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Abstract

Surface conformal and quasi-conformal parameterizations are important in

computer graphics and medical imaging. In this thesis, we develop efficient and

practical algorithms for mesh and point cloud parameterizations with various

applications. Firstly, we propose a linear algorithm for the spherical conformal

parameterizations and an efficient algorithm called FLASH for landmark-

aligned spherical optimized conformal mappings of genus-0 closed triangular

meshes. The algorithms are applied for the registration of human cortical

surfaces, and the shape analysis of the carotid arteries and the hippocampal

surfaces in medical imaging. Secondly, we propose two fast disk conformal

parameterization algorithms for simply-connected open triangular meshes and

apply the parameterizations for texture mapping. Thirdly, we develop a linear

algorithm for computing spherical quasi-conformal parameterization and

Teichmüller parameterization of genus-0 closed meshes. Fourthly, we develop

an iterative scheme for the spherical conformal parameterizations of genus-

0 point clouds with applications in meshing and multilevel representation.

Fifthly, we propose a novel algorithm called TEMPO for the landmark

aligned Teichmüller parameterization of disk-type point clouds with theoretical

guarantee. The algorithm is applied for developing a dissimilarity metric

of point clouds. Experimental results are presented for demonstrating the

effectiveness of our proposed algorithms.
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Chapter 1

Introduction

Surface parameterization refers to the process of finding a bijective corre-

spondence between a surface and a simple parameter domain with the same

topology. With the advancement in computer technology in recent decades,

the use of surface parameterization has been widespread in various fields. For

instance, the study of genus-0 human brain cortical surface can be simplified

with the aid of a spherical parameterization, which maps the cortical surface

onto the unit sphere. Besides, texture mapping can be easily achieved with the

aid of parameterization. Instead of processing the texture on a complicated

3D surface, we can design the texture on a simple parameter domain such as

the unit disk, and map the texture onto the surface via the parameterization.

These applications reflect the importance of surface parameterization.

To apply the abstract mathematical theories of surface parameterization

in real applications, discretizations of the continuous surfaces are necessary.

There are two major types of discretizations of surfaces, namely meshes and

point clouds. Surface meshes provide accurate approximations of continuous

surfaces with the aid of a set of sample data points on the original surface,

and a set of piecewise linear polygons such as triangles and quadrilaterals. In

contrast to the presence of both the vertices and the connectivity information
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in surface meshes, point clouds serves as an alternative representation of

continuous surfaces without the connectivity information. Hence, it is more

difficult to approximate the differential operators on point clouds.

As surface parameterization aims to simplify the computations on a compli-

cated surface with the aid of a simple parameter domain, the parameterization

schemes should preserve certain geometric structures of the original surface.

There are three major types of surface parameterizations, namely isometric

parameterizations, area-preserving parameterizations and conformal parame-

terizations. Ideally, isometric parameterizations provide the most accurate

result as the metric is preserved, which implies that they are both area and

angle preserving. However, it is well known that isometric parameterizations

only exist for surfaces with zero Gaussian curvature [20]. This limitation

largely hinders the application of isometric parameterizations in real life. On

the other hand, area-preserving parameterizations suffer from the occurrence

of extreme angular distortions [27]. This serious drawback limits the real

applications of area-preserving parameterizations. In contrast to the two

abovementioned types of parameterizations, conformal parameterization is

more desirable for two reasons. First, the existence of conformal parameter-

ization is theoretically guaranteed. By the uniformization theorem, every

simply-connected Riemann surface is conformally equivalent to either the

Riemann sphere, the complex plane or the open unit disk. Hence, conformal

parameterization is applicable for a wide range of surfaces in practice. Sec-

ond, since conformal parameterization preserves angles, the local shapes are

well-retained.

Parameterization can be categorized into two categories, including landmark-

free parameterization and landmark-based parameterization. The existence of

landmark-free conformal parameterization is guaranteed by the uniformization
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theorem. However, with the presence of landmark constraints, conformal

parameterization may not exist. In this case, we can consider the optimized

conformal parameterization, which balances the conformality distortion and

the landmark mismatch error of the parameterization. Besides, we can con-

sider quasi-conformal parameterization, which is a generalization of conformal

parameterization. Even with the presence of landmark constraints, quasi-

conformal parameterization exists. Moreover, there exists a special type of

quasi-conformal map, called the Teichmüller map, that achieves uniform

conformality distortion under the prescribed landmark constraints. This

thesis aims to develop efficient and accurate algorithms for computing the

abovementioned conformal and quasi-conformal parameterizations of surface

meshes and point clouds.

The organization of this thesis is as follows. In Chapter 2, we review

the related previous works. In Chapter 3, we introduce the mathematical

concepts relevant to our works. In Chapter 4, we invent a linear spherical

conformal parameterization algorithm and an efficient algorithm called FLASH

for landmark aligned spherical optimized conformal parameterization for

genus-0 closed triangulated meshes. Applications in brain cortical surface

registration, hippocampal surface registration and shape analysis of carotid

arteries are presented. In Chapter 5, we propose two fast algorithms for

the disk conformal parameterization for simply-connected open triangulated

meshes. In Chapter 6, we propose a linear algorithm for spherical quasi-

conformal parameterizations of genus-0 triangulated meshes. In Chapter 7,

we develop a fast algorithm for spherical conformal parameterization of genus-

0 point clouds with applications in meshing and multilevel representation. In

Chapter 8, we invent an algorithm called TEMPO for computing the landmark

aligned Teichmüller parameterization of disk-type point clouds with landmark
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constraints. Applications in point cloud shape analysis are explored. This

thesis is concluded in Chapter 9.

Much of the work in this thesis appears in the following publications and

preprints:

(i) P. T. Choi, K. C. Lam, and L. M. Lui, FLASH: Fast landmark aligned

spherical harmonic parameterization for genus-0 closed brain surfaces.

SIAM Journal on Imaging Sciences, Volume 8, Issue 1, pp. 67–94, 2015.

(ii) P. T. Choi and L. M. Lui, Fast disk conformal parameterization of simply-

connected open surfaces. Journal of Scientific Computing, Volume 65,

Issue 3, pp. 1065–1090, 2015.

(iii) P. T. Choi and L. M. Lui, A linear algorithm for disk conformal parame-

terization of simply-connected open surfaces. Preprint, arXiv:1508.00396,

2015.

(iv) G. P.-T. Choi, K. T. Ho, and L. M. Lui, Spherical conformal parameter-

ization of genus-0 point clouds for meshing. Preprint, arXiv:1508.07569,

2015.

(v) T. W. Meng, G. P.-T. Choi, and L. M. Lui, TEMPO: Feature-endowed

Teichmüller extremal mappings of point clouds. Preprint, arXiv:1511.06624,

2015.

Chapter 6 and a portion of the material in Chapter 4 are previously

unpublished.



Chapter 2

Previous work

In this chapter, we review the previous works on conformal and quasi-

conformal parameterizations. Surveys of the pre-existing parameterization

algorithms can be found in [27, 29, 76, 39].

2.1 Conformal parameterization of genus-0 closed

meshes

The study of the discretization of conformal maps on meshes originated

from [71, 22]. In [71], Pinkall and Polthier introduced a discretization of the

Dirichlet energy using a cotangent weight. Eck et al. [22] proposed a discrete

harmonic map on meshes. For genus-0 closed meshes, numerous spherical

conformal parameterization algorithms have been developed. Angenent et al.

[9, 36] proposed a spherical conformal parameterization scheme by linearizing

the Laplace equation. Hurdal and Stephenson [40] used circle packing for

computing the spherical conformal parameterization. Gu and Yau [31, 33]

performed an optimization in the tangent space of the unit sphere using the

gradient descent method for the parameterization. Lai et al. [47] proposed

an algorithm for folding-free spherical conformal maps.

To obtain a more accurate one-to-one correspondence between surfaces,

5
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Algorithms Landmark constraints Bijectivity Complexity
Finite Element Approx-
imation of Conformal
Mapping [9, 36]

No No Linear

Spherical Conformal
Mapping [33]

No No Nonlinear

Landmark Constrained
Surface Conformal Map-
ping [58, 78]

Yes No Nonlinear

Folding-Free Global Con-
formal Mapping [47]

No Yes Nonlinear

Table 2.1: Several previous works on parameterization of genus-0 closed
meshes.

landmark constraints are introduced in computing the spherical parameteriza-

tions. Gu et al. [33] proposed to apply a Möbius transformation for aligning

the landmarks on S2. In [58, 78], Lui et al. introduced a nonlinear algorithm

for computing landmark-matching optimized conformal parameterization by

minimizing a combined energy which balances the Dirichlet energy and the

landmark mismatch energy. Table 2.1 lists several existing parameterization

schemes and their properties.

2.2 Conformal parameterization of simply-connected

open meshes

For the conformal parameterizations of simply-connected open meshes, a

number of algorithms have been established (see Table 2.2). Floater [24]

introduced the shape-preserving parameterizations for disk-type triangulated

meshes. Hormann and Greiner [38] proposed the Most Isometric Parame-

terization of Surfaces (MIPS) method. Sheffer and De Sturler [74] proposed

the Angle Based Flattening (ABF) method by considering the angular dis-

tortion. In [75], Sheffer et al. introduced an improved algorithm called the
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Methods Boundary Bijectivity Complexity
Shape-preserving [24] Fixed Yes Linear

MIPS [38] Free Yes Nonlinear
ABF/ABF++ [74, 75] Free Local (no flips) Nonlinear
LSCM/DNCP [51, 18] Free No Linear

Mean-value [28] Fixed Yes Linear
Circle patterns [45] Free Local (no flips) Nonlinear

Spectral conformal [69] Free No Linear
Double covering [43] Free No Nonlinear

Discrete Ricci flow [44] Fixed Yes Nonlinear
IDRF [85] Fixed Yes Nonlinear

Yamabe Riemann map
[64]

Fixed Yes Nonlinear

Holomorphic 1-form [31] Fixed Yes Nonlinear

Table 2.2: The existing conformal parameterization algorithms for simply-
connected open meshes.

ABF++ method. In [51], Lévy et al. proposed the Least Squares Conformal

Maps (LSCM) for simply-connected open meshes. Desbrun et al. [18] intro-

duced the Discrete, Natural Conformal Parameterization (DNCP). LSCM

and DNCP were later shown to be equivalent. In [28], Floater proposed a

parameterization method using a generalization of barycentric coordinates.

Kharevych et al. [45] introduced an algorithm based on circle patterns. Gu

and Yau [31] proposed an algorithm using holomorphic 1-forms and holo-

morphic differentials. In [64], Luo developed the combinatorial Yamabe flow

for conformal parameterizations. Jin et al. [43] proposed a disk conformal

parameterization algorithm using the double covering technique [32]. Later,

Mullen et al. [69] developed the spectral conformal parameterizations. In [44],

Jin et al. proposed an algorithm using discrete surface Ricci flow. In [85],

Yang et al. generalized the discrete Ricci flow to improve the computation of

conformal parameterizations.
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2.3 Quasi-conformal parameterization of sur-

face meshes

In recent years, a few methods for quasi-conformal parameterizations of

surface meshes have been developed. Weber et al. [80] presented an algorithm

for computing extremal quasi-conformal mappings for simply-connected open

meshes using holomorphic quadratic differentials. In [54], Lipman introduced

bounded distortion mappings for triangular meshes with boundary. Aigerman

and Lipman [8] developed an algorithm for computing bounded distortion

mappings in 3D. The algorithm can be applied for parameterizing meshes

onto the 2D plane or polycubes. In [62], Lui et al. proposed an iterative

algorithm for computing Teichmüller maps of simply-connected open meshes.

The convergence of the algorithm has been proved in [63].

2.4 Parameterization of point clouds

In the last decade, numerous studies have been devoted to point cloud

parameterizations. In [25, 26], Floater and Reimers proposed the meshless

parameterization method. In [88], Zwicker and Gotsmann presented the

spherical embedding method for point clouds. In [10, 11, 12], Azariadis

and Sapidis proposed a scheme for orthogonally projecting a point cloud

onto the dynamic base surface. In [77], Tewari et al. proposed the doubly-

periodic global parameterization of point cloud sampled from a genus-1 closed

surface onto the plane. Wang et al. [79] mapped a genus-0 point cloud onto

its circumscribed sphere and then an octahedron, and finally unfolded the

octahedron onto the plane. In [87], Zhang et al. presented an as-rigid-as-

possible parameterization approach for disk-type point clouds via a local

flattening step and a rigid alignment. Meng et al. [66] proposed a point cloud
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parameterization scheme using neural network.

For conformal/quasi-conformal parameterization of point clouds, only

a few works have been reported. Guo et al. [35] developed a conformal

parameterization algorithm using Riemann surface theory and Hodge theory.

In [52], Liang et al. constructed spherical conformal mappings of genus-0

point clouds by adopting the harmonic energy minimization algorithm in [47].

In [67], Meng and Lui developed the theory of computational quasi-conformal

geometry on point clouds. In particular, they proposed an algorithm for the

quasi-conformal parameterizations of disk-type point clouds.



Chapter 3

Mathematical background

In this chapter, we introduce conformal/quasi-conformal maps and some other

mathematical concepts relevant to our work. For more details, readers are

referred to [72, 73, 30, 23, 42, 61].

3.1 Conformal maps

Before rigorously define conformal maps, we first introduce the concept of

Riemann surfaces.

Definition 3.1.1 (Riemann surface). Let M be a manifold. An atlas of M

is said to be conformal if all its transition maps are biholomorphic. M is

said to be a Riemann surface if it is equipped with a conformal structure, that

is, the maximal conformal atlas.

Then, we give the definition of the pull-back metric as follows.

Definition 3.1.2 (Pull-back metric). Let M, N be two Riemann surfaces

with local coordinate systems r1(x1, x2) and r2(x1, x2), where r1, r2 : R2 → R3

are vector-valued functions. The first fundamental forms of M and N are

respectively defined by

ds2
M =

∑
i,j

gijdx
idxj and ds2

N =
∑
i,j

g̃ijdx
idxj, (3.1)

10
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where gij =

〈
∂r1

∂xi
,
∂r1

∂xj

〉
, g̃ij =

〈
∂r2

∂xi
,
∂r2

∂xj

〉
.

Consider f :M→N . In local coordinate systems, f can be regarded as

f : R2 → R2, with f(x1, x2) = (f 1(x1, x2), f 2(x1, x2)). The pull-back metric

f ∗ds2
N defined on M, induced by f and ds2

N , is the metric

f ∗ds2
N =

∑
m,n

(∑
i,j

g̃ij(f(x1, x2))
∂fm

∂xi
∂fn

∂xj

)
dxmdxn. (3.2)

With the notion of the pull-back metric, we can now define conformal

maps between Riemann surfaces.

Definition 3.1.3 (Conformal maps). Let M and N be Riemann surfaces.

A map f :M→ N is said to be conformal if there exists a positive scalar

function λ(x1, x2), called the conformal factor, such that

f ∗ds2
N = λds2

M. (3.3)

Consequently, every conformal map preserves angles and hence the in-

finitesimal shapes of the surface.

Theorem 3.1.4 (Uniformization of Riemann surfaces). Every simply con-

nected Riemann surface M is conformally equivalent to exactly one of the

following three domains:

(i) the Riemann sphere,

(ii) the complex plane,

(iii) the open unit disk.

In other words, there exists a conformal map between M and exactly one

of the three domains.
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3.2 Harmonic maps

Next, we introduce the concept of harmonic maps.

Definition 3.2.1 (Harmonic maps). The Dirichlet energy for a map f :

M→N is defined as

E(f) =
1

2

∫
M
|∇f |2dvM. (3.4)

In the space of mappings, the critical points of E(f) are called harmonic

maps.

On triangular meshes, the discrete version of the Dirichlet energy is given

by

E(f) =
1

2

∑
[u,v]∈K

kuv||f(u)− f(v)||2. (3.5)

Here kuv = cotα+ cot β, where α, β are the angles opposite to the edge [u, v].

The discretization of the Laplacian is given by

∆f =
∑

[u,v]∈K

kuv(f(u)− f(v)). (3.6)

For genus-0 closed surfaces, conformal maps are equivalent to harmonic

maps [42]. Hence, the problem of finding a conformal map f : M → N

between two genus-0 closed surfaces is equivalent to an energy minimization

problem.

3.3 Quasi-conformal maps

In this section, we introduce the concept of quasi-conformal maps, a gen-

eralization of conformal maps, and the related mathematical properties of

them.
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Definition 3.3.1 (Quasi-conformal maps). A map f : C → C is called a

quasi-conformal(QC) map if it satisfies the Beltrami equation

∂f

∂z
= µ(z)

∂f

∂z
(3.7)

for some complex-valued function µ satisfying ||µ||∞ < 1 and ∂f
∂z

is non-

vanishing almost everywhere. Here, the complex partial derivatives are defined

by
∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂z
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (3.8)

µ is called the Beltrami coefficient of the quasi-conformal map f . f is con-

formal around a small neighborhood of p if and only if µ(p) = 0, as Equation

(3.7) becomes the Cauchy-Riemann equation in this situation. Hence, the

Beltrami coefficient µ is closely related to the conformality distortion of f .

Besides, Beltrami coefficients are also related to the bijectivity of their

associated quasi-conformal maps, as explained by the following theorem.

Theorem 3.3.2. If f : C→ C is a C1 map satisfying ‖µf‖∞ < 1, then f is

bijective.

In addition, the maximal quasi-conformal dilation of f is given by

K =
1 + ||µ||∞
1− ||µ||∞

. (3.9)

A geometrical illustration of quasi-conformal maps is shown in Figure 3.1.

Now, we consider the composition of two quasi-conformal maps. The

Beltrami coefficient associated with the composition map can be expressed in

terms of the Beltrami coefficients of the two quasi-conformal maps.

Theorem 3.3.3. Let f : Ω ⊂ C → f(Ω) and g : f(Ω) → C be two quasi-

conformal maps. The Beltrami coefficient of g ◦ f is explicitly given by

µg◦f =
µf + (fz/fz)(µg ◦ f)

1 + (fz/fz)µf (µg ◦ f)
. (3.10)
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Figure 3.1: An illustration of quasi-conformal maps.

Conversely, given complex function, a quasi-conformal map can also be

computed. More specifically, given a Beltrami coefficient µ : C → C with

‖µ‖∞ < 1, there exists a quasi-conformal map satisfying the Beltrami equation

(3.7) in the distribution sense [30].

Let µ be a given Beltrami coefficient associated with a quasi-conformal

map f : C → C. Denote f = u + iv and µ = ρ + iτ . It follows from the

Beltrami Equation (3.7) that each pair of the partial derivatives vx, vy and

ux, uy can be expressed as linear combinations of the other [61]:

vy = α1ux + α2uy;

−vx = α2ux + α3uy,
and

−uy = α1vx + α2vy;

ux = α2vx + α3vy,
(3.11)

where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ;α2 = − 2τ
1−ρ2−τ2 ;α3 = (1+ρ)2+τ2

1−ρ2−τ2 . Since ∇ ·
(
−vy
vx

)
= 0

and ∇ ·
(
−uy
ux

)
= 0 , f can be obtained by solving the following equations

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (3.12)

where A =

(
α1 α2

α2 α3

)
. Equation (3.12) is called the generalized Laplace

equation. Consequently, to find an optimal quasi-conformal map, it suffices to

find an optimal complex-valued function.

Quasi-conformal maps can also be defined between two Riemann surfaces
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M and N by introducing the concept of Beltrami differentials. A Beltrami

differential µ(z)dz
dz

on M is an assignment to each chart (Uα, φα) of an

L∞ complex-valued function µα defined on the local parameter zα such

that µα(zα)dzα
dzα

= µβ(zβ)
dzβ
dzβ

on the domain also covered by another chart

(Uβ, ψβ), where
dzβ
dzα

= d
dzα
φαβ and φαβ = φβ ◦ φ−1

α . An orientation preserving

diffeomorphism f : M → N is said to be quasi-conformal associated with

µ(z)dz
dz

if for any chart (Uα, φα) on M and any chart (Uβ, ψβ) on N , the

composition map fαβ := ψβ ◦f ◦f−1
α is quasi-conformal associated with µα

dzα
dzα

.

In the discrete case, the Beltrami coefficients can be approximated on

every triangular face. Let f : K1 → K2 be a quasi-conformal map between

two triangulated meshes K1, K2, and let T1, T2 be two corresponding faces

on K1, K2 respectively. Suppose T1 = [a1 + i b1, a2 + i b2, a3 + i b3] and

T2 = [w1, w2, w3], where ai, bi ∈ R for all i. The Beltrami coefficient of f is

approximated on T1 by

µf (T1) =

1
2

(Dx + i Dy)

 w1

w2

w3


1
2

(Dx − i Dy)

 w1

w2

w3

 , (3.13)

where

Dx =
1

2Area(T1)

 b3 − b2

b1 − b3

b2 − b1

t

and Dy = − 1

2Area(T1)

 a3 − a2

a1 − a3

a2 − a1

t

.

(3.14)

Similarly, α1, α2, α3 in Equation (3.11) can be discretized. Ultimately, the

elliptic PDEs (3.12) can be discretized into sparse symmetric positive definite

linear systems as described in [61].
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3.4 Teichmüller extremal maps

In the space of all quasi-conformal maps, there is a special class of maps

called the Teichmüller maps. Intuitively, Teichmüller maps produce uniform

conformality distortions over the whole domain. The rigorous definition of

the Teichmüller maps is given below.

Definition 3.4.1 (Teichmüller map). Let f :M→N be a quasi-conformal

map between two Riemann surfaces M and N . f is said to be a Teichmüller

map (T-map) associated with the quadratic differential q = ϕdz2 where

ϕ :M→ C is a holomorphic function, if its associated Beltrami coefficient is

of the form

µ(f) = k
ϕ

|ϕ|
(3.15)

for some constant k < 1 and quadratic differential q 6= 0 with ||q||1 =
∫
S1
|ϕ| <

∞.

It follows that a Teichmüller map is a quasi-conformal map whose Beltrami

coefficient has a constant norm.

Furthermore, Teichmüller maps are closely related to a class of quasi-

conformal maps called extremal maps, which are defined as follows.

Definition 3.4.2 (Extremal map). Let f : M → N be a quasi-conformal

map. f is extremal if for any quasi-conformal map h :M→N isotopic to f

relative to the boundary, we have

K(f) ≤ K(h) (3.16)

where K(f) is the maximal quasi-conformal dilation of f . f is uniquely

extremal if the inequality (3.16) is strict whenever h 6= f .
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Figure 3.2: Illustrations of the stereographic projection (left) and the south-
pole stereographic projection (right).

The following theorem explains the relationship between Teichmüller maps

and extremal maps.

Theorem 3.4.3 (Landmark-matching Teichmüller map of D). Let g : ∂D →

∂D be an orientation-preserving diffeomorphism of ∂D, where D is the unit

disk. Suppose g′(eiθ) 6= 0 and g′′(eiθ) is bounded. Let {pi}ni=1 ∈ D and

{qi}ni=1 ∈ D be two sets of interior landmark constraints with pi corresponding

to qi for all i. Then, there exists a unique Teichmüller map f : (D, {pi}ni=1)→

(D, {qi}ni=1) matching the interior landmarks, which is the unique extremal

extension of g to D.

In other words, Teichmüller maps satisfying the assumption in Theorem

3.4.3 minimize the maximal quasi-conformal dilation over all quasi-conformal

maps.

3.5 Stereographic projection

A typical example of conformal maps on S2 is the stereographic projection.

In this section, we introduce the stereographic projection and some of its

variations.

Definition 3.5.1 (Stereographic projection). The stereographic projection
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is a conformal map PN : S2 → C with

PN(x, y, z) =
x

1− z
+ i

y

1− z
. (3.17)

The inverse stereographic projection is a conformal map P−1
N : C→ S2 with

P−1
N (x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
. (3.18)

Note that the stereographic projection maps S2 onto C with respect to

the north pole. Analogously, we can define the south-pole stereographic

projection.

Definition 3.5.2 (South-pole stereographic projection). The south-pole stere-

ographic projection PS : S2 → C is defined by

PS(x, y, z) =
x

1 + z
+ i

y

1 + z
. (3.19)

The inverse south-pole stereographic projection is the map P−1
S : C→ S2 with

P−1
S (x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
. (3.20)

The stereographic projection and the south-pole stereographic projection

are illustrated in Figure 3.2.

3.6 Point cloud and local system

A point cloud P = {z1, z2, . . . , zn} ⊂ R3 is a set of sample points representing

a Riemann surfaceM. Because of the absence of the connectivity information,

we cannot apply the face-based discretizations, which have been developed

for meshes, on point clouds. To develop computational schemes on point

clouds, we construct a local coordinate system for P on each point zs and

approximate the derivatives.
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We first define an atlas (Us, φs) for each point zs, where Us is an open

cover and φs is the associated local coordinate function. Us is formed using

the collection of the neighboring points of zs, denoted by N (zs). To compute

the neighborhood, we apply the k-Nearest-Neighbors (k-NN) algorithm. The

k-nearest neighborhood N k(zs) of zs is the collection of the k distinct elements

in P (including zs) closest from zs in the sense of Euclidean distance. The

KD-tree implementation by Lin [96] can be applied for k-NN. We denote

N k(zs) = {z1
s , z

2
s , . . . , z

k
s} with z1

s = zs. Then, by defining the normal vector

at each point as the z-axis and using the principal component analysis

(PCA) method [37] for zs, we obtain three vectors {e1
s, e

2
s, e

3
s} which form an

orthonormal basis of R3.

Then, we projectN k(zs) to the plane spanned by {e1
s, e

2
s} by ẑis = zis−〈zis−

zs, e
3
s〉e3

s, i = 1, 2, . . . , k. With the projection N̂ k(zs) = {ẑ1
s , ẑ

2
s , . . . , ẑ

k
s} and

the local coordinates {(x1
s, y

1
s), (x

2
s, y

2
s), . . . , (x

k
s , y

k
s )}, where xis = 〈zis − zs, e1

s〉

and yis = 〈zis − zs, e
2
s〉 for i = 1, 2, . . . , k, we can define φs : Ns → R2 by

φs(z
i
s) = (xis, y

i
s). Also, the neighborhood N (zs) can be regarded as a graph

of its projection N̂ (zs), that is, zis = zs + xise
1
s + yise

2
s + fs(x

i
s, y

i
s)e

3
s.



Chapter 4

Spherical optimized conformal
parameterization of genus-0
closed meshes with landmark
constraints

4.1 Introduction

In this chapter, we present our two proposed algorithms in [1]. The first

algorithm computes the spherical conformal parameterizations of genus-0

closed meshes in linear time, and the second algorithm efficiently computes

a landmark-aligned optimized conformal parameterization of genus-0 closed

meshes. The entire framework is abbreviated as FLASH, which stands for

Fast Landmark Aligned Spherical Harmonic parameterization.

For the parameterization of genus-0 closed surfaces, it is common to use

the unit sphere S2 as the parameter domain. The problem of computing

the spherical conformal parameterizations has been widely studied. Since

harmonic maps are equivalent to conformal maps for genus-0 closed surfaces,

the conventional approach in [33] considers the minimization problem of the

Dirichlet energy on S2, which makes the computation nonlinear and hence

time-consuming. The first proposed algorithm aims to accelerate the com-

20
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putation of the spherical conformal parameterization. On the other hand,

landmark aligned parameterization is important for computing landmark-

matching registration between surfaces. With the presence of landmark

constraints, spherical conformal parameterizations may not exist. Neverthe-

less, we can consider an optimized conformal parameterization that balances

the conformality and the landmark mismatch error. The conventional ap-

proach in [78, 58] computes the optimized conformal parameterization directly

on S2, which results in long computational time. Also, the bijectivity of the

parameterization is lost under larger deformations or multiple landmark con-

straints. Flips or overlaps are observed especially near the landmark curves.

The second proposed algorithm aims to overcome the mentioned drawbacks.

With the landmark aligned optimized conformal parameterization, we can

easily obtain landmark-matching registration between genus-0 closed surfaces.

Various applications of our algorithms in medical shape analysis are presented

in the last section of this chapter.

4.2 Contributions

The contributions of our work are highlighted as follows:

(i) We invent a linear algorithm for computing the spherical conformal

parameterization of genus-0 closed meshes. The computational time of

our algorithm is significantly shorter than the existing methods.

(ii) The conformality distortion of the spherical conformal parameterization

is further reduced by the use of quasi-conformal theory.

(iii) We propose a fast algorithm for computing landmark-aligned spherical

conformal parameterizations.
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(iv) The bijectivity of the parameterizations is theoretically supported by

quasi-conformal theory.

4.3 Our proposed FLASH method

In this section, we describe our proposed FLASH method in details.

Suppose S1 and S2 are two genus-0 closed surfaces, respectively with

landmark curves {pi ∈ S1}ni=1 and {qi ∈ S2}ni=1. The ultimate goal is to

register S1 and S2 using an optimized conformal map with the landmark

curves consistently matched. To achieve this goal, we first compute the

spherical conformal parameterizations of S1 and S2 and denote the results by

φ1 : S1 → S2 and φ2 : S2 → S2 respectively. Then, the registration problem

can be simplified as finding an optimized conformal map f̃ : S2 → S2 of S2

such that f̃(φ1(pi)) = φ2(qi) for i = 1, 2, ..., n. With f̃ , the final registration

can be obtained by f := φ2
−1 ◦ f̃ ◦ φ1.

