations taken, and themedian and interquartile range of the density defined on

each triangle element by Given population
Final area

are recorded.

the density, it can be observed that the density is well-equalized. The experiments show that DEM is

efficient and accurate.

Table 7.2 shows the performance of the proposed SPDEM algorithm. Since SPDEM does not

involve the sea, it is faster than DEM. However, because of the extra shape constraints, SPDEM is

not as accurate as DEM.

We now compare the performance of our proposed algorithm and GN (with the implementation

available online‡). As GN only works on finite difference grids, we deploy the two methods on a

100 × 100 square grid {(x, y) ∈ Z2 : 0 ≤ x, y ≤ 99} for a fair comparison. For our triangle-based

‡http://www-personal.umich.edu/~mejn/cart/
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Surface No. of
triangles

Target
shape Time (s) No. of

iterations
Median of
density

IQR of
density

Square 10368 Square 0.1891 5 1.0044 0.1097
Square 10368 Rectangle 0.2260 6 1.0042 0.1367
Hexagon 6144 Circle 0.1560 6 1.0011 0.0538
Hexagon 6144 Ellipse 0.2431 9 1.0053 0.0549
Peaks 4108 Circle 0.0615 4 0.9979 0.1362

Human face 6912 Circle 0.2642 5 1.0068 0.1125
Lion 33369 Square 0.8491 6 1.0109 0.1302

Niccolò da
Uzzano 25900 Circle 1.3215 14 1.0054 0.0751

Max Planck 26452 Rectangle 1.2847 13 1.0164 0.0804

Table 7.2:The performance of our shape-prescribed density-equalizing map (SPDEM) algorithm.

Input population Time by GN
(s)

Time by our
DEMmethod

(s)

Map
difference

5+ (x−x̄)+(y−ȳ)
50 4.843 0.639 0.0016

1+ e−
(x−x̄)2+(y−ȳ)2

1000 4.452 0.848 0.0008
2.5+ sin π(x−x̄)

25 4.959 0.855 0.0012
1.5+ sin π(x−x̄)

25 sin π(y−ȳ)
25 4.592 0.597 0.0026

Table 7.3:The performance of our density-equalizing map (DEM) algorithm and GN deployed on a
100 × 100 square mesh with different input population functions. Here, we evaluate themap difference by
mean

(
|zprev−zours|

side length of square

)
, where zprev and zours are the complex coordinates of the density-equalizingmapping results by

GN and ourmethod respectively. x̄ and ȳ denote themean of the x- and y-coordinates of the square.

DEM algorithm, we divide each square into two right-angled triangles. For GN, the dimension

of the sea is set to be two times the linear extent of the square grid. We test the two methods with

various population functions (Table 7.3). It can be observed that our DEM algorithm is faster than

GN by over 80%, while the mapping results produced by the two methods are nearly identical (see

also Figure 7.17). The experiments suggest that our proposed method is advantageous over GN

even for computing density-equalizing maps on 2D grids.
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Figure 7.17:The density-equalizing maps produced by our DEM algorithm and GN with various input
population functions. Each column shows a set of results color-coded by an input population function in Table 7.3.
Top row: Themapping results by GN. Bottom row: Themapping results by our DEM algorithm.

7.3.3 Comparisonwith other parameterization methods

We first qualitatively compare our DEM algorithm with the various prior parameterization

algorithms35,151,107,26 for parameterizing a surface with multiple peaks (Figure 7.18). It can be

observed that the peaks are substantially shrunk under the free-boundary conformal

parameterization35 and the disk conformal parameterization26. Also, the boundary of the

free-boundary conformal parameterization is significantly distorted. By contrast, the peaks are

flattened without being shrunk under our DEM algorithm, as well as the optimal mass transport

(OMT) map151 and the scalable locally injective map (SLIM)107. More mapping results produced

by our DEM algorithm, OMT and SLIM are shown in Figure 7.19, from which we observe that

DEM and OMT are more capable than SLIM in avoiding squeezed regions in the mapping results

(such as the peak of the Gaussian surface and the nose of the human face).
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Figure 7.18:Comparison of different parameterization methods for a surface with multiple peaks in R3.
Top left: The input surface. Topmiddle: The free-boundary conformal parameterization 35. Top right: The disk conformal

parameterization 26. Bottom left: The area-preserving parameterization by our DEM algorithm. Bottommiddle: The

optimal mass transport (OMT)map 151. Bottom right: The scalable locally injectivemap (SLIM) 107.

We then quantitatively compare our DEM algorithm with OMT§ and SLIM¶, in terms of the

efficiency and accuracy, for computing area-preserving parameterizations. The parameterization

results computed by the three algorithms are rescaled so that the total area of each map is the same

as that of the input surface. We then evaluate the area-preserving property of the three algorithms by

computing the absolute relative error in triangle area for every triangle T:

EA(T) =
∣∣∣∣Area of T on the parameterization
Area of T on the original surface

− 1
∣∣∣∣ . (7.58)

§http://www3.cs.stonybrook.edu/~gu/software/omt/index.html
¶http://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings
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Figure 7.19:More comparisons between our density-equalizing map (DEM) algorithm with other
surface parameterization methods. Left to right: The input surface, our DEM algorithm, the optimal mass transport

(OMT)map 151, and the scalable locally injectivemap (SLIM) 107.

Here, a smaller EA indicates that the parameterization is more area-preserving. From Table 7.4, it

can be observed that our DEM algorithm is more efficient and accurate for computing

area-preserving parameterizations when compared to OMT and SLIM.
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Surface No. of
triangles Measure OMT 151 SLIM107 DEM

Time (s) 0.956 3.413 0.333
# iterations 22 20 3

Gaussian 10368 mean(EA) 0.1014 0.2678 0.0164
std(EA) 0.0791 0.2041 0.0233

median(EA) 0.1065 0.2104 0.0101
IQR(EA) 0.1157 0.2839 0.0154
Time (s) 0.466 0.998 0.149

# iterations 24 20 4
Peaks 4108 mean(EA) 0.1108 0.3214 0.0928

std(EA) 0.1015 0.1791 0.1027
median(EA) 0.0863 0.3107 0.0649
IQR(EA) 0.1106 0.1892 0.0934
Time (s) 3.278 14.791 1.444

# iterations 22 20 5
Lion 33369 mean(EA) 0.1285 0.1857 0.0938

std(EA) 0.1062 0.1298 0.0981
median(EA) 0.1050 0.1612 0.0640
IQR(EA) 0.1299 0.1934 0.0982
Time (s) 2.469 9.211 2.020

# iterations 22 20 8
Niccolò da 25900 mean(EA) 0.1282 0.1400 0.0737
Uzzano std(EA) 0.1101 0.0970 0.1461

median(EA) 0.1037 0.1266 0.0369
IQR(EA) 0.1293 0.1250 0.0589
Time (s) 3.035 9.762 2.021

# iterations 26 20 9
Max 26452 mean(EA) 0.1223 0.1075 0.0754
Planck std(EA) 0.1015 0.1078 0.1839

median(EA) 0.0991 0.0786 0.0333
IQR(EA) 0.1243 0.1174 0.0540
Time (s) 1.700 3.844 0.793

# iterations 30 20 6
Human 33369 mean(EA) 0.1511 0.0830 0.0612
face std(EA) 0.1386 0.0824 0.1438

median(EA) 0.1174 0.0613 0.0291
IQR(EA) 0.1507 0.0830 0.0481

Table 7.4:The performance of our DEM algorithm compared with the state-of-the-art nonlinear
parameterization algorithms for computing area-preserving parameterizations. For the optimal mass
transport (OMT)map 151 and the scalable locally injectivemap (SLIM) 107, the default parameter settings in their

implementation are used: The error threshold for OMT is set to be 0.0001, and the number of iterations for SLIM is

set to be 20.
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7.3.4 On the use and construction of the sea

Note that most prior parameterization methods do not involve the construction of a sea

surrounding the given surface. In our proposed DEM algorithm, the sea is useful not only for aiding

the density-equalization process but also for analyzing the physical phenomenon of density

propagation around the region of interest.

Here, we consider the deformation of the sea from a physical point of view. Let r be the distance

of a tracer particle at the sea from the origin before the deformation, and Δr = rfinal − r be the

change in the distance of it under the density-equalization process. We analyze the density

propagation under the proposed DEM algorithm by tracking Δr for all vertices at the sea. From the

log–log plots Δr against r outside the unit circle shown in Figure 7.20, it can be observed that

Δr ∝ r−2 at the outer part of the sea. In other words, the effect of density diffusion on the

displacement of particles at the sea decays quadratically. From an algorithmic point of view, this

observation suggests that the construction of a coarser sea at the outermost part by reflection does

not affect the accuracy of the density-equalizing map.

We now compare our reflection-based construction of an adaptive sea and other standard

construction approaches. Here, we replace our adaptive sea with a sea consisting of uniformly

spaced nodes with various choices of spacing, and analyze the performance of the

density-equalization algorithm.

More specifically, we consider three choices of node spacing at the sea. From Table 7.5, it can be

observed that the mapping results with our adaptive sea is as accurate as those with a uniform dense
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Figure 7.20:The log–log plot of the displacement of tracer particles at the sea under our density-
equalizing map (DEM) algorithm. r is the distance of a point at the sea from the origin, andΔr is the change in the
distance under the density-equalizingmap. Each cross represents a node at the sea, and the red line is the least-squares

line. Here we only consider the region outside the unit circle and hence the x-axis starts from 0. Left: The square example.

Middle: The hexagon example. Right: The human face example.

