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An additive framework for kirigami design

Levi H. Dudte1,5, Gary P. T. Choi    2,5, Kaitlyn P. Becker1,3 & L. Mahadevan    1,4 

We present an additive approach for the inverse design of kirigami-based 
mechanical metamaterials by focusing on the empty (negative) spaces instead 
of the solid tiles. By considering each negative space as a four-bar linkage, we 
identify a simple recursive relationship between adjacent linkages, yielding 
an efficient method for creating kirigami patterns. This allows us to solve the 
kirigami design problem using elementary linear algebra, with compatibility, 
reconfigurability and rigid-deployability encoded into an iterative procedure 
involving simple matrix multiplications. The resulting linear design strategy 
circumvents the solution of a non-convex global optimization problem and 
allows us to control the degrees of freedom in the deployment angle field, 
linkage offsets and boundary conditions. We demonstrate this by creating a 
large variety of rigid-deployable, compact, reconfigurable kirigami patterns. 
We then realize our kirigami designs physically using two simple but effective 
fabrication strategies with very different materials. Altogether, our additive 
approaches present routes for efficient mechanical metamaterial design and 
fabrication based on ori/kirigami art forms.

Kirigami and origami are ancient art forms that have been rejuvenated 
as paradigms of a class of structural mechanical metamaterials derived 
from thin sheets. Kirigami works with cuts to create a globally coordi-
nated, articulated, deployable structure that can lead to spectacular 
patterns in two and three dimensions, while origami works with creases 
to create a similar effect, although almost always in three dimensions. 
Both kirigami and origami can lead to complex structures that have been 
studied extensively in art, mathematics, science and engineering1,2. How-
ever, the research literature on these subjects has had only a few points 
of convergence. Indeed, both artistic and technical books on origami3–5 
scarcely, if ever, mention, kirigami, and vice versa6. From a mathematical 
perspective, although there are deep similarities between kirigami and 
origami, there are some subtle differences that require qualitatively differ-
ent approaches to understand the implications of the local constraints on 
the global properties that result. In particular, both origami and kirigami 
exploit coordinated rotations of individual facets to achieve collective 
geometric changes of the connected structures; that is, they use piecewise 
deformations (with strong discontinuities along cuts/creases) to affect 
complex shape-shifting abilities. However, the nature of the discontinuity 
differs between origami and kirigami. In origami, creases are locations 

identified with a discontinuous geometry (slope jump), whereas in  
kirigami, cuts are identified with a topological discontinuity (position jump).

Numerous studies have explored different kirigami-based deploy-
able structures, with a focus that is primarily on the forward problem, 
that of predicting the geometric and mechanical response of given 
designs7–13. The solution of the inverse problem typically involves setting 
up a global constrained optimization problem that encodes the geo-
metric constraints in terms of the angles and lengths of the constituent 
tiles14–18. Although such an approach is capable of producing patterns 
and mechanisms with different shape changes, the process of finding 
a solution to the nonlinear global constrained optimization problem 
for large patterns is both computationally difficult and hard to control. 
Inspired by biological morphogenesis driven by growing matter19, and 
its synthetic analog, additive manufacturing20, one is naturally led to 
the question of whether it is possible to simplify the design of origami/
kirigami metamaterials by switching from a global optimization per-
spective to some locally constrained additive process. In recent work, 
we showed that the use of local marching rules allows for an additive 
origami design approach21, converting a difficult non-convex global 
optimization problem22 into a simpler, but still nonlinear, local problem.
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Results
Additive design framework
We tackle the kirigami design problem by working our way up a lad-
der of hierarchical complexity, beginning with the smallest building 
block, a single four-bar linkage representing the negative space of 
a unit cell of four quads, before moving on to strips of linkages and 
finally linkage arrays. At each level, our strategy will be to describe a 
geometric marching construction, the forward process, which can be 
cast as matrix multiplication, allowing us then to convert the marching 
algorithm into a flexible and intuitive design framework using linear 
inverse design techniques.

In Fig. 1 we present an overview of the marching construction for 
quad kirigami design. The key idea is to identify the constraints in the 
negative spaces in a deployed configuration, and use them to form a 
design matrix that is nonlinearly dependent on the deployment angles 
and edge lengths. However, once the matrix is determined, the coor-
dinates of all nodes can be obtained by a simple matrix multiplication 
step, yielding a linear design method for quad kirigami.

In this Article we show that kirigami also lends itself to a simple additive 
approach that identifies and exploits a linear marching construction to con-
nect local growth rules to a global form. The subtle differences in the nature 
of the geometric and topological constraints between origami and kirigami 
imply that there are qualitative differences in these marching algorithms that 
lead to a much simpler algorithm for kirigami, despite it being a far richer 
paradigm for structural material design. Furthermore, we show that we can 
control the flexibility of encoding contractibility, compact reconfigurability 
and rigid-deployability for the design of quad kirigami in any contracted or 
deployed space using a simple design matrix characterized by a combination 
of certain edge-length and angle parameters. This substantially simplifies 
the process of designing kirigami patterns as matrix multiplications. Our 
approach of decoupling the length field, angle field and the boundary node 
constraints allows us to systematically analyze the degrees of freedom in the 
design space of different types of quad kirigami tessellations.

Finally, to realize these designs in practice, we describe two manu-
facturing approaches using additive manufacturing and casting/ 
molding for robust kirigami structures with soft, fabric hinges.
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Fig. 1 | Marching construction for quad kirigami design. a, Geometric design 
of a four-bar linkage representing a negative space in an (m + 1) × (n + 1) quad 
kirigami pattern. Given the coordinates of two seed nodes x0 and x3 (red), the 
linkage can be parameterized by a deployment angle ϕ and an edge-length 
parameter (offset) ϵ. b, Each linkage strip consists of a series of four-bar linkages 
each parameterized by ϕj and ϵj. The coordinates of the non-seed nodes (open 
dots) are dependent on the seed nodes (red dots), as indicated by the arrows in 
the linkages. One can grow the linkages following the direction of the large 
arrows to obtain m linkage strips each with n linkages, thereby forming an m × n 
linkage array with nodes {xij, k}, i ∈ {0, 1, … , m− 1}, j ∈ {0, 1, … , n− 1},
k ∈ {0, 1, 2, 3}. c, Considering the relationship between all nodes in the linkage 
array, we obtain a design matrix M with all parameters {ϕij} and {ϵij} encoded in it (left). 

Note that M consists of 2mn + m + n block rows and m + n block columns, where 
each block (black square) is a 2 × 2 matrix corresponding to the xy coordinates  
of each node (also equation (3)). One can then extract m + n block rows suitably  
to form a (2m + 2n) × (2m + 2n) invertible submatrix Msub. In particular, choosing 
exactly the m + n block rows corresponding to all seed nodes (red dots) will  
form an identity matrix Msub = I2m + 2n (middle). Alternately, one can choose block 
rows corresponding to some seed nodes (red dots) and some non-seed nodes 
(open dots) to form Msub (right). In either case, we can then prescribe the 
coordinates