In the following subsections, we introduce our proposed methods for

1. accelerating the computation of the spherical conformal parameteriza-

tion;

2. accelerating the computation of the landmark aligned optimized confor-

mal parameterization;

3. enforcing the bijectivity of the landmark aligned optimized conformal

parameterization.

4.3.1 Linear spherical conformal parameterization

In this subsection, we propose a linear spherical conformal parameterization

algorithm. Recall that the desired parameterization φi : Si → S2(i = 1, 2) can



23

be obtained by solving the following Laplace equation on Si:

∆T
Si
φi = 0, (4.1)

where ∆T
Si
φi is the tangential component of ∆Siφi on the tangent plane of S2,

subject to the constraints: (i) ||φi|| = 1 and (ii) φi(p
i
1) = qi1, φi(p

i
2) = qi2 and

φi(p
i
3) = qi3 and pi1 ∈ Si, pi2 ∈ Si, pi3 ∈ Si, qi1 ∈ S2, qi2 ∈ S2, qi3 ∈ S2. Since the

operator ∆T
Si

is non-linear, solving Equation (4.1) with the above constraints

is expensive.

To accelerate the computation, Angenent et al. [9, 36] linearized the

problem on the complex plane. Consider removing a point pi1 from Si. Then,

Si \ {pi1} is topologically equivalent to S2 \ {φi(pi1)}, and hence it can be

mapped conformally to C (here, p1
i is mapped to ∞). In other words, there

exists a conformal parameterization ϕi : Si \ {pi1} ∼= C → C, such that

limx→pi1 ϕ(x) =∞. ϕi can be computed by solving the Laplace equation

∆Siϕi = 0, (4.2)

with three-point correspondences: ϕi(a
i
1) = bi1, ϕi(a

i
2) = bi2 and ϕi(a

i
3) = bi3,

where ai1, a
i
2, a

i
3, b

i
1, b

i
2, b

i
3 ∈ C. Here ∆T

Si
= ∆Si since the target domain is

now C.

Unlike the original problem (4.1), the new problem (4.2) is linear as ∆Si is

linear and the nonlinear constraint (i) in the problem (4.1) is removed. Also,

in the discrete case, ∆Si can be discretized as a symmetric positive definite

matrix. Therefore, Equation (4.2) can be efficiently solved by the conjugate

gradient method. A spherical parameterization φi : Si → S2 can be given by

P−1
N ◦ ϕi, where P−1

N denotes the inverse stereographic projection.

Despite the fast computation, the method proposed by Angenent et

al. [9, 36] has a critical drawback. Since the region near the puncture is
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Figure 4.1: An illustration of how the conformality distortions are introduced
near the puncture. Here, the outer region of the big triangle corresponds
to the region near the puncture of the mesh. The colormap represents the
norm of the Beltrami coefficient of the map from the big triangle to the
original mesh. The red color on the triangular faces in the outer region of the
big triangle indicates the large conformality distortions introduced near the
puncture.

significantly enlarged when it is mapped to C, severe conformality distortions

are induced near the puncture pi1 (or a triangular face in the discrete case).

Figure 4.1 illustrates the distortions.

To improve the conformality near the puncture, we propose to compose the

above result with a quasi-conformal map gi : S2 → S2. Intuitively, composing

two maps with the same Beltrami coefficient cancels out the conformality

distortion. It is noteworthy that although the genus-0 surfaces Si are not

topologically equivalent to C, all the computations are performed on the

punctured surfaces. Therefore, in practice, we only need to handle Beltrami

coefficients but not Beltrami differentials. By an abuse of terminology, in

the following discussion, we continue explaining our method with the term

Beltrami coefficients. Let µ be the Beltrami coefficient of φ−1
i , where φi :

Si → S2 is obtained by solving Equation (4.2). Since serious conformality

distortions are induced near the north pole (or equivalently, at ∞ ∈ C̄), µ(z)
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is large if z is close to ∞. In contrary, the conformality distortion near the

south pole is negligible. Hence, µ(z) ≈ 0 when z is close to 0. We proceed to

find a quasi-conformal map g : S2 → S2 with the same Beltrami coefficient µ.

The composition map φ̃i := g ◦ φ−1
i : Si → S2 is conformal, as explained by

the following theorem.

Theorem 4.3.1. Let f : M1 → M2 and g : M2 → M3 be quasi-conformal

maps. Denote the Beltrami coefficient of f−1 and g by µf−1 and µg respectively

Suppose µf−1 = µg. Then, the Beltrami coefficient of g ◦ f is equal to 0 and

hence g ◦ f : M1 →M3 is conformal.

Proof. Note that µf−1 ◦ f = −(fz/|fz|)2µf . Since µf−1 = µg, we have

µf +
fz
fz

(µg ◦ f) = µf +
fz
fz

(µf−1 ◦ f) = µf +
fz
fz

(−fz
fz

)µf = 0. (4.3)

Hence, by Equation (3.10),

µg◦f =
µf + fz/fz(µg ◦ f)

1 + fz/fzµf (µg ◦ f)
= 0. (4.4)

This shows that g ◦ f is conformal.

The computation of the quasi-conformal map gi with a given Beltrami

coefficient can be achieved by the Linear Beltrami Solver (LBS) [61]. It is

noteworthy that the original algorithm in [61] only works for rectangular

domains, and the computation is linear. The method is extended hyperbolic

domains in [81], but the periodic boundary conditions on the hyperbolic

domains results in a non-linear computational time. In this work, we apply

the linear algorithm for the spherical case. Note that if the elliptic PDEs are

solved directly on the surfaces or the spheres, the computation is non-linear.

Instead, we use the stereographic projection to transform the problem domain

from the spherical domain to a big triangle on C. This linearizes the problem
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for the spherical case, although distortions are induced near the pole under the

stereographic projection. To alleviate this issue, we invent a North Pole-South

Pole iterative scheme to correct the conformality distortion on the spherical

parameterizations.

Our iterative scheme has two major stages. In the first stage, we apply

the spherical parameterization algorithm in [9, 36]. In particular, in Equation

(4.2), we set [bi1, b
i
2, b

i
3] as be a big triangle on C containing the origin that

shares the same angle structure as the north pole triangle [ai1, a
i
2, a

i
3]. The

second stage aims to fix the conformality distortion near the north pole.

We first project S2 conformally onto C using the south pole stereographic

projection PS, so that (0, 0,−1) is mapped to ∞. Then, it remains to find a

quasi-conformal map g̃i : C→ C with Beltrami coefficient µ̃, where µ̃ is the

Beltrami coefficient of (PS ◦ φi)−1. The required quasi-conformal map gi is

given by gi := P−1
S ◦ g̃i ◦PS. However, the south pole stereographic projection

will again introduce undesirable conformality distortions near the south pole.

Nevertheless, we observe that µ ≈ 0 near (0, 0,−1) ∈ S2. Therefore, we can

fix a small region ΩS enclosing the south pole, which corresponds to the

outermost region ΩC in C after being projected onto the 2D plane using PS.

In other words, we look for a quasi-conformal map g̃i by solving Equation

(3.12) such that

g̃i|ΩC = id|ΩC ;

µ(g̃i)|C\ΩC = µ̃C\ΩC

(4.5)

where µ(g̃i) is the Beltrami coefficient of g̃i.

By this treatment, the originally negligible conformality distortion of

the resulting spherical parameterization gi ◦ φi near the south pole remains

unchanged. On the other hand, the severe conformality distortions near the

north pole can be significantly improved as guaranteed by Theorem 4.3.1.
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Figure 4.2: An illustration of our proposed linear spherical conformal param-
eterization algorithm.

The abovementioned procedures are summarized in Figure 4.2.

In addition, despite the conformality distortions, another serious problem

of the spherical parameterization is the distribution of the vertices on S2. If

the big triangle [bi1, b
i
2, b

i
3] in Equation (4.2) is too large/small, the vertices

will concentrate near the north/south pole under the inverse stereographic

projection. This affects the quality of the spherical parameterization. To

achieve a balanced distribution, we propose to find an optimal big triangle

size with the aid of the following theorem.

Theorem 4.3.2. Let T1 and T2 be two triangles of C. The product of the

perimeters of T1 and PS(P−1
N (T2)) is invariant under arbitrary scaling of T1

and T2.

Proof. Denote the vertices of T1, T2 by {ai}3
i=1, {bi}3

i=1 respectively. Note that

PS(P−1
N (X+iY )) =

− 2X
1+X2+Y 2

1 + −1+X2+Y 2

1+X2+Y 2

+i
2Y

1+X2+Y 2

1 + −1+X2+Y 2

1+X2+Y 2

=
−X

X2 + Y 2
+i

Y

X2 + Y 2
.

(4.6)

Hence the perimeter of T1 is given by p(T1) =
∑

1≤i<j≤3 |ai − aj| and
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p(PS(P−1
N (T2))) =

∑
1≤i<j≤3 |

−bi
|bi|2 −

−bj
|bj |2 |. Now suppose T1 and T2 are scaled

by a factor k. Then

p(kT1)× p(PS(P−1
N (kT2))) = (

∑
1≤i<j≤3

|kai − kaj|)(
∑

1≤i<j≤3

| −kbi
|kbi|2

− −kbj
|kbj|2

|)

= (k
∑

1≤i<j≤3

|ai − aj|)(
1

k

∑
1≤i<j≤3

| −bi
|bi|2
− −bj
|bj|2
|) = p(T1)× p(PS(P−1

N (T2)))

(4.7)

This shows that the product is an invariance.

Now we project the sphere onto the complex plane using the stereographic

projection, and apply Theorem 4.3.2 on the big triangle T and the innermost

triangle t on C, which correspond to the north pole triangle and the south

pole triangle on S2. Given an arbitrary big triangle of size s, we define the

optimal big triangle size by s×
√

perimeter(T )×perimeter(PS(P−1
N (t)))

perimeter(T )
. By the scaling

factor, the two triangles T and PS(P−1
N (t)) have the same perimeter. This

indicates that the two polar triangles are of similar sizes. As a result, the

points will not concentrate at any of the poles. This additional balancing

scheme is performed after solving Equation (4.2) in our algorithm.

In the discrete case, let K be a triangulated mesh representing a surface

S. It is noteworthy that since all steps in our algorithm, including solving the

Laplace equation on C, the stereographic projections, the reconstruction of

quasi-conformal maps on C, and the balancing scheme are linear, the entire

spherical conformal parameterization algorithm is linear. The implementation

of our linear algorithm for computing a spherical conformal parameterization

φ : K → S2 is summarized in Algorithm 1.
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Algorithm 1: Linear spherical conformal parameterization of genus-0
closed surfaces

Input: A genus-0 closed surface mesh K.
Output: A spherical conformal parameterization φ : K → S2.

1 Remove a triangular face Tk = [vk1 , vk2 , vk3 ] on the brain mesh K.
Choose a big triangle [b1, b2, b3] on C that shares the same angle
structure with Tk = [vj1 , vj2 , vj3 ]. In practice, we choose the most
regular triangular face of the mesh. This is because an irregular
boundary big triangle may affect the conformality of the result of step 2;

2 A conformal parameterization ϕ : K \ {Tk} → C can be obtained by
solving the sparse linear system{∑

[u,v]∈K kuv(ϕ(u)− ϕ(v)) = 0 if u 6= vj1 , vj2 , vj3
ϕ(vjt) = bt if t = 1, 2, 3

.

Here kuv = cotα + cot β, where α, β are the two angles opposite to the
edge [u, v] spanned by the vertices u, v. Obtain the spherical mesh by
the inverse stereographic projection P−1

N ;
3 Balance the distribution of the spherical parameterization using

Theorem 4.3.2;
4 Project the sphere onto C using the south pole stereographic projection
PS. Denote the result by D;

5 Compute the Beltrami coefficient µ of the map f : D → K;
6 Compute g = LBS(µ) with a small region around the south pole fixed;
7 Project the plane to S2 by the inverse south pole stereographic

projection P−1
S ;

8 Denote the final result by φ := P−1
S ◦ g ◦ PS ◦ P

−1
N ◦ ϕ;

4.3.2 Landmark aligned optimized conformal parame-
terization

With the aid of our proposed linear spherical conformal parameterization algo-

rithm, we can compute a landmark aligned optimized conformal map between

the spheres and ultimately obtain a landmark-matching registration between

the two surfaces S1 and S2. Suppose the spherical conformal parameteriza-

tions are given by φ1 : S1 → S2 and φ2 : S2 → S2. Denote the two spheres

φ1(S1) and φ2(S2) by B1 and B2 respectively. To consistently align the pre-
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scribed landmarks, we look for an optimized conformal map φ̃1 : S1 → S2 that

satisfies φ̃1(pi) = φ2(qi) for i = 1, 2, ..., n. A landmark-matching registration

between S1 and S2 can then be obtained by f := φ−1
2 ◦ φ̃1.

Note that the landmark curves are usually mapped to inconsistent loca-

tions on B1 and B2, and handling large deformations is challenging. Hence,

it is undesirable to directly compute the landmark-aligned optimized con-

formal map between the spheres. In [33], Gu and Yau proposed to apply a

suitable Möbius transformation that minimizes a landmark mismatch energy

to match the landmark curves. Let T = az+b
cz+d

with ad− bc = 1 be a Möbius

transformation of S2. Here S2 is identified with C through the stereographic

projection. Assume that the landmark curves are represented by discrete

landmark points. The landmark mismatch energy in [33] is defined by

EMT (a, b, c, d) =
n∑
i=1

|T (φ1(pi))− φ2(qi)|2 (4.8)

By adding an extra constraint on T that it maps ∞ to ∞, the energy (4.8)

can be simplified as:

ẼMT (a, b) =
n∑
i=1

g(φ1(pi))|a(φ1(pi)) + b− φ2(qi)|2 (4.9)

where g(z) = 4
1+zz

. It remains to find a, b ∈ C such that the energy (4.9) is

minimized. More details can be found in [33].

Since Möbius transformations are conformal, the landmarks cannot be

exactly aligned in most cases using the above method. Nevertheless, we

adopt this method as an initial landmark-matching step. Denote the sphere

obtained under the optimal Möbius transformation by B̃1 := T (B1). Based

on B̃1, we further align the landmarks by finding an optimized conformal

map that balances the conformality and the landmark mismatch energy.

In [58, 78], Lui et al. proposed the following combined energy for this
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task:

Ecombined(φ̃1) =

∫
|∆T

S2φ̃1|2 + λ

∫
|φ̃1(φ1(pi))− φ2(qi)|2 (4.10)

where λ is a weighting factor. If λ = 0, the combined energy is the same

as the Dirichlet energy. If λ is large, the resulting map will be with small

landmark mismatch energy but the conformality will be lost. In [58, 78], this

optimization problem is solved using the gradient descent method, which

iteratively finds a vector field in the tangent space of the sphere. Since ∆T
S2 is

a nonlinear operator on S2, the computation is time-consuming.

Now, we propose a linear algorithm to solve the abovementioned opti-

mization problem. The key idea is to formulate the problem on C using the

stereographic projection in order to linearize the problem. Firstly, by the

stereographic projection, B̃1 \Ω and B2 \Ω can be conformally mapped to C1

and C2 in C respectively, where Ω is a small region enclosing (0, 0, 1) ∈ S2. Let

ϕ : C1 → C be the landmark aligned optimized conformal map, and {p̃i}ni=1

and {q̃}ni=1 be the corresponding landmark curves on C1 and C2 respectively.

Given three-point correspondences ϕ(a1) = a1, ϕ(a2) = a2 and ϕ(a3) = a3 on

C1, ϕ can be computed by solving the following equation:

∆R2ϕ+ λδE(ϕ− q̃i) = 0 (4.11)

where δE(w) is the smooth approximation of the characteristic function

χE(w) =

{
1 if w is on p̃i

0 otherwise.
(4.12)

Since ∆R2 is a linear differential operator, the computation becomes linear.

In the discrete case, suppose K1, K2 are two triangulated meshes rep-

resenting S1 and S2, with landmark points {pi}ni=1 and {qi}ni=1 respectively.

The discrete form of the combined energy is

Ecombined(ϕ) =
∑

[u,v]∈K1

kuv||ϕ(u)− ϕ(v)||2 + λ
n∑
i=1

||ϕ(pi)− qi||2. (4.13)
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Hence, Equation (4.11) can be discretized as a sparse linear system

∆ϕ =
∑

[u,v]∈K1

kuv(ϕ(u)− ϕ(v)) + λ
∑
u∈K1

(ϕ(u)− qi)χK1(u), (4.14)

which can be efficiently solved by the conjugate gradient method. The

algorithm is summarized in Algorithm 2.

Algorithm 2: Landmark aligned optimized conformal map

Input: Two genus-0 closed surface meshes S1, S2 and the weight λ.
Output: A landmark aligned optimized conformal map ϕ on the

complex plane.

1 Apply the linear spherical conformal parameterization on S1, S2 and
obtain two spherical meshes B1, B2;

2 Apply a Möbius transformation f to B1 of the form f(z) = az + b

which minimizes the landmark mismatch energy
n∑
i=1

|f(zi)− wi|2, where

{zi ∈ C}, {wi ∈ C} are the landmarks of B1, B2 under the stereographic

projection [33]. Denote the resulting spherical mesh by B̃1;

3 Project B̃1, B2 onto C by the stereographic projection PN ;
4 Obtain the landmark constrained optimized conformal map ϕ on C by

solving the sparse linear system
∑

[u,v]∈K kuv(ϕ(u)− ϕ(v)) + λ(ϕ(u)− qi) = 0 if u = pi, i = 1, 2, ..., n∑
[u,v]∈K kuv(ϕ(u)− ϕ(v)) = 0 if u /∈ {p1, p2, ..., pn, j1, j2, j3}

ϕ(vjt) = vjt if t = 1, 2, 3.

(4.15)
Here {pi}ni=1, {qi}ni=1 are the landmarks of the meshes on C;

4.3.3 Preservation of bijectivity via Beltrami coefficients

Note that the landmark-aligned optimized conformal map obtained using

the combined energy may not be a diffeomorphism. In this subsection, we

propose an iterative algorithm to enforce the bijectivity of the map using

quasi-conformal theories. By Theorem 3.3.2, f is a diffeomorphism if and

only if ‖µf‖∞ < 1, where µf is the Beltrami coefficient of f . Hence, by



33

adjusting the norm of the Beltrami coefficients, the diffeomorphic property of

the corresponding map can be easily achieved.

In [81], Lui and Wen proposed an iterative algorithm for obtaining a

bijective registration using the Beltrami coefficients of the surface map. The

key step of the method is to smoothen the Beltrami coefficient by minimizing

the following energy ∫
|∇µ|2 +

λ

2

∫
|µ− µn|2. (4.16)

However, this energy is not suitable for our case as our problem is on a big

triangle on C. More specifically, the outermost region of the big triangle is

coarse while the innermost region is extremely dense. Hence, a slight change

of the Beltrami coefficients at the outermost region results in an undesirably

large change at the innermost region. Consequently, the southern hemisphere

of the spherical parameterization will have large distortions. Hence, we have

to limit the change of the Beltrami coefficient at the outermost region. To

solve this problem, we propose to use the geodesic distance between a point

and (0, 0, 1) as a weighting factor for controlling the change of the Beltrami

coefficient in the outermost region.

More explicitly, let φ̃0
1 : C \ Ω → C be the landmark-aligned optimized

conformal parameterization obtained from the last subsection. Denote the

Beltrami coefficient of φ̃0
1 by ν0. First, we chop down |ν0| by:

|ν̃(z)| = min{|ν0(z)|, 1− ε} (4.17)

for all z ∈ C \ Ω. Here, ε is a small positive number (usually chosen as 0.01).

We then look for a smooth approximation µsmooth of ν̃ by:

µ0
smooth = argminµ

∫
(|∇µ|2 + |µ− ν̃|2 +

1

D
|µ|2) (4.18)

where D : C \ Ω→ R+ and D(p) is defined as the geodesic distance between

(0, 0, 1) and the image of p ∈ C \Ω under the inverse stereographic projection
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P−1
N . Here, |∇µ|2 measures the smoothness of the Beltrami coefficient, |µ− ν̃|2

measures the difference between the original and the new Beltrami coefficient,

and D gives a weight for controlling the changes of the Beltrami coefficient at

the outermost region (which corresponds to the northernmost region on S2).

After computing µ0
smooth, we apply the Linear Beltrami Solver (LBS) [61]

to reconstruct the quasi-conformal map g0 with the corresponding Beltrami

coefficient µ0
smooth and the landmark constraints. Denote the Beltrami coeffi-

cient of g0 by µlm. Let µ0 = µ0
smooth + t(µlm − µ0

smooth), where t ∈ [0, 1] is the

landmark matching factor. We then compute a quasi-conformal map f 0 with

Beltrami coefficient µ0 using LBS. This step balances the smoothness and

landmark-matching property of the quasi-conformal map f 0. We then set ν1

as the Beltrami coefficient of f 0 and set φ̃1
1 = f 0. We continue the iteration

until the resulting map φ̃n1 becomes a diffeomorphism.

In summary, the proposed algorithm for enforcing the bijectivity is de-

scribed as follows. Suppose νn and φ̃n1 are obtained at the nth iteration, νn+1

and φ̃n+1
1 can be obtained as follows:

fn = LBS(µn);

νn+1 = µ(fn);

φ̃n+1
1 = fn+1.

(4.19)

In the discrete case, denote the area of the triangle T by A(T ). We propose

to approximate D by the area of the triangular faces. The reason is that

under the stereographic projection, the triangular faces closer to the north

pole will be mapped to larger triangles on C̄. Hence, A(T ) is proportional to

1/D(T ). The minimizer µ0
smooth of the optimization problem (4.18) can be

obtained by solving the following equation:

∆µ0
smooth + (1 + A(T ))µ0

smooth = ν. (4.20)
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After a bijective map φ̃1 : C \Ω→ C \Ω is obtained, a bijective landmark-

aligned spherical parameterization of S1 can be achieved by φ∗1 := P−1
N ◦ φ̃1◦φ1.

Again, one drawback of this algorithm is that there are large conformality

distortions around the north pole. Thus, the Beltrami coefficient near the

north pole is large. In contrary, the Beltrami coefficient of the southernmost

region is close to 0. To correct the distortions at the northernmost part, we

again composite the map with a quasi-conformal map. Firstly, we apply the

south pole stereographic projection PS to map S2 to C. Then we compute

the Beltrami coefficient µ of the map from the plane to the original surface.

We fix the landmark positions and also the region in C that corresponds to

the southernmost region, and then apply LBS [61] to reconstruct the quasi-

conformal map using the same Beltrami coefficient µ. By Theorem 4.3.1, the

conformality distortions are corrected. Also, this further step does not affect

the landmark-matching property of the parameterization as the landmark

points are kept fixed. The algorithm we introduced above is summarized in

Algorithm 3.

This complete our proposed FLASH framework for computing landmark

aligned spherical optimized conformal parameterization. The procedure of

FLASH is summarized in Figure 4.3.

4.4 Experimental results

In this section, we demonstrate the effectiveness of our proposed algorithms.

Several models are adopted from Aim@Shape shape repository [89] for the

linear spherical conformal parameterization algorithm. Also, we perform

experiments on 38 pairs of right hemispheric brain cortical surfaces recon-

structed from MRI images of older adult subjects, aged from 60 to 96, using

the open source reconstruction software FreeSurfer. Half of the subjects are
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Algorithm 3: Preservation of bijectivity via Beltrami coefficients

Input: Two meshes S1, S2, the spherical conformal parameterization
φ1 : S1 → B̃1 and the optimized conformal map
ϕ : PN(B̃1)→ C.

Output: A bijective landmark aligned spherical optimized conformal
parameterization.

1 Compute the Beltrami coefficient ν of the map ψ : ϕ(PN(B̃1))→ S1;
2 repeat
3 Compute

µsmooth := argminµ

∫
(|∇µ|2 + |µ− ν|2 + A(T )|µ|2)

where A(T ) is the area of the triangular face T on the plane. This
can be done by solving ∆µ+ (1 + A(T ))µ = ν;

4 For every triangular face T , chop down the norm of µsmooth(T ) by
|µsmooth(T )| := min{|µsmooth(T )|, 0.99};

5 Compute g = LBS(µsmooth) with landmarks fixed;
6 Compute the Beltrami coefficient µlm of g;
7 Define µ := µsmooth + t(µlm − µsmooth), where t ∈ [0, 1] is the

landmark matching factor;
8 For every triangular face T , chop down the norm of µ(T ) by

|µ(T )| := min{|µ(T )|, 0.99};
9 Compute f = LBS(µ);

10 Update ν by the Beltrami coefficient of f ;

11 until The resulting map is bijective;
12 Obtain the spherical mesh using the inverse stereographic projection;
13 Project the sphere onto C̄ through the south pole stereographic

projection PS. Denote the result as D;
14 Compute the Beltrami coefficient µD of the map fD : D → K1;
15 Fixing a small region near the south pole and the landmarks, compute

gD = LBS(µD);
16 Project the plane to S2 by the inverse south pole stereographic

projection P−1
S ;

17 Obtain the parameterization P−1
S ◦ gD ◦ PS ◦ P

−1
N ◦ f ◦ ϕ ◦ PN ◦ φ1;

characterized as non-demented and half are with dementia of the Alzheimer’s

type. The MRI images are freely available on the Open Access Series of

Imaging Studies (OASIS) [65]. Each reconstructed cortical surface is of about
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Figure 4.3: Illustration of the FLASH algorithm.

45k vertices and 90k faces. We first compare our proposed linear spherical

conformal parameterization algorithm with the existing algorithms in [33] and
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Figure 4.4: Spherical conformal parameterizations using our proposed linear
algorithm.

[9, 36]. Then, for landmark aligned parameterization, we compare the perfor-

mance of FLASH with the algorithms in [58], [33] and [59]. All experiments

are performed on a PC with a 3.20 GHz CPU.

4.4.1 Spherical conformal parameterization

We first test our proposed linear algorithm for spherical conformal parame-

terization. Figure 4.4 shows three of the cortical surfaces and their parame-

terizations obtained by our proposed linear algorithm. Figure 4.5 shows two

more meshes and their spherical conformal parameterizations.

To evaluate our proposed algorithm, we compare the results with two
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Figure 4.5: Two meshes and their spherical conformal parameterizations
obtained by our proposed linear algorithm.

existing algorithms in [33] and [9, 36]. We first compare the conformality

distortions of the parameterizations obtained by the algorithm in [9, 36] with

those by our proposed linear algorithm. We define the conformality distortion

index (CDI) on each triangular face by (|α−α′|+ |β−β′|+ |γ−γ′|)/2π, where

α, β, γ are the three angles of the resulting triangular face and α′, β′, γ′ are

those on the original triangular face. The CDI measures the changes of the

angles on each triangular face under the parameterization. As shown in Figure

4.6, the method in [9, 36] produces severe conformality distortions near the

north pole. On the contrary, our proposed linear algorithm effectively corrects

the conformality distortions. Figure 4.7 further illustrates the improvement

of the conformality using our proposed algorithm.

We then highlight the bijectivity of our proposed algorithm. Figure 4.8

shows the mesh of a dinosaur with a sharp tail and the spherical conformal

parameterizations obtained by [33] and our proposed algorithm. It can be

observed that our algorithm guarantees bijectivity while the method in [33]

cannot.

Table 4.1 lists the statistics of our proposed method, the algorithms

proposed in [33] and [9, 36]. The parameters we used to run the algorithm in

[33] are: time step δt = 0.1, Tuette embedding energy threshold = 0.001 and
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Figure 4.6: Comparisons between the spherical conformal parameterizations
by the algorithm in [9, 36] and our proposed linear algorithm. Each row
represents the results of one brain sample. The spheres are colored with the
conformality distortion index (CDI). Conformality distortions are induced
near the north pole using the algorithm in [9, 36]. The distortions are corrected
using our proposed linear algorithm. Left: The results of [9, 36]. Right: The
results of our proposed linear algorithm.

Dirichlet energy threshold = 0.00001. It is noteworthy that our algorithm

takes only about 1 second on average, which is over 5000 times faster than
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Figure 4.7: Histograms of angular distortions under the parameterizations
obtained by the algorithm in [9, 36] and our proposed linear algorithm. Each
row represents the results of one brain sample. Left: The results obtained by
[9, 36]. Right: The results obtained by our proposed linear algorithm.

the existing algorithm in [33]. Also, with comparable speed as [9, 36], our

algorithm improves the conformality by 30% on average. These experimental

results reflect the advantages of our proposed linear algorithm.
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Figure 4.8: A genus-0 closed mesh of a dinosaur with a sharp tail and two
parameterization results. Top right: The result obtained by [33]. Bottom
right: The result of our proposed linear algorithm. It can be observed that
the conventional approach produces a result with overlaps while our result is
bijective.