Surface Measure Adaptive
sea

Uniform
sea (coarse)

Uniform
sea

(moderate)

Uniform
sea (dense)

Square # points at sea 23882 16148 44463 389182
DEMTime (s) 0.6983 0.5838 1.2037 10.4504
median(dbdy) 1.0057 1.0148 1.0413 1.0137
IQR(dbdy) 0.0707 0.6781 0.1351 0.0689

Hexagon # points at sea 10022 6437 17511 150677
DEMTime (s) 0.3123 0.2615 0.5022 3.8555
median(dbdy) 1.0290 1.0630 1.0239 1.0163
IQR(dbdy) 0.0695 0.3504 0.1754 0.0676

Gaussian # points at sea 18676 15187 43688 364657
DEMTime (s) 0.4088 0.3820 0.7674 6.1897
median(dbdy) 0.9684 1.5254 1.1205 0.9646
IQR(dbdy) 0.1442 1.7124 0.6226 0.1478

Max Planck # points at sea 31444 15187 41714 364737
DEMTime (s) 2.4307 1.7412 2.9786 19.5934
median(dbdy) 1.1282 1.3877 1.2603 1.1387
IQR(dbdy) 0.2898 1.1896 0.6747 0.2510

Table 7.5:The performance of the density-equalizing maps with our adaptive sea and a uniformly sea.
The point spacing at the coarse, moderate, and dense level are respectively 5a, 3a and a, where a is the average spacing
of the vertices of the initial flatteningmaps. For a fair comparison, the overall size of the uniform sea is set to be 5, which

is consistent with our choice of η = 5 in our reflection-based construction. dbdy is defined by Given population
Final area

at the

boundary elements of the surfaces under the density-equalizingmaps.

sea consisting of over 10 times of nodes, and the computational time is over 90% shorter. While the

computation with a coarse sea is faster than that with our adaptive sea, the accuracy of the mapping
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Figure 7.21: Percentage of popular vote in each state visualized on density-equalizing US maps (only
including the contiguous 48 states) in the 2012 and 2016 US presidential elections. For enhancing the
visual quality, the triangulations are not shown.

results is much lower. The experiments suggest that our reflection-based sea construction is capable

of accelerating the computation without sacrificing the accuracy.

7.4 Applications

Below, we discuss two applications of our proposed density-equalizing mapping algorithm.

7.4.1 Data visualization

Similar to GN, our proposed algorithm can be utilized for data visualization. Here we consider

visualizing the percentage of popular vote for the Republican party and the Democratic party in the
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Figure 7.22: Visualizing the vote power of different states (only including the contiguous 48 states). Left: The normal US

map color coded by the number of electoral votes. Right: The area cartogram generated by DEM that accurately reflects

the vote power of all states.

contiguous 48 states in the 2012 and 2016 US presidential elections. The population on each state

on a triangulated US map is set to be the percentage of popular vote obtained by the two parties.

From the density-equalizing mapping results shown in Figure 7.21, it can be observed that the east

coast and west coast are significantly shrunk for the Republican party. This reflects the relatively low

percentage of popular vote obtained at those regions. By contrast, the corresponding regions are

significantly enlarged in the mapping results for the Democratic party, which reflects the relative

high percentage of popular vote there. Comparing the 2012 and the 2016 mapping results, we

observe that the area of California becomes more extreme in the 2016 maps when compared to

those in the 2012 maps. More specifically, it has further shrunk on the Trumpmap while further

expanded on the Clinton map. The area of West Virginia has reduced in the map for Clinton when

compared to that for Obama, while it has increased in the map for Trump when compared to that

for Romney.

One can also use our DEM algorithm to analyze the electoral college system for the US
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presidential elections. Noticing that the number of electoral votes is different at different states, we

evaluate the vote power of each popular vote at each state by

Vote power =
Number of electoral votes
Number of popular votes

mean
(
Number of electoral votes
Number of popular votes

) . (7.59)

To visualize the vote power using our DEM algorithm, we note that this quantity is not related to

the area of each state. Therefore, we remove the effect of the original area of each state by running

our DEM algorithm with the input population being Vote power
Area of the state on the contiguous US map. The

resulting area cartogram then solely reflects the vote power (Figure 7.22). When compared to the

ordinary contiguous US map, the area cartogram produced by DEM provides a more intuitive view

of the vote power. For instance, it can be observed that Wyoming is much bigger than Texas in the

area cartogram as the vote power there is significantly larger. The two examples show that our DEM

algorithm is useful for data visualization.

7.4.2 Adaptive surface remeshing

In our DEM algorithm, the input population affects the size of different regions in the resulting

density-equalizing maps, with regions corresponding to a higher population magnified and those

corresponding to a lower population shrunk. Using this property, we can utilize our DEM

algorithm for adaptive surface remeshing.

More specifically, let S be a simply-connected open surface to be remeshed. We first compute the

density-equalizing map f : S → C based on a given population. Then, we consider a set of
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Figure 7.23:Remeshing a human face. Top left: The input human face. Topmiddle: The remeshing result via our
DEM algorithm. Top right: The remeshing result via the free-boundary conformal parameterization 35. Bottom left: The

density-equalizingmap by our DEM algorithm. Bottom right: The free-boundary conformal parameterization 35.

uniformly distributed pointsP on the mapping result and triangulate the points. Denote the

triangulation by T . Finally, using the inverse mapping f−1, we interpolateP onto S and the

resulting mesh (f−1(P), T ) is a remeshed version of S.
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Note that we can increase the level of detail at a region of S by setting a larger population there.

As the region is enlarged in the density-equalizing mapping result andP is uniformly distributed,

more points will lie on that part. Therefore, more points will be mapped onto that particular region

of S under the inverse mapping.

Figure 7.23 shows the results of remeshing a triangulated human face via our DEM algorithm

and the free-boundary conformal parameterization35. For our algorithm, we set the population to

be the triangle area of the original mesh. It can be observed that the eyes and the nose of the human

face are enlarged in our density-equalizing mapping result, while those features are shrunk in the

conformal parameterization. Therefore, in the remeshing results via conformal parameterization,

the representation of the nose is poor. By contrast, the remeshing result via our DEM algorithm

consists of points which are more evenly distributed on the surface. This demonstrates the strength

of our algorithm in surface remeshing.

7.5 Discussion

In this work, we have proposed two density-equalizing mapping algorithms (DEM and SPDEM) for

simply-connected open surfaces, with numerical experiments showing the effectiveness of them for

different applications.

As the discretization accuracy of the cotangent Laplacian is affected by the mesh regularity, a

possible method for further improving the accuracy of the density-equalizing maps is to introduce

an extra step of recomputing a Delaunay triangulation at every iteration in Algorithm 7.5. Since
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the density values are vertex-based, changing the triangulation will not lead to any ambiguity in the

computation. Also, as the deformation is based on rn = rn−1 − δt(∇ρ)Vn /ρVn , one may prevent the

occurrence of fold-overs by changing the timestep δt adaptively throughout the iterations.

While the proposed algorithms focus on simply-connected open surfaces inR3, they can be

naturally extended for mapping general surfaces. For instance, one can compute density-equalizing

maps of multiply-connected surfaces by filling up the holes and treating them as the sea. The entire

surface then will become simply-connected and hence we can apply the proposed algorithms.

Similarly, we can handle multiple disconnected surfaces by connecting them using a sea.
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Where there is matter, there is geometry.

Johannes Kepler

8
Area-preserving map of 3D carotid models

Atherosclerosis is a focal disease with plaques occurring at bends and

bifurcations (BFs) of the carotid artery predominantly, causing ischemic

stroke44. It is therefore important to monitor the local changes in the vessel-wall-plus-plaque

thickness (VWT) of carotid artery, which is defined as the pointwise distance between the
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lumen-intima boundary (LIB) and the media-adventitia boundary (MAB)22, for aiding the

development of sensitive biomarkers that can identify high-risk patients with rapid plaque

progression in a shorter time frame. Instead of visualizing the VWT-Change distribution for an

individual patient on a three-dimensional (3D) surface, it is more preferable to have a flattened

representation of the carotid artery surface so that clinicians can examine the distribution

systematically without having to rotate and interact with the 3D surface12. Also, since the geometry

of the carotid artery surfaces is highly subject-specific, having a standardized two-dimensional (2D)

template facilitates quantitative local comparisons of the VWT-Change distributions among

subjects.

Chiu et al.23 developed the arc-length scaling (ALS) mapping method for flattening the 3D

carotid surfaces onto a standardized 2D non-convex L-shaped domain (Figure 8.1), with the external

carotid artery (ECA) (i.e. the left branch above the bifurcation point) excluded as plaques at ECA

are not directly related to stroke. The ALS method has been applied for the development of sensitive

biomarkers in clinical trials evaluating the effect of atorvastatin23,20 and B Vitamins19. However,

the ALS method does not minimize any local geometric distortion by the flattening procedure. It is

well-known that surface flattening always introduces distortions in either angle or area (or both)

unless the Gaussian curvature of the surface is zero48.

Conformal (angle-preserving) flattening methods have been proposed for tubular

surfaces152,3,62,152, with the local geometry of the surfaces taken into account. However, these

methods produce 2Dmaps with shapes depending on the geometry of the input surfaces, making

the flattened domain subject-specific. Antiga and Steinman3 developed a method for producing a
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Figure 8.1:An illustration of the 2D arc-length scaling (ALS) map23. a, A carotid surface is first cut by two

planes, denoted byPICA andPCCA. b, The surface is then unfolded to a 2D L-shaped non-convex domain. The arc-length

of transverse contours segmented from 2D transverse images is rescaled such that all vertices on the carotid surface

correspond to uniformly spaced grid points on the 2D domain. The bifurcation (BF) is mapped to the non-convex corner of

the domain, and the carotid boundaries σ1, σ2, σ3 aremapped to the horizontal boundaries.

standardized 2Dmap by decomposing the common, internal and external carotid arteries (CCA,

ICA and ECA) into three topological cylinders, with each of them subsequently flattened onto the

2D plane by solving a Dirichlet problem2. However, the flattened maps for the CCA, ICA and

ECA are generated independently and displayed in three discontinuous sections, which hampers

clinical interpretation of the VWT-Change map at the bifurcation and the carotid bulb.

As areal and volumetric measurements of plaques are related to the stroke risk of patients126,145,

area-preserving flattening methods are more preferable. However, while some area-preserving

carotid flattening methods have been developed152,21 and applied to clinical studies43,78, these

methods result in 2Dmaps with shapes depending on the geometry of the input surfaces. The

inability of these methods in producing a standardized 2D template makes them not suitable for

quantitative analysis of VWT-Change.

In Chapter 7, we developed two surface density-equalizing map methods (DEM and SPDEM)

for flattening simply-connected open surfaces based on density diffusion52. In particular, our
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SPDEMmethod allows for the computation of area-preserving maps of surfaces onto a standardized

convex planar domain such as a disk or a rectangle. However, the carotid mapping problem involves

a non-convex target 2D domain, for which the bijectivity of SPDEM is not guaranteed. To

overcome this issue, in this chapter we develop a novel method called the density-equalizing

reference map (DERM) for computing area-preserving carotid flattening maps onto the 2D

non-convex L-shaped domain. The proposed method extends the diffusion-based formulation and

further combines it with the reference map technique71,141,114 in solid mechanics. With the

bijectivity ensured and the area distortion minimized, the flattening maps produced by our method

provide an accurate and consistent collective representation of carotid surfaces, thereby enabling

unbiased quantitative comparisons of the extent of carotid diseases among patients in population

studies.

8.1 The reference map technique

Rycroft, Kamrin, and coworkers71,141,114 developed the reference map technique (RMT) for

simulating large-strain solid mechanics. The RMT uses the reference map as the basis for a fully

Eulerian formulation, which provides a simple method to describe arbitrary deformations of a body

inRd.

Suppose the material initially located at the positionX of the body is moved to the position x at

time t. The deformation can then be described by themotion function x(X, t), which keeps track of

the motion of the material initially atX. The reference map is defined as the inverse of the motion
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Figure 8.2:An illustration of the reference map. The referencemap is the inverse of themotion function, which
indicates the reference location of thematerial occupyingx at time t.

functionX = ξ(x, t), which can be regarded as a vector field in the deformed body indicating

the reference location at time 0 of the material occupying the position x at time t (Figure 8.2). In

particular, ξ(x, 0) = x as the initial configuration is undeformed. Now, note that for any tracer

particle, the reference location of it is the same at all time t under the deformation. Therefore, we

have

ξ̇ = 0, (8.1)

which yields the advection equation

∂ξ
∂t

+ v · ∇ξ = 0. (8.2)

Solving the above equation as t→∞, we obtain the final reference map ξ(xfinal,∞)which gives the

reference location of the material occupying the final position xfinal of the deformed body. In the
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Figure 8.3:Reconstruction of the carotid surfaces from the ultrasound images. Thewhite and black
contours represent repeated segmentations of the lumen-intima boundary (LIB) andmedia-adventitia boundary (MAB)

respectively, and the red contours represent themean LIB andMAB. Each blue line connects a pair of correspondence

points matched using the symmetric correspondence algorithm 22, and the local vessel-wall-plus-plaque thickness (VWT)

is given by the distance between each correspondence pair.

2D case, we can obtain xfinal from ξ by tracking the contour lines of the x- and y- coordinates of ξ.

8.2 Materials and methods

8.2.1 Study subjects and 3D ultrasound image acquisition

Here we consider ten subjects with carotid atherosclerosis recruited from The Premature

Atherosclerosis Clinic and the Stroke Prevention Clinic at the London Health Science Center,

London, Canada and the Stroke Prevention & Atherosclerosis Research Center, Robarts Research

Institute, London, Canada. 20 carotid images were obtained by scanning each subject at baseline

and two weeks later using a 3D ultrasound carotid imaging system80. All ten patients have stable

atherosclerosis, and no physiological changes were expected to increase the inter-scan variability of

VWT.

3D carotid surfaces were reconstructed from the ultrasound images as described in Refs.21,19,25

186



VWT
(mm)

(T1: 3D)

(T2: 3D)

(T1: 3D)

(T2: 3D) (T2: 3D)

VWT 
(mm)

VWT 
(mm)

(T2: 3D)

(T1: 3D)

VWT 
(mm)

(T1: 3D)

VWT 
(mm)

(T1: 3D)

(T2: 3D)

VWT 
(mm)

(T2: 3D)

(T1: 3D)
Subject 6

Subject 1 Subject 2 Subject 3

Subject 7

Subject 5

(T2: 3D)

(T1: 3D)

VWT 
(mm)

Subject 4

VWT 
(mm)

(T2: 3D)

(T1: 3D)
Subject 8

VWT
(mm)

(T1: 3D)

(T2: 3D)

Subject 9

VWT 
(mm)

(T2: 3D)

(T1: 3D)
Subject 10

Figure 8.4:The 20 3D carotid surfaces color-coded and superimposed by their VWT distributions (with
both front and back views). Themodels at baseline and follow-up are labeled asT1 andT2 respectively.

(Figure 8.3). The VWTwas measured by computing the distance between each pair of

corresponding points (i.e. the length of blue lines in Figure 8.3), and the 3D VWTmap was

constructed by superimposing the pointwise VWT on theMAB surface. The 20 resulting carotid

surfaces are shown in Figure 8.4.

8.2.2 2D arc-length scaling (ALS) map

Here we briefly describe the ALS method23 for flattening a carotid surface onto a 2D non-convex

L-shaped domain. The input surface is first translated and rotated such that the bifurcation (BF) is

at the origin, the longitudinal direction of the common carotid artery (CCA) is aligned with the

z-axis, and the internal carotid artery (ICA) is located at the upper half space. The surface is then cut

by two planes (Figure 8.1a) and unfolded to a 2D L-shaped non-convex domain (Figure 8.1b), with

the ICA and the CCA respectively mapped to the top part and the bottom part of the planar

domain. The method then rescales the arc-length of transverse contours segmented from 2D
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transverse images resliced from 3D ultrasound images, so that the vertices on the input surface

correspond to uniformly spaced grid points on the L-shaped domain. This results in a standardized

2D template for analyzing the carotid surfaces.

However, the ALS method does not minimize any local geometric distortion produced by the

flattening process. In the following section, we further deform the ALS mapping result and generate

an area-preserving 2D carotid template.

8.2.3 Area-preserving map via density-equalizing reference map (DERM)

Denote the 2D L-shaped domain obtained using the ALS method byD. Here, we deformD based

on a prescribed density distribution. Denote the density at the location x onD at time t as ρ(x, t).

We set ρ(x, 0) to be the area of each face of the carotid surface in order to achieve area-preservation

under a diffusion-based deformation.

The following more general version of the diffusion process with diffusivity κ is considered:

∂ρ
∂t

= ∇ · (κ∇ρ) = κΔρ+∇κ · ∇ρ. (8.3)

Note that here we introduce an additional differentiable function κ for handling the non-convex

corner of the L-shaped domain. More specifically, to regularize the deformation around the non-

convex corner, we slow down the diffusion process there by setting κ to be such that κ ≪ 1 around
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the non-convex corner and κ ≈ 1 at the regions distant from it:

κ(x, y) = 1−
(
1− 1√

a

)
e−

(x−p)2+(y−q)2√
a , (8.4)

where (p, q) are the coordinates of the bifurcation point onD and a is the total area ofD. Note that

∇κ in Eq. (8.3) can be expressed explicitly by taking partial derivatives on Eq. (8.4). On the

boundary edges ofD, we enforce the no-flux boundary condition n · ∇ρ = 0 where n is the unit

outward normal. This ensures that the diffusion occurs withinD, and hence the subsequent

diffusion-based deformation will not change the overall shape of it. The velocity field (7.4) is then

given by

v(x, t) = −κ∇ρ
ρ

. (8.5)

Now, we treatD as a solid body and consider its deformation under the velocity field v(x, t)

induced by the density gradient. The reference map ξ(x, t) can be obtained by solving the advection

equation

∂ξ
∂t

(x, t) + v(x, t) · ∇ξ(x, t) = 0. (8.6)

As t→∞, ρ(x, t) is equalized overD and the associated reference map field ξ(xfinal,∞) is a density-

equalizing reference map. Denote the VWT at the locationX on the initial 2D ALS map as T(X).

The VWT on the final area-preserving map is given by T(ξ(X,∞)). In other words, we can obtain

the final area-preserving map xfinal by considering the contour lines of constant x- and y- coordinates

of ξ.
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In the discrete case, suppose we use a rectangular grid consisting ofM × N grid points with grid

spacing h in both the x- and y-directions to representDwith the top left empty space of it included

(which is just for simplicity of the discretization and can be omitted in the computations). Let the

coordinates of the grid points be (ih, jh), where 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1. We discretize

the diffusion equation (8.3), the velocity field (8.5) and the advection equation (8.6) and solve them

iteratively. Denote the step size as δt and the density at the grid point (ih, jh) at the n-th step as ρni,j.

We can similarly write the discrete version of v andX.

Note that κ and its derivatives κx, κy can be easily discretized. The diffusion equation (8.3) is

solved by the implicit Euler method, with the central difference scheme used for approximating∇ρ:

ρni,j − ρn−1
i,j

δt
=κi,j

ρni+1,j + ρni−1,j + ρni,j+1 + ρni,j−1 − 4ρni,j
h2

+ (κx)i,j
ρni+1,j − ρni−1,j

2h
+ (κy)i,j

ρni,j+1 − ρni,j−1

2h
.

(8.7)

To enforce the the no-flux boundary condition for the diffusion equation, we use the following

ghost node approach. At the four rectangular boundaries

(x, y) = (0, jh), ((M − 1)h, jh), (ih, 0), (0, (N − 1)h)where 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1,

and the two L-shaped boundaries (x, y) = (p, jh), (ih, q)where 0 ≤ ih ≤ p and 0 ≤ jh ≤ q, we

suitably replace the terms ρni−1,j, ρ
n
i+1,j, ρ

n
i,j−1, ρ

n
i,j+1 on the right hand side in Eq. (8.7) by ρ

n
i,j such

that there is no density flux orthogonal to the boundaries, thereby maintaining the L-shape

throughout the density-equalization process. By representing ρn as a column vector of size

MN × 1,we can simplify Eq. (8.7) as ρn = A−1ρn−1, where A is anMN × MNmatrix with
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Figure 8.5:The discretization of the proposed DERMmethod. On a grid with spacing h, we update the density
ρni,j at the grid point (ih, jh) at then-th step by solving the diffusion equation (8.7). ρ

n
i,j depends on ρ

n
i±1,j, ρ

n
i,j±1 at the

neighboring grid points at then-th step, ρn−1
i,j at (ih, jh) at the (n− 1)-th step, as well as κ and its derivatives at (ih, jh).