Surface Time spent (seconds) / mean(CDI)
Algorithm [33] Algorithm [9, 36] Our linear algorithm

Brain 18 6394.50/0.0241 0.4367/0.0128 0.9707/0.0107
Brain 21 6838.46/0.0240 0.4431/0.0216 1.0194/0.0105
Brain 36 5984.28/0.0237 0.4548/0.0142 0.9846/0.0101
Brain 16 7197.37/0.0256 0.4507/0.0149 0.9849/0.0109
Brain 14 7476.53/0.0248 0.4783/0.0148 1.0664/0.0103

Table 4.1: The statistics of different spherical conformal parameterization
algorithms.

4.4.2 Landmark aligned spherical optimized conformal
parameterization for brain surfaces

Next, we perform experiments to test our proposed FLASH algorithm for com-

puting the landmark aligned spherical optimized conformal parameterizations

(with λ = 3). On each cortical surface, six landmark curves, including Central

Sulcus (CS), Postcentral Sulcus (PostCS), Superior Frontal Sulcus (SFS),
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Figure 4.9: The six sulcal landmarks selected on a right hemispheric brain
cortical surface. (a): the lateral view. (b): the top view. (c): the bottom
view.

Inferior Frontal Sulcus (IFS), Superior Temporal Sulcus (STS) and Inferior

Temporal Sulcus (ITS), were manually labeled. Figure 4.9 shows the selected

sulci. The landmark aligned spherical parameterizations are shown in Figure

4.10. It can be observed that the landmarks are consistently aligned. Using

the landmark aligned spherical parameterization, a landmark-matching regis-

tration between the brain surfaces is easily obtained. Figure 4.11 illustrates

the difference between landmark-free registration and the landmark-matching

optimized conformal registration obtained using FLASH.

Next, we compare the performance of our proposed landmark aligned

spherical optimized conformal algorithm FLASH with the algorithm proposed

in [58] in three different aspects.

Firstly, we compare the bijectivity of the parameterizations. Figure 4.12

shows the registration results obtained from FLASH and the algorithm in

[58]. As shown in the figure, foldings can be found in the result by [58]. On

the contrary, The result obtained by FLASH is free of foldings or flips. Table

4.2 lists the number of foldings of the parameterizations obtained by FLASH

and the algorithm in [58].
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Figure 4.10: Landmark aligned spherical optimized conformal parameteri-
zations using FLASH. One set of experimental result is shown in each row.
The spherical conformal parameterizations of the source brains and the tar-
get brains are shown respectively in the first and the second column. The
resulting landmark-aligned parameterizations (with λ = 3) are given in the
third column. The landmark curves are highlighted in yellow.

Secondly, we compare the angular distortions under the parameterizations.

Figure 4.13 shows the angular distortions of the results obtained by [58] and

FLASH. The high similarity of the angular distortion histograms suggests

that the global conformality distortion of FLASH is comparable to (or even

better than) that of the conventional algorithm in [58].

Thirdly, we compare the computational time of the algorithms. The

computational time required by FLASH and the algorithm proposed in [58]

is listed in Table 4.2. Note that for fair comparison, when computing the
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Figure 4.11: Two cortical surfaces and the registration results. (a) and (b)
respectively show the source and the target surface. (c) shows the landmark-
free conformal registration. One can observe that the landmark curves are
not matched. (d) shows the registration obtained by FLASH. The landmarks
are consistently aligned.

Surfaces Algorithm in [58] FLASH
Time
spent
for LM
matching
(s)

No.
of
flips

mean|µ| Time
spent
(s)

No.
of
flips

mean|µ|

Brain 16 and 18 2585 24 0.0755 15.34 0 0.0669
Brain 21 and 35 2921 52 0.0647 16.95 0 0.0696
Brain 13 and 14 2449 133 0.0715 16.44 0 0.0799
Brain 32 and 36 2893 117 0.1047 9.28 0 0.1036
Brain 10 and 8 2837 231 0.0781 16.97 0 0.0822

Table 4.2: The statistics of the landmark aligned optimized conformal param-
eterizations by the algorithm [58] and our FLASH algorithm.
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Figure 4.12: A comparison between the registration results of FLASH and
the algorithm in [58]. Foldings are observed near a landmark curve (blue)
in the result of [58] while our FLASH algorithm preserves the bijectivity of
the registration. Top left: The result of [58]. Bottom right: The result of
FLASH.

Algorithms Time spent
(s)

No. of
overlaps

CDI Landmark
mismatch
energy

Möbius transforma-
tion [33]

13591.88 0 0.0256 2718.19

Shape based land-
mark matching [59]

368.25 7 0.0663 0

FLASH (λ = 3) 5.1455 0 0.0205 113.70

Table 4.3: Comparison with other algorithms for landmark aligned cortical
registration.

landmark aligned spherical parameterization using [58], we use our linear

spherical conformal parameterization as the initialization. In practice, the

conventional method in [58] initializes with a Gauss map. Thus, it would

probably take much longer time to converge. The time required for landmark

matching using [58], excluding the spherical conformal parameterizations of

the brain surfaces, is over 40 minutes. On the contrary, the time required
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Figure 4.13: Histograms of angular distortions under the landmark aligned
optimized conformal parameterizations obtained by the algorithm in [58] and
those by FLASH. Each row represents one experiment. Left: The results of
[58]. Right: The results of FLASH.

by FLASH (including the linear spherical conformal parameterizations of

the brain surfaces) is usually less than 20 seconds. Our FLASH algorithm
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accelerates the computation of landmark aligned spherical optimized conformal

parameterization by 100 times.

Finally, we compare our proposed FLASH algorithm with two other models

in [33] and [59] for landmark-aligned registration. PostCS, ITS and IFS are

used as landmark constraints. Table 4.3 shows the statistics. Despite the small

conformality distortions, the method of [33] suffers from slow computation

and large landmark mismatch energy. For the method in [59], although

exact landmark matching can be enforced, the conformality distortion is

large and the bijectivity is not guaranteed. Our proposed FLASH algorithm

outperforms the two mentioned algorithms.

4.5 Further applications

Besides cortical surface registration, our proposed FLASH algorithm can

be further applied in a number of medical shape analysis problems. In this

section, we outline two applications of our FLASH algorithm in medical shape

analysis.

4.5.1 Shape analysis of carotid arteries

In our ongoing work [7], we aim to compare the thickness of the plaque of

patients with carotid atherosclerosis before and after treatments in order to

understand the effectiveness of the treatments. For each patient, 3D lumen

and wall surfaces of the internal carotid artery (ICA), external carotid artery

(ECA) and common carotid artery (CCA) at 2 time points are scanned.

Figure 4.14 shows a carotid artery mesh. The vessel thickness of every carotid

artery is measured. To perform the comparison of the thicknesses of different

carotid arteries, we need to establish a 1-1 correspondence between the carotid

arteries so that we can effectively study the intra-variation in thickness at
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Figure 4.14: The lumen and the wall surface of a carotid artery.

Figure 4.15: Mapping a carotid artery onto a template surface using FLASH
with landmark constraints. Left: The side view of the carotid artery with a
bulb line. Right: The side view of the mapping result with the corresponding
bulb line constraint. The figures are colored with the vessel thickness data.

different time points of a single patient, as well as the inter-variation in

thickness of different patients.

The major difficulty arises from the varying structures of the carotid

arteries. To overcome the difficulty, we can consider mapping all carotid

arteries onto a common template surface. Then the thickness data of all
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Figure 4.16: Visualizing the thickness difference of a carotid artery at two
time points on a template surface.

carotid arteries can be represented on the common template surface, and

this enables us to systematically perform the evaluation of the variations in

thickness of the patients.

To accurately map each carotid artery surface onto a common template

surface, landmark constraints of certain important features are needed. In this

case, we use the artery bifurcation and two carotid bulb lines as the landmark

constraints. This ensures that all carotid surfaces are consistently mapped

onto the common template surface. Also, it is desirable that the local shapes

of the carotid arteries are well-retained on the template surface. The above

factors suggest the use of our FLASH algorithm. For the computation of the

landmark constrained optimized conformal mappings, we apply the FLASH

algorithm with a further projection step so as to enforce the longitudinal

correspondences of the surfaces.

Figure 4.15 shows the mapping result obtained by our approach. The

simple geometry of the template surface enables us to systematically analyze

the regions with medical significance. In Figure 4.16, the thickness difference

of a carotid artery at two time points is computed on the template surface. The
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regions with a significant change in vessel thickness can be easily visualized.

4.5.2 Shape analysis of hippocampal surfaces

The hippocampus is a subcortical structure of the human brain which is closely

related to the Alzheimer disease. Numerous studies have been devoted to the

local shape analysis of the hippocampal surfaces. In particular, establishing

a 1-1 correspondence between two hippocampal surfaces is challenging.

As the local shapes are important in analyzing the hippocampal surfaces,

the registration between two hippocampal surfaces should preserve them.

Hence, the conformality distortion of the registration should be as low as

possible. Also, the distribution of the registration result should be sufficiently

even. In other words, if we divide the hippocampal surfaces into several

regions, every pair of corresponding regions should be roughly matched

under the registration. The use of landmark constraints can help fulfilling

this requirement. Therefore, our FLASH algorithm for landmark aligned

optimized conformal maps can be applied.

First, we compute the Laplace-Beltrami operators of the two surfaces.

Then, by computing the eigenfunctions of the LB operators, we can obtain

numerous eigenloops on the two hippocampal surfaces. The eigenloops

effectively divide the hippocampal surfaces into several parts. To ensure the

accuracy of the registration, the eigenloops are used as landmark constraints

in our FLASH algorithm.

Figure 4.17 shows the registration result of two hippocampal surfaces. It

can be observed that the landmark curves are roughly matched on a common

domain. With the registration result, systematic analyses of the difference

between the two hippocampal surfaces become possible.
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Figure 4.17: Registering two hippocampal surfaces using FLASH. Left: The
source surface. Middle: The target surface. Right: The registration result.
The landmark curves are highlighted.



Chapter 5

Disk conformal
parameterization of
simply-connected open meshes

5.1 Introduction

In this chapter, we present our two proposed algorithms in [2, 3] for efficiently

computing the disk conformal parameterization of simply-connected open

meshes.

Conformal parameterization of disk-type surfaces has been widely studied

by numerous research groups. The two major challenges of the computation

are the efficiency and the accuracy. Firstly, most of the existing algorithms

are nonlinear and hence inefficient. This hinders the practical use of the

parameterization especially when a large number of surfaces are involved.

Secondly, the conformality distortion is far from negligible in the discrete case.

The distortion affects the accuracy of the parameterizations. Our proposed

algorithms aim to overcome these two problems.

53
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5.2 Contributions

The two disk conformal parameterization algorithms we invent are with the

following advantages:

(i) Our proposed algorithms are highly efficient. The first algorithm requires

only a few iterations, and the second proposed algorithm is linear. The

algorithms significantly accelerate the computation of disk conformal

parameterization.

(ii) The conformality of the disk parameterizations obtained by our al-

gorithms is largely improved when compared with the pre-existing

methods.

(iii) The bijectivity of the disk conformal parameterizations is theoretically

supported by quasi-conformal theory.

5.3 Two-step iterative scheme for disk con-

formal parameterization

In this section, we describe our proposed method in [2] for the disk con-

formal parameterization of a simply-connected open surface M . The disk

conformal parameterization is achieved with the aid of an efficient iterative

algorithm. In [1], the North Pole-South Pole iterative scheme was introduced

for computing the spherical conformal parameterization of genus-0 closed

surfaces in linear time. The main idea of the iterative scheme is to improve

the conformality distortions near the north pole and the south pole of the

spherical parameterizations step by step. In the “north pole” step, a genus-0

closed surface is mapped to S2 using an efficient but not highly accurate

method. The conformality distortion near the south pole of the sphere is
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small while the distortion of the northernmost region is large. After that,

in the “south pole” step, the conformality distortion near the north pole

is corrected, with the southernmost region kept fixed. In other words, to

achieve a globally conformal parameterization, one can try to ensure the

conformality of one part first, and then obtain the conformality of the other

part in the second step, with the aid of the conformal part obtained before.

Motivated by this idea, we introduce a two-step iterative scheme for disk

conformal parameterizations of simply-connected open surfaces. By an abuse

of terminology, the two steps are called the “north pole” step and the “south

pole” step. The names does not imply that the actual geometric poles of the

unit disk are used. Table 5.1 highlights the features of and the comparisons

between the linear spherical conformal parameterization [1] and our proposed

method.

Our proposed method consists of three stages: 1) initialization, 2) “north

pole” step, 3) “south pole” iteration. The three stages will be described in

the following subsections.

5.3.1 Initialization: The discrete harmonic map

In the first stage, we compute an initial map for the disk parameterizations.

In [34], Gu and Yau described a simple method to compute a disk harmonic

map f : M → D by solving the following Laplace equation:{
∆Mf(u) = 0 if u ∈M \ ∂M
f |∂M = g

(5.1)

where g : ∂M → ∂D is given by the arc-length parameterization.

In the discrete case, the surface M is represented by a triangulated mesh.

The Laplace equation ∆Mf(u) = 0 in Equation (5.1) is a sparse symmetric

positive definite linear system. The arc-length parameterization boundary
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Features
Linear Spherical

Conformal
Parameterization [1]

Our two-step iterative
scheme

Topology Spherical Disk

“North pole”
step

Use the stereographic
projection and work

on C

Use the Cayley
transform and work
on the upper half

plane

“South pole”
step

South pole
stereographic

projection and
compute a QC map

Reflection along the
unit circle with

iterations

Boundary
adjustment

No Yes

Output Unit Sphere Unit disk
Bijectivity Yes Yes

Table 5.1: Features of the Fast Spherical Conformal Parameterization [1] and
our two-step iterative scheme in [2].

constraint is computed using the ratio of the edge lengths:

f(vi) = (cos θi, sin θi), (5.2)

where l[vi,vi+1] denotes the length of the edge [vi, vi+1] and

s :=
n−1∑
i=0

l[vi,vi+1]

si :=
i−1∑
j=0

l[vj ,vj+1]

θi := 2π
si
s
.

(5.3)

Hence, the Laplace Equation (5.1) can be efficiently solved. Note that in

general, the harmonic map with Dirichlet boundary condition is not conformal.

Nevertheless, the disk map computed can serve as an efficient initialization.

The conformality distortions of the interior region and the boundary region of

the disk will be corrected by the two-step iterative scheme described below.
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5.3.2 “North pole” step: Improvement of conformality
on the upper half plane

To improve the conformality of the initial disk harmonic map f , our strategy

is to compose f with a specific quasi-conformal map g : D→ D as described

in Theorem 4.3.1. More explicitly, if the Beltrami coefficients of f−1 and

g, denoted by µf−1 and µg, are equal, then the composition map g ◦ f is

conformal. The computation of g can be achieved using the Linear Beltrami

Solver (LBS) [61], together with a suitable boundary condition.

However, since the boundary of f(M) is given by the arc-length parame-

terization, currently we do not have any optimal boundary correspondence

g|∂D for the computation of g. Finding such optimal correspondence is

highly nonlinear. To solve this problem, we first transform the current do-

main to another domain, such that the problem can be linearized. More

specifically, we apply the Cayley transform to map the unit disk D onto

the upper half plane. The Cayley transform is a bijective conformal map

W : D→ H = {x+ iy|y ≥ 0;x, y ∈ R} such that

W (z) = i
1 + z

1− z
. (5.4)

Using the Cayley transform, our problem is simplified to finding a quasi-

conformal map h : H → H with µh = µ(W◦f)−1 . The composition map

h ◦W ◦ f : M → H will then be conformal as suggested by Theorem 4.3.1.

Note that under the Cayley transform, the boundary of the disk is mapped

onto the real axis y = 0. Hence, to enforce a circular boundary of the disk

parameterization, we only need to enforce that h maps the real axis to the

real axis. Equivalently, we only need to restrict v = 0 on ∂H while solving

equation (3.12) and do not set any restriction on u. The desired map h can

be computed by solving two separate elliptic equations for u and v.
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Figure 5.1: An illustration of (a) the “north pole” step and (b) the “south
pole” step.

In the discrete case, the initial parameterization f maps M onto D. In

the abovementioned “north pole” step, the Cayley transform W maps D to

a big triangle in H. Denote the three vertices of the big triangle by W (p1),

W (p2) and W (p3), where [p1, p2, p3] is the triangular face of D enclosing the

point z = 1 ∈ D (see Figure 5.1(a)). To compute the desired quasi-conformal

map h, we solve Equation (3.12) with the three vertices fixed, and that the

vertices on the real axis stay on the real axis. In other words, we solve the

following equation


h = LBS(µ(W◦f)−1)

h(W (pi)) = W (pi) for i = 1, 2, 3

Im(h(W (z))) = 0 for any z ∈ ∂D.
(5.5)

The above equation can be formulated as two sparse symmetric positive
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linear systems for the two coordinates. The systems can be solved efficiently

using the conjugate gradient method.

After that, we map H (or the big triangle in the discrete case) back to

the unit disk using the inverse Cayley transform

W−1(z) =
z − i
z + i

, (5.6)

which is conformal. As we enforce the boundary vertices to stay on the

real axis under the map h, the corresponding boundary vertices under the

composition map

g := W−1 ◦ h ◦W ◦ f (5.7)

will still be on ∂D and hence the circular boundary condition is preserved.

In summary, the conformality distortion of the inner region of D is sig-

nificantly improved with the aid of the quasi-conformal map h. Also, the

additional freedom on the boundary vertices slightly alleviates the conformal-

ity distortion near the disk boundary. Hence, the composition map g is a disk

parameterization with improved conformality. A geometric illustration of the

proposed “north pole” step is shown in Figure 5.1(a). The conformality near

the disk boundary is further improved in the “south pole” step.

5.3.3 “South pole” step: Correction of boundary con-
formality distortion via reflection

In the “south pole” step, we aim to correct the conformality distortion near

the disk boundary.

In the “north pole-south pole” iterative scheme [1], the “south pole”

step improves the conformality near the north pole, with the southernmost

region, which is the most conformal part, fixed as the boundary constraints.

We extend this idea to the case of disk conformal map. Recall that the
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conformality of the inner region of the disk is significantly improved by the

“north pole” step as described in subsection 5.3.2. Thus, the innermost region

of the disk can serve as an appropriate boundary constraint for computing

an accurate disk conformal map. our strategy is to fix this least distorted

region and correct the conformality distortion near the boundary using a

quasi-conformal map.

Similar to the last subsection 5.3.2, we make use of the LBS [61] to con-

struct a quasi-conformal map. However, it is noteworthy that the composition

of a quasi-conformal map can only significantly reduce the distortion at the

inner region but not near the boundary. Hence, the idea in the last subsection

cannot be directly applied in the “south pole” step. To solve this problem,

we consider enlarging the domain so that boundary region of D becomes the

inner region of a much bigger domain. If the boundary region of the enlarged

domain is appropriate, then the conformality of the whole unit disk can be

improved using the composition of QC maps.

To construct such appropriate enlarged domain, we conformally reflect

the unit disk along the circular boundary. In other words, we construct a

copy of the points on D \ ∂D outside D by the correspondence

z ∈ D \ ∂D←→ 1

z̄
∈ C \ D, (5.8)

Now, the new domain becomes the whole complex plane C. In the discrete

case, the new domain is a big triangular domain, with the three outermost

vertices being the reflected vertices of the innermost triangle on D that

contains the origin. The whole unit disk is now located at the inner region of

the new big triangle (see Figure 5.1b). It remains to perform the composition

of QC maps on the enlarged domain.

To achieve this task, Lui et al. [60] introduced the following extension of
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a diffeomorphism on D to C through reflection.

Theorem 5.3.1. Let f : D→ D be a diffeomorphism of the unit disk fixing

0 and 1 and satisfying the Beltrami equation fz̄ = µffz with µf defined on D.

Then an extension of f from D to C given by

f̃(z) =

{
f(z) if |z| ≤ 1

1

f(1/z̄)
if |z| > 1

(5.9)

satisfies the Beltrami Equation f̃z̄ = µ̃f̃ f̃z on C, where

µ̃f̃ (z) =

{
µf (z) if |z| ≤ 1
z2

z̄2
µf (1/z̄) if |z| > 1.

(5.10)

Proof. See [60].

Using Equation (5.9), we extend the map g in Equation (5.7) to the

extended map g̃ : C→ C defined by

g̃(z) =

{
g(z) if z ∈ D

1

g(1/z̄)
if z ∈ C \ D. (5.11)

Since the conformality distortion of the innermost region of D is small,

the corresponding outermost region of the new domain is also with negligible

conformality distortion. Hence, we apply the LBS [61] to compose the map

g̃ by a quasi-conformal map Q̃ : C → C with the Beltrami coefficient µ̃g̃−1 ,

fixing the outermost region of the new domain:{
Q̃ = LBS(µ̃g̃−1)

Q̃(z) = z for |z| � 1.
(5.12)

The conformality of g̃ is significantly improved as suggested by Theorem

4.3.1. In particular, the conformality distortion near the boundary of the

original unit disk will be alleviated. Besides, by Theorem 5.3.1, the region

corresponding to D is exactly mapped onto D under the map Q̃. Hence, the
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boundary of the region is exactly circular in the continuous case. This results

in a disk conformal parameterization

ϕ := Q̃ ◦ g̃|M , (5.13)

with improved conformality at both the boundary region and the inner region.

Moreover, we have ‖µϕ‖∞ < 1. By Theorem 3.3.2, ϕ is bijective.

In the discrete case, denote the big triangular domain obtained under

the reflection by Ω. As the Beltrami coefficient is piecewise constant on

every triangular face T in D, Equation (5.10) cannot be directly applied for

computing the Beltrami coefficient µ̃g̃−1(T̃ ) on the reflected triangular faces

T̃ on Ω \ D. Instead, we approximate µ̃g̃−1(T̃ ) by

µ̃g̃−1(T̃ ) =
(z1

2/z2
1 + z2

2/z2
2 + z3

2/z2
3)

3
µg−1(T ), (5.14)

where T = [z1, z2, z3]. This approximation unavoidably introduces numerical

errors. Hence, the boundary of D may not be transformed to a perfect circle

after the “south pole” step. To solve this problem, we normalize the boundary

vertices by

z 7→ z

|z|
. (5.15)

Then, we repeat the “south pole” step until convergence. The detailed

implementation of our proposed method is described in Algorithm 4.

5.4 Linear disk conformal parameterization

algorithm

In this section, we present our proposed linear disk conformal parameteriza-

tions algorithm in [3]. Given a simply-connected open surface M , we aim to

efficiently compute a conformal map f : M → D, where D denotes the open

unit disk.
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Algorithm 4: Two-step iterative scheme for disk conformal parameter-
ization

Input: A simply-connected open mesh M , an energy threshold ε.
Output: A bijective disk conformal parameterization ϕ : M → D.

1 Denote the boundary of M as ∂M = [v0, v1, ..., vn]. Compute the edge
lengths l[vi,vi+1] for i = 0, 1, ..., n, where vn+1 := v0;

2 Obtain an initial disk parameterization f : M → D by{∑
v∈N(u) kuv(f(u)− f(v)) = 0 if u /∈ ∂M

f(vi) = (cos θi, sin θi) if u = vi ∈ ∂M

where s :=
∑n−1

i=0 l[vi,vi+1], si :=
∑i−1

j=0 l[vj ,vj+1] and θi := 2πsi/s;

3 Apply the Cayley transform W : D→ H defined by W (z) = i1+z
1−z ;

4 Compute the Beltrami coefficient µ(W◦f)−1 of the map (W ◦ f)−1;
5 Compute the quasi-conformal map h = LBS(µ(W◦f)−1) with the

boundary vertices (W ◦ f)(vi) restricted on the real axis;
6 Project the upper half plane to the unit disk by the inverse Cayley

transform W−1(z) = z−i
z+i
. Denote ϕ := W−1 ◦ h ◦W ◦ f ;

7 repeat
8 Update ν by the Beltrami coefficient µϕ−1 of the map ϕ−1;
9 By reflection, extend ϕ−1 and µϕ−1 on D to ϕ̃−1 and µ̃ϕ̃−1 on a big

triangular domain B using Equation (5.9) and Equation (5.10). For
each face T = [z1, z2, z3] on D, define

µ̃ϕ̃−1(T̃ ) =
(z12/z21+z22/z22+z32/z23)

3
µϕ−1(T );

10 Compute the quasi-conformal map Q̃ = LBS(µ̃ϕ̃−1) with the
outermost vertices of B fixed;

11 Update ϕ by the restriction Q̃ ◦ ϕ̃|M ;
12 Project the boundary of ϕ(M) onto the unit circle;

13 until mean(|µϕ−1|)−mean(|ν|) < ε;

5.4.1 Finding an initial map via double covering

We tackle the problem using a simple double covering technique suggested

in [32]. In the following, we introduce the double covering technique. The

technique aims to transform the simply-connected open surface M to a genus-

0 closed surface M̃ . First, we duplicate M and change its orientation. Denote
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the new copy by M ′. Then, we identify the boundaries of M and M ′:

∂M ←→ ∂M ′. (5.16)

By the above identification, M and M ′ are glued along the two boundaries.

Note that we do not identify the interior parts of M and M ′. As a result, a

closed surface M̃ is formed. Since M and M ′ are simply-connected, M̃ is a

genus-0 closed surface. More explicitly, denote the Gaussian curvature and

geodesic curvature by K and κg respectively. Assume that we have slightly

modified the boundary parts of M and M ′ so that M̃ is smooth. Then by

the Gauss-Bonnet theorem, we have∫
M

KdA+

∫
∂M

κgds = 2πχ(M) = 2π (5.17)

and ∫
M ′
KdA+

∫
∂M ′

κgds = 2πχ(M ′) = 2π. (5.18)

Hence, we have

2πχ(M̃) =

∫
M̃

KdA

=

∫
M

KdA+

∫
M ′
KdA

=

(
2π −

∫
∂M

κgds

)
+

(
2π −

∫
∂M ′

κgds

)
= 4π −

∫
∂M

κgds+

∫
∂M

κgds

= 4π.

(5.19)

Therefore, M̃ has Euler characteristic χ(M̃) = 2, which implies that it is a

genus-0 closed surface.

The abovementioned technique is applicable in the discrete case. Let

K = (V,E, F ) be a simply-connected open triangulated mesh with the vertex

set V , the edge set E and the triangular face set F . Each face in F can be
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represented as an ordered triple [u, v, w] where u, v, w are three vertices. Let

v, e, f be the number of vertices, edges and faces of K respectively. Denote the

boundary vertices of K by {wi}ri=1, and let K ′ = (V ′, E ′, F ′) be a duplication

of K. The abovementioned notations are naturally extended to K ′. By

Euler’s formula, we have

v − e+ f = v′ − e′ + f ′ = 1. (5.20)

To reverse the orientation of K ′, we rearrange the order of the vertices of

each face in F ′ from [u, v, w] to [u,w, v]. Then, to glue the two surfaces K

and K ′, we identify the boundary vertices:

wi ←→ w′i for all i = 1, 2, · · · , r. (5.21)

Now, denote the number of vertices, edges and faces of the glued mesh K̃ by

ṽ, ẽ and f̃ respectively. We have

ṽ − ẽ+ f̃
= (v + v′ − r)− (e+ e′ − r) + (f + f ′)
= v + v′ − e− e′ + f + f ′

= 2,

(5.22)

Hence, M̃ is a genus-0 closed mesh. The implementation of the double

covering procedure is described in Algorithm 5.

After obtaining M̃ by double covering, we look for a conformal map that

maps M̃ to the unit sphere. The linear spherical conformal parameteriza-

tion algorithm in [1] is applied because of its efficiency and accuracy. It is

noteworthy that the combination of double covering and the linear spherical

conformal parameterization algorithm in [1] is particularly advantageous.

Because of the symmetry of the double covered surface, half of the entries in

the coefficient matrix of the discretization of the Laplace Equation (4.2) are

duplicated. Therefore, although we have doubled the problem scale with the
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Algorithm 5: The double covering technique in our initial step.

Input: A simply-connected open triangulated mesh K = (V,E, F ).

Output: A genus-0 closed mesh K̃ = (Ṽ , Ẽ, F̃ ).

1 Duplicate K and denote the copy by K ′ = (V ′, E ′, F ′);
2 Change the order of the vertices of each face in F ′ from [u, v, w] to

[u,w, v];
3 Replace the boundary vertices w′i by wi in E ′ and F ′ for i = 1, 2, · · · , r;
4 Set Ṽ = V ∪ V ′ \ {w′i}ri=1;

5 Set Ẽ = E ∪ E ′;
6 Set F̃ = E ∪ E ′;

double covering technique, we only need to compute half of the entries in the

coefficient matrix and hence we can save half of the computational cost.

After finding a spherical conformal map f̃ : M̃ → S2, note that by

symmetry, we can divide S2 into two parts, each of which exactly corresponds

to one of M and M ′. Since our goal is to find a disk conformal map f :

M → D, we focus on only one of the two parts. Now, we apply a Möbius

transformation on S2 so that the two parts are exactly the northern and

southern hemispheres of S2. Then, we can apply the stereographic projection

PN to the southern hemisphere. This gives us an open unit disk D. Since the

Möbius transformation and the stereographic projection are both conformal,

the combination of the above steps results in a conformal map f : M → D.