The density flux causes a velocity field (8.8), and we update the referencemap ξni,j using the advection equation (8.9).

A = I− δt(κΔ+Kx +Ky),Kx +Ky being the matrix representation of∇κ · ∇. A is a sparse matrix

independent of n, and hence it is needed to be computed only once throughout the iterations.

As for the discretization of the velocity field (8.5), we again use the central difference scheme:


(vx)

n
i,j = −κi,j

ρni+1,j − ρni−1,j

2hρni,j
,

(vy)
n
i,j = −κi,j

ρni,j+1 − ρni,j−1

2hρni,j
.

(8.8)

We solve the advection equation (8.6) for updating ξ(x, t) using the following upwind method:

ξni,j − ξn−1
i,j

δt
=



−(vx)
n
i,j

ξn−1
i,j −ξn−1

i−1,j
h − (vy)

n
i,j

ξn−1
i,j −ξn−1

i,j−1
h if (vx)

n
i,j > 0 and (vy)

n
i,j > 0,

−(vx)
n
i,j

ξn−1
i+1,j−ξn−1

i,j
h − (vy)

n
i,j

ξn−1
i,j −ξn−1

i,j−1
h if (vx)

n
i,j ≤ 0 and (vy)

n
i,j > 0,

−(vx)
n
i,j

ξn−1
i,j −ξn−1

i−1,j
h − (vy)

n
i,j

ξn−1
i,j+1−ξn−1

i,j
h if (vx)

n
i,j > 0 and (vy)

n
i,j ≤ 0,

−(vx)
n
i,j

ξn−1
i+1,j−ξn−1

i,j
h − (vy)

n
i,j

ξn−1
i,j+1−ξn−1

i,j
h if (vx)

n
i,j ≤ 0 and (vy)

n
i,j ≤ 0.

(8.9)

Figure 8.5 shows a schematic for the discretization. By solving (8.7), (8.8), (8.9) iteratively until
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the density is fully equalized onD, we obtain the desired density-equalizing reference map ξ. Denote

ξ = (ξ1, ξ2). We obtain the associated area-preserving map xfinal as follows. For every grid point

(ih, jh) on the ALS map, where i = 0, 1, · · · ,M − 1 and j = 0, 1, · · · ,N − 1, the corresponding

point of it in xfinal is given by the intersection of the contour lines ξ1 = ih and ξ2 = jh. In the

discrete case, each contour line is represented as a piecewise linear curve. Therefore, to check

whether a line segment {(xk1 , yk1), (x
k+1
1 , yk+1

1 )} of a ξ1-contour intersects with another line segment

{(xl2, yl2), (x
l+1
2 , yl+1

2 )} of a ξ2-contour, we solve the following system of four linear equations in

four unknowns x∗, y∗, t1, t2: 

(xk+1
1 − xk1)t1 = x∗ − xk1 ,

(yk+1
1 − yk1)t1 = y∗ − yk1 ,

(xl+1
2 − xl2)t2 = x∗ − xl2,

(yl+1
2 − yl2)t2 = y∗ − yl2.

(8.10)

The two line segments intersect at (x∗, y∗) if and only if t1, t2 ∈ [0, 1]. Hence, we can obtain the

area-preserving map xfinal by tracking the intersection points of all pairwise contour lines.

To choose a suitable step size δt, note that the implicit Euler scheme for the diffusion equation

is unconditionally stable. By performing a dimensional analysis on Eq. (7.3), we can see that an

appropriate dimension of δt is (length)2. Also, note that δt should be independent of the magnitude

of ρ as the density diffusion process is invariant under uniform rescaling of ρ. Therefore, we set

δt =
std(ρ)
mean(ρ)

× ac, (8.11)
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where c is a dimensionless constant. The convergence criterion is set to be sd(ρn)
mean(ρn) ≤ ε, where ε

is the error threshold. Algorithm 8.1 summarizes the proposed density-equalizing reference map

(DERM) method for computing area-preserving carotid mapping.

Algorithm 8.1:Area-preserving carotid mapping via density-equalizing reference map
(DERM)
Input: A carotid surface S, the error threshold ε, the maximum number of iterations

nmax.
Output: An area-preserving map xfinal on the 2D non-convex L-shaped domain.

1 Use the ALS method23 to compute an initial map f : S→ R2 onto the 2D L-shaped
domain;

2 Set the density ρ as the area of every face of S;
3 Set δt = std(ρ)

mean(ρ) × ac;
4 Compute A = I− δt(κΔ+ Kx + Ky);
5 Set n = 0 and ρ0 = ρ;
6 repeat
7 Solve ρn+1 = A−1ρn;
8 Compute the velocity field v using Eq. (8.8);
9 Update the reference map ξ using Eq. (8.9);

10 Update n = n+ 1;
11 until sd(ρn)

mean(ρn) ≤ ε or n ≥ nmax;
12 Obtain the desired map xfinal by tracking the intersections of the contour lines ξ1 = ih

and ξ2 = jh of ξ = (ξ1, ξ2) for all i, j;

Recall that the method by Gastner and Newman (GN)52 iteratively solves Eq. (7.3) with uniform

diffusivity, obtains the velocity field (7.4), and tracks the displacement of every tracer particle by

Eq. (7.5). To track the displacement of a tracer, an interpolation of the velocity field at its current

location is required at every iteration. By contrast, DERM keeps track of the reference map field by

Eq. (8.6), which is fully Eulerian. Therefore, no interpolation is needed throughout the iterations.
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Figure 8.6:Carotid flattening by ALS23 and our area-preserving DERMmethod. a-c, The results for three
subjects. The carotid models constructed from the baseline and follow-up 3D ultrasound images for each subject are

denoted byT1 andT2 respectively. The left column shows the 3D carotid surfaces color-coded and superimposed by

their vessel-wall-plus-plaque thickness (VWT) distributions (with both front and back views). Themiddle column shows

the 2Dmaps generated by ALS andDERM. The right column shows the area distortion of the flatteningmaps.

8.3 Results

The ALS mapping method is implemented in C++. The proposed DERMmethod is also

implemented in C++ with OpenMP parallelization (with grid spacing h = 1, maximum number of
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Figure 8.7:Histograms of the logged area distortion ratio d. d is evaluated on the 150360 quadrilateral faces
(7518 per carotid model× 20 carotid models) in the ALSmaps and the area-preserving DERMmaps. a, The histogram for

ALS.b, The histogram for DERM.

iterations nmax = 500, step size constant c = 0.01, and error threshold ε = 10−3). The biconjugate

gradient stabilized method (BiCGSTAB) in the C++ library Eigen is used for solving the sparse linear

systems. The experiments are performed on a PC with an Intel i7-6700K quad-core processor and

16 GB RAM. For each arterial model, the ALS initialization takes 1 second and DERM takes

8 seconds.

Figure 8.6 (left) shows the front and back views of six carotid surfaces at baseline and follow-

up from three subjects. The mapping results by ALS and DERM for three subjects are shown in

Figure 8.6 (middle). To quantitatively assess the area distortion of the two methods, we compute the

following logged area distortion ratio associated with each quadrilateral face of the models:

d = loge
Area of the face on the flattened map

Area of the face on the 3D carotid model
. (8.12)

Note that d represents enlargement and shrinkage in an equal magnitude. For a perfectly

area-preserving map, we have d = 0 for all faces. A positive d at a local region indicates that the
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Figure 8.8:Average absolute area distortion mean(|d|) for ALS and DERM for the 20 carotid surfaces.
For each subject, the carotid models at baseline and follow-up are denoted byT1 andT2 respectively.

region is enlarged on the 2D domain, while a negative d indicates that the region is shrunken. The

symmetric property of dmakes it easier to interpret than the linear ratio. Figure 8.6 (right) shows

the 2Dmaps with d color-coded and superimposed, from which it can be observed that the area

distortion exhibited in the ALS initialization is effectively corrected by DERM. Figure 8.7 shows the

histograms of d for ALS and DERM evaluated on the 150360 quadrilateral elements of the 20

carotid surfaces (7518 per surface× 20 surfaces). The histogram for DERM is much more

concentrated at d = 0, which indicates that the area distortion associated with DERM is smaller

than that associated with ALS. We further calculate the average value of |d| over the 2Dmaps

produced by ALS and DERM for each of the 20 carotid models (Figure 8.8). The result shows that

DERM reduces the average absolute area distortion by over 80%, and a two-sample t-test shows that

the reduction is significant (P < 10−6).

Besides minimizing the area distortion, DERM is advantageous in preventing overlaps in the 2D
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Figure 8.9:Comparison between the flattening maps produced by four methods. a, We consider zooming

into the non-convex corner of the 2D L-shaped domain. b-e, Themapping results at that region produced by ALS 23, GN 52,

SPDEM (Chapter 7) and DERM.Ourmethod is advantageous in adjusting for the geometric variability of the carotid

surfaces without causing any overlaps.

non-convex domain. Here, we compare DERMwith ALS, GN and SPDEM. For both GN and

SPDEM, we set the density to be the face area for computing area-preserving flattening maps and

enforce the no-flux boundary condition for preserving the L-shape throughout the iterations. By

zooming into the non-convex corner of the 2Dmaps produced by the four methods (Figure 8.9),

we observe that GN and SPDEM result in overlaps around the non-convex corner due to the large

density gradient between the ICA and CCA, while DERM is free of overlaps because of the use of a

non-constant diffusion coefficient κ in the diffusion process. We quantify the total overlapping area

Aoverlap for each of the 20 carotid models and for each method by taking the difference between the

sum of the area of all quadrilateral faces in the 2Dmap and the area enclosed by the boundary of the

L-shaped domain. The mean and the standard deviation of Aoverlap for GN and SPDEM are 2.1±

1.3 and 2.8± 2.1 mm2 respectively. By contrast, Aoverlap = 0 for DERM for all surfaces.