In the discrete case, due to irregular triangulations of the meshes and

the conformality distortions of the spherical map, the boundary is usually

different from a perfect circle. In other words, the planar region R := f(M)

we obtained after applying the stereographic projection may not be a unit

disk. To solve this problem, we need one further step to enforce the circular

boundary. At the same time, we need to maintain the low conformality

distortions and preserve the bijectivity of the parameterization.
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5.4.2 Enforcing the circular boundary to achieve a bi-
jective disk conformal parameterization

To control the conformality distortion and the bijectivity, our strategy is to

normalize the boundary and then compose the map with a quasi-conformal

map. We first normalize the boundary of the region R by

v 7→ v

|v|
(5.23)

for all v ∈ ∂R. Denote the normalized region by R̃. Since the vertices near

∂R may be very dense, a direct normalization of the boundary may cause

overlaps as well as conformality distortions. To eliminate the overlaps and

the distortions of R̃, we apply the Linear Beltrami Solver (LBS) [61]. More

specifically, denote the Beltrami coefficient of the mapping g : R̃→M from

the normalized planar region to the original surface by µ. We compute a

quasi-conformal map h : R̃→ D by

h = LBS(µ) (5.24)

with the normalized circular boundary constraint h(v) = v for all v ∈ ∂R̃.

By Theorem 4.3.1, h◦g−1 is a conformal parameterization from the original

surface M to the unit disk D. Also, since the Beltrami coefficient of h ◦ g−1

is with supremum norm less than 1, the bijectivity of h ◦ g−1 is guaranteed

by Theorem 3.3.2. The complete implementation of our linear disk conformal

parameterization algorithm is described in Algorithm 6.

5.5 Experimental Results

5.5.1 Two-step iterative scheme

In this section, we demonstrate the effectiveness of our proposed two-step

iterative scheme in Section 5.3 using various meshes. The meshes are freely
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Algorithm 6: Linear disk conformal parameterization algorithm

Input: A simply-connected open mesh M .
Output: A bijective disk conformal parameterization f : M → D.

1 Double cover M and obtain a genus-0 closed mesh M̃ ;

2 Apply the linear spherical conformal parameterization [1] on M̃ and
obtain the parameter sphere S;

3 Apply a Möbius transformation on S so that the original surface M
corresponds to the southern hemisphere of S;

4 Apply the stereographic projection for the southern hemisphere of S
and obtain a planar region R;

5 Normalize the boundary of R by

v 7→ v

|v|
(5.25)

for all v ∈ ∂R and denote the normalized region by R̃;

6 Compute the Beltrami coefficient of the map g : R̃→M and denote it
by µ;

7 Apply the Linear Beltrami Solver [61] to obtain a map h : R̃→ D

h = LBS(µ) (5.26)

with the boundary constraint h(v) = v for all v ∈ ∂R̃. The composition
map f = h ◦ g−1 is the desired disk conformal parameterization;

adopted from the AIM@SHAPE Shape Repository [89]. The algorithm is

implemented in MATLAB on Windows 7 platform. All experiments are

performed on a PC with a 3.40 GHz CPU. The error threshold in Algorithm

4 is set to be ε = 10−5.

Figure 5.2, Figure 5.3 and Figure 5.4 show three meshes and the disk

conformal parameterizations obtained by our proposed two-step iterative

scheme. The histograms of the norms of the Beltrami coefficients are given

in Figure 5.5. It can be observed that the peaks of the norms are close to

0, which implies that the conformality distortions are negligible. Besides, as

suggested by the energy plots in Figure 5.6, our proposed method converges
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Figure 5.2: A human face and its disk conformal parameterization using our
proposed two-step iterative scheme. Top: the triangulations. Bottom: the
mean curvature texture maps.

shortly.

To quantitatively assess the quality of our proposed two-step iterative

scheme, we consider three different factors including the computational time,

the mean of the norm of the Beltrami coefficients, and the standard deviation.

We compare our two-step iterative scheme with four state-of-the-art algorithms

that guarantee bijectivity and enforce a circular boundary. The algorithms

are the discrete Ricci flow (RF) algorithm [44], the inversive distance Ricci

flow (IDRF) algorithm [85], the Yamabe Riemann map algorithm [64] and

the holomorphic 1-form algorithm [31]. The statistics of the performance of

our proposed two-step iterative scheme and the four algorithms are listed in
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Figure 5.3: A Chinese lion head and its disk conformal parameterization using
our two-step iterative scheme. Top: the triangulations. Bottom: the mean
curvature texture maps.

Table 5.2.

As shown in Table 5.2, our proposed two-step iterative scheme is highly

efficient and accurate. For a 3D mesh with 100k triangular faces, the time

spent is usually less than 10 seconds. Also, our method works for meshes

with irregular shapes and bad triangulations, such as the example shown in

Figure 5.7. As a remark, in all our experiments, the resulting disk conformal

parameterizations are bijective. In other words, the parameterizations do not

contain any flips or overlaps.

For a more detailed comparison, the computational time of our two-step

iterative scheme is respectively 60%, 75%, 80%, and 90% shorter than that
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Figure 5.4: A human brain and its disk conformal parameterization using
our two-step iterative scheme. Top: the triangulations. Bottom: the mean
curvature texture maps.

Figure 5.5: Histograms of the norm of Beltrami coefficients |µ| of our proposed
two-step iterative scheme for a human face mesh, a Chinese lion head mesh
and a human brain mesh. Left: Human face. Middle: Chinese lion head.
Right: Human brain.
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Figure 5.6: Energy plots of mean(|µ|) of our two-step iterative scheme for a
human face mesh, a Chinese lion head mesh and a human brain mesh. Left:
Human face. Middle: Chinese lion head. Right: Human brain.

Figure 5.7: A hand mesh and its disk conformal parameterization using
our two-step iterative scheme. Top: the triangulations. Bottom: the mean
curvature texture maps.

of the discrete Ricci Flow [44], the Inversive Distance Ricci Flow algorithm

[85], the Yamabe Riemann map algorithm [64] and the holomorphic 1-form
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Surfaces
No. of
faces

Our Method RF [44] IDRF [85]

Time (seconds) / mean(|µ|) / sd(|µ|)
Human

face
49982 6.86/0.0101/0.0284 13.01/0.2421/0.1563 fail

Sophie 41587 4.88/0.0056/0.0083 23.86/0.1476/0.0792 29.43/0.0057/0.0086
Max

Planck
99515 6.44/0.0102/0.0109 21.54/0.1431/0.0818 30.86/0.0103/0.0106

Mask 62467 8.63/0.0043/0.0051 13.46/0.2379/0.1425 fail
Nicolo da
Uzzano

50042 5.71/0.0136/0.0314 10.34/0.2992/0.1434 fail

Julius
Caesar

433956 72.69/0.0032/0.0100 108.72/0.1033/0.0689 173.55/0.0033/0.0094

Bimba 48469 2.61/0.0217/0.0254 10.07/0.2947/0.1430 fail
Human
brain

96811 4.90/0.0250/0.0217 22.87/0.1861/0.1007 32.30/0.0249/0.0220

Hand 105860 6.89/0.0194/0.0168 35.38/0.0550/0.0281 39.63/0.0211/0.0212
Chinese

lion
34421 2.23/0.0240/0.0271 8.03/0.2029/0.1024 10.11/0.0238/0.0265

Lion vase 98925 4.19/0.0236/0.0257 33.45/0.3687/0.1726 fail

Surfaces
No. of
faces

Our Method
Yamabe Riemann map

[64]
Holomorphic 1-form

[31]
Time (seconds) / mean(|µ|) / sd(|µ|)

Human
face

49982 6.86/0.0101/0.0284 fail 52.12/0.0111/0.0292

Sophie 41587 4.88/0.0056/0.0083 34.32/0.0057/0.0085 57.36/0.0058/0.0083
Max

Planck
99515 6.44/0.0102/0.0109 34.34/0.0103/0.0106 92.74/0.0103/0.0109

Mask 62467 8.63/0.0043/0.0051 fail fail
Nicolo da
Uzzano

50042 5.71/0.0136/0.0314 fail 50.97/0.0143/0.0275

Julius
Caesar

433956 72.69/0.0032/0.0100 175.01/0.0033/0.0094 462.63/0.0033/0.0096

Bimba 48469 2.61/0.0217/0.0254 fail 56.12/0.0230/0.0250
Human
brain

96811 4.90/0.0250/0.0217 31.52/0.0249/0.0220 89.88/0.0251/0.0217

Hand 105860 6.89/0.0194/0.0168 44.25/0.0211/0.0212 104.04/0.0224/0.0269
Chinese

lion
34421 2.23/0.0240/0.0271 14.82/0.0238/0.0265 40.43/0.0244/0.0271

Lion vase 98925 4.19/0.0236/0.0257 fail 137.93/0.0271/0.0282

Table 5.2: Performance of our proposed two-step iterative method and four
state-of-the-art algorithms.

algorithm [31] on average. The conformality of our proposed method is at

least comparable to (and often better than) that of the four algorithms. More

importantly, the four algorithms fail for some meshes (for instance, the lion

vase mesh shown in Figure 5.9) while our proposed algorithm is applicable

for a wider range of meshes.
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Figure 5.8: Comparison of the norm of the Beltrami coefficients between our
two-step iterative scheme and the IDRF algorithm [85]. Each triangular face
is colored with the norm of the approximated Beltrami coefficients on it. Left:
our two-step iterative scheme. Right: the IDRF algorithm [85].

Figure 5.9: A lion vase mesh and its disk conformal parameterization using
our two-step iterative scheme. The features of the lion vase mesh, such as
the circular patterns around the boundary and the texture of the hair, are
well-preserved.

In addition, Figure 5.10 highlights another difference between our proposed

method and the IDRF algorithm [85]. For the four abovementioned algorithms,

one triangular face has to be punctured at the beginning and filled at the end.

The conformality distortion at the region near the puncture is undesirably

large. On the contrary, the parameterization obtained by our proposed
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Figure 5.10: Comparison between the disk parameterizations obtained by
our proposed method and by the IDRF algorithm [85]. The colormaps show
the norm of the Beltrami coefficients on each triangular face. Top: the disk
parameterizations obtained by our proposed method (left) and by the IDRF
algorithm [85] (right). Bottom: The zoom in of the center of the disks.

method is of small conformality distortion and is free of such unnaturally

distorted regions. This again demonstrates the advantage of our proposed

two-step iterative scheme.

Besides, we compare our two-step iterative scheme with two other bijective

and linear algorithms, namely the shape-preserving parameterization method

[24] and the mean-value parameterization method [28]. As shown in Table

5.3, our proposed algorithm is more efficient than both of the two methods. It

is also noteworthy that the conformality of our method is significantly better.

The comparisons demonstrate the effectiveness of our two-step iterative

scheme.
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Surfaces No. of faces Our Method Shape-preserving [24] Mean-value [28]
Time (seconds) / mean(|µ|) / sd(|µ|)

Human
face

49982 6.86/0.0101/0.0284 8.19/0.0818/0.0692 8.81/0.0722/0.0659

Sophie 41587 4.88/0.0056/0.0083 6.58/0.0449/0.0411 6.25/0.0470/0.0393
Max

Planck
99515 6.44/0.0102/0.0109 32.28/0.0786/0.0459 29.92/0.0413/0.0260

Mask 62467 8.63/0.0043/0.0051 12.15/0.1154/0.0259 13.26/0.1132/0.0237
Nicolo da
Uzzano

50042 5.71/0.0136/0.0314 9.07/0.1306/0.0852 9.08/0.1144/0.0800

Julius
Caesar

433956 72.69/0.0032/0.0100 203.55/0.1332/0.0362 221.69/0.1323/0.0359

Bimba 48469 2.61/0.0217/0.0254 10.60/0.1271/0.0724 10.51/0.0722/0.0448
Human
brain

96811 4.90/0.0250/0.0217 27.48/0.0950/0.0452 27.79/0.0656/0.0316

Hand 105860 6.89/0.0194/0.0168 37.65/0.0798/0.0431 39.29/0.0552/0.0371
Chinese

lion
34421 2.23/0.0240/0.0271 5.32/0.1083/0.0590 5.74/0.0721/0.0450

Lion vase 98925 4.19/0.0236/0.0257 27.26/0.3892/0.2480 30.29/0.2496/0.1610

Table 5.3: Performance of our proposed method in [2], the shape-preserving
parameterization [24] and the mean-value parameterization [28].

Finally, we demonstrate the bijectivity of our proposed algorithm. We

consider two examples that the initial disk harmonic maps are not bijective.

The examples are shown in Figure 5.11 and Figure 5.12. It can be observed

that our two-step iterative scheme can correct the overlaps and ultimately

result in a bijective disk conformal parameterization.

5.5.2 Linear disk conformal parameterization algorithm

In this section, we demonstrate the effectiveness of our proposed linear disk

conformal parameterization algorithm in Section 5.4 using a number of 3D

simply-connected open meshes. The meshes are freely adopted from the

AIM@SHAPE Shape Repository [89], the Stanford 3D Scanning Repository

[94] and the Benchmark for 3D Mesh Segmentation [92]. Our proposed linear

algorithm is implemented in MATLAB. The sparse linear systems are solved

using the backslash operator (\) in MATLAB. All experiments are performed

on a PC with a 3.40 GHz quad core CPU and 16 GB RAM.
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Figure 5.11: A comparison between the disk parameterizations of a simply-
connected open surface with multiple peaks obtained by the disk harmonic
map and by our two-step iterative scheme. It is observed that there are
foldings near the peak in the disk harmonic map, while the final result by
our proposed method is bijective. Left: the input surface. Top right: the
initial disk harmonic map and the zoom in of a peak of the disk. Bottom
right: the final parameterization result obtained by our proposed algorithm
and the zoom in.

Figure 5.13, 5.14 and 5.15 show three meshes and the disk conformal

parameterizations obtained by our proposed linear algorithm. The local

shapes of original models are well-preserved under the disk parameterizations.

This shows the conformality of our algorithm. Also, as shown in Figure 5.16,

the angle differences highly concentrate at 0, which indicates that our proposed

linear algorithm produces negligible conformality distortions. Besides, our

proposed linear algorithm takes only about 1 second for meshes with moderate

size, and less than half a minute for extremely dense meshes.

To quantitatively assess the performance, we compare our proposed linear

algorithm with two other methods, including the holomorphic 1-form method

[31] and two-step iterative approach in [2]. The holomorphic 1-form method
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Figure 5.12: A comparison between the disk parameterizations of a horse
surface obtained by the disk harmonic map and by our two-step iterative
scheme. The foldings near the legs in the initial disk harmonic map are
corrected by our proposed algorithm. Left: the input surface. Top right: the
initial disk harmonic map and the zoom in of a leg in the disk harmonic map.
Bottom right: the final parameterization result obtained by our proposed
algorithm and the zoom in.

Figure 5.13: A simply-connected open human foot model and the disk confor-
mal parameterization by our proposed linear algorithm.

is available in the RiemannMapper Toolkit [93], which is written in C++,

and the two-step iterative approach in [2] is implemented in MATLAB, as

described in the last subsection. The error thresholds in both the holomorphic
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Figure 5.14: A simply-connected open statue model and the disk conformal
parameterization by our proposed linear algorithm, colored with the mean
curvature of the model.

Figure 5.15: A simply-connected open Stanford bunny model and the disk
conformal parameterization by our proposed linear algorithm, colored with
the mean curvature of the model.

1-form method and the two-step iterative approach in [2] are set to be ε = 10−5.

The performances of the algorithms are recorded in Table 5.4. It is

noteworthy that the angular distortion of our proposed linear method is

comparable and sometimes better than the two state-of-the-art algorithms

[31, 2]. Moreover, our linear method significantly accelerates the computation.
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Figure 5.16: The histograms of the angular distortion of our linear algorithm.
Here the angular distortion is defined by the difference (in degrees) between
an angle in the final parameterization and its corresponding angle on the
original mesh. Left: The result of statue. Middle: The result of foot. Right:
The result of Stanford bunny.

Surfaces
No. of
faces

Holomorphic 1-form
[31]

Fast disk map [2] Linear disk map [3]

Time (s) / Mean(|distortion|) (degrees) / SD(|distortion|) (degrees)
Horse 9K fail 0.76 / 4.58 / 5.45 0.18 / 4.60 / 5.49

T-shirt 14K 18.64 / 1.38 / 3.26 2.09 / 1.34 / 3.25 0.34 / 1.35 / 3.26
Foot 20K 11.73 / 1.40 / 1.24 1.75 / 1.42 / 1.22 0.47 / 1.42 / 1.22

Chinese
lion

30K 29.87 / 1.44 / 2.05 2.70 / 1.42 / 2.04 0.92 / 1.42 / 2.05

Sophie 40K 28.29 / 0.36 / 0.61 5.87 / 0.34 / 0.60 1.31 / 0.35 / 0.60
Bimba 50K 28.04 / 1.29 / 1.78 2.22 / 1.22 / 1.74 1.32 / 1.22 / 1.75

Human
face

50K 28.45 / 0.55 / 1.84 4.61 / 0.53 / 1.82 1.40 / 0.53 / 1.83

Niccolo da
Uzzano

50K 29.49 / 0.78 / 1.73 7.95 / 0.75 / 1.75 1.34 / 0.76 / 1.74

Mask 60K fail 7.08 / 0.25 / 0.33 1.93 / 0.25 / 0.33
Bunny 70K 40.14 / 1.08 / 1.80 4.18 / 1.08 / 1.79 1.99 / 1.08 / 1.79
Brain 100K 58.49 / 1.46 / 1.59 6.81 / 1.46 / 1.59 2.73 / 1.46 / 1.59

Lion vase 100K 93.64 / 1.44 / 1.91 5.34 / 1.27 / 1.75 2.64 / 1.27 / 1.76
Max

Planck
100K 75.92 / 0.61 / 0.80 6.58 / 0.61 / 0.80 2.88 / 0.61 / 0.80

Hand 110K 63.90 / 1.40 / 1.99 7.51 / 1.21 / 1.31 3.30 / 1.21 / 1.31
Igea 270K 173.60 / 0.40 / 0.72 54.63 / 0.40 / 0.71 9.47 / 0.40 / 0.71

Julius
Caesar

430K 295.63 / 0.21 / 0.67 65.54 / 0.20 / 0.67 19.51 / 0.20 / 0.67

Table 5.4: The performance of three state-of-the-art algorithms. Here the
distortion refers to the angular difference (in degrees) between an angle in
the final parameterization and its corresponding angle on the original mesh.

Specifically, our linear algorithm is about 20 times faster than the holomorphic

1-form method [31] on average. Also, the computational time of our linear
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Figure 5.17: A mask model with a highly irregular triangulation. Left: The
mask model. Right: A zoom-in of the model.

algorithm is 60% less than that of our two-step iterative approach in [2] on

average. As a remark, our proposed linear algorithm results in folding-free

parameterization results in all experiments.

After demonstrating the advantages of our proposed linear algorithm over

the two aforementioned approaches, we compare our algorithm with two

other linear bijective disk conformal parameterization algorithms in [24, 28].

These parameterizations are implemented in the GoTools C++ libraries [90].

The performances of the algorithms are recorded in Table 5.5. It can be

observed that the average absolute angular distortion of our proposed linear

algorithm is 80% lower than that of the shape-preserving method [24] and

75% lower than that of the mean-value method [28]. Also, our method is

about 7 times faster than both of the two algorithms. Hence, our proposed

linear algorithm outperforms the two linear existing approaches in terms of

both the conformality and the efficiency.

Our linear method is highly robust to irregular triangulations. Figure 5.17
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Surfaces
No. of
faces

Shape-preserving [24] Mean-value [28] Our linear method [3]

Time (s) / Mean(|distortion|) (degrees) / SD(|distortion|) (degrees)
Horse 9K 0.97 / 18.52 / 16.51 1.21 / 12.48 / 12.02 0.18 / 4.60 / 5.49

T-shirt 14K 1.29 / 14.72 / 12.98 1.21 / 14.59 / 12.84 0.34 / 1.35 / 3.26
Foot 20K 2.92 / 3.13 / 2.46 3.13 / 2.15 / 1.84 0.47 / 1.42 / 1.22

Chinese
lion

30K 5.47 / 6.48 / 5.26 5.90 / 4.31 / 3.86 0.92 / 1.42 / 2.05

Sophie 40K 6.70 / 2.75 / 3.16 6.40 / 2.87 / 3.08 1.31 / 0.35 / 0.60
Bimba 50K 10.65 / 7.33 / 6.28 10.73 / 4.14 / 3.75 1.32 / 1.22 / 1.75

Human
face

50K 8.13 / 4.73 / 5.29 8.99 / 4.18 / 4.98 1.40 / 0.53 / 1.83

Niccolo da
Uzzano

50K 9.03 / 7.38 / 6.93 9.24 / 6.46 / 6.42 1.34 / 0.76 / 1.74

Mask 60K 12.12 / 6.54 / 3.96 13.43 / 6.39 / 3.81 1.93 / 0.25 / 0.33
Bunny 70K 17.73 / 10.61 / 13.68 19.39 / 5.91 / 8.03 1.99 / 1.08 / 1.79

Brain 100K 27.41 / 5.61 / 4.23 28.40 / 3.87 / 2.93 2.73 / 1.46 / 1.59

Lion vase 100K 27.53 / 21.31 / 19.84 30.87 / 13.40 / 12.46 2.64 / 1.27 / 1.76
Max

Planck
100K 32.52 / 4.77 / 3.95 30.15 / 2.50 / 2.17 2.88 / 0.61 / 0.80

Hand 110K 38.55 / 5.03 / 3.93 39.92 / 3.47 / 3.14 3.30 / 1.21 / 1.31
Igea 270K 129.07 / 8.70 / 5.77 137.41 / 5.13 / 3.35 9.47 / 0.40 / 0.71

Julius
Caesar

430K 202.09 / 8.19 / 4.79 228.23 / 8.14 / 4.76 19.51 / 0.20 / 0.67

Table 5.5: The performance of our proposed linear algorithm, the shape-
preserving parameterization [24] and the mean-value parameterization [28].

shows a simply-connected mask model with a very irregular triangulation.

Sharp and irregular triangles can be easily observed. The holomorphic 1-form

method [31] fails for this model while our linear method succeeds (please

refer to Table 5.4). This demonstrates the robustness of our proposed linear

algorithm.

As a final remark, we discuss the possibility of further accelerating the

computation of our proposed linear algorithm. Recall that in our proposed

linear algorithm, we need to compute the spherical conformal parameterization

of the double covered surface using the linear algorithm in [1]. The algorithm

in [1] consists of two major steps, namely a North-pole step and a South-pole

step. The North-pole step results in a spherical parameterization such that

the southernmost region is with negligible conformality distortion. Then, the

South-pole step aims to correct the conformality distortion in the northernmost
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Surfaces
No. of
faces

Our linear method [3]
Our linear method [3] without the

south-pole step in [1]
Time (s) / Mean(|distortion|) (degrees) / SD(|distortion|) (degrees)

Horse 9K 0.18 / 4.60 / 5.49 0.11 / 4.63 / 5.50

T-shirt 14K 0.34 / 1.35 / 3.26 0.22 / 1.37 / 3.27
Foot 20K 0.47 / 1.42 / 1.22 0.31 / 1.43 / 1.23

Chinese lion 30K 0.92 / 1.42 / 2.05 0.56 / 1.43 / 2.05

Sophie 40K 1.31 / 0.35 / 0.60 0.81 / 0.37 / 0.62
Bimba 50K 1.32 / 1.22 / 1.75 0.75 / 1.23 / 1.76

Human face 50K 1.40 / 0.53 / 1.83 0.83 / 0.55 / 1.84

Niccolo da
Uzzano

50K 1.34 / 0.76 / 1.74 0.78 / 0.77 / 1.74

Mask 60K 1.93 / 0.25 / 0.33 1.22 / 0.28 / 0.37

Bunny 70K 1.99 / 1.08 / 1.79 1.14 / 1.09 / 1.79

Brain 100K 2.73 / 1.46 / 1.59 1.55 / 1.49 / 1.60
Lion vase 100K 2.64 / 1.27 / 1.76 1.45 / 1.28 / 1.76

Max Planck 100K 2.88 / 0.61 / 0.80 1.54 / 0.63 / 0.80

Hand 110K 3.30 / 1.21 / 1.31 1.74 / 1.22 / 1.31
Igea 270K 9.47 / 0.40 / 0.71 5.22 / 0.54 / 0.74

Julius Caesar 430K 19.51 / 0.20 / 0.67 12.41 / 0.21 / 0.68

Table 5.6: The performance of the current version of our linear disk conformal
parameterization algorithm and a possible improved version of it without the
“south-pole” step in [1], provided a suitable choice of the boundary triangle in
Equation (4.2).

region. In our case, since we are only interested in half of the glued surface,

the South-pole step may be skipped as we can take the Southern hemisphere

obtained by the north-pole step as our result.

The conformality distortion in the North-pole step in [1] is primarily caused

by the choice of the boundary triangle [a1, a2, a3]. If the chosen boundary

triangle and its neighboring triangular faces are regular enough, then the

conformality distortion of the southernmost region after the North-pole step

is already satisfactory. In this case, the South-pole step is not needed. In

other words, with a well-chosen boundary triangle [a1, a2, a3] in Equation

(4.2), half of the computational time in computing the spherical conformal

parameterization can be saved.

Table 5.6 records the performance of the current version of our proposed

linear algorithm and the version without the South-pole step in [1], under a
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Figure 5.18: The Stanford bunny model with a rainbow checkerboard texture
mapped onto it using our linear disk conformal parameterization algorithm.

suitable choice of the boundary triangle [a1, a2, a3] in Equation (4.2). The

conformality distortion of the two versions are highly similar, while the

version without the South-pole step reduces the computational time by 40%

on average. However, it should be remarked that the version without the

South-pole step requires a suitably chosen boundary triangle [a1, a2, a3] for [1],

while the current version of our method is fully automatic and independent

of the choice of [a1, a2, a3]. Hence, the current version of our proposed linear

algorithm is more suitable for real applications until the new version is fully

analyzed.

5.6 Applications

With our developed disk conformal parameterization algorithms, the texture

mapping problem on simply-connected open meshes can be efficiently solved.

Suppose we are given a simply-connected open mesh and a planar texture

image. To map the texture onto the mesh, we first compute the disk conformal

parameterizations using our proposed algorithms. Then, the texture can be
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Figure 5.19: A T-shirt model with a flower pattern design mapped onto it
using our linear disk conformal parameterization algorithm.

mapped onto the unit disk, and finally the inverse of the disk conformal

parameterization maps the texture back onto the original mesh.

In Figure 5.18, we consider mapping a rainbow checkerboard texture onto

a simply-connected bunny mesh using our proposed linear algorithm. It

can be easily observed that the orthogonal checkerboard structure is well

preserved under the our proposed parameterization scheme because of the

angle-preserving property of conformal maps.

Using this method, planar clothing designs can be easily visualized in

3D. Figure 5.19 shows a T-shirt model with a planar flower pattern design

mapped onto it. The patterns are well preserved on the 3D T-shirt model.

This approach provides a more comprehensive and realistic preview of the

clothes for both the designers and customers. For instance, with the real-time

computation of the disk conformal parameterization, online customers can

virtually try on clothes in virtual dressing rooms after selecting 2D images of

the clothes.



Chapter 6

Spherical quasi-conformal
parameterization of genus-0
closed meshes

6.1 Introduction

In this chapter, we propose a linear algorithm for the spherical quasi-conformal

parameterization of genus-0 closed meshes [6]. To the best of the author’s

knowledge, this is the first work on the computation of spherical quasi-

conformal parameterizations.

Conformal parameterization of genus-0 closed meshes has been widely

studied, and we have proposed a linear algorithm in Chapter 4 for the

computation. Also, various quasi-conformal parameterization algorithms have

been developed for planar domains and simply-connected open meshes by

different researchers. However, the study of quasi-conformal parameterization

on spherical meshes is limited. Given a user-defined quasi-conformality

distortion, we aim to develop a linear algorithm for computing the spherical

quasi-conformal parameterization with the prescribed distortion.

86
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6.2 Contributions

Our proposed spherical quasi-conformal parameterization algorithm is with

the following advantages:

1. Linearity : Our proposed algorithm is linear and hence highly efficient

in practice.

2. Bijectivity : The bijectivity of the resulting parameterization is guaran-

teed by quasi-conformal theory.

3. Accuracy : Our algorithm can accurately compute a spherical parame-

terization with the prescribed distortion.

6.3 Our proposed method

Note that quasi-conformal maps are flexible and not unique in general. There-

fore, it is desirable to have an algorithm for computing a spherical quasi-

conformal parameterization based on an user-defined quasi-conformal distor-

tion. The user-defined distortion can be freely changed to fit into different

applications.