The average area distortion mean(|d|) and the total overlapping area Aoverlap for the four
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Carotid model ALS 23 GN 52 SPDEM (Ch. 7) DERM
mean(|d|) Aoverlap mean(|d|) Aoverlap mean(|d|) Aoverlap mean(|d|) Aoverlap

Subject 1 Time 1 0.29 0 0.15 4.27 0.04 8.88 0.04 0
Subject 1 Time 2 0.18 0 0.07 1.97 0.03 4.57 0.03 0
Subject 2 Time 1 0.16 0 0.06 2.47 0.02 3.55 0.02 0
Subject 2 Time 2 0.19 0 0.06 2.43 0.03 3.03 0.02 0
Subject 3 Time 1 0.19 0 0.08 2.87 0.02 4.52 0.02 0
Subject 3 Time 2 0.13 0 0.05 2.18 0.02 3.09 0.02 0
Subject 4 Time 1 0.17 0 0.05 1.29 0.02 1.65 0.03 0
Subject 4 Time 2 0.24 0 0.09 3.01 0.03 4.82 0.04 0
Subject 5 Time 1 0.08 0 0.02 0.36 0.01 0.49 0.02 0
Subject 5 Time 2 0.19 0 0.05 1.89 0.02 2.61 0.03 0
Subject 6 Time 1 0.23 0 0.11 4.58 0.03 5.40 0.03 0
Subject 6 Time 2 0.21 0 0.08 3.19 0.03 3.39 0.03 0
Subject 7 Time 1 0.15 0 0.03 0.83 0.02 1.21 0.02 0
Subject 7 Time 2 0.12 0 0.04 1.49 0.01 2.31 0.02 0
Subject 8 Time 1 0.18 0 0.05 1.65 0.02 1.57 0.03 0
Subject 8 Time 2 0.17 0 0.06 2.97 0.02 1.57 0.02 0
Subject 9 Time 1 0.15 0 0.02 0 0.02 0.22 0.02 0
Subject 9 Time 2 0.14 0 0.02 0 0.02 0 0.02 0
Subject 10 Time 1 0.20 0 0.04 1.87 0.02 1.01 0.03 0
Subject 10 Time 2 0.22 0 0.08 3.32 0.03 1.91 0.03 0

Table 8.1:The area distortion mean(|d|) and the total overlapping area Aoverlap for ALS23, GN52,
SPDEM (Chapter 7), and the proposed DERMmethod for the 20 carotid models.

methods (ALS, GN, SPDEM, and DERM) are recorded in Table 8.1. It can be observed that

DERM achieves a reduction in area distortion comparable to SPDEM and outperforms it in terms

of the bijectivity.

After assessing the area-preservation and bijectivity of DERM, we consider the improvement of

the accuracy of the plaque size representation in the 2D carotid template produced by DERM. As

the latest European Society of Hypertension (ESH) and European Society of Cardiology (ESC)

hypertension guidelines89 lists intima–media thickness (IMT)> 0.9 mm as a risk factor of

asymptomatic organ damage, we define the plaque regions in a carotid model to be the regions with

VWT> 0.9 mm (see Figure 8.10 for the binary 2D VWTmaps constructed for two carotid models

by ALS and DERM, with white and black representing the plaque regions and the background

respectively).
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Figure 8.10: Binary 2D VWTmaps by ALS and DERM, with white representing the plaque regions (i.e.
with VWT> 0.9mm) and black otherwise. Each column corresponds to one carotid model.

To evaluate the accuracy of the plaque area change for each patient from baseline to follow-up

exhibited in the 2D VWTmaps produced by ALS and DERM, we consider the plaque area change

error associated with the two methods:

eΔPAi = ΔPAi − ΔPA3D, (8.13)

where i ∈ {ALS, DERM} represents the mapping method (ALS or DERM), ΔPAi is plaque area

change estimated using method i and ΔPA3D is the plaque area change obtained on the 3D VWT

map. Computing the plaque area change errors for all 10 subjects, we have |eΔPAALS | = 13.8 ±

24.9 mm2 and |eΔPADERM | = 7.2 ± 12.9 mm2. The mean error is reduced by 48% using DERM,

and the difference is statistically significant (P = 0.01). This suggests that DERM is advantageous in

reducing the error in plaque size representation.

Note that the location and the size of plaques are the two major determinants of stroke
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risk106,126,145. A previous study has shown that ALS provides good anatomic correspondence for

carotid arteries18. While we have shown that DERM significantly reduces the error in plaque region

area estimation when compared to ALS, one may ask whether the anatomic correspondence would

be negatively affected under DERM. As no physiological change is expected between the two

scanning sessions for the ten subjects, we assess the anatomic correspondence in terms of the

inter-scan variability by computing ΔVWT between the 2Dmaps of the two sessions. More

specifically, we compare ΔVWTs associated with ALS and DERM based on the following three

parameters:

• Percentage of vertices with ΔVWT ≤ 0.35 mm for each subject.

• Visual comparison between the mean ΔVWTmaps generated by ALS and DERM for the
ten subjects.

• The subject-based mean |ΔVWT| for each of the ten subjects.

Here, we choose 0.35 mm as the threshold because the axial, lateral and elevational resolutions of

the 3D imaging system are 0.6, 0.8 and 2 mm repsectively at the depth of 40 mm, which is

approximately the depth of the carotid artery14. The average in-plane resolution is 0.7 mm, and half

of which (0.35 mm) can be considered as a small change. For ALS the percentage is 80.7% ± 6.7%,

and for DERM the percentage is 80.9% ± 6.4%. A two-sample paired t-test shows no significant

difference between them (P = 0.85). Figure 8.11 shows the mean ΔVWTmaps generated by ALS

and DERM for the ten subjects, from which it can be observed that the two ΔVWT patterns are

similar. As for the subject-based mean |ΔVWT|, the two-sample paired t-test shows no significant

difference between the results produced by ALS and DERM (P = 0.80). The above experiments
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Figure 8.11:The average ΔVWTmap between the baseline and the follow-up generated by ALS and
DERM for the ten subjects.

suggest that DERM effectively improves the accuracy of plaque area change estimation without

compromising inter-scan reproducibility, thereby facilitating the collective analysis of the location

and the size of plaques on the standardized 2D carotid template.

8.4 Discussion

One limitation of GN and SPDEM is the lack of bijectivity for non-convex 2D domains. Our

proposed DERMmethod overcomes this limitation by allowing for a non-constant diffusivity that

effectively regularizes the density gradient around the non-convex corner of the 2D L-shaped

domain. Another limitation of the two methods is that they track the deformation of each node on

the domain individually without considering the neighboring spatial information, and hence a large

deformation will result in an unsmooth mapping. By integrating the reference map technique

(RMT) with the density-equalization process, DERM is capable of generating a smooth and

area-preserving flattening map.

Although the carotid surfaces in our experiments are generated from 3D carotid ultrasound

images, the proposed DERMmethod is equally applicable to any imaging modality that allows the
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segmentation of the LIB andMAB. Also, while we have primarily focused on carotid mapping, the

proposed DERMmethod can be applied for flattening other organs such as brain ventricles and

kidneys32 for facilitating the interpretation of spatial distributions on the surfaces. The resulting

standardized 2D template will allow for unbiased quantitative comparisons of the organs.
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One should always generalize.

Carl Jacobi

9
Volumetric density-equalizing map

After studying the use of the density-equalizing maps for mapping surfaces onto

2D domains, it is natural to ask if it is possible to extend density-equalizing maps to 3D. In this

chapter, we develop a novel method called the volumetric density-equalizing reference map

(VDERM) that produces volumetric deformations based on a prescribed density distribution. Our

203



method combines and extends the method by Gastner and Newman (GN)52 and the reference map

technique (RMT)71,141,114. The proposed method can be utilized for volumetric data visualization,

shape modeling, adaptive remeshing etc. To the best of our knowledge, this is the first work on

higher dimensional density-equalizing maps. Furthermore, all prior works on density-equalizing

maps only focused on the use of them for producing a single final output. With the observation that

density-equalizing map is a continuous deformation, we introduce the first use of density-equalizing

map for time-dependent applications such as shape morphing.

9.1 Formulation

9.1.1 Iterative scheme for volumetric deformation

LetD ⊂ R3 be a rectangular solid domain discretized as a L ×M × N 3D grid with grid spacing

h in all the x-, y- and z-directions. The coordinates of the grid points are given by (ih, jh, kh), where

0 ≤ i ≤ L − 1, 0 ≤ j ≤ M − 1, 0 ≤ k ≤ N − 1. Let ρ0 = ρ0(x) be a prescribed density defined

inD, with discretization given by ρ0i,j,k = ρ0(ih, jh, kh) for all i, j, k. Denote ρ(x, t) as the density at

time t, with ρ(x, 0) = ρ0(x). The diffusion of ρ follows from the diffusion equation

∂ρ
∂t

(x, t) = Δρ(x, t). (9.1)
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Figure 9.1:A illustration of density diffusion and reference map update in our proposed volumetric
density-equalizing reference map method. a, The diffusion of ρ is computed iteratively by solving Eq. (9.2) based
on the six neighboring nodes. b, The density gradient is then used for updating ξ via Eq. (9.7).