6.3.1 Quasi-conformal dilation

To achieve this goal, we first need to choose an appropriate candidate for

user-defined distortion. It is desirable to have a quantity that accurately

reflects the quasi-conformality and is easy to compute. For spherical conformal

maps, we use the angle difference between the three angles of a triangular

face on the input mesh and those of the face on the sphere as a measure

of the conformality. The map is with good conformality on the face if the

three angle differences are all close to 0, or equivalently, if the mean of the
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absolute angle differences is close to 0. However, the measurement is not

appropriate for the case of spherical quasi-conformal maps. For instance,

under the shear mapping

(
x
y

)
7→
(
x+ λy
y

)
, the three angle differences are

highly different from each other and none of them can accurately represent

the quasi-conformality. Hence, instead of the angles, it is desirable to have

the user-defined distortion defined on every triangular face of the input mesh.

In the following, we consider the dilation on every triangular face as the

measurement of quasi-conformality. Mathematically, let f : C → C be a

quasi-conformal map. The dilation of f at a point z is defined by

Kf (z) =
1 + |µf (z)|
1− |µf (z)|

, (6.1)

where µf is the Beltrami coefficient of f . Geometrically, the dilation is the

ratio of the length of the axes shown in Figure 3.1 under the quasi-conformal

map f .

The dilation of f is related to the maximal quasi-conformal dilation K in

Equation (3.9). More specifically, we have

K = sup
z
Kf (z). (6.2)

The map f is said to be p-quasiconformal if the maximal quasi-conformal

dilation is bounded above by p. In other words, every infinitesimal circle is

mapped to an infinitesimal ellipse with eccentricity at most p. In particular,

a conformal map is a 1-quasiconformal map.

An important property about the maximal dilation of composition of

quasi-conformal mappings is as follows.

Proposition 6.3.1. If f : Ω1 → Ω2 is a K1-quasiconformal map and g :

Ω2 → Ω3 is a K2-quasiconformal map, then g ◦ f is a K1K2-quasiconformal

map.
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In the discrete case, since the Beltrami coefficients are approximated on

every triangular face as described in Equation (3.13), it is natural to define

the dilation on every face. We have the following discretization:

Definition 6.3.2 (Discrete dilation). Let f : M1 →M2 be a quasi-conformal

map between two triangulated meshes M1,M2 on C. For every triangular face

T of M1, the discrete dilation of f on T is defined by

Kf (T ) =
1 + |µf (T )|
1− |µf (T )|

, (6.3)

where µf (T ) is the Beltrami coefficient of f approximated on T .

Moreover, the measurement of the dilation can be naturally extended to

quasi-conformal maps between meshes in R3.

Definition 6.3.3 (Discrete dilation in R3). Let f : M1 → M2 be a quasi-

conformal map between two triangulated meshes M1,M2 in R3, and let T1, T2

be two corresponding triangular faces on K1, K2 respectively. Let φi : Ti → C

be an isometric embedding of Ti onto C, where i = 1, 2. The discrete dilation

of f on T1 is defined by

Kf̃ (φ1(T1)), (6.4)

where f̃ : φ1(T1)→ φ2(T2) is a quasi-conformal map on C.

Note that the above definition is well-defined because only the norm of the

Beltrami coefficients is considered. With the above concepts, we are ready to

introduce our proposed spherical quasi-conformal parameterization algorithm

for a genus-0 closed triangulated mesh M and a user-defined quasi-conformal

dilation K ≥ 1 defined on every face.
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6.3.2 Initial map

We first compute a spherical conformal parameterization f : M → S2 as

an initialization. Among all existing algorithms for computing the spherical

conformal parameterization, we use the linear spherical conformal parame-

terization algorithm in [1] for three reasons. Firstly, the algorithm is linear

and hence the computation is highly efficient. Secondly, the algorithm in

[1] achieves the best conformality when compared with the pre-existing ap-

proaches. The conformality of the initial spherical map is important in the

subsequent steps. Thirdly, the algorithm in [1] results in a bijective spherical

parameterization. The bijectivity is also crucial for the computation in the

remaining steps.

6.3.3 Optimally project the sphere onto the complex
plane

After obtaining the initial spherical parameterization, we choose a triangular

face T = [v1, v2, v3] on f(M) such that T and its neighboring triangular

faces are the most regular. Then, we apply a rotation ψ on f(M) such that

the centroid of T lies on the positive z-axis, followed by the stereographic

projection PN .

The regularity of T and its neighboring faces is important because of the

stereographic projection PN . When applying the stereographic projection,

the north pole (0, 0, 1) is mapped to ∞ on the extended complex plane, and

the northernmost region on S2 is mapped to the outermost region on the

plane. In particular, T is mapped to a big triangle on the plane. Now, denote

the geodesic between vi and vj on S2 by gvivj . Note that gvivj is a circular

arc on S2, while the edge evivj connecting vi and vj on M is an Euclidean

straight line. On S2, this discrepancy between gvivj and evivj may not be very
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large. However, under the stereographic projection, this discrepancy between

PN(gvivj) and the Euclidean straight line ePN (vi)PN (vj) becomes serious.

In the continuous case, under the stereographic projection, all other

vertices are mapped to the interior of the region enclosed by gv1v2 , gv2v3 and

gv3v1 . However, in the discrete case, if T and its neighboring faces are not

regular enough, some vertices may be mapped outside the Euclidean triangle

[PN (v1), PN (v2), PN (v3)]. The outlying vertices causes computational difficulty

in the following step, in which only the three vertices PN(v1), PN(v2), PN(v3)

are involved in the boundary constraints. Hence, a suitable choice of T is

necessary.

6.3.4 Achieving the quasi-conformality

By the stereographic projection, the chosen triangular face T is mapped to a

big triangle on C. Next, we compose the map with a quasi-conformal map h

that satisfies the prescribed dilation.

To compute a quasi-conformal map using LBS [61], 3 point boundary

constraints of the outermost triangular face T are required. Moreover, the

boundary constraints must be set optimally, otherwise the prescribed quasi-

conformality cannot be achieved.

To set a suitable boundary condition, we explicitly compute the image of

T under the prescribed dilation K(T ). Denote T = [x1 + iy1, x2 + iy2, x3 + iy3].

By Equation (6.3), we define the Beltrami coefficient µ(T ) on the triangular

face T by

µ(T ) =
K(T )− 1

K(T ) + 1
. (6.5)

Note that the argument of µ(T ) is set to be 0 without loss of generality.
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Since h is piecewise linear, we have

h|T
(
xi
yi

)
=

(
aTxi + bTyi + rT
cTxi + dTyi + sT

)
(6.6)

for i = 1, 2, 3, where aT , bT , cT , dT , rT , sT are to be determined.

Without loss of generality, we can assume that h|T
(
x1

y1

)
=

(
x1

y1

)
and

h|T
(
x2

y2

)
=

(
x2

y2

)
.

Also, by Equation (3.11), we have

dT = α1aT + α2bT ;

−cT = α2aT + α3bT ,
(6.7)

where

α1 =
(ρT − 1)2 + τ 2

T

1− ρ2
T − τ 2

T

; α2 = − 2τT
1− ρ2

T − τ 2
T

; α3 =
(1 + ρT )2 + τ 2

T

1− ρ2
T − τ 2

T

. (6.8)

Here, ρ(T ) and τ(T ) are respectively the real part and the imaginary part of

µ(T ). By our construction of µ(T ) introduced before, we have ρ(T ) = K(T )−1
K(T )+1

and τ(T ) = 0. A direct calculation yields
α1 = − 1

K(T )

α2 = 0
α3 = K(T ).

(6.9)

Altogether, aT , bT , cT , dT , rT , sT can be explicitly solved by the following

linear system:

x1 y1 0 0 1 0
0 0 x1 y1 0 1
x2 y2 0 0 1 0
0 0 x2 y2 0 1
1

K(T )
0 0 −1 0 0

0 K(T ) 1 0 0 0




aT
bT
cT
dT
rT
sT

 =


x1

y1

x2

y2

0
0

 . (6.10)

The existence and uniqueness of (aT , bT , cT , dT , rT , sT ) is guaranteed by

the following proposition.
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Proposition 6.3.4. The matrix in Equation (6.10) is nonsingular.

Proof. Denote the matrix in Equation (6.10) by A. By a direct calculation,

we have

det(A) = −K(T )(x1 − x2)2 − 1

K(T )
(y1 − y2)2. (6.11)

Since T is non-degenerate, we have (x1, y1) 6= (x2, y2). Also, note that K ≥ 1.

It follows that det(A) 6= 0.

After obtaining aT , bT , cT , dT , rT , sT , we can explicitly compute h|T
(
x3

y3

)
using Equation (6.6). The above computations give us the desired boundary

condition for h(x1 + iy2), h(x1 + iy2) and h(x3 + iy3) of the triangular face T .

With the above boundary conditions, we apply the Linear Beltrami Solver

(LBS) [61] for computing a quasi-conformal map h that satisfies the prescribed

quasi-conformal distortion. More specifically, by Equation (6.3), we have

|µ(F )| = K(F )− 1

K(F ) + 1
(6.12)

for all triangular faces F . We apply LBS with µ and the boundary constraints

on T , obtaining the quasi-conformal map h. It is noteworthy that since

‖µ‖∞ < 1, Theorem 3.3.2 guarantees the bijectivity of the map h.

Since T may be severely distorted by the prescribed distortion, the origin

may no longer be located inside T under the quasi-conformal map h. In this

case, the resulting parameterization obtained by the inverse stereographic

projection P−1
S may not be a sphere but only a portion of it. To overcome

this problem, we perform a translation on C so that the centroid of the

whole domain is at the origin. This ensures that T will be the northernmost

triangular face under P−1
S .

Now, the desired quasi-conformality distortion is achieved. However, as we

have fixed two vertices of T in computing the boundary constraints, the size of
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the whole triangular domain may not be optimal. More specifically, if the size

of T is too large, most vertices will be mapped to the northern hemisphere

by P−1
S . On the other hand, if the size of T is too small, most vertices

will be mapped to the southern hemisphere by P−1
S . To achieve an optimal

distribution on the spherical parameterization, we apply the balancing scheme

in the linear spherical conformal parameterization algorithm [1]. Based on

Theorem 4.3.2, the balancing scheme ensures that T and the innermost triangle

t on C will be mapped to two triangles with similar size on the unit sphere

under P−1
S . This completes our task of computing a spherical quasi-conformal

parameterization with prescribed quasi-conformality distortion.

It is noteworthy that our proposed algorithm is linear as all steps are

linear. Hence, our algorithm is highly efficient in practice. Also, the desired

quasi-conformality of the spherical parameterization is guaranteed by Theo-

rem 6.3.1. Since the initial spherical map, the rotation and the stereographic

projections are all conformal maps (i.e. 1-quasiconformal maps) and h is

K-quasiconformal, the composition of the maps is also K-quasiconformal.

The implementation of our linear spherical quasi-conformal (LSQC) parame-

terization algorithm is described in Algorithm 7.

6.4 Experimental Results

In this section, we demonstrate the effectiveness of our proposed linear

spherical quasi-conformal parameterization algorithm. Various genus-0 closed

triangulated meshes are adopted from the AIM@SHAPE shape repository [89]

for testing our algorithm. Our entire algorithm is implemented in MATLAB.

All experiments are performed on a PC with an Intel(R) Core(TM) i5-3470

CPU @3.20 GHz processor and 8.00 GB RAM.

Figure 6.1 shows a genus-0 closed brain mesh and the spherical quasi-
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Algorithm 7: Linear spherical quasi-conformal (LSQC) parameteriza-
tion

Input: A simply-connected closed triangular mesh M , a user-defined
quasi-conformal dilation K ≥ 1 defined on every face.

Output: A bijective spherical quasi-conformal parameterization
ϕ : M → S2.

1 Compute a spherical conformal parameterization f : M → S2 using the
linear algorithm in [1];

2 Choose a triangular face T on f(M) as described in Section 6.3.3;
3 Apply a rotation ψ on f(M) such that the centroid of T lies on the

positive z-axis;
4 Apply the stereographic projection PN on ψ(f(M);
5 Compute a quasi-conformal map h : PN(ψ(f(M)))→ C with the

prescribed distortion, and an appropriate boundary condition of the big
triangle T ;

6 Perform a translation so that the centroid of the whole domain is at the
origin;

7 Apply the balancing scheme in the linear algorithm [1];
8 Apply the inverse stereographic projection P−1

N and denote the overall
result by ϕ;

conformal parameterization obtained by our linear algorithm. It can be

observed that the resulting quasi-conformal distortion closely resembles the

desired quasi-conformal distortion. Another example is shown in Figure

6.2. In this example, we consider a discontinuous dilation as the target

quasi-conformal distortion. Even with the discontinuity, the spherical quasi-

conformal parameterization obtained can satisfy the desired distortion. It

can be observed that the circles on the input mesh are transformed to two

types of ellipses on the spherical quasi-conformal parameterization. Also, two

sharp peaks can be observed in the histogram of the resulting dilation plot.

Then, we apply our algorithm for computing spherical Teichmüller param-

eterization of genus-0 closed meshes. Note that Teichmüller maps are with

uniform conformality distortions. Hence, to compute a spherical Teichmüller
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Figure 6.1: A brain and the spherical quasi-conformal parameterization ob-
tained by our algorithm. Top left: the input surface. Top right: the spherical
parameterization. Bottom left: The target quasi-conformal distortion. Bot-
tom right: The resulting quasi-conformal distortion of the parameterization.

parameterization, we set the target dilation as a constant. Figure 6.3 and

Figure 6.4 show two examples of the spherical Teichmüller parameteriza-

tions obtained by our algorithm. It is noteworthy that even for the highly

convoluted spiral model, the resulting dilations significantly concentrate at

the desired constant. The uniform dilation can also be observed from the

triangular faces on the spherical parameterizations. This implies that our

algorithm can effectively produce the spherical Teichmüller parameterizations.

Table 6.1 records the performance of our proposed linear spherical quasi-

conformal parameterization algorithm. Because of the linearity of our al-

gorithm, the computations finish within a few seconds even for very dense
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Figure 6.2: A Max Planck model with a circle pattern and the spherical quasi-
conformal parameterization obtained by our algorithm. Top left: the input
surface. Top right: the spherical parameterization. Bottom left: The target
quasi-conformal distortion. Bottom right: The resulting quasi-conformal
distortion of the parameterization. The user-defined synthetic distortion is
achieved on the spherical parameterization.

meshes. Also, in all examples, the resulting quasi-conformal distortion is

highly close to the target distortion. This reflects the accuracy of our pro-

posed algorithm. Besides, the absence of extreme values in the resulting

dilation distribution implies that the Beltrami coefficient is with sup norm

� 1. Hence, the resulting parameterizations are bijective.
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Figure 6.3: A bimba model and the spherical Teichmüller parameterization
obtained by our proposed algorithm. Top left: the input surface. Top right:
the spherical parameterization. Bottom left: The target quasi-conformal
distortion. Bottom right: The resulting quasi-conformal distortion of the
parameterization.

Surfaces # of faces Time (s) Target dilation Resulting dilation
Mean SD Mean SD

Max Planck 102212 1.8867 2.5887 0.6692 2.5896 0.6687
Brain 1 91124 1.9399 1.1496 0.2486 1.1643 0.2319
Brain 2 92210 2.0185 1.2149 0.3021 1.2246 0.3030
Lion 100000 2.0651 1.2174 0.2180 1.2246 0.2228
Spiral 96538 1.7577 4.0000 0.0000 4.0079 0.2552
Bimba 149524 3.8332 3.0000 0.0000 3.0005 0.0649

Table 6.1: The performance of our linear spherical quasi-conformal parame-
terization algorithm.
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Figure 6.4: A spiral and the spherical Teichmüller parameterization obtained
by our algorithm. Top left: the input surface. Top right: the spherical
parameterization. Bottom left: The target quasi-conformal distortion. Bottom
right: The resulting quasi-conformal distortion of the parameterization.



Chapter 7

Spherical conformal
parameterization of genus-0
point clouds

7.1 Introduction

In this chapter, we present our proposed algorithm in [4] for the spherical

conformal parameterization of genus-0 point clouds.

Recall that the linear spherical conformal parameterization algorithm [1]

is developed for genus-0 triangulated meshes. In this work, we aim to develop

an analogous algorithm for point clouds with spherical topology. Note that

the Laplace-Beltrami (LB) operator is involved in Equation (4.2). We first

propose a new weight function for accurately approximating the LB operators

on point clouds. with the accurate approximation, Equation (4.2) can be

solved on point clouds. Also, we replace the “south pole” step of the algorithm

in [1], which involves computing quasi-conformal maps, by an iterative scheme

called the North-South reiteration. Furthermore, we introduce a balancing

scheme for achieving an even distribution of the spherical parameterization.

Using our proposed parameterization algorithm, we can easily generate high

quality triangulations and quadrangulations on genus-0 point clouds with

100
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guarantee. An application in constructing multilevel representations of the

point clouds is also explained.

7.2 Contributions

The contributions of our work are highlighted as follows.

(i) We develop an improved approximation of the Laplace-Beltrami operator

using the moving least square method [49, 52, 53] together with a new

Gaussian-type weight function.

(ii) We propose an iterative algorithm for computing the spherical conformal

parameterizations of genus-0 point clouds. The distribution of the

spherical parameterization is improved using our proposed balancing

scheme.

(iii) Our proposed algorithm is effective. The algorithm completes within a

few minutes and can handle highly convoluted point clouds.

(iv) Our proposed parameterization algorithm can be applied for meshing

genus-0 point clouds. The conformality of the parameterization ensures

the good quality of the resulting triangular/quad meshes. The topology

of the meshes is guaranteed to be spherical.

(v) Multilevel representations of genus-0 point clouds can be easily con-

structed using our proposed algorithm.

7.3 Our proposed method

In this section, we explain our proposed framework for computing the spherical

conformal parameterizations of genus-0 point clouds. Let P = {z1, z2, . . . , zn}
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Weight Formula of w(d)
Constant weight w(d) = 1

Exponential weight w(d) = exp

(
−d

2

h2

)
Inverse of squared distance weight w(d) =

1

d2 + ε2

Wendland weight [82, 83] w(d) =

(
1− d

D

)4(
4d

D
+ 1

)
Special weight [52] w(d) =

{
1 if d = 0
1
k

if d 6= 0

Table 7.1: Some common weighting functions for the moving least-square
approximation.

be a point cloud sampled from a genus-0 closed surface M. we aim to find a

point cloud mapping f̃ : P → S2 which effectively resembles the conformal

map f :M→ S2.

7.3.1 Approximation of the Laplace-Beltrami operator

First, we approximate the Laplace-Beltrami operator in Equation (4.2) on

P . To achieve this, we need to approximate the derivatives on P . For

simplicity, we only discuss the approximation on the patch N (zs) of a point

zs ∈ P . Recall that N (zs) can be regarded as a graph of its projection N̂ (zs),

that is, zis = zs + xise
1
s + yise

2
s + fs(x

i
s, y

i
s)e

3
s. Now, we need to select a set of

basic functions {f 1
s , f

2
s , . . . , f

m
s } as a basis and write fs(x, y) ≈

∑m
i=1 cif

i
s(x, y),

where {ci}mi=1 are to be determined. In our work, since the LB operator involves

second derivatives, polynomials with at least second order are necessary.

Therefore, we set m = 6 and use {1, x, y, x2, xy, y2} as the basis.

Now, it suffices to determine the coefficients {ci}mi=1. To achieve this goal,

we apply the moving least-square (MLS) method [55, 50, 70, 16, 52, 53], which

has been widely used in computing point cloud mappings. The MLS method
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aims to minimize

n∑
i=1

wi

(
m∑
j=1

cjf
j
s (xi, yi)− fs(xi, yi)

)2

(7.1)

where wi = w(‖zi − zs‖) for some weighting function w : R → R. It is

noteworthy that the choice of the weight function w significantly affects the

accuracy of the approximation. Some weighting functions are listed in Table

7.1.

In this work, we propose a new weight function to approximating the LB

operator. Consider the approximation at a point zs. It is conceivable that

the information provided by the points closer to zs are more reliable than

that of the points far away from zs. This motivates us to use a Gaussian-type

weight function, which concentrates at zs:
ws = w(0) = 1

wi = w(‖zi − zs‖) =
1

k
exp

(
−
√
k

h2
‖zi − zs‖2

)
for all i 6= s,

(7.2)

where h is the maximum distance from zs in N k(zs).

Then, we solve the minimization problem (7.1). Denote f js,i = f js (xi, yi)

and fs,i = fs(xi, yi). Let ~A =


f 1
s,1 f 2

s,1 · · · fms,1
f 1
s,2 f 2

s,2 · · · fms,2
...

...
. . .

...
f 1
s,n f 2

s,n · · · fms,n

, ~D =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

,

~c =


c1

c2
...
cm

, and ~b =


fs,1
fs,2

...
fs,n

. The minimization problem in (7.1) can be

written as

min
c∈Rn

〈
~D( ~Ac−~b), ~Ac−~b

〉
. (7.3)

The above problem can be solved using the least-square method:

~AT ~D ~A~c = ~AT ~D~b. (7.4)
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Also, we can approximate any function u defined onN (z) by a combination

of {f 1
s , f

2
s , . . . , f

m
s }:

u = fs(x, y) ≈
m∑
i=1

ĉif
i
s(x, y). (7.5)

Similarly, the coefficients ĉi can be determined. Let ~A =


f 1
s,1 f 2

s,1 · · · fms,1
f 1
s,2 f 2

s,2 · · · fms,2
...

...
. . .

...
f 1
s,n f 2

s,n · · · fms,n

,

~D =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

, ~̂c =


ĉ1

ĉ2
...
ĉm

, and ~u =


u1

u2
...
un

. ĉi can be obtained

by solving

~AT ~D ~A~̂c = ~AT ~D~u. (7.6)

As we know the explicit formula of the derivatives of every f is, we can

compute the approximated derivatives of u, for instance,

∂u

∂x
=

m∑
i=1

~ci
∂f is
∂x

and
∂u

∂y
=

m∑
i=1

~ci
∂f is
∂y

. (7.7)

Then, for any smooth real-valued function u on N (zs), the LB operator

of u is given by

∆u(z) =
1

W

2∑
i,j=1

∂i(g
ijW∂j(u(z))), (7.8)

where z ∈ N (zs), (gij) is the surface metric at z, W =
√
det(gij), and

(gij) = (gij)
−1.

Since zis = (xis, y
i
s, fs(x

i
s, y

i
s)) and N (zs) is a graph of N̂ (zs), we have

(gij) =

(
1 + (fs)

2
x (fs)x(fs)y

(fs)x(fs)y 1 + (fs)
2
y

)
and (gij) =

1

W 2

(
1 + (fs)

2
y −(fs)x(fs)y

−(fs)x(fs)y 1 + (fs)
2
x

)
,

(7.9)

where W =
√

1 + (fs)2
x + (fs)2

y.
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The first order partial derivatives of fs can be obtained using Equation

(7.7). Since we have a closed form of ∆u and the LB operator is second order,

by differentiating Equation (7.8), we have

∆u(zs) = α1
∂u

∂x
(zs)+α2

∂u

∂y
(zs)+α3

∂2u

∂x2
(zs)+α4

∂2u

∂x∂y
(zs)+α5

∂2u

∂y2
(zs) (7.10)

where α1, α2, α3, α4, α5 are coefficients which depend on partial derivatives of

fs. This completes our approximation for the LB operator.

7.3.2 Spherical conformal parameterization of genus-0
point clouds

We are now ready to introduce our proposed spherical conformal parameteri-

zation algorithm of genus-0 point clouds.

Denote the approximated LB operator in Equation (4.2) on P by ∆PC . A

map φ : P → C can then be solved using

∆PCφ = 0 (7.11)

subject to the constraints φ(ai) = bi for i = 1, 2, 3, where ai, bi ∈ C. In the

case of triangular meshes, a1, a2, a3 are chosen to be the three vertices of the

most regular triangular face on the triangular mesh [1], where the regularity

of a triangle [a1, a2, a3] is defined by

Regularity[a1, a2, a3] =
∣∣∣α− π

3

∣∣∣+
∣∣∣β − π

3

∣∣∣+
∣∣∣γ − π

3

∣∣∣ . (7.12)

Here, α, β and γ are the three angles in the triangle [a1, a2, a3]. However, since

point clouds do not contain any connectivity information, we do not have the

concepts of face and angle and hence the above definition of regularity is not

applicable.

To overcome this problem, we consider forming a triple [zs, z
i
s, z

j
s ] using zs

and any two other points zis and zjs in N (z), where i 6= j. Then, we choose
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the three points a1, a2, a3 in the constraint of Equation (7.11) by considering

min
s,i,j

Regularity[zs, z
i
s, z

j
s ] (7.13)

over all triples [zs, z
i
s, z

j
s ]. With the chosen boundary constraint, we solve

Equation (7.11) and apply the inverse stereographic projection P−1
N on φ(P )

to obtain a spherical point cloud.

As suggested in [1], the spherical map obtained suffers from a serious

drawback that the conformality distortion around the north pole is significant.

In [1], the distortion is corrected by the “south pole” step, which involves the

approximation of Beltrami coefficients on triangular faces and Theorem 3.3.3.

Since we do not have a proper discretization of the Beltrami coefficients on

point clouds that satisfies the composition formula (3.10), it is necessary to

replace the “south pole” step in [1] by a new approach applicable on point

clouds.

In our “south pole” step for point clouds, we propose to correct the

conformality distortion around the north pole by solely using the Laplace-

Beltrami operator. First, we apply the south-pole stereographic projection

PS. Note that the northernmost and the southernmost regions of S2 are

respectively mapped to the innermost and the outermost regions on C. Hence,

the conformality distortion at the outermost region is negligible while that at

the innermost part is serious. With the outermost region as the boundary

constraints, we re-solve the Laplace equation to obtain ψ : (PS◦P−1
N ◦φ)(P )→

C as described below:

∆PCψ = 0 (7.14)

subject to the boundary constraints ψ(x) = x for all points x at the outermost

low-distortion region. Because of the conformality at the outermost region,

Equation (7.14) gives us a map ψ with improved conformality at the innermost
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region. Then, we apply the inverse south-pole stereographic projection P−1
S

and obtain a composition map

f̃ = P−1
S ◦ ψ ◦ PS ◦ P

−1
N ◦ φ. (7.15)

With this strategy, we can improve the conformality of the spherical parame-

terization without introducing the concept of Beltrami coefficients and the

related properties on point clouds. It is noteworthy that the underlying prin-

ciple of our proposed approach and the “south pole” step in [1] is equivalent.

The equivalence follows from the theorem below.

Theorem 7.3.1. Let (S1, σ|dz|2) and (S2, ρ|dw|2) be two Riemann surfaces,

and let µ be a prescribed Beltrami differential on S1. Then, the map solved by

Equation (3.12) is a harmonic map between (S1, |dz+µdz̄|2) and (S2, ρ|dw|2).

Hence, solving the Laplace equation (7.14) is equivalent to solving the gener-

alized Laplace equation (3.12).

Proof. Denote the coordinates of S1 with respect to the distorted metric

|dz+µdz̄|2 by ζ. The harmonic map between (S1, |dz+µdz̄|2) and (S2, ρ|dw|2)

is a critical point of the energy

Eharm(h) =

∫
S1

ρ(h(ζ))(|hζ |2 + |hζ̄ |2)dxdy. (7.16)

On the other hand, from the Beltrami equation (3.7), we can easily see that

the solution to Equation (3.12) is the critical point of the following energy

EQC(f) =

∫
S1

ρ(f(z))(|fz̄ − µfz|2)dxdy. (7.17)

It is shown in [63] that the two energy functionals have the same set of critical

points. Hence, solving the two equations are equivalent.
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Thus, under appropriate boundary conditions in Equation (3.12) and

Equation (7.14), both of our proposed approach and the “south pole” step in

[1] are guaranteed to produce a conformal map in the continuous case.

However, in the discrete case, the accuracy of our approach is more

dependent on the boundary constraints than that of the “south pole” step. A

small error in the boundary constraints may slightly affect the map obtained

by Equation (7.14). Hence, we introduce an iterative scheme called the

North-South (N-S) reiterations to further enhance the parameterization result

until it becomes stable.

In each N-S reiteration, we first project the previous spherical param-

eterization result onto C using PN . Next, we compute a harmonic map

φ̃ : (PN ◦ f̃)(P )→ C by solving the Laplace equation

∆PC φ̃ = 0 (7.18)

with the boundary constraints φ̃(x) = x for the outermost r% of the points on

C. Here, r% of the points are used as boundary constraints in order to avoid

ill-poseness in the numerical computations of the large matrix equation. After

obtaining φ̃, we apply P−1
N and then the south-pole stereographic projection

PS. We then compute another harmonic map ψ̃ : (PS◦P−1
N ◦φ̃◦PN◦f̃)(P )→ C

by solving the Laplace equation

∆PCψ̃ = 0 (7.19)

with the boundary constraints ψ̃(x) = x for the outermost r% of the points

on C. Denote the updated spherical parameterization by

P−1
S ◦ ψ̃ ◦ PS ◦ P

−1
N ◦ φ̃ ◦ PN ◦ f̃ . (7.20)

We decide whether to continue the reiterations or stop by checking the

difference between P−1
S ◦ ψ̃◦PS ◦P

−1
N ◦ φ̃◦PN ◦ f̃ and f̃ . A negligible difference
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implies that the parameterization is stable and hence we can stop. If the

difference is not negligible, we repeat the N-S reiteration. In our experiment,

we set r = 10. Our proposed spherical conformal parameterization algorithm

for genus-0 point clouds is summarized in Algorithm 8.

Algorithm 8: Spherical conformal parameterization algorithm for genus-
0 point clouds

Input: A genus-0 point cloud P .
Output: A spherical conformal parameterization f : P → S2.

1 Approximate the LB operator ∆PC on P ;
2 Find the most regular triple by solving problem (7.13);

3 Obtain φ : P → C by solving the Laplace equation (7.11);
4 Apply the inverse stereographic projection P−1

N on φ(P );
5 Apply the south-pole stereographic projection PS on (P−1

N ◦ φ)(P );
6 Solve the Laplace equation (7.14) for ψ : (PS ◦ P−1

N ◦ φ)(P )→ C;
7 Apply the inverse south-pole stereographic projection P−1

S and denote
the composition of the maps by f = P−1

S ◦ ψ ◦ PS ◦ P
−1
N ◦ φ;

8 repeat

9 Update f̃ by f ;

10 Solve the Laplace equation (7.18) for φ̃ : (PN ◦ f̃)(P )→ C;
11 Solve the Laplace equation (7.19) for

ψ̃ : (PS ◦ P−1
N ◦ φ̃ ◦ PN ◦ f̃)(P )→ C;

12 Update f by P−1
S ◦ ψ̃ ◦ PS ◦ P

−1
N ◦ φ̃ ◦ PN ◦ f̃ ;

13 until mean(‖f(pi)− f̃(pi)‖2) < ε;

The explanation of our proposed N-S reiteration scheme is as follows.

Define the N-S Dirichlet energy by

Ẽ(f) =
1

2
(E(PN(f)) + E(PS(f))) , (7.21)

where E(f) is the Dirichlet energy. Obviously, Ẽ is minimized if and only if

E(PN (f)) and E(PS(f)) are minimized, which implies that E(f) is minimized

and f is conformal. Therefore, to find a conformal map f , we consider

minimizing Ẽ(f). More specifically, we aim to minimize both E(PN(f)) and
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E(PS(f)). Note that solving the Laplace equations (7.18) and Equation

(7.19) helps minimizing two energies. Moreover, since Equation (7.18) and

Equation (7.19) are linear, the computation is highly efficient. Furthermore,

since both the north-pole step and the south-pole step are involved in each

N-S reiteration, the errors induced by the stereographic projections can be

corrected. This explains the motivation and advantage of our proposed N-S

reiteration scheme.

Then, we explain the validity of the boundary constraints. Note that for

numerical stability, we fix r% of the points, instead of 3 points, in solving

Equation (7.18) and Equation (7.19). Fixing the extra points do not largely

affect the accuracy of the result, as explained by the following theorem:

Theorem 7.3.2 (Beltrami holomorphic flow on C [30]). There exists a 1-

1 correspondence between the set of quasi-conformal diffeomorphisms of C

that fix 0, 1,∞ and the set of smooth complex-valued functions µ on C with

‖µ‖∞ = k < 1. Moreover, the solution fµ to the Beltrami equation (3.7)

depends holomorphically on µ. Let {µ(t)} be a family of Beltrami coefficients

depending on a parameter t. Suppose that µ(t) can be written in the form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (7.22)

for z ∈ C, with suitable µ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such

that ‖ε(t)‖∞ → 0 as t→ 0. Then, for all w ∈ C,

fµ(t)(w) = fµ(w) + tV (fµ, ν)(w) + o(|t|) (7.23)

locally uniformly on C as t→ 0, where

V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dxdy.

(7.24)
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When we solve Equation (7.18) or Equation (7.19), since the conformality

distortion of the outermost region is negligible, ν is compactly supported

around the origin. Thus, from Equation (7.24), the points located farther away

from the origin are associated with a smaller flow V , as the denominators in

the integral at those points are larger. Consequently, the outermost points will

remain almost unchanged in each iteration, while the innermost points will

be adjusted and the conformality there is improved. Hence, extra boundary

constraints can be used for enhancing the numerical stability.

Finally, we remark that our proposed algorithm can also serve as an

algorithm for the spherical conformal parameterizations of genus-0 closed

triangular meshes, since the LB operator can be easily constructed on meshes.

7.3.3 Improving the distribution of the spherical pa-
rameterization

In [1], Theorem 4.3.2 computes an even distribution of the spherical param-

eterization for meshes. Under the stereographic projection, the outermost

triangle T and the innermost triangle t on C are considered. A scaling is

applied so that P−1
N (T ) and P−1

N (t) are with the same perimeters on S2, which

leads to an even distribution.

For genus-0 point clouds, we cannot define the outermost triangle T and

the innermost triangle t because of the absence of the mesh structure. Hence,

the above method is not applicable. Nevertheless, we can extend Theorem

4.3.2 for genus-0 point clouds by considering two sets of points instead of two

triangles on C.
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Theorem 7.3.3. Let {ui}mi=0 and {vj}nj=0 be two sets of points on C. Then(
m∑
i=1

‖λui − λu0‖

)(
n∑
j=1

∥∥PS(P−1
N (λvj))− PS(P−1

N (λv0))
∥∥)

=

(
m∑
i=1

‖ui − u0‖

)(
n∑
j=1

∥∥PS(P−1
N (vj))− PS(P−1

N (v0))
∥∥)

for any scaling factor λ 6= 0. In other words, the above product is an invari-

ance under arbitrary scaling.

Proof. The proof is similar as the one of Theorem 4.3.2. For any z = x+ iy,

we have

PS(P−1
N (z)) = PS(P−1

N (x+ iy))

=
− 2x

1+x2+y2

1 + −1+x2+y2

1+x2+y2

+ i

2y
1+x2+y2

1 + −1+x2+y2

1+x2+y2

=
−x

x2 + y2
+ i

y

x2 + y2
=
−Re(z)

|z|2
+ i

Im(z)

|z|2
.

(7.25)

For any scaling factor λ 6= 0, we have(
m∑
i=1

‖λui − λu0‖

)(
n∑
j=1

∥∥PS(P−1
N (λvj))− PS(P−1

N (λv0))
∥∥)

=

(
m∑
i=1

‖λui − λu0‖

)(
n∑
j=1

∥∥∥∥−Re(λvj)|λvj|2
+ i

Im(λvj)

|λvj|2
− −Re(λv0)

|λv0|2
+ i

Im(λv0)

|λv0|2

∥∥∥∥
)

=

(
λ

m∑
i=1

‖ui − u0‖

)(
λ

λ2

n∑
j=1

∥∥∥∥−Re(vj)|vj|2
+ i

Im(vj)

|vj|2
− −Re(v0)

|v0|2
+ i

Im(v0)

|v0|2

∥∥∥∥
)

=

(
m∑
i=1

‖ui − u0‖

)(
n∑
j=1

∥∥PS(P−1
N (vj))− PS(P−1

N (v0))
∥∥) .

(7.26)

Now, to obtain an even distribution on S2, we propose to use the average

distance between the poles on S2 and their k-NN neighborhoods. Let f : P →
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S2 be the spherical parameterization obtained by Algorithm 8. Denote the

northernmost and the southernmost points on f(P ) by vN and vS respectively.

Let xN = PN(vN) and xS = PS(vS). Denote the average distances of xN and

xS to their k-NN neighborhoods on the corresponding planar domains by dN

and dS respectively. We have

dp = mean({|PN(f(z))− xN | : z ∈ N k(f−1(vN))}) (7.27)

and

ds = mean({|PS(f(z))− xS| : z ∈ N k(f−1(vS))}). (7.28)

Then, we scale the whole planar domain (PN ◦ f)(P ) by a factor

λ =

√
dp × ds
dp

. (7.29)

Now, denote the two updated average distances by d̃p and d̃s. We have

d̃p = λdp =

√
dp × ds
dp

× dp =
√
dp × ds. (7.30)

Also, it follows from Theorem 7.3.3 that

d̃p × d̃s = dp × ds. (7.31)

Hence,

d̃s = dp × ds ×
1

d̃p
=
√
dp × ds. (7.32)

In other words, we have d̃p = d̃s, which implies the distribution at the

two poles of P−1
N (λ(PN(f(P )))) is now balanced. The balancing scheme is

summarized in Algorithm 9. In conclusion, by combining Algorithm 8 and

Algorithm 9, we can obtain spherical conformal parameterizations of genus-0

point clouds with an even distribution.

Finally, we outline a possible extension of our proposed parameterization

algorithm for a disk-type point cloud P by developing a point cloud double
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Algorithm 9: Our proposed balancing scheme for better distribution.

Input: A spherical conformal parameterization f : P → S2.
Output: A spherical conformal parameterization with improved

distribution.

1 Apply the stereographic projection PN on f(P );
2 Denote the northernmost and the southernmost points of f(P ) by vN

and vS respectively. Multiply all points in PN (f(P )) by a scaling factor

λ =

√
dp×ds
dp

, where dp = mean({|PN(f(z))− xN | : z ∈ N k(f−1(vN))})
and ds = mean({|PS(f(z))− xS| : z ∈ N k(f−1(vS))});

3 Apply the inverse stereographic projection P−1
N on λ(PN(f(P )));

covering technique analogous to [32, 3] to turn a point cloud with disk topology

into a genus-0 point cloud:

Step 1: Approximate the derivatives on P .

Step 2: Duplicate P and denote the copy of it by P ′.

Step 3: Define the derivatives on P ′ using the approximations in Step 1 with

orientations reversed.

Step 4: Identify the boundary points of P , P ′ and obtain a genus-0 point

cloud P̃ .

Step 5: Using the derivatives on P and P ′, create the LB operator on P̃ .

After the above steps, we can apply our proposed spherical conformal

parameterization algorithm on P̃ . Applying PN on a hemisphere of the

spherical parameterization yields a conformal parameterization of the disk-

type point cloud P .
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Figure 7.1: Two experiments for evaluating the approximation accuracies of
the LB operator. Top: the first experiment. Bottom: the second experiment.

7.4 Experimental results

In this section, we demonstrate the effectiveness of our proposed algorithm.

The datasets used in the experiments are adopted from the AIM@SHAPE

Shape Repository [89], the Stanford 3D Scanning Repository [94] and the

RGB-D Scenes Dataset v.2 [48]. Our proposed algorithm is implemented in

MATLAB. To solve the sparse linear systems, the built-in backslash operator

(\) in MATLAB is used. All experiments are performed on a PC with an

Intel(R) Core(TM) i5-3470 CPU @3.20 GHz processor and 8.00 GB RAM.

7.4.1 Performance of our approximation of the Laplace-
Beltrami operator

First, we compare the numerical accuracy of the following approaches for the

approximation of the LB operator on point clouds:
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Method
maximum

position error
average

position error
Local mesh method [46] 1.3427 0.0179

MLS with the Wendland weight in [82, 83] 3.3074 0.1696

MLS with the Gaussian weight in [13, 14] 0.5697 0.0114

MLS with the special weight in [52] 0.0427 0.0006

MLS with our proposed weight 0.0245 0.0004

Method
maximum

position error
average

position error
Local mesh method [46] 1.5148 0.0271

MLS with the Wendland weight in [82, 83] 2.0082 0.0803

MLS with the Gaussian weight in [13, 14] 1.5460 0.0925

MLS with the special weight in [52] 0.0110 0.0001

MLS with our proposed weight 0.0103 0.0002

Table 7.2: The approximation error in the two experiments. Top: the first
experiment. Bottom: the second experiment.

1. the local mesh method [46],

2. the MLS method with the Wendland weight in [82, 83],

3. the MLS method with the Gaussian weight in [13, 14],

4. the MLS method with the special weight in [52], and

5. the MLS method with our proposed weight function.

The evaluation of the accuracy is performed in the following way. In each

experiment, a point cloud is generated on the unit disk. The point cloud

serves as the ground truth result. Then, the point cloud is transformed by

a conformal map with an explicit formula. On the transformed point cloud,

we apply the above schemes to approximate the LB operator. With the

approximated LB operators, we solve the Laplace equation with the circular

boundary constraints on the unit disk. Theoretically, the resulting map should
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be exactly the same as the original point cloud. By measuring the maximum

and average position error between the resulting map and the ground truth

result, we can assess the accuracy of the approximations of the LB operator.

Two experiments are illustrated in Figure 7.1.

Table 7.2 records the approximation errors obtained in the two experiments.

In both experiments, the MLS method with our proposed Gaussian-type

weight function produces much more accurate results than the local mesh

method [46] and the MLS method with the Wendland weight [82, 83] and the

Gaussian weight [13, 14]. Also, the maximum position error of our proposed

scheme is about 25% less than that of the MLS method with the special

weight [52] on average. The experimental results demonstrate the advantage

of our proposed approximation scheme.

7.4.2 Performance of our proposed spherical conformal
parameterization

Next, we evaluate the performance of our proposed spherical conformal

parameterization algorithm for genus-0 point clouds. In our experiment,

we consider k = 25 nearest neighbors in approximating the LB operator in

Algorithm 8. The stopping threshold for the N-S reiteration scheme is set

to be ε = 0.0001. Two experiments are shown in Figure 7.2 and Figure 7.3.

Our proposed algorithm can also handle convoluted point clouds as shown

in Figure 7.4. To have a better visualization of the parameterization, we

create a Delaunay triangulation on the spherical parameterization by the

spherical Delaunay algorithm. Using the triangulation created, we can define

an induced triangulation on the original point cloud.

Using the mesh structures created above, we can quantitatively evaluate

the conformality of our spherical parameterization scheme by measuring the
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Figure 7.2: Applying our algorithm on a lion point cloud. Top left: A lion
point cloud. Top middle: The spherical conformal parameterization. Top
right: A triangulation created via the parameterization. Bottom left and
middle: The triangulated point cloud and the spherical parameterization
colored with the approximated mean curvature at each vertex. Bottom right:
The conformality distortion.

angle distortions. In Figure 7.2 and Figure 7.3, the histograms of the angle

differences highly concentrate at 0. It can be also observed from the colored

figures that the local geometries are well-retained under the parameterizations.

The results illustrate the conformality of our proposed algorithm.

Then, we demonstrate the convergence of our proposed North-South

reiteration scheme. Several difference plots are shown in Figure 7.5. It can

be observed that the parameterization results become stable after a few

iterations.

Finally, we compare our proposed spherical conformal parameterization

algorithm with the spherical embedding algorithm [88] and the global confor-
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Figure 7.3: Applying our algorithm on a bulldog point cloud. Top left: A
bulldog point cloud. Top middle: The spherical conformal parameterization.
Top right: A triangulation created via the parameterization. Bottom left
and middle: The triangulated point cloud and the spherical parameterization
colored with the approximated mean curvature at each vertex. Bottom right:
The conformality distortion.

mal map [52]. Table 7.3 records the performances of the three algorithms. It

can be observed that our proposed algorithm outperforms the two other algo-

rithms in terms of both the computational time and the conformality. This

demonstrates the effectiveness of our spherical conformal parameterization

algorithm.

7.5 Applications

Our spherical conformal parameterization algorithm can be applied for cre-

ating mesh structures and developing multilevel representations on genus-0

point clouds. In this section, we explain the two applications with numerical
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Figure 7.4: Parameterizing a convoluted human brain point cloud and a
spiral point cloud. Left: The input point clouds. Middle: The spherical
conformal parameterizations. Right: The triangulations created via the
parameterization.

Figure 7.5: Plots of the difference mean(‖f(pi)− f̃(pi)‖2) with the number
of iterations in our proposed North-South reiteration scheme. Left: Cereal
box. Middle: Hippocampus. Right: Bulldog.

experiments.

7.5.1 Meshing genus-0 point clouds

As mentioned in the last section, mesh structures can be created on genus-0

point clouds by building Delaunay triangulations on their spherical conformal

parameterizations obtained by our algorithm. This meshing scheme has two
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Point clouds
No. of
points

Performance
Our proposed

method
Spherical

embedding [88]

Global
conformal map

[52]
Time (s) 8.1768 23.7988 16.7058

Soda Can 6838 Mean(|δ|) 0.5902 4.0431 2.3352
SD(|δ|) 0.8007 5.2731 1.9803

Time (s) 13.0919 37.4124 18.7151
Hippocampus 10242 Mean(|δ|) 1.2855 14.3072 1.3062

SD(|δ|) 1.4701 19.6461 1.5100

Time (s) 30.7785 87.0887 40.4214
Max Planck 21530 Mean(|δ|) 0.7326 8.6058 1.0792

SD(|δ|) 1.0803 14.0857 1.5756

Time (s) 50.7390 132.1765
Cereal Box 33061 Mean(|δ|) 0.6523 12.3573 Fail

SD(|δ|) 0.9165 14.0440

Time (s) 114.7057 291.8312 122.8818
Spiral 48271 Mean(|δ|) 0.8580 16.4704 0.9658

SD(|δ|) 1.3280 22.5073 1.3135

Time (s) 115.5802 198.2285 126.7621
Brain 48487 Mean(|δ|) 1.4266 35.2629 2.2495

SD(|δ|) 2.9093 35.7986 2.7430

Time (s) 88.9297 206.9920 113.4447
Bulldog 49797 Mean(|δ|) 1.5432 16.2010 1.8700

SD(|δ|) 2.9183 21.1544 3.1891

Time (s) 95.8935 212.5685 136.3296
Chinese Lion 50002 Mean(|δ|) 1.8474 19.1579 2.4907

SD(|δ|) 1.9286 22.7259 2.6207

Time (s) 198.6064 360.7178 227.0290
Bimba 74764 Mean(|δ|) 0.6227 18.0340 0.6379

SD(|δ|) 0.8129 20.6272 0.7975

Time (s) 427.7658 731.8661 560.6077
Igea 134345 Mean(|δ|) 0.7076 5.0853 3.8293

SD(|δ|) 1.4273 8.2623 2.9703

Time (s) 676.4106 995.7537
Armadillo 172974 Mean(|δ|) 1.4167 23.2354 Fail

SD(|δ|) 1.6855 23.9892

Time (s) 1305.9013 1484.7682 1642.9208
Lion Vase 256094 Mean(|δ|) 2.0920 17.8501 3.6696

SD(|δ|) 4.1052 21.9588 5.8502

Table 7.3: Performances of three spherical conformal parameterization meth-
ods for genus-0 point clouds. Here, δ denotes the angular distortion between
the triangulations on the input point cloud and the parameterization.

advantages. First, note that the Delaunay triangulations built on S2 do

not contain extreme angles. Because of the conformality of our spherical

parameterization algorithm, the regular angle structures are well-preserved

on the induced triangulations on the original point clouds. Consequently,

the meshing results are guaranteed to be almost-Delaunay. the regularity

of the triangulations generated is guaranteed by the preservation of the
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Figure 7.6: Meshes generated by our proposed method and a zoom-in of them.
The high quality of the triangulations is attributed to our proposed spherical
conformal parameterization algorithm.

angle structures of the Delaunay triangulations computed on the spherical

parameterizations. As the angle structures are well retained under the

spherical conformal parameterization, a regular triangulation defined on

the parameterized point clouds can effectively induce a regular and almost-

Delaunay triangulation on the original point clouds. As shown in Figures 7.2,

7.3 7.4 and 7.6, our algorithm can be applied on a large variety of genus-0

point clouds for generating high quality meshes. Second, unlike most of the

existing meshing approaches, our proposed scheme is guaranteed to produce

genus-0 closed meshes. The guarantee is attributed to the 1-1 correspondence

between the input point cloud and the spherical parameterization obtained

by our algorithm, as well as the property of Delaunay triangulations. In other

words, there are no holes or undesirable artifacts on our meshing results.
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Point clouds
Our

proposed
method

Spherical
embed-
ding
[88]

Marching
cubes
[57]

Tight
Cocone

[19]

Soda Can 0.99 0.93 0.82 0.98

Hippocampus 0.99 0.91 0.82 0.99

Max Planck 0.99 0.93 0.82 0.99

Cereal Box 0.99 0.88 0.81 0.99

Spiral 1.00 0.85 0.82 0.99

Brain 0.99 0.82 0.82 0.99

Bulldog 1.00 0.86 0.82 0.99

Chinese Lion 0.99 0.84 0.82 0.99

Bimba 1.00 0.88 0.81 1.00

Igea 0.97 0.90 0.83 0.97

Armadillo 0.98 0.80 0.82 0.98

Lion Vase 0.99 0.85 0.83 0.99

Table 7.4: The Delaunay ratios of different meshing approaches.

We compare our meshing method with three pre-existing meshing schemes,

including the spherical embedding approach [88], the marching cubes algo-

rithm [57] and the Tight Cocone algorithm [19]. In Figure 7.7 , it can be

observed that our meshing method and the Tight Cocone algorithm [19]

produce high quality triangulations, while the approaches in [88] and [57]

generate triangulations with certain sharp and irregular triangles. Also, the

mesh generated by the marching cubes algorithm [57] contains holes while

our meshing scheme is topology preserving. The ratio assesses the proportion

of edges in the resulting triangulations that satisfy the opposite angle sum

property α + β ≤ π in a triangulation. A Delaunay ratio exactly equals 1

indicates that the triangulation is Delaunay.

To quantitatively evaluate the “almost-Delaunay” property of our meshing

scheme, we recall that every Delaunay triangulation satisfies the opposite

angle sum property: For every edge [u, v], the two angles α and β opposite to
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[u, v] satisfy

α + β ≤ π. (7.33)

Now, we define the Delaunay ratio of a triangulation by

# of edges with opposite angles α, β s.t. α + β ≤ π

Total # of edges in the triangulation
. (7.34)

Obviously, a higher Delaunay ratio implies that the triangulation is closer

to a perfect Delaunay triangulation. Table 7.4 records the Delaunay ratios

of the meshing results by the abovementioned approaches. Thanks to the

angle-preserving property of our parameterization algorithm, our meshing

scheme outperforms the spherical embedding algorithm [88] and the marching

cubes algorithm [57]. Also, the Delaunay ratios of our meshing results are

comparable to (and sometimes slightly better than) those of the Tight Cocone

algorithm [19].

In addition, quadrangulations of genus-0 point clouds can also be achieved

with the aid of our spherical conformal parameterization. Given a genus-0

point cloud, we first apply our proposed spherical conformal parameterization

algorithm. Then, we interpolate a standard quad mesh onto the spherical

parameterization. This effectively induces a quadrangulation of the input

point cloud. Two examples are given in Figure 7.8. Again, the high quality

of the resulting quadrangulations is attributed to the conformality of our

parameterization algorithm. Also, the quad meshes generated are guaranteed

to be genus-0.

Besides, our proposed balancing scheme is important in generating admis-

sible meshing results. Figure 7.9 shows the meshes created via our spherical

parameterizations with and without the balancing scheme. It can be easily

observed that a high quality mesh is generated only with the presence of the

balancing scheme.
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Figure 7.7: The meshing results by different approaches. Left to right: Our
meshing scheme, spherical embedding [88], marching cubes [57] and Tight
Cocone [19].

Figure 7.8: Quad mesh generation on point clouds using our spherical param-
eterization.

Before ending this subsection, we show that our meshing scheme is stable

under geometrical and topological noises of the input genus-0 point clouds.

Given a noisy point cloud, we first apply a Poisson filtering and compute



126

Figure 7.9: The effect of our balancing scheme. Top left: A spherical conformal
parameterization without the balancing scheme. Bottom left: A spherical
conformal parameterization with the balancing scheme. Middle: The front
view of the meshes generated via the parameterizations. Right: The back
view.

the spherical conformal parameterization. Then, we can generate a regular

triangulation on S2 and interpolate it back onto the filtered point cloud via

the parameterization. This gives us an admissible meshing result. Figure

7.10 shows our meshing result on a synthetic point cloud with 3% uniformly

distributed random noise. It can be observed that the mesh generated is with

a highly regular triangulation.

It is also possible to construct a faithful triangulated mesh on the geo-

metrically noisy point cloud in Figure 7.10 without applying any filtering
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Figure 7.10: Meshing a geometrically noisy point cloud.

Figure 7.11: Meshing a noisy point cloud without any filtering or subsampling
step. Left: Our meshing result with a zoom-in of the nose. Right: The result
of the Tight Cocone algorithm [19] with a zoom-in of the nose.

or sampling step. The meshing results of our scheme and the Tight Cocone

algorithm [19] are shown in Figure 7.11. It is noteworthy that irregular

triangulations and topological holes exist on the meshing result by [19], while

our meshing result is regular and topology preserving. This demonstrates the

advantage of our meshing scheme over the Tight Cocone algorithm [19].

Besides, point clouds with topological noises are considered. Figure 7.12

shows a point cloud with 1021 randomly created topological holes. Our

algorithm effectively produces a high quality genus-0 mesh.

Finally, we test our meshing scheme on real point cloud data adopted

from the RGB-D Scenes Dataset v.2 [48]. Figure 7.13 shows a soda can point

cloud and a cereal box point cloud, together with our meshing results. The
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Figure 7.12: Meshing a topologically noisy point cloud.

above experiments demonstrate the effectiveness of our proposed algorithm

for meshing genus-0 point clouds.

7.5.2 Multilevel representations of genus-0 point clouds

We can also apply our proposed spherical conformal parameterization algo-

rithm for computing multilevel representations of a genus-0 point cloud. The

procedure is outlined below.

Given a genus-0 point cloud, we first compute its spherical conformal pa-

rameterization by our proposed algorithm. Next, we create a coarse spherical

point cloud. Then, the vertices of the coarse point cloud can be interpolated

onto the genus-0 point cloud with the aid of the spherical parameterization.

By progressively subdividing the coarse sphere using existing subdivision

methods, such as the butterfly subdivision method [21] and the loop subdivi-

sion method [56], we can repeat the above steps using the subdivided sphere

and obtain multilevel representations of the input point cloud. Figure 7.14

and Figure 7.15 show two examples of multilevel representations generated

by our proposed procedure. In our experiments, the loop subdivision method
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Figure 7.13: Meshing two real 3D scanned noisy point clouds in the RGB-D
Scenes Dataset v.2 [48]. Left: The point clouds. Middle: The meshing results.
Right: The meshing results without showing the triangulations.

[56] is applied for generating the subdivisions. The subdivision connectivity

of the results can be easily observed. This demonstrates the effectiveness of

our algorithm in creating multilevel representations of genus-0 point clouds.
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Figure 7.14: Multilevel representations of Igea. Mesh structures are created
on the representations for a better visualization. Top left: the Igea point
cloud with 134345 points. Top middle to Bottom right: the multilevel
representations with 0, 1, 2, 3 and 4 subdivisions. The representations are
respectively with 642, 2562, 10242, 40962 and 163842 points.

Figure 7.15: Multilevel representations of lion vase. Mesh structures are
created on the representations for a better visualization. Top left: the lion vase
point cloud with 256094 points. Top middle to Bottom right: the multilevel
representations with 0, 1, 2, 3 and 4 subdivisions. The representations are
respectively with 696, 2778, 11106, 44418 and 177666 points.



Chapter 8

Landmark aligned Teichmüller
parameterization of disk-type
point clouds

8.1 Introduction

In this chapter, we present our proposed algorithm in [5] for computing

the landmark aligned Teichmüller parameterization of point clouds with

disk topology. To the best of our knowledge, this is the first work on the

Teichmüller maps on point clouds.

In the study of point clouds, one challenging topic is the registration

between feature-endowed point clouds. An admissible mapping between

feature-endowed point clouds should not only fulfill the landmark constraints

but also retain the underlying geometric structure as complete as possible.

Recall that conformal maps between Riemann surfaces may not exist with

the presence of landmark constraints, while landmark-matching Teichmüller

maps (T-maps) always exist. Moreover, T-maps are desirable as they ensure

uniform conformality distortions on the entire surfaces. This motivates us

the use of T-maps in tackling the landmark-matching point cloud registration

problem.
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In this work, we establish the theory and computation of Teichmüller

parameterization on disk-type point clouds. First, we rigorously develop

a novel discrete analogue of Teichmüller maps on point clouds. Then, we

introduce a hybrid quasi-conformal reconstruction scheme on point clouds with

given Beltrami coefficients, and propose an improved approximation scheme

for the related differential operators on disk-type point clouds. With the above

numerical schemes, we propose an efficient method called TEMPO, which

stands for Teichmüller Extremal Mappings of POint Clouds, for computing

the landmark aligned Teichmüller parameterization of disk-type point cloud.

Our proposed algorithm can be applied for point cloud registration and shape

analysis. In particular, the Teichmüller parameterizations induce a shape

dissimilarity metric, called the Teichmüller metric, that can be effectively

used in point cloud classification.

8.2 Contributions

The contributions of our work are highlighted below:

1. We develop the concept of PCT-maps, a novel discrete analogue of

the continuous Teichmüller maps on point clouds. The relationship

between the discrete PCT-maps and the continuous Teichmüller maps

is rigorously established.

2. We introduce a new hybrid scheme for reconstructing quasi-conformal

maps on point clouds with given Beltrami coefficients.

3. We propose an improved approximation scheme for the differential op-

erators on disk-type point clouds relevant to conformal/qausi-conformal

maps.



133

4. Our proposed TEMPO algorithm for point cloud Teichmüller parameter-

ization allows landmark constraints and achieves uniform conformality

distortions.