We discretize Eq. (9.1) using the backward Euler scheme (Figure 9.1):

ρni,j,k − ρn−1
i,j,k

δt
=

1
h2
(
ρni+1,j,k + ρni−1,j,k + ρni,j+1,k + ρni,j−1,k + ρni,j,k+1 + ρni,j,k−1 − 6ρni,j,k

)
, (9.2)

where δt is the timestep to be determined, and n = t/δt is the iteration number. We further simplify

Eq. (9.2) as

ρn = (I− δtΔ)−1ρn−1, (9.3)

where Δ is an LMN × LMN seven-point Laplacian stencil. Here, I − δtΔ is a sparse symmetric

positive definite matrix independent of n. Hence, after setting up the matrix A = I − δtΔ based

on the backward Euler scheme (9.2) and preconditioning the system once, we can efficiently solve

Eq. (9.3) at each iteration with both the matrix A and the preconditioner reused.
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The density gradient of ρ induces a velocity field

v(x, t) = −∇ρ(x, t)
ρ(x, t)

, (9.4)

which can be discretized using the following central difference scheme:



(vx)
n
i,j,k = −

ρni+1,j,k − ρni−1,j,k

2hρni,j,k
,

(vy)
n
i,j,k = −

ρni,j+1,k − ρni,j−1,k

2hρni,j,k
,

(vz)
n
i,j,k = −

ρni,j,k+1 − ρni,j,k−1

2hρni,j,k
.

(9.5)

We then track the deformation ofD under the velocity field using the reference map ξ(x, t),

discretized as ξni,j,k = ξ((ih, jh, kh), nδt). ξ can be computed by solving the advection equation

∂ξ
∂t

(x, t)− ∇ρ(x, t)
ρ(x, t)

· ∇ξ(x, t) = 0, (9.6)

which we discretize using the second-order upwind scheme:

ξni,j,k − ξn−1
i,j,k

δt
= dx + dy + dz, (9.7)

where

dx =


(vx)

n
i,j,kd

−
x if (vx)

n
i,j,k > 0,

(vx)
n
i,j,kd

+
x if (vx)

n
i,j,k ≤ 0,

(9.8)
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dy =


(vy)

n
i,j,kd

−
y if (vy)

n
i,j,k > 0,

(vy)
n
i,j,kd

+
y if (vy)

n
i,j,k ≤ 0,

(9.9)

dz =


(vz)

n
i,j,kd

−
z if (vz)

n
i,j,k > 0,

(vz)
n
i,j,kd

+
z if (vz)

n
i,j,k ≤ 0,

(9.10)

with d−x , d+x , d−y , d+y , d−z , d+z being the three-point finite-difference discretization of the spatial

derivative∇ξ: 

d−x =
3ξn−1

i,j,k−4ξn−1
i−1,j,k+ξn−1

i−2,j,k
2h ,

d+x =
−ξn−1

i+2,j,k+4ξn−1
i+1,j,k−3ξn−1

i,j,k
2h ,

d−y =
3ξn−1

i,j,k−4ξn−1
i,j−1,k+ξn−1

i,j−2,k
2h ,

d+y =
−ξn−1

i,j+2,k+4ξn−1
i,j+1,k−3ξn−1

i,j,k
2h ,

d−z =
3ξn−1

i,j,k−4ξn−1
i,j,k−1+ξn−1

i,j,k−2
2h ,

d+z =
−ξn−1

i,j,k+2+4ξn−1
i,j,k+1−3ξn−1

i,j,k
2h .

(9.11)

The above discretization works for 2 ≤ i ≤ L − 1, 2 ≤ j ≤ M − 1, 2 ≤ k ≤ N − 1. For

i = 1,L− 2, we use the two-point difference


d−x =

ξn−1
i,j,k−ξn−1

i−1,j,k
h ,

d+x =
ξn−1
i+1,j,k−ξn−1

i,j,k
h .

(9.12)
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Similarly, for j = 1,M− 2, we use


d−y =

ξn−1
i,j,k−ξn−1

i,j−1,k
h ,

d+y =
ξn−1
i,j+1,k−ξn−1

i,j,k
h ,

(9.13)

and for k = 1,N− 2 we use 
d−z =

ξn−1
i,j,k−ξn−1

i,j,k−1
h ,

d+z =
ξn−1
i,j,k+1−ξn−1

i,j,k
h .

(9.14)

To choose a suitable timestep δt, we note that Eq. (9.2) is unconditionally stable. A necessary

condition for the convergence of the second-order upwind scheme (9.7) is given by the Courant-

Friedrichs-Lewy (CFL) condition31, which states that the numerical domain of dependence must

include the physical domain of dependence. Consider multiplying δt on both sides in Eq. (9.7) and

making ξni,j,k as the subject. The remaining terms involving ξn−1
i,j,k are

ξn−1
i,j,k − δt

(
3ξn−1

i,j,k |(vx)
n
i,j,k|

2h
+

3ξn−1
i,j,k |(vy)

n
i,j,k|

2h
+

3ξn−1
i,j,k |(vz)

n
i,j,k|

2h

)

=ξn−1
i,j,k

(
1− δt

(
3|(vx)

n
i,j,k|

2h
+

3|(vy)
n
i,j,k|

2h
+

3|(vz)
n
i,j,k|

2h

))
.

(9.15)

Here we have the absolute signs because for a negative (vx)
n
i,j,k(vy)

n
i,j,k, or (vz)

n
i,j,k, the

corresponding d+x , d+y , or d+z involves a negative sign in the coefficient of ξn−1
i,j,k . Now, as the full

numerical domain of dependence of the scheme must contain the physical domain of dependence,
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the coefficient of ξn−1
i,j,k must satisfy the following condition for all i, j, k, n:

0 ≤ 1− δt

(
3|(vx)

n
i,j,k|

2h
+

3|(vy)
n
i,j,k|

2h
+

3|(vz)
n
i,j,k|

2h

)
≤ 1, (9.16)

which implies that

δt

(
3|(vx)

n
i,j,k|

2h
+

3|(vy)
n
i,j,k|

2h
+

3|(vz)
n
i,j,k|

2h

)
≤ 1. (9.17)

As diffusion smooths out sharp gradients in density, the magnitude of the velocity field decreases as

n increases and we have

δt ≤ 2h
3maxi,j,k(|(vx)

0
i,j,k|+ |(vy)

0
i,j,k|+ |(vz)

0
i,j,k|)

. (9.18)

Therefore, we can take the upper bound and set the timestep δt as follows:

δt =
2h

3maxi,j,k(|(vx)
0
i,j,k|+ |(vy)

0
i,j,k|+ |(vz)

0
i,j,k|)

. (9.19)

As t → ∞, the density ρ(x, t) is equalized over the entire domainD, and hence the associated

reference map ξfinal(x) = ξ(x,∞) is a density-equalizing reference map. In the discrete case, we use

the following convergence criterion:

∥ρn − ρn−1∥2
mean(ρn−1)

≤ ε, (9.20)

where ε is the error threshold. The proposed algorithm is summarized in Algorithm 9.1.
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Algorithm 9.1:Volumetric density-equalizing reference map (VDERM)
Input: A volumetric domainD ⊂ R3 of size L×M×N, a prescribed density ρ0, the

error threshold ε, and the maximum number of iterations nmax.
Output: A density-equalizing reference map ξfinal.

1 Set δt = 2h
3maxi,j,k(|(vx)0i,j,k|+|(vy)0i,j,k|+|(vz)0i,j,k|)

;

2 Compute A = I− δtΔ;
3 Set n = 0;
4 repeat
5 Update n = n+ 1;
6 Solve ρn = A−1ρn−1 as discussed in Eq. (9.3);
7 Compute the velocity field vn using Eq. (9.5);
8 Update the reference map n using Eq. (9.7);
9 until ∥ρn−ρn−1∥2

mean(ρn−1)
≤ ε or n ≥ nmax;

10 Obtain ξfinal = ξn;

The volumetric density-equalizing reference map provides us with the information of the

diffusion-based volumetric deformation. In particular, if we denote ξfinal = (ξ1, ξ2, ξ3), one can

obtain the forward mapping of the grid points ofD by tracking the intersections of the contour

planes ξ1 = ih, ξ2 = jh and ξ3 = kh. More specifically, after computing the density-equalizing

reference map, we build an interpolant for each of the x-, y-, and z-coordinates of the undeformed

grid using (ξ1, ξ2, ξ3), where the ξ values are the abscissa and the x, y, z values are the ordinate. In

other words, we have three interpolant functions I1(x, y, z), I2(x, y, z), I3(x, y, z)where



I1(ξ1(ih, jh, kh), ξ2(ih, jh, kh), ξ3(ih, jh, kh)) = ih,

I2(ξ1(ih, jh, kh), ξ2(ih, jh, kh), ξ3(ih, jh, kh)) = jh,

I3(ξ1(ih, jh, kh), ξ2(ih, jh, kh), ξ3(ih, jh, kh)) = kh,

(9.21)
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for all i, j, k. The three interpolants allow us to compute a forward deformation of the given domain.

In practice, we we compute a Delaunay triangulation of the given points and then perform a linear

interpolation in each tetrahedral element. It is noteworthy that throughout the density-equalizing

iterations it suffices to work on a grid, and the interpolation is only needed once at the end. On the

contrary, a direct extension of the original density-equalizing map52 would involve interpolating the

velocity field at every iteration. Therefore, the use of the reference map technique here is

advantageous.

9.1.2 Boundary conditions

Note that boundary conditions are needed for solving Eq. (9.2). Three possible boundary

conditions are discussed below.

No-flux boundary condition

To keep the boundary shape of the 3D domain unchanged, we enforce the following no-flux

boundary condition

n · ∇ρ = 0 (9.22)

at the boundaries ∂D, where n is the outward unit normal. This condition ensures that the density

gradient at the boundaries is zero in the normal direction, thereby keeping all the boundary planes

to be planar throughout the density-equalization process.