5. Our TEMPO algorithm is highly efficient. The computation typically

completes within 1 minute for point clouds with around 40K points.

6. The induced Teichmüller metric can be applied as a dissimilarity metric

for point cloud classification.

8.3 Some preliminary concepts for quasi-conformal

geometry on point clouds

In this section, we introduce some concepts for establishing the theory of

quasi-conformal geometry on point clouds. To avoid ambiguity, we use normal

characters when introducing the continuous theories and bold characters when

introducing the discretization on point clouds.

Definition 8.3.1 (Interior cone condition). A planar domain Ω ⊂ R2 is said

to satisfy the interior cone condition with parameter r > 0 and θ ∈ (0, π/2) if

for every x ∈ Ω, there exists a unit vector d(x) such that C(x, d, θ, r) ⊆ Ω,

where

C(x, d, θ, r) = {x+ ty : y ∈ S1, yTd(x) ≥ cos θ, 0 ≤ t ≤ r}. (8.1)

Definition 8.3.2 (Quasi-uniform point cloud). Let P be a point cloud sampled

from a planar domain Ω. The fill distance hP,Ω is defined by

hP,Ω := sup
x∈Ω

min
p∈P
‖x− p‖. (8.2)

The separation distance qP is defined by

qP :=
1

2
min
p1,p2∈P
p1 6=p2

‖p1 − p2‖. (8.3)
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P is called a quasi-uniform point cloud with constant cqu > 0 if

qP ≤ hP,Ω ≤ cquqP . (8.4)

With the above definitions, we define the notion of planar point clouds.

Definition 8.3.3 (Planar point cloud). A planar point cloud is a quasi-

uniform point cloud P = {p1, p2, . . . , pN} ⊂ Ω sampled from a disk-type

domain Ω ⊂ R2 which satisfies the interior cone condition.

Now, let Ω be planar domain satisfying the interior cone condition, and

P be a planar point cloud sampled from Ω with fill distance h. Given a

function f : Ω → R, we apply the Moving Least Square (MLS) method

[55, 50, 70, 16, 52, 53] to approximate f locally near every point. Define three

mappings q, q1, q2 : Ω→ R6 respectively by

q(x1, x2) = [1, x1, x2, x
2
1, x1x2, x

2
2]T , (8.5)

q1(x1, x2) = ∂1q = [0, 1, 0, 2x1, x2, 0]T , (8.6)

and

q2(x1, x2) = ∂2q = [0, 0, 1, 0, x1, 2x2]T . (8.7)

Then, the local approximation near x is given by

cx = argminc

N∑
i=1

w(‖x− pi‖)
(
cT q(pi)− fi

)2
, (8.8)

where w is a weight function compactly supported in [0, Cδh] and Cδ is a

constant defined in [84]. The solution cx can also be written as

cx = (QTW (x)Q)−1QTW (x)F, (8.9)

where W (x) is a diagonal matrix with Wii = w(‖x− pi‖), and Q, F are the

matrix forms of q, f respectively. From now on, unless otherwise specified, we
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denote the matrix form of a given point cloud mapping by its corresponding

capital letter, where the i-th row of the matrix is the function value on pi.

Denote

Ax = (QTW (x)Q)−1QTW (x). (8.10)

Then, the value of f at y is approximated by

f̃(y) = qT (y)AxF. (8.11)

The following estimates for the MLS method have been proved in [68]:

Proposition 8.3.4 (See Corollary 4.10, [68]).

‖qTj (x)Ax‖1 = O(h−1), (8.12)

where h is the fill distance.

Proposition 8.3.5 (See Theorem 4.3, [68]).

‖∂i∂jf − (∂i∂jq
T (y))Axf‖ = O(h) (8.13)

where h is the fill distance.

To establish point cloud quasi-conformal maps, it is necessary to properly

define the Beltrami coefficients on point clouds. In this work, we adopt the

definition of discrete diffuse point cloud Beltrami coefficients (PCBC) in [67]:

Definition 8.3.6 (Discrete diffuse point cloud Beltrami coefficients [67]). Let

P = {pi ∈ R2 : i = 1, · · · , N} sampled from Ω be a planar point cloud, and

f : P → R2 be a point cloud mapping. Denote f = (u,v)T . The diffuse point

cloud Beltrami coefficient (PCBC) µ̃ : Ω→ C is defined by

µ̃(x) =

[
qT1 (x) qT2 (x)

] [Ax iAx
iAx −Ax

] [
U
V

]
[
qT1 (x) qT2 (x)

] [ Ax iAx
−iAx Ax

] [
U
V

] , (8.14)



136

where q1, q2 and Ax are respectively defined in Equations (8.6), (8.7) and

(8.10). In addition, the discrete diffuse PCBC is a complex valued point cloud

mapping defined by µ̃ = µ̃|P .

An error estimate of the discrete diffuse PCBC is given below.

Proposition 8.3.7 (See [67], page 9). Let P be a planar point cloud sampled

from Ω with fill distance h, and f be the point cloud map corresponding to

f . Let µ be the Beltrami coefficient associated with f , and µ̃ be the discrete

diffuse PCBC associated with f . Then, there exists a constant C(f) such that

if h ≤ C(f), the following error bound holds:

|µ(x)− µ̃(x)| ≤ C(f)h2. (8.15)

To extend the abovementioned concepts of quasi-conformal point cloud

mappings on planar domains to 3D, Meng and Lui [67] introduced the notion

of ε-conformal parameterization for 3D point clouds, which is analogous

to conformal parameterization for 3D surfaces. With this notion, 3D quasi-

conformal point cloud mappings can be defined as a composition of ε-conformal

parameterizations and planar quasi-conformal mappings. For more details,

readers are referred to [67].

8.4 Defining Teichmüller mappings on point

clouds

In contrast with the continuous Teichmüller theory, the discretization of

Teichmüller maps on point clouds has not been developed before. In this

section, we establish a novel discretization of the Teichmüller extremal maps

on point clouds with theoretical guarantees. We begin with the definition of

the discretized T-maps on planar point clouds.
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Definition 8.4.1 (Planar point cloud Teichmüller mappings). Let P be a

planar point cloud sampled from Ω. A point cloud mapping f is called a

planar point cloud Teichmüller map (planar PCT-map) if its discrete diffuse

PCBC µ has a constant norm k = |µ(p)| for all p ∈ P and satisfies

(Liµ)µ(pi) ∈ R (8.16)

for all interior points pi ∈ P , where L denotes the approximation of the

Laplace-Beltrami operator by the MLS method, and Li denotes the i-th row of

L.

We aim to prove that under certain convergence conditions, a planar

PCT-map on a planar point cloud converges to a continuous T-map defined

on the corresponding underlying domain. We now prove the following lemma.

Lemma 8.4.2. Let R be a rectangular domain, and u, v ∈ C3(R) satisfy

u∆v = v∆u and u2 + v2 = 1. There exists a real valued function f such that

φ = f · (u+ iv) is holomorphic, and |f | 6= 0 in R.

Proof. From the Cauchy-Riemann equation, we have

fxu+ uxf = fyv + vyf ;

fyu+ uyf = −fxv − vxf.
(8.17)

As u2 + v2 = 1, the above system is equivalent to

fx = G1f ;

fy = G2f,
(8.18)

where

G1 = −uux − vvx − vuy + uvy;

G2 = −uuy − vvy − uvx + vux.
(8.19)
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Suppose R = [a1, a2]× [b1, b2]. From the first equation above, we have

f = exp

(∫ x

a1

G1(s, y)ds+ g(y)

)
, (8.20)

for some function g(y). Plugging this expression into the second equation, it

follows that ∫ x

a1

∂yG1(s, y)ds+ gy(y) = G2. (8.21)

Note that the above equation has a solution if ∂yG1 = ∂xG2. Now, by a direct

calculation, we have

∂yG1 − ∂xG2 = u∆v − v∆u = 0. (8.22)

Hence, the above system has a solution in the form of Equation (8.20), where

g =

∫ y

b1

G2(x, t)dt−
∫ x

a1

(G1(s, y)−G1(s, b1))ds+ C. (8.23)

Thus, we obtain

f = exp

(∫ y

b1

G2(x, t)dt+

∫ x

a1

G1(s, b1)ds+ C

)
. (8.24)

Obviously, |f | 6= 0. Furthermore, since f · (u+ iv) is continuous and satisfies

the Cauchy-Riemann equation, it is holomorphic.

After proving the above lemma, we establish the consistency between

planar PCT-maps and the continuous T-maps.

Proposition 8.4.3. A sequence of point clouds {Pn} is said to be ascending

if P1 ⊂ P2 ⊂ · · ·Pn ⊂ Pn+1 ⊂ · · · . Let {Pn} be an ascending sequence of

point clouds sampled from a rectangular domain R1 with fill distance hn → 0.

For all n, let gn be a PCT-map defined on Pn with discrete diffuse PCBC

µ̃n. Assume that there exists a smooth quasi-conformal map g : R1 → R2
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with Beltrami coefficient µ such that gn(p) converges to g(p) for every point

p ∈ P := ∪mPm. Let the sup-norm of the error be εn = ‖gn − g|Pn‖∞ and

assume that limn εnh
−2
n = 0. Then g is a continuous Teichmüller map.

Proof. We first show that for all m, µ̃n(p) converges to µ(p) for all p ∈ Pm.

Let ν̃n be the discrete diffuse PCBC of a point cloud map g|Pn . It follows

that

|µ(p)− µ̃n(p)| ≤ |µ(p)− ν̃n(p)|+ |ν̃n(p)− µ̃n(p)|. (8.25)

By Proposition 8.3.7, we have |µ(p)− ν̃n(p)| ≤ C(g)h2
n. Let G̃ and G̃n be the

vector forms of g|Pn and gn. Further denote

D1 =
(
qT1 (x) qT2 (x)

)( Ax iAx
iAx −Ax

)
,

D2 =
(
qT1 (x) qT2 (x)

)( Ax iAx
−iAx Ax

)
.

(8.26)

It follows that

|ν̃n(p)− µ̃n(p)|

≤

∣∣∣∣∣D1(p)G̃

D2(p)G̃
− D1(p)G̃n

D2(p)G̃n

∣∣∣∣∣
≤

∣∣∣D1(p)G̃D2(p)
(
G̃n − G̃

)∣∣∣+
∣∣∣D2(p)G̃D1(p)

(
G̃− G̃n

)∣∣∣∣∣∣D2(p)G̃ ·D2(p)G̃n

∣∣∣
≤2‖D1(p)‖1 · ‖D2(p)‖1 · ‖G̃‖∞ · ‖G̃− G̃n‖∞∣∣∣D2(p)G̃ ·D2(p)G̃n

∣∣∣
=

2O(εnh
−2
n )∣∣∣D2(p)G̃ ·D2(p)G̃n

∣∣∣

(8.27)

as ‖Di(p)‖1 ≤ O(h−1) and G̃ is bounded. Similarly,

|D2(p)G̃− gz(p)| = O(h2
n),

|D2(p)G̃−D2(p)G̃n| = O(εnh
−1
n ).

(8.28)
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Hence, for sufficiently large n,

|µ(p)− µ̃n(p)| ≤ O(h2
n) + |gz(p)|−2O(εnh

−2
n ) = O(h2

n + εnh
−2
n ). (8.29)

Therefore, µ̃n(p) converges to µ(p) for each p ∈ P .

Next, note that |µ̃n| = kn is a constant for every n. Therefore, |µ| = k on

P and k = limn kn. Also, as limn hn = 0, P is dense in R1. By the continuity

of µ, |µ(x)| = k for all x ∈ R1.

Now, we prove that µ = kϕ̄/|ϕ| where ϕ is holomorphic. Assume k 6= 0 .

Fix a point cloud Pn and consider the matrix L, the approximation of the

LB operator. By Equation (8.13), for every interior point p = pi ∈ Pn,∣∣∣(∆µ(p))µ(p)− (Liµ̃n) µ̃n(p)
∣∣∣

≤‖∆µ‖∞ · |µ(p)− µ̃n(p)|+ kn|∆µ(p)− Liµ̃n|

=‖∆µ‖∞O(h2
n + εnh

−2
n ) + knO(hn)

=O(h2
n + εnh

−2
n ).

(8.30)

By the definition of PCT-map, we have

(Liµ̃n) µ̃n(p) ∈ R (8.31)

for all n. Hence, (∆µ(p))µ(p) ∈ R if p is an interior point of Pn.

Now, consider an arbitrary point p ∈ R1. If p ∈ P − ∂R1, then the above

conclusion holds. If p ∈ P ∩ ∂R1 or p ∈ R1 − P , by the density of P in

R1, and the continuity of µ and the LB operator, we also have the above

conclusion. Thus, (∆µ(p))µ(p) ∈ R for all p ∈ R1.

Let µ = k(ρ+ iτ). A direct calculation yields

0 =
1

k2
Im ((∆µ)µ) = ρ∆τ − τ∆ρ. (8.32)

By taking u = ρ, and v = −τ in Lemma 8.4.2, it follows that there exists a

real-valued function f such that ϕ = f · (ρ − iτ) is holomorphic. Also, we

have µ = kϕ̄/|ϕ|. We conclude that g is a Teichmüller map.
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Figure 8.1: The pipeline of our TEMPO algorithm.

After establishing the consistency between planar PCT-maps and the

continuous T-maps on planar domains, we aim to define T-maps between

disk-type point cloud surfaces in 3D.

The generalization can be achieved as follows. Let f be a point cloud map

between two 3D disk-type point clouds P1 and P2, and φi be the ε-conformal

parameterization of Pi. We can define f to be a point cloud Teichmüller map

(PCT-map) between P1 and P2 if φ−1
2 ◦ f ◦ φ1 is a planar PCT-map.

With this generalization, a property analogous to Proposition 8.4.3 can

be easily derived for the PCT-maps between two 3D disk-type point clouds.

The details are omitted here.
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8.5 Our proposed TEMPO method for land-

mark aligned Teichmüller parameteriza-

tion

In this section, we propose an efficient algorithm called TEMPO for computing

landmark aligned Teichmüller parameterizations of disk-type point clouds.

Figure 8.1 shows the pipeline of our TEMPO algorithm. In each step, certain

approximations of the differential operators are necessary. In the following

subsections, we first introduce our numerical schemes, and then explain our

proposed algorithm in details.

The following three subsections will be covered:

1. A hybrid numerical scheme for computing quasi-conformal maps on

disk-type point clouds with a given PCBC.

2. An improved approximation of the related differential operators on

point clouds with disk topology.

3. The details of the TEMPO algorithm.

8.5.1 A hybrid scheme for computing quasi-conformal
mappings on disk-type point clouds with a given
PCBC

To compute a quasi-conformal map with a given feasible Beltrami coefficient

µ = ρ+ iτ on triangulated meshes, one method is to solve the linear system

(3.11). Another method is the Linear Beltrami Solver (LBS) [61], which aims

to solve the generalized Laplace equation (3.12).

However, neither of the above methods work well on point clouds. Specifi-

cally, the solution to the system (3.11) is highly sensitive to the input PCBC
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approximated on point clouds. If the PCBC is not sufficiently close to a feasi-

ble Beltrami coefficient, the system (3.11) does not lead to a quasi-conformal

diffeomorphism. Also, the system (3.12) does not result in very accurate solu-

tions. That is, given an input PCBC, the solutions to the system (3.12) may

be with a PCBC which is largely different from the input one. Consequently,

we cannot directly apply any of the two methods on point clouds. To overcome

this hindrance, we propose a hybrid scheme for computing quasi-conformal

maps on point clouds by a fusion of the two mentioned methods.

More specifically, we consider solving the following hybrid PDE:(
α1∂x + α2∂y −∂y
α2∂x + α3∂y ∂x

)(
u
v

)
+ γ

(
L O
O L

)(
u
v

)
= 0, (8.33)

where L is the generalized Laplace-Beltrami operator, and γ is a user-defined

positive parameter balancing the two methods.

Now, to solve Equation (8.33) on point clouds, we discretize the system

(3.11) and denote the discretization by

M1(µ)

(
U
V

)
= 0. (8.34)

Similarly, the system (3.12) is discretized and the discretization is denoted by

M2(µ)

(
U
V

)
= 0, (8.35)

where

M2(µ) =

(
M3(µ) O
O M3(µ)

)
, (8.36)

and M3(µ) is the approximation of the generalized Laplace-Beltrami operator.

Here the discretizations in Equation (8.34) and Equation (8.35) will be

explained in Section 8.5.2.

Finally, to compute a quasi-conformal map with a given PCBC µ, we

propose to solve the following hybrid system

(M1(µ) + γM2(µ))

(
U
V

)
= 0. (8.37)
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Since both of the system (3.11) and the system (3.12) are derived from

the Beltrami equation (3.7), the f = (u, v)T in the above hybrid system is

theoretically guaranteed to be a solution to the hybrid PDE (8.33).

Moreover, our proposed scheme overcomes the drawbacks of the two

approaches. On one hand, the system (8.34) produces accurate results but

is unstable. By including the second term M2 in our hybrid system (8.37),

we significantly stabilize the computation. On the other hand, note that the

system (8.35) is stable but not accurate, and the first term M1 in our hybrid

system (8.37) increases the accuracy of the computation. With a fusion of

the two approaches, we can improve both the accuracy and the stability of

the computation of quasi-conformal maps on point clouds.

8.5.2 Discretizations in Equation (8.34) and (8.35)

In this part, we present the numerical schemes for the discretizations in

Equation (8.34) and Equation (8.35) on disk-type point clouds.

For the discretization in Equation (8.34), we use a numerical scheme

which involves the MLS method. For the discretization in Equation (8.35),

we propose a combined scheme which involves both the MLS method and

the local mesh method [46]. For the weight function in the MLS method, We

adopt the Gaussian weight function in [4]:

w(d) =

{
1 if d = 0
1
K

exp(−
√
Kd2

D2 ) if d 6= 0
, (8.38)

where K, D are respectively the number of points in the chosen neighborhood

and the maximal distance of the neighborhood.

Approximating Equation (8.34) on planar point clouds

We first present the numerical scheme for Equation (8.34) on a point cloud P .
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For every p ∈ P , the MLS method constructs an approximating function

fp near p. To satisfy the system (8.34) on p, a direct calculation yields(
qT2 (p)Ap
−qT1 (p)Ap

)
V = A(p)

(
qT1 (p)Ap
qT2 (p)Ap

)
U. (8.39)

The above system can be rewritten as a linear system M1(µ)[UT , V T ]T = 0,

where M1(µ) is a 2N × 2N matrix, with N being the number of points in P .

Specifically, for all i = 1, 2, · · · , N , we have(
(M1(µ))i

(M1(µ))i+N

)
=

(
α1(pi)q

T
1 (pi) + α2(pi)q

T
2 (pi) −qT2 (pi)

α2(pi)q
T
1 (pi) + α3(pi)q

T
2 (pi) qT1 (pi)

)(
Api O
O Api

)
,

(8.40)

where Ei denotes the i-th row of any matrix E. Now, we consider the following

lemma.

Lemma 8.5.1. Let P be a planar point cloud. Suppose f = (u,v)T is a point

cloud map defined on P with well-defined discrete diffuse PCBC. Let σ be a

complex-valued point cloud function. Then, σ is the discrete diffuse PCBC of

f if and only if M1(σ)[UT , V T ]T = 0.

Proof. First, note that f satisfies M1(σ)[UT , V T ]T = 0 if and only if the

Equation (8.39) holds for all p ∈ P , which is equivalent to that

(q1(p) + iq2(p))TAp(U + iV ) = σ(p)(q1(p)− iq2(p))TAp(U + iV ) (8.41)

holds for all p ∈ P . Since the discrete diffuse PCBC is well-defined for all

p ∈ P , it is straightforward to show that the above equation holds if and only

if σ(p) is the diffuse PCBC of f on p. The result follows.

The above lemma shows that given an admissible Beltrami coefficient

µ, the solution to the linear system M1(µ)[UT , V T ]T = 0 is associated with

a diffuse PCBC close to µ. Therefore, the accuracy of the computation of

quasi-conformal maps on point clouds is ensured.
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Improving the approximation of Equation (8.35)

Next, we introduce our proposed approximation scheme for the discretization

in Equation (8.35) on disk-type point clouds.

The existing MLS approximation schemes work well for interior points

on disk-type point clouds. However, unlike the approximations of the LB

operator on point clouds and the generalized LB operator on meshes, the

Beltrami coefficients for point cloud maps are not locally constant. Therefore,

the matrix A in Equation (3.12) is not constant. Therefore, it is necessary to

take its derivatives into considerations. We have

∇ ·
(
A

(
ux
uy

))
=∂x(α1ux + α2uy) + ∂y(α2ux + α3uy)

=(∂xα1 + ∂yα2)ux + (∂xα2 + ∂yα3)uy + α1uxx + 2α2uxy + α3uyy.

(8.42)

By applying the MLS method on the derivatives of αi and u, we can obtain

the approximation linear system. It follows that if the point p = pi is an

interior point, then the i-th row of the matrix M3(µ) is

(M3(µ))i = [α1(P )]TB11(p) + [α2(P )]T (B12(p) +B21(p)) + [α3(P )]TB22(p)

+ 2α1(p)(Ap)4 + 2α2(p)(Ap)5 + 2α3(p)(Ap)6

(8.43)

where

Bjl(p) = ATp qj(p)q
T
l (p)Ap. (8.44)

Here, [αj(P )] denotes a vector whose l-th element is αj(pl), and Ej denotes

the j-th row of any matrix E.

However, for the boundary points p ∈ ∂Ω, the above approach does not

work well as the second order MLS method requires more points for getting an

accurate result. To overcome this problem, we apply the local mesh method

[46] on the boundary. For each boundary point pi ∈ ∂Ω, a 1-ring structure Ti
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is constructed by making use of the Delaunay triangulation. If a point pj is

not included in Ti, then (M3(µ))ij is zero. Otherwise, the entry is given by

(M3(µ))ij =



∑
T={i,j,k}∈Ti

1

|T |
(pk − pi)TA(T )(pk − pj) if j 6= i

∑
T={i,l,k}∈Ti

1

|T |
(pk − pl)TA(T )(pk − pl) if j = i

(8.45)

where

A({i, j, k}) =
1

3
(A(pi) + A(pj) + A(pk)). (8.46)

Our proposed combined scheme effectively improves the accuracy of the

approximation of the generalized Laplace-Beltrami operator in Equation (8.35)

on disk-type point clouds. Numerous experiments are reported in Section 8.6.

8.5.3 Teichmüller parameterization of disk-type point
clouds with landmark constraints

Let M be a simply-connected open surface, and P be a point cloud sampled

from M. Our TEMPO algorithm aims to compute a landmark aligned

parameterization ϕ : P → R ⊂ R2 with suitable boundary conditions, such

that ϕ approximates a Teichmüller extremal mapping (T-map) fromM to R.

Here, R is a rectangle. In this section, we explain the algorithmic details of

our TEMPO algorithm.

Our algorithm mainly consists of two major stages:

1. Conformally parameterizing a disk-type point cloud P onto a rectangular

planar domain R̃, with the following sub-steps:

(a) Mapping P onto the unit disk D by a harmonic map,

(b) Mapping the unit disk D onto the unit square R by solving the

generalized Laplace equation, and
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(c) Optimizing the height of R and obtain R̃.

2. Computing a landmark constrained Teichmüller parameterization on R̃.

Mapping the point cloud onto the unit disk by a harmonic map

In the continuous case, we consider the parameterization of M. As an

initialization, the first sub-step of our algorithm is to compute the harmonic

map φ0 :M→ D that satisfies

∆φ0 = 0 (8.47)

with arc-length parameterization boundary constraints.

In the discrete case, we first recall that given an arbitrary diffeomorphism

ϕ :M→ ϕ(M) ⊂ C, solving for a harmonic map φ0 :M→ D is equivalent

to solving the generalized Laplace equation from ϕ(M) to D with input

Beltrami coefficient µ(ϕ−1). Therefore, we do not need to approximate the

above harmonic equation. We further note that a diffeomorphism from

M to a planar domain is not easy to solve. Thus, we locally solve the

generalized Laplace equation at each point p, and set ϕ near p to be the

projection from the neighborhood of p to its fitting plane obtained by Principal

Component Analysis (PCA). This results in one linear equation at each point.

By combining all points together, we get a linear system with solution

φ0 : P → D being an approximation of the desired harmonic map for point

clouds.

Mapping the unit disk onto the unit square by solving the gener-
alized Laplace equation

Recall that our goal in the first major stage is to conformally parameterize the

input point cloud onto a rectangular domain R̃, with four specified boundary

points mapped to the four corners of R̃. Without loss of generality, we assume
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that R̃ is with height h and width 1. It is important to find a suitable h such

that such conformal parameterization exists. To find such h, our strategy is to

find a quasi-conformal map from D to the unit square R, and then optimally

adjust the height of R to get the optimal h. The following proposition justifies

our strategy.

Proposition 8.5.2. Let f = u + iv : D → R̃ be a quasi-conformal map

associated with the Beltrami coefficient µ, and R̃ has height h and width 1.

Suppose that f1 = u1 + iv1 is a quasi-conformal map from D to R. If u1 and

v1 satisfy the generalized Laplace equation (3.12) with the coefficient matrix

A computed using µ, and with the corresponding boundary condition, then

f = u1 + ihv1.

Proof. Let g be the metric tensor on D induced by µ. Then f : (D, g)→ R

is a conformal map. Therefore, u, v are solutions to the Laplace equation

defined on (D, g). That is,

1

det(g)
∂i(
√

det(g)gij∂ju) = 0, (8.48)

1

det(g)
∂i(
√

det(g)gij∂jv) = 0. (8.49)

Also, as the LB operator is linear, u and v/h are solutions to the Laplace

equation with respect to the metric tensor. This implies that u and v/h are

solutions to the following PDE

∇ · (
√

det(g)(gij)∇x) = 0. (8.50)

By a straightforward calculation, the coefficient matrix A in the generalized

Laplace equation (3.12) with µ satisfies

A =
√

det(g)(gij). (8.51)
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It follows that

A =
1

1− |µ|2

(
1 + |µ|2 − 2Re(µ) −2Im(µ)
−2Im(µ) 1 + |µ|2 + 2Re(µ)

)
. (8.52)

Thus, u and v/h are solutions of the generalized Laplace equation with

Beltrami coefficient µ from D to R, with specific boundary conditions. Since

the generalized Laplace equation is an elliptic PDE whose solution is unique

with the given boundary condition, it follows that u = u1 and v/h = v1.

By the above proposition, the final result φ = (u1, hv1)
T ◦ φ0 can be

obtained by finding a quasi-conformal map φ1 = (u1, v1)
T : D → R, and

scaling its height by a scalar h.

In the second sub-step of our algorithm, we compute the abovementioned

quasi-conformal map φ1. In the continuous case, by Theorem 3.3.3, we can

obtain φ1 : D → R that improves the conformality of ϕ0 by solving the

generalized Laplace equation (3.12) with Beltrami coefficient µ(φ−1
0 ).

In the discrete case, to approximate µ(φ−1
0 ), the diffuse PCBC in Definition

8.3.6 is adopted. With a given PCBC, the desired quasi-conformal map

φ1 = (u1,v1)T from P to R can be solved by the generalized Laplace equation

(8.35).

Optimizing the height of the unit square to achieve conformality

In the third sub-step, we determine the scalar h such that φ2 = (u1, hv1)T is

a quasi-conformal map with Beltrami coefficient equals µ(φ−1
0 ). To solve this

problem, it is natural to consider the following energy minimization problem

h = argmin

∫
D
|µ(φ2)− µ(φ−1

0 )|2. (8.53)

Note that the energy is zero when h is optimal. After obtaining the optimal

h, we have the desired conformal parameterization φ :M→ R̃, where

φ = φ2 ◦ φ0. (8.54)
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In the discrete case, as the point clouds are assumed to be quasi-uniform, we

can simplify the computation of the optimal height h by replacing the integral

in Equation (8.53) by a summation. It suffices to solve the minimization

problem

h = argmin ‖σ̃ − µ̃‖2, (8.55)

where σ̃ and µ̃ are respectively the discrete diffuse PCBCs of φ2 = (u1, hv1)T

and φ−1
0 . The computation for h then becomes straightforward.

Our first major stage is summarized in Algorithm 10.

Algorithm 10: Conformal parameterization of disk-type point clouds

Input: A disk-type point cloud P , four boundary points pi, i = 1, 2, 3, 4
Output: The conformal parameterization φ of P to a rectangle R̃

1 Find a harmonic map φ0 : P → D with arc-length parameterization
boundary constraints;

2 Compute the discrete diffuse PCBC µ̃ of φ−1
0 ;

3 Solve the generalized Laplace equation (8.35) with the associated PCBC
µ̃, and obtain a map φ1 = (u1,v1)T from D to the unit square R, with
four points p1, p2, p3, p4 mapped to the corresponding four corners on R;

4 Adjust the height of R to be h by minimizing ‖σ̃ − µ̃‖2, where σ̃ is the
discrete diffuse PCBC of (u1, hv1)T ;

5 Obtain the conformal parameterization φ = (u1, hv1)T ◦φ0 from P to a

rectangle R̃ with height h and width 1.