In the discrete case, the above no-flux boundary condition can be incorporated in the diffusion
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Figure 9.2:Three possible choices of boundary conditions. a, The no-flux boundary condition can be imposed by
placing a ghost node (red) at the neighborhood of each boundary node on∂D, with the density being the same as that

at the boundary node. No density flux will be orthogonal to the boundary faces. b, The free boundary condition can be
imposed by creating a larger solid domain D̃ and setting the density at D̃ \ D (the “sea”) to be the average value of ρ. This
ensures that the original boundary∂D can deform freely.

equation (9.2) using the following ghost node approach. At the six boundary faces i = 0, i = L− 1,

j = 0, j = M − 1, k = 0, k = N − 1, we replace the terms ρni−1,j,k, ρ
n
i+1,j,k, ρ

n
i,j−1,k, ρ

n
i,j+1,k, ρ

n
i,j,k−1,

ρni,j,k+1 respectively on the right hand side of Eq. (9.2) by ρ
n
i,j,k. Then, there will be no density flux

orthogonal to the six boundary faces (Figure 9.2a).

As a consequence, for each boundary node, one of its coordinates will remain unchanged under

the update by the advection equation (9.7), while the other coordinates can vary. In other words, the

boundary nodes can freely slide along the six boundary faces to achieve density equalization while

preserving the rectangular shape ofD throughout the iterations.
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Free boundary condition

Another possibility is to let the domain deform freely. To achieve this, the “sea” approach in GN52

can be used. We put the entire solid domainDwith the prescribed density ρ0 inside a larger

rectangular solid domain D̃ and define the density ρ̃0 on D̃ by

ρ̃0 =


ρ0 onD,

mean(ρ0) on D̃ \D.

(9.23)

We can then impose the no-flux boundary condition on ∂D̃ and compute the density-equalizing

map on D̃ (Figure 9.2b). As there is no boundary condition imposed on ∂D,D can deform freely

under the deformation of D̃without any components of the reference map ξ on ∂D being fixed. As

a remark, setting ρ̃0 = mean(ρ0) at the “sea” D̃ \D preventsD from expanding infinitely.

Mixed boundary condition

One may also combine different boundary conditions to achieve other deformations. For instance,

to keep the top and the bottom boundary planes planar while allowing the other boundary planes

to deform freely, one can place the L × M × N domain in a larger L̃ × M̃ × N domain, where

L̃ > L and M̃ > M. Then, one can use the above-mentioned “sea” approach to enforce the no-

flux boundary condition on the z-boundary planes and the free boundary condition on the x- and

y-boundary planes. This results in the desired effect.
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9.2 Experimental results

For the implementation of the proposed iterative scheme, we use C++ with OpenMP parallelization

(with grid size h = 1, maximum number of iterations nmax = 10000, and error threshold ε = 10−2).

The sparse linear systems are solved using the conjugate gradient method (ConjugateGradient) in

the C++ library Eigen, with the default preconditioner DiagonalPreconditioner used. The

experiments are performed on a PC with an Intel i7-6700K quad-core processor and 16 GB RAM.

The statistics and the visualization are done using MATLAB. In the following, we assess the

performance of the proposed method.

Consider a cubic solidD of grid size L×M×N = 32× 32× 32 with a smooth input density

ρ0(i, j, k) = 10+ 9.99 sin
(

4πi
L− 1

)
cos
(

2πj
M− 1

)
cos
(

2πk
N− 1

)
, (9.24)

with i, j, k = 0, 1, . . . , 31, as shown in Figure 9.3a. We compute the volumetric density-equalizing

maps with the no-flux boundary condition (Figure 9.3b), the free boundary condition (Figure 9.3c),

and the mixed-boundary condition (Figure 9.3d). For the experiment with the free boundary

condition imposed, we place the solid in a circumscribed 48 × 48 × 48 cubic grid. For the

experiment with the mixed boundary condition imposed, we also make use of a circumscribed

48 × 48 × 32 rectangular grid. It can be observed from Figure 9.3b that different regions are

enlarged or shrunk according to the prescribed density. Also, the boundary shape of the deformed

domain can be effectively controlled by imposing different boundary conditions. For instance, for
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Figure 9.3:An example of volumetric density-equalizing maps on a 32 × 32 × 32 grid, with the
prescribed density being a periodic function with multiple peaks. Themapping results are visualized by
the deformed contour planes in the x-, y-, and z-directions. a, The initial state. b, The forwardmapping with the no-flux
boundary condition and the histogram of the volume-density mismatch error e. c, The forwardmapping with the free
boundary condition and the histogram of e. d, The forwardmapping with themixed boundary condition where only the
top and bottom boundary planes are enforced to be planar, and the histogram of e. All of them are color-codedwith the

prescribed density. For better visualization, only some of the contour planes are drawn.

the map with the free boundary condition (Figure 9.3c), the domain deforms freely while not

maintaining a cubic shape. For the map with the mixed boundary condition (Figure 9.3d), the top

and the bottom of the solid domain remain to be planar, while the other sides of the boundary are

deformed freely.
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We assess the accuracy of the proposed method by defining the volume-density mismatch error as

e(x) = log
det(F(x))/

∫∫∫
D det(F(x))

ρ0(ξfinal(x))/
∫∫∫

D ρ0
, (9.25)

where F(x) =
(

∂ξfinal
∂x

)−1

is the Jacobian. The integrals
∫∫∫

D det(F(x)) and
∫∫∫

D ρ0 are computed

using the trapezoidal method. In other words, e is the logged ratio of the volumetric scale factor to

the prescribed density with a normalization, and it is equal to 0 if and only if the final volume

distribution matches the prescribed density distribution perfectly. It can be observed from

Figure 9.3 that the histograms of e highly concentrate at 0 regardless of the choice of the boundary

conditions. This shows that our method is accurate.

Figure 9.4a shows another example of a 3D grid of size L ×M × N = 32 × 32 × 32, with the

prescribed density being discontinuous:

ρ0(i, j, k) =



1 if i < L/2, j < M/2, k < N/2,

3 if i ≥ L/2, j < M/2, k < N/2,

5 if i < L/2, j ≥ M/2, k < N/2,

7 if i ≥ L/2, j ≥ M/2, k < N/2,

9 if i < L/2, j < M/2, k ≥ N/2,

11 if i ≥ L/2, j < M/2, k ≥ N/2,

13 if i < L/2, j ≥ M/2, k ≥ N/2,

15 if i ≥ L/2, j ≥ M/2, k ≥ N/2.

(9.26)
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Figure 9.4:Another example of volumetric density-equalizing maps on a 32 × 32 × 32 grid, with eight
different density values defined on eight regions. See Figure 9.3 for the description of a-d.

As shown in Figure 9.4, our VDERMmethod effectively deforms different regions according to the

input density, with different boundary conditions satisfied. While the input density is

discontinuous, the histograms of e show that the error is still concentrated at 0. This shows that our

method is capable of handling a large wide of input densities.

To further examine the performance of VDERM, we consider different resolutions L × L × L

with the density given by Eq. (9.24). An additional diffusion coefficient κ = L/64 is introduced on

the right-hand side of Eq. (9.1) and Eq. (9.4) to rescale the rate of diffusion proportionally, thereby
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No. of vertices (L× L× L) Time (s) # iterations mean(|e|)
8× 8× 8 = 512 0.02 105 0.8868

16× 16× 16 = 4096 0.20 323 0.4468
24× 24× 24 = 13824 1.14 504 0.2774
32× 32× 32 = 32768 4.43 637 0.1972
40× 40× 40 = 64000 12.13 727 0.1577
48× 48× 48 = 110592 26.65 784 0.1356
56× 56× 56 = 175616 59.59 816 0.1262
64× 64× 64 = 262144 111.53 856 0.1241

Table 9.1:The performance of the proposed method. The time required for the iterative scheme (with four
OpenMP threads used), the number of iterations needed, and the average of the absolute volume-density mismatch

error mean(|e|) are recorded.

ensuring the fairness of the comparison. It can be observed from Table 9.1 that mean(|e|) decreases

linearly with L, which suggests that the accuracy of the density-equalizing reference map increases

with the resolution.

9.3 Applications

9.3.1 Volumetric data visualization

The 2D density-equalizing maps have been widely applied to sociological and biological data

visualization on planar maps. Analogously, we can apply our VDERMmethod to data visualization

in 3D, as illustrated by two following medical and sociological examples.

Medical data visualization

In neurology, the cortical homunculus (also known as the cortex man) is a distorted 3D human

model with different parts of the body enlarged or shunk for representing the proportion of the
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human brain used for processing sensory or motor functions there91 (Figure 9.5). Our VDERM

method is naturally applicable for generating the cortical homunculus. To visualize the spatial acuity

for pain in human body, we consider deforming a 3D human body model with the prescribed

density being the reciprocal of the 2-point discrimination (2PD) threshold of each part of the

body90 divided by the volume of the part:

ρ0 =



(1/0.6)/Volume of the fingers for the fingers,

(1/1.1)/Volume of the hand palms for the palms,

(1/2.7)/Volume of the dorsum of the hands for the dorsum of the hands,

(1/2.1)/Volume of the arms for the arms,

(1/1.2)/Volume of the head for the head,

(1/1.4)/Volume of the shoulders for the shoulders,

(1/2.5)/Volume of the lower back for the lower back,

(1/2.9)/Volume of the thighs for the thighs,

(1/3.3)/Volume of the calves for the calves,

(1/3.5)/Volume of the dorsum of the foot for the dorsum of the foot,

(1/1.3)/Volume of the foot soles for the foot soles.

(9.27)

For the remaining parts of the human body, we define the density using the closest parts with data

available. The region surrounding the human body is set as the “sea” for achieving a free-boundary

deformation.
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Figure 9.5: Sensory and motor homunculus sculptures at the Museum of Natural History, London, UK.
The image is adopted online*under the CCBY-SA 3.0 license.

Figure 9.6 shows the deformed model proposed by VDERM, from which it can be observed that

the parts with the highest spatial acuity (the hands) are significantly enlarged. The deformed model

is highly similar to the cortical homunculus sculptures in Figure 9.5, except for the regions without

available acuity data (such as the mouth/lips).

Sociological data visualization

It is also possible to visualize sociological data using VDERM. It is well known that the ticket price

of different flight classes can be significantly different due to the different levels of service and

accommodation. Here, we apply DERM for visualizing the ticket price of a round-trip direct flight

between New York (JFK) and Hong Kong (HKG) (departure date: March 1, 2020; returning date:

March 8, 2020; data retrieved on December 3, 2019 from the American Airlines website†). Both the

departure flight and the returning flight are operated on a Boeing 777-300ER aircraft, which

*https://en.wikipedia.org/wiki/Cortical_homunculus
†https://www.aa.com

220

https://en.wikipedia.org/wiki/Cortical_homunculus
https://www.aa.com


a b

Figure 9.6:A cortical homunculus produced by our VDERMmethod. a, The input 3D human bodymodel. b,
The deformedmodel highlighting the spatial acuity of pain in human body 90.

typically consists of 6 first class seats, 53 business class seats, 34 premium economy class seats and

182 economy class seats‡. The ticket prices are $16039, $6922, $2542, and $941 for a first, business,

premium economy, and economy class seat respectively.

We first apply VDERM to deform a 3Dmodel of the Boeing 777-300ER aircraft (Figure 9.7a)

with the density being the ticket price divided by the volume of each cabin:

ρ0 =



16039/Volume of the first class cabin for the first class cabin,

6922/Volume of the business class cabin for the business class cabin,

2542/Volume of the premium economy class cabin for the premium economy class cabin,

941/Volume of the economy class cabin for the economy class cabin.

(9.28)

‡https://www.seatguru.com
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Original aircraft

Deformed aircraft based on ticket price of each class

Deformed aircraft based on total revenue of each class

a

b

c

Figure 9.7:Visualizing the economics of airline class using VDERM. a, A 3Dmodel of the Boeing 777-300ER

aircraft. b, The deformedmodel produced by VDERMbased on the ticket price for different travel classes. c, The
deformed aircraft produced by VDERMbased on the total revenue for each travel class.

Again, we set the surrounding region as the “sea” to allow for a free-boundary deformation. Here

we remark that the dividing the ticket price by the volume of the cabin ensures that the ticket price

ratio equals the ratio of the volume of the entire cabins. The resulting deformed model (Figure 9.7b)

shows a significant enlargement at the front of the aircraft and a shrinkage at the end of it, reflecting
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the large ticket price difference between the seats at the first class and the economy class.

We then estimate the total revenue of each ticket class by multiplying the ticket price by the

number of seats, which gives $96234, $366866, $86428, and $171262 for the four classes

respectively. We apply VDERMwith the following density:

ρ0 =



96234/Volume of the first class cabin for the first class cabin,

366866/Volume of the business class cabin for the business class cabin,

86428/Volume of the premium economy class cabin for the premium economy class cabin,

171262/Volume of the economy class cabin for the economy class cabin.

(9.29)

From the resulting deformed aircraft shown in Figure 9.7c, it can be observed that the economy class

cabin is slightly shrunk, while the business class cabin is slightly expanded. Overall, the deformed

aircraft is not significantly different from the input model, which suggests that the total revenue of

each travel class is in fact similar.

9.3.2 Deformation-based shape modeling

The proposed VDERMmethod can also be utilized for deformation-based shape modeling. More

specifically, to deform a mesh inR3, we can prescribe a density function on an underlying 3D grid

and compute the volumetric density-equalizing map of it. The deformation of the grid then induces

a deformation of the mesh.

We first consider deforming a dragon model adapted from The Stanford 3D Scanning
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a

b

Figure 9.8:Deforming a dragon model using VDERM. a, The input dragonmodel. b, The deformed dragonwith
its head enlarged.

Repository§ (Figure 9.8) to enlarge its head while maintaining the shape of its body. We use an

underlying 3D grid of size 32× 32× 32 and the following density:

ρ0 =


10 around the head of the dragon,

1 elsewhere.
(9.30)

It can be observed that the head of the dragon is magnified under the deformation, and the body

shape is basically unchanged.

§http://graphics.stanford.edu/data/3Dscanrep/
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a b

Figure 9.9:Deforming a lion vase model using VDERM. a, The input lion vase. b, The deformed lion vase with the
facial expression changed.

We now consider another experiment on deforming a lion vase model adapted from the 3D

Segmentation Benchmark¶ (Figure 9.9). This time, we change the facial expression of the lion by

setting a smaller density value around its forehead and a larger density value around its chin. It can

be observed that facial expression of the lion is effectively changed under the deformation. The two

examples demonstrate the effectiveness of VDERM for deformation-based shape modeling.

9.3.3 Shape morphing

As our proposed method deforms the underlying grid continuously using an iterative scheme, we

can utilize the intermediate states of the deformation for producing a continuous change of the 3D

model. As shown in Figure 9.10, our method is capable of changing changing the facial expression

of the lion vase using a diffusion-based deformation. This shows that our method is advantageous

¶http://193.48.251.101/3dsegbenchmark/bust.html
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Initial n = 10 Finaln = 20 n = 30

Figure 9.10:A continuous change in the facial expression produced using DERM.

for object morphing.

9.3.4 Adaptive remeshing

Remeshing aims at improving the discretization of meshes. Suppose we would like to construct a

tetrahedral mesh for a genus-0 closed surface, with the mesh density of certain prescribed regions

desired to be higher. By applying VDERM on the input domainDwith a larger density ρ0 at those

regions, we obtain a volumetric density-equalizing reference map ξfinal. We can then construct a

uniform tetrahedral mesh in the deformed domain using prior methods such as DistMesh105, and

map the uniformmesh back toD using ξfinal. This results in more tetrahedral elements being

mapped to the regions with a larger prescribed density ρ0, and hence we obtain a tetrahedral mesh

with the desired mesh density.

Figure 9.11a shows an example with the central part of the solid desired to be with a higher mesh

density. The remeshed solid is achieved by applying our VDERMmethod with the following
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density:

ρ0 =


10 around the center of the domain,

1 elsewhere.
(9.31)

Figure 9.11b shows another example, with the input density given by Eq. (9.26). Our approach

produces eight different tetrahedral mesh densities at the eight corners. Figure 9.11c shows a more

complicated example, with the mesh density inside a π shape being much higher than the other

regions of the domain. This is achieved by applying VDERMwith ρ0 being 10 inside the π shape

and 1 otherwise. The three examples demonstrate the effectiveness of our method for adaptive

remeshing.

We remark that DistMesh105 also allows for adaptive remeshing, by specifying an edge length

function expression that yields the target adaptive resolution. However, to achieve complicated

effects such as the example shown in Figure 9.11c, it may be very difficult to specify an appropriate

edge length function expression. By contrast, our approach combining both DistMesh and

VDERM allows us to precisely control element volume by exactly specifying the volumes of mesh

elements, so that such effects can be easily achieved. This shows the advantage of our approach for

generating meshes with added precision in certain regions for numerical computations.

9.4 Discussion

Our proposed VDERMmethod is the first work on the density-equalizing maps in 3D for

volumetric deformations. We have demonstrated the effectiveness of the method for volumetric data

visualization, deformation-based shape modeling and remeshing. The intermediate process can also
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a b

c

Figure 9.11:Remeshing results produced by our VDERMmethod. Each example is displayed in a cross-
sectional view, with the surface colored in blue and the interior tetrahedral mesh elements colored in purple. a, A cube

with a higher tetrahedral mesh density at the center. b, A cubewith eight different tetrahedral mesh densities at eight

regions. c, A cubewith a higher tetrahedral mesh density inside a π shape.

be utilized for object morphing. Overall, our novel 3D generalization opens up a wide range of new

applications of the density-equalizing maps.
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10
Conclusion

In this thesis, we have developed mathematical approaches for advancing our understanding of

mechanical metamaterials, biological shapes, and computational mappings using discrete and

continuous geometry.

By proposing novel frameworks for the design of kirigami structures with prescribed geometric,

topological and physical properties, we have provided a class of new ways to connect shape and
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function of mechanical metamaterials. A natural next step is to explore how we can couple our

kirigami design frameworks with their counterparts in origami40,17 to obtain more flexible

deployable structures. We have taken the first step of connecting the two design problems locally at

the growth front of origami and kirigami structures in our additive design approaches, and it will be

interesting to see how our methods can complement other recent approaches in the design and

fabrication of physical kirigami108,111,7,134,150 and origami146,116,47,143,121,115 structures. Also, with

the increasing interest in 3Dmetamaterial design102,65,70, another natural future direction is to

extend our design frameworks for creating deployable structures using 3D solids instead of flat, thin

sheets. While we have extended our hierarchical construction method for the topological control of

3D structural assemblies, the extension of the geometric design approaches has yet to be established.

We have also studied growth and form using advanced computational tools involving geometry

and mechanics. These tools allow us to analyze a wide range of complex biological shapes in nature,

with varying size, dimension, and curvature. While our quasi-conformal mapping method enables

us to assess the change in the local size, eccentricity and orientation in a mapping between two

shapes, it is limited by the boundary correspondence prescribed. A natural next step is to explore

how we can remove the requirement and produce quasi-conformal flows that simulate and explain

the growth of shapes, possibly by solving some time-dependent PDEs related to the Beltrami

equation such as the Beltrami holomorphic flow87,88 or some variants of the Ricci flow67,148.

Another possible future direction is to combine our geometric tools with topological methods and

assess the interplay between gene and shape.

Using the physical principle of diffusion, we have developed several mapping algorithms for two-
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and three-dimensional objects with applications to computer graphics, geometry processing, as well

as sociological and medical data visualization. While our methods effectively produce deformations

related to the area or volume of the mesh elements, they do not allow for extra effects such as

rotation, shear or landmark-matching. A possible future direction is to extend our methods by

incorporating other deformation energies63 or landmark-matching approaches69,86,81, which would

allow us to create a wider range of shape deformations.

More broadly, the three major fields covered in this thesis are closely related: Nature inspires

engineering; engineering realizes computation; and computation quantifies nature. Our works fuse

ideas and tools from all these fields, yielding important insight into interdisciplinary mathematical

sciences.
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