Teichmüller parameterization of disk-like point clouds with land-
mark constraints

In the second major stage, after computing the conformal parameterization of

P onto a rectangle R̃, we now develop an algorithm for computing landmark

aligned Teichmüller parameterization on R̃. In the following, we invent an

iterative algorithm for PCT-maps on disk-type point clouds and study the

convergence properties.

Recall that T-maps are associated with Beltrami coefficients which have

constant norms and satisfy a specific form for the argument part. Our
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proposed algorithm aims to achieve PCT-maps by iteratively manipulating

the PCBC. First, we initialize the map to be the identity map. Then, in each

iteration, we perform four sub-steps as explained below on the associated

discrete diffuse PCBC of the map, and update the map using the modified

PCBC.

In the first sub-step of each iteration, we compute the PCBC µ̃n of a

given point cloud map fn.

In the second step, we manipulate the norm of the PCBC so that the

new PCBC gets closer to the Beltrami coefficient of a T-map. Specifically, a

suitable constant kn is chosen to be the norm of the new PCBC:

kn =

{ ∑
p∈Sn |µ̃n(p)|
|Sn| if |Sn| > 0

0 if |Sn| = 0,
(8.56)

where

Sn = {p ∈ P : |µ̃n(p)| < 1}. (8.57)

This sub-step guarantees that the new norm is feasible.

After updating the norm, we update the argument part of the PCBC in

the third sub-step. Define νn by

νn(pi) =


µ̃n(pi)

|µ̃n(pi)|
if µ̃n(pi) 6= 0,

1 otherwise.

(8.58)

Then, we apply the weighted Laplacian smooth operator and the normalization

operator on νn. More explicitly, we have

τn(pi) =


Liνn
|Liνn|

if Liνn 6= 0,

νn(pi) otherwise,

(8.59)

where L is the approximation of the LB operator on point clouds as described

in Section 8.5.2, and Liνn denotes (Lνn)(pi). Using the new norm kn and
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the new argument part τn, we construct a new complex-valued point cloud

function

σn = knτn. (8.60)

In the last sub-step of each iteration, a new landmark-constrained map

fn+1 is computed by solving the hybrid equation (8.37) with the PCBC σn.

It is noteworthy that as the landmark constraints are added and σn may not

be a feasible PCBC, fn+1 may not be associated with σn perfectly. In this

case, this sub-step can be regarded as a projection of σn onto the space of all

feasible PCBCs.

By repeating the abovementioned sub-steps, the map converges to the

landmark aligned Teichmüller parameterization as both the landmark con-

straints and the constant norm are achieved. Our second major stage is

summarized in Algorithm 11.

To justify our proposed algorithm, we prove that the limit function

obtained by the algorithm is indeed a PCT-map.

Proposition 8.5.3. Let P be a planar point cloud. Assume that the sequence

fn in Algorithm 11 converges to a point cloud map f , and its discrete diffuse

PCBC µ̃ exists. Further assume that limn γn = 0, where γn denotes the

parameter in Equation (8.37) in the n-th iteration. Then, f is a PCT-map.

Furthermore, both µ̃n and σn converge to µ̃.

Proof. We first show that µ̃n → µ̃. Let D1, D2 be as defined in the proof of

Proposition 8.4.3. By definition, for all x ∈ P ,

|µ̃n(x)− µ̃(x)|

=

∣∣∣∣∣∣∣∣
D1

[(
Un
Vn

)
−
(
U
V

)]
+D1

(
U
V

)
D2

[(
Un
Vn

)
−
(
U
V

)]
+D2

(
U
V

) − D1

(
U
V

)
D2

(
U
V

)
∣∣∣∣∣∣∣∣ .

(8.61)
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Algorithm 11: Landmark-matching Teichmüller parameterization of
planar point clouds

Input: A planar point cloud P , target rectangle R and the landmark
constraints

Output: The landmark-matching Teichmüller parameterization
f : P → R

1 Initialize f0 to be identity map;
2 while ‖Fn − Fn−1‖2 ≥ ε do
3 Calculate the discrete diffuse PCBC µ̃n of fn;

4 Compute kn =

{ ∑
p∈Sn |µ̃n(p)|
|Sn| if |Sn| > 0

0 if |Sn| = 0,
, where

Sn = {p ∈ P : |µ̃n(p)| < 1};
5 Calculate the argument part of µ̃n and denote it as νn;
6 Construct a complex valued point cloud function τn by

τn(pi) =


Liνn
|Liνn|

if Liνn 6= 0,

νn(pi) otherwise

where L = M2(0) is the approximation of the LB operator in
Section 8.5.2;

7 Construct a new complex valued point cloud function σn = knτn;
8 Compute the point cloud map fn+1 by solving the hybrid equation

(8.37) with a given parameter γn ∈ [0,∞), the input BC σn and the
prescribed landmark constraints;

9 Denote the matrix form of fn+1 by Fn+1;
10 Update n by n+ 1;

11 Obtain the final map f = fn.

By the MLS error estimate in Equation (8.12), for j = 1, 2,

|qTj (x)Ax(Un − U)| ≤ ‖Un − U‖∞‖qTj (x)Ax‖1 ≤ ‖Un − U‖∞O(h−1), (8.62)

where h is the fill distance of P and hence constant. Since fn → f and both of

them are defined on a finite set P , we have ‖Un − U‖∞ → 0. It follows that

|qTj (x)Ax(Un − U)| → 0. A similar result holds for V . Hence, for j = 1, 2,

lim
n

∣∣∣∣Dj

[(
Un
Vn

)
−
(
U
V

)]∣∣∣∣ = 0. (8.63)
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Therefore, µ̃n → µ̃.

Next, we show that σn → µ̃. Let

En = −γnM2(σn)

(
Un+1

Vn+1

)
. (8.64)

Then

M1(σn)

(
Un+1

Vn+1

)
= En. (8.65)

A straightforward calculation yields

D1(x)

(
Un+1

Vn+1

)
=qT1 (x)AxUn+1 + iqT2 (x)AxUn+1 + iqT1 (x)AxVn+1 − qT2 (x)AxVn+1

=qT1 (x)AxUn+1 + iqT2 (x)AxUn+1 − i(α2(σn|x)qT1 (x) + α3(σn|x)qT2 (x))AxUn+1

− (α1(σn|x)qT1 (x) + α2(σn|x)qT2 (x))AxUn+1 + i(En)j+N + (En)j

=

(
2
σn(x)− |σn(x)|2

1− |σn(x)|2
q1(x)− 2i

σn(x) + |σn(x)|2

1− |σn(x)|2
q2(x)

)T
AxUn+1

+ i(En)j+N + (En)j,

(8.66)

for any x = pj ∈ P . Similarly, we have

D2(x)

(
Un+1

Vn+1

)
=

(
2

1− σn(x)

1− |σn(x)|2
q1(x)− 2i

1 + σn(x)

1− |σn(x)|2
q2(x)

)T

AxUn+1 + i(En)j+N − (En)j.

(8.67)

Then,

σn(x) =

D1(x)

(
Un+1

Vn+1

)
− i(En)j+N − (En)j

D2(x)

(
Un+1

Vn+1

)
− i(En)j+N + (En)j

. (8.68)

Since P is fixed and |σn(x)| ≤ kn < 1 is bounded, the matrix M2(σn) is

also bounded. Besides, since fn is a point cloud map within a fixed rectangle
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R̃, the vectors Un and Vn are bounded. Therefore, En → 0 since γn → 0.

Furthermore, from Equation (8.63) and the assumption that µ̃ is well-defined,

we conclude that |D2(x)[UT
n+1, V

T
n+1]T | is bounded below by a positive number

when n is large. Hence, the right hand side of Equation (8.68) is well-defined,

and it converges to limn µ̃n+1(x) = µ̃(x). It follows that σn converges to µ̃.

As |σn(x)| = kn < 1 is a constant for any x ∈ P , k := limn kn = |µ̃(x)| is

also a constant.

Let pi be any interior point. It remains to prove that (Liµ̃)µ̃(pi) ∈ R.

The statement is trivial when Liµ̃ = 0. Therefore, we only consider the

case when Liµ̃ 6= 0 and k 6= 0. Let µ̃n = µ̃n,1 + iµ̃n,2, µ̃ = ρ̃1 + iρ̃2, and

σn = σn,1 + iσn,2. Without loss of generality, let µ̃2(pi) 6= 0. Then, when n

is sufficiently large, we have

ρ̃1(pi)

ρ̃2(pi)
= lim

n

σn,1(pi)

σn,2(pi)
= lim

n

Li(µ̃n,1/|µ̃n|)
Li(µ̃n,2/|µ̃n|)

=
Li(ρ̃1/k)

Li(ρ̃2/k)
=
Liρ̃1

Liρ̃2

(8.69)

Hence, (Liρ̃1)ρ̃2(pi) = (Liρ̃2)ρ̃1(pi). This concludes our proof.

The above proposition guarantees that if Algorithm 11 converges, then

fn converges to the PCT-map we desired. Also, µ̃n, σn converge to the

discrete diffuse PCBC associated with the desired PCT-map. Moreover, the

limit PCBC satisfies the requirements in Definition 8.4.1. As a remark, since

Proposition 8.4.3 holds when the fill distance of a sequence of point clouds

converges to zero, it follows that the accuracy of our algorithm increases with

the density of the point clouds.

8.6 Experimental results

In this section, we demonstrate the effectiveness of our proposed TEMPO

algorithm. Our algorithms are implemented in MATLAB. The point clouds
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are adopted from the AIM@SHAPE shape repository [89] and the TF3DM

repository [95]. The sparse linear systems are solved using the built-in

backslash operator (\) in MATLAB. All experiments are performed on a PC

with an Intel(R) Core(TM) i7-4770 CPU @3.40 GHz processor and 16.00 GB

RAM.

8.6.1 The performance of our proposed approximation
schemes

We first evaluate the performance of our proposed approximation schemes for

computing conformal/quasi-conformal maps on disk-type point clouds.

We first compare our proposed scheme with the local mesh method [46]

and the MLS method with special weight [52, 53] for computing conformal

maps. In each experiment, we generate a random point cloud on a rectangle.

Then, we map the planar point cloud to 3D using a conformal map with an

explicit formula. On the transformed point cloud, we approximate the LB

operator using the above approximation schemes. Using the approximated

LB operator, we solve the Laplace equation to map the point cloud back

onto the rectangular domain and calculate the resulting position errors. An

example of such a conformal map with an explicit formula is shown in Figure

8.2. Table 8.1 records several experiments with this conformal map. Our

proposed scheme results in better approximations.

Then, we compare the mentioned approximation schemes for computing

quasi-conformal maps with prescribed PCBCs. This time, in each exper-

iment, we map a randomly generated planar point cloud to 3D using a

quasi-conformal map with an explicit formula. Figure 8.3 shows an example

of such quasi-conformal map. On the 3D point cloud, we approximate the

generalized LB operator using different schemes and solve the generalized
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Figure 8.2: An example (the stereographic projection) used in evaluating dif-
ferent numerical schemes for computing conformal maps on point clouds. The

explicit formula of it is f(x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

Figure 8.3: A quasi-conformal map used in evaluating different schemes for
computing quasi-conformal maps on point clouds. The explicit formula of it

is f(x, y) =

(
log(x+ 1), arcsin

(
y

2 + (log(x+ 1))2

))
.

Laplace equation to map the point cloud back onto the rectangle. Table 8.2

records several experiments. Again, our proposed combined scheme produces

better approximations.
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Example 1

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.048 0.017 0.00031
MLS with special weight [52, 53] 1.821 0.275 0.13026

Our proposed method 0.048 0.017 0.00031

Example 2

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.022 0.0043 0.000020
MLS with special weight [52, 53] 0.853 0.2529 0.071753

Our proposed method 0.011 0.0035 0.000014

Example 3

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.011 0.0041 0.000017
MLS with special weight [52, 53] 0.182 0.0659 0.004212

Our proposed method 0.010 0.0035 0.000013

Example 4 (Noisy)

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.050 0.0150 0.000202
MLS with special weight [52, 53] 0.379 0.0881 0.009463

Our proposed method 0.026 0.0083 0.000063

Example 5 (Noisy)

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.090 0.0128 0.000238
MLS with special weight [52, 53] 0.501 0.0574 0.004941

Our proposed method 0.049 0.0097 0.000105

Table 8.1: The performances of different numerical schemes for approximating
conformal maps on point clouds.

8.6.2 Landmark constrained Teichmüller parameteri-
zations

After demonstrating the advantage of our proposed approximation scheme,

we illustrate the effectiveness of our TEMPO algorithm for the landmark

constrained Teichmüller parameterization of disk-type point clouds.

We first compare the Teichmüller parameterization results with different
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Example 1

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.0756 0.01150 0.00014248
MLS with special weight [52, 53] 0.0940 0.02524 0.00089952

Our proposed method 0.0252 0.00836 0.00006811

Example 2

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.0467 0.01011 0.00010035
MLS with special weight [52, 53] 0.0212 0.01219 0.00012290

Our proposed method 0.0183 0.00750 0.00005012

Example 3

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.0172 0.00813 0.00005617
MLS with special weight [52, 53] 0.6373 0.11550 0.02536965

Our proposed method 0.0172 0.00796 0.00005446

Example 4 (Noisy)

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.0181 0.00685 0.00004237
MLS with special weight [52, 53] 0.0565 0.01594 0.00034875

Our proposed method 0.0177 0.00652 0.00003953

Example 5 (Noisy)

Method
maximum

position error
average

1-norm error
average

2-norm error

Local Mesh [46] 0.0170 0.00769 0.00005009
MLS with special weight [52, 53] 0.0429 0.01948 0.00034534

Our proposed method 0.0170 0.00762 0.00004964

Table 8.2: The performances of different schemes for computing quasi-
conformal maps on disk-type point clouds.

choices of γ in the hybrid equation (8.37) . Two categories of the parameter

γ are considered:

(i) Decreasing values: γn is gradually decreased throughout the iterations.

(ii) Constant values: γ remains constant throughout the iterations.

In the experiment, we compute the Teichmüller parameterization of a real

3D point cloud and calculate the variance of |µ|. A negligible variance of
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Result with decreasing γ
γ 0 1 50 100 500 1000 ∞

Var(|µ|) NaN 0.0018 0.0024 0.0020 0.0105 0.0085 0.0050

Result with constant γ
γ 0 1 50 100 500 1000 ∞

Var(|µ|) NaN 0.0018 0.0022 0.0017 0.0031 0.0022 0.0050

Table 8.3: The results obtained by different γ in Algorithm 11. The row of γ
refers to the initial values.

Figure 8.4: Teichmüller parameterization of a spiral point cloud. Left: The
input. Middle: The parameterization. The green and the blue points re-
spectively represent the original and the target locations of the landmark
constraints. Right: The histogram of the norm of the Beltrami coefficients.

Figure 8.5: Teichmüller parameterization of a lion point cloud. Left: The
input. Middle: The parameterization. The green and the blue points re-
spectively represent the original and the target locations of the landmark
constraints. Right: The histogram of the norm of the Beltrami coefficients.

|µ| is desired because of the Teichmüller property. For fairness, we perform

the same number of iterations in Algorithm 11. It is noteworthy that the
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Figure 8.6: Teichmüller parameterization of Lucy point cloud. Left: The input.
Middle: The parameterization. The green and the blue points respectively
represent the original and the target locations of the landmark constraints.
Right: The histogram of the norm of the Beltrami coefficients.

Point clouds # of points Time (m) Mean(|µ|) Var(|µ|)
Cesar 9755 0.3081 0.2402 6.1474e-04

Muscle guy 14240 0.3241 0.2934 9.8858e-04
Obese man 14415 0.3568 0.2508 7.7045e-04

Lucy 15167 0.6486 0.1523 1.4981e-04
Spiral 28031 1.1648 0.1986 8.0233e-04

Human face (neutral) 31350 0.6517 0.0713 3.3564e-05
Human face (angry) 31468 0.7428 0.0796 3.8812e-05
Human face (sad) 31543 0.6117 0.0693 5.6557e-05

Human face (happy) 31878 0.8536 0.0909 7.7383e-05
Bumps 114803 2.5353 0.1070 3.4902e-05
Lion 129957 2.5842 0.0893 2.8239e-05

Noisy face 1 20184 0.9172 0.1111 0.0140
Noisy face 2 19743 0.5191 0.1077 0.0130
Noisy face 3 20194 0.4905 0.0787 0.0157

Table 8.4: The performance of our TEMPO algorithm.

cases γ = 0 or ∞ respectively correspond to solely solving Equation (3.11) or

Equation (3.12).

In Table 8.3, it can be observed that the algorithm fails if γ = 0. Also,

the result associated with γ =∞ is not as accurate as those associated with

0 < γ < +∞. It follows that our hybrid scheme outperforms the two existing
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Figure 8.7: Teichmüller parameterization of a noisy facial point cloud. Left:
The input. Middle: The parameterization. The green and the blue points
respectively represent the original and the target locations of the landmark
constraints. Right: The histogram of the norm of the Beltrami coefficients.

methods.

Besides, it can be observed that the results associated with different

0 < γ < +∞ are highly similar, regardless of whether γ is decreasing or

constant. The observation suggests that the assumption limn γn = 0 in

Proposition 8.5.3 can be relaxed in practice.

For simplicity, in the following experiments, we set γ ≡ 0.5 in the hybrid

equation (8.37). The stopping criterion is set to be ε = 10−6.

Figure 8.4 shows the landmark aligned Teichmüller parameterization of

a spiral point cloud. Even under the large landmark displacements, our

parameterization result ensures a uniform conformality distortion. Figure 8.5

and Figure 8.6 show two more examples. Again, the norms of the resulting

Beltrami coefficients accumulate at a specific value, which implies that the

parameterizations obtained by our TEMPO algorithm are Teichmüller.

We also test our TEMPO algorithm on noisy point clouds. Figure 8.7

shows the Teichmüller parameterization of a point cloud with 5% uniformly

distributed random noise. Again, the histogram of the resulting Beltrami
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coefficient indicates that the resulting parameterization is with uniform con-

formality distortion. This demonstrates the effectiveness of our TEMPO

algorithm on noisy point clouds.

The statistics of numerous experiments are listed in Table 8.4. It is

noteworthy that our TEMPO algorithm is highly efficient. The computations

complete within 1 minute on average for point clouds with moderate size.

Also, the variances of the resulting Beltrami coefficients are close to zero in

all experiments, which indicates that our parameterizations achieve uniform

conformality distortions. It can also be observed that for denser point clouds,

the variances of the results are in general smaller. All of the above experimental

results coincide with the theories we have established.

8.7 Application in point cloud classification

In this section, we explain the use of our proposed landmark-matching Te-

ichmüller parameterization for point cloud classification.

8.7.1 Shape analysis via Teichmüller metric

We first introduce the use in the continuous setting. Suppose Ω1 and Ω2 are

two simply-connected open surfaces, and the landmark correspondences are

given by

pi ↔ qi (8.70)

for i = 1, 2, · · · , n. To compute the landmark-matching Teichmüller registra-

tion map f : Ω1 → Ω2 such that f(pi) = qi for all i = 1, 2, · · · , n, we start

by computing the conformal parameterizations g1 : Ω1 → R̃1, g2 : Ω2 → R̃2.

Then, we compute the landmark-matching Teichmüller parameterization
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h : R̃1 → R̃2 between the two planar domains with

h(g1(pi)) = g2(qi) (8.71)

for i = 1, 2, · · · , n. Finally, f : Ω1 → Ω2 can be obtained by

f = g−1
2 ◦ h ◦ g1. (8.72)

Obviously, f satisfies

f(pi) = qi. (8.73)

Moreover, note that since h is a Teichmüller map, the Beltrami coefficient µh

is with constant norm. Also, since g1, g2 are conformal maps, the Beltrami

coefficient µg1 , µg2 is zero. Therefore, by Theorem 3.3.3,

µf = µg−1
2 ◦h◦g1

= (µh ◦ g1)
(∂zg1)

∂zg1

= k
(∂zg1)2(ϕ ◦ g1)

|(∂zg1)2(ϕ ◦ g1)|
(8.74)

where k = |µh| is a constant, and ϕ is holomorphic. Also, since g1 is conformal,

(∂zg1)2(ϕ ◦ g1) is holomorphic. Hence, f is a landmark-matching Teichmüller

map.

In the discrete case, the landmark-matching Teichmüller registration be-

tween two feature-endowed disk-type point clouds is summarized in Algorithm

12.

With the abovementioned registration scheme, a metric shape space can

be built for point cloud classification. More explicitly, a dissimilarity metric

called the Teichmüller metric is naturally induced by Teichmüller maps.

Definition 8.7.1 (Teichmüller metric). For all i, let Mi be a Riemann surface

with feature landmarks {pik}nk=1. Let Ω be a template surface with landmarks

{qk}nk=1. Suppose every Mi is parameterized onto Ω by a landmark aligned

quasi-conformal map fi : Mi → Ω, with pik matching qk for all k. The
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Algorithm 12: Landmark-matching Teichmüller registration between
disk-type point clouds

Input: Two disk-type point clouds P1 and P2, with landmark
correspondences pi ↔ qi, pi ∈ P1, qi ∈ P2, i = 1, 2, ..., n

Output: The Teichmüller map f : P1 → P2 with f(pi) = qi for all i
1 Apply Algorithm 10 to compute the conformal parameterizations

gt : Pt → R̃t, where t = 1, 2;
2 Apply Algorithm 11 to compute the Teichmüller parameterization

h : R̃1 → R̃2, with the landmark constraints h(g1(pi)) = g2(qi) for all i;
3 Obtain the registration map f = g−1

2 ◦ h ◦ g1.

Teichmüller metric between (fi,Mi) and (fj,Mj) is defined by

dT ((fi,Mi), (fj,Mj)) = inf
ϕ

1

2
logK(ϕ), (8.75)

where ϕ : Mi →Mj varies over all quasi-conformal maps with {pik}nk=1 cor-

responds to {pjk}nk=1, which is homotopic to f−1
j ◦ fi, and K is the maximal

quasi-conformal dilation.

Note that the maximal quasi-conformal dilation K is not affected by

compositions of conformal maps. Therefore, if ϕ = g−1
j ◦ h ◦ gi, where gi, gj

are conformal parameterizations, then

K(ϕ) = K(h). (8.76)

Thus, the Teichmüller metric is uniquely determined by the maximal quasi-

conformal dilation of quasi-conformal maps on the rectangular domains.

By Theorem 3.4.3, with a suitable boundary condition, the T-map between

the unit disks is extremal and unique. A similar result also holds on rectangular

domains. Therefore, the infimum in Equation (8.75) is achieved by the unique

Teichmüller map between R̃i and R̃j. In other words,

dT ((fi,Mi), (fj,Mj)) =
1

2
logK(h) (8.77)
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where h : R̃i → R̃j is a landmark-constrained Teichmüller map with g−1
j ◦h◦gi

homotopic to f−1
j ◦ fi. Hence, the difference of two feature-endowed point

clouds can be evaluated in terms of the quasi-conformal dilation of the

landmark aligned Teichmüller parameterization between R̃i and R̃j.

In this discrete case, let {Pt} be a collection of feature-endowed point

clouds. To accurately classify them, for all i, j we compute the landmark-

matching Teichmüller map fij : Pi → Pj. Then, we evaluate the associated

discrete diffuse PCBCs µij and denote the Teichmüller distance between Pi

and Pj by

dij =
1

2
log

1 + ‖µij‖∞
1− ‖µij‖∞

. (8.78)

Note that if Pi and Pj are with similar shapes, then dij is small. By analyzing

the distance matrix (dij), we can effectively classify different feature-endowed

point clouds. For instance, the multidimensional scaling (MDS) method can

be applied for the classification here.

In practice, to avoid the effect of very minor outlying Beltrami coefficients

in the approximations, we replace ‖µ‖∞ by the average of |µ| in calculating

the Teichmüller distances. This modification is valid as the variance of |µ| is

negligible. It is also noteworthy that the Teichmüller distance dij (induced by

the PCT-map fij : Pi → Pj) may be slightly different from dji (induced by

the PCT-map fji : Pj → Pi) because of the numerical errors. For symmetry,

we replace the distance matrix D = (dij) by (D + DT )/2. Our proposed

algorithm for the dissimilarity metric is summarized in Algorithm 13.

8.7.2 Evaluating the classification result

Using our TEMPO algorithm, landmark-matching Teichmüller registration

between disk-type point clouds can be efficiently computed as described in

Algorithm 12. Figure 8.8 shows the registration of two human face point



168

Algorithm 13: Building a distance matrix using the Teichmüller metric

Input: A set of point clouds {Pt}Mt=1 with landmark correspondences
Output: The distance matrix D = (dij), i, j = 1, 2, · · · ,M

1 Apply Algorithm 12 to compute the landmark-matching PCT-map
fij : Pi → Pj;

2 Compute the Teichmüller distance dij = 1
2

log(K(fij)) and form the
matrix D = (dij);

3 Update D by (D +DT )/2;

Figure 8.8: Teichmüller registration between two human face point clouds with
prescribed landmark constraints (highlighted in blue). Top left: The source
point cloud. Top middle: The target point cloud. Top right: The registration
resul. Bottom: The conformal parameterizations of the source and target
point clouds, and the landmark constrained Teichmüller parameterization.

clouds by our proposed method. In the registration result, the landmark

constraints are fulfilled and the geometric features are optimally preserved.

To demonstrate the effectiveness of the Teichmüller metric induced, we
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Figure 8.9: The dataset of human face point clouds with different facial
expressions used in our first experiment.

Figure 8.10: The MDS results for our proposed distance matrix (left) and the
distance matrix in [41] (right). Each color represents one human, and each
shape represents a type of facial expressions (circle: neutral, square: happy,
triangle: sad, diamond: angry).

consider a facial point cloud classification problem. Given a set of facial point

clouds with multiple facial expressions, we aim to correctly classify the point

clouds into several groups, where each group represents one human.

Landmark constraints at the most prominent parts of the faces, such as

the eyes, nose and mouth of every point cloud are manually labeled to ensure

the accuracy of the classification. We compare our proposed Teichmüller

metric with another dissimilarity metric computed by a feature-endowed

point cloud mapping algorithm in [41]. For a fair comparison, we replace the
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Figure 8.11: A partial set of the facial point clouds used in our second
experiment, adopted from the 3D human face database [15].

automatically detected landmarks in [41] by our manually labeled landmarks.

In the experiments, we compute our proposed distance matrix using Algorithm

13 and another distance matrix using [41]. The multidimensional scaling

(MDS) method is then applied on the two distance matrices. Two experiments

are presented below.

In the first experiment, we are interested in classifying facial point clouds

with specific facial expressions. 16 facial point clouds with 4 specific expres-

sions (neutral, happy, sad, angry) are adopted from [91, 17, 86] or sampled

by Kinect (see Figure 8.9). 12 landmark constraints are manually labeled
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on each point cloud. Figure 8.10 shows the MDS results. It can be observed

that distinct subjects are effectively clustered using our distance matrix,

while the result based on the distance matrix in [41] cannot identify distinct

subjects. For a more detailed comparison, the leave-one-out cross-validation

(LOOCV) is applied to evaluate the classification accuracies. Our distance

matrix results in a classification accuracy of 94%, while the distance matrix in

[41] results in a classification accuracy of 50%. The comparison demonstrates

the effectiveness of our Teichmüller metric.

In the second experiment, we consider a larger dataset. We adopt the 3D

human face database [15], which is the database used in [41]. Each subject in

the database is with 3 random facial expressions. Figure 8.11 shows a partial

set of the facial point clouds in [15]. We label 10 landmark constraints on each

point cloud for the computation. It is noteworthy that unlike the experiments

in [41], we do not perform any triangulation or smoothing procedure on the

raw point clouds. Our distance matrix results in a LOOCV accuracy of 79%,

while the distance matrix in [41] results in a LOOCV accuracy of 50%. The

results again reflect the effectiveness of our proposed dissimilarity metric for

point cloud classification.



Chapter 9

Conclusion

Surface conformal/quasi-conformal parameterizations are important in medi-

cal morphometry, computer graphics and engineering. In the discrete case, two

major discretizations of surfaces are triangulated meshes and point clouds. In

this thesis, we have invented effective conformal/quasi-conformal parametriza-

tion algorithms for triangulated meshes and point clouds, including

(i) spherical conformal/optimized-conformal parametrization of genus-0

closed meshes,

(ii) disk conformal parametrization of simply-connected open meshes,

(iii) spherical quasi-conformal/Teichmüller parametrization of genus-0 closed

meshes,

(iv) spherical conformal parametrization of genus-0 point clouds, and

(v) landmark aligned Teichmüller parametrization of point clouds with disk

topology.

Experimental results have demonstrated the advantages of our proposed

parametrization algorithms over the existing approaches. Specifically, our

172
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proposed algorithms significantly accelerate the computation of the param-

eterizations with improved accuracies. Also, the bijectivity of our parame-

terizations is mathematically supported by quasi-conformal theory. Various

applications of our proposed parametrization algorithms are exhibited.

In the future, we plan to extend our parametrization algorithms for high-

genus meshes and point clouds, and investigate the use of them in physical

and biological applications.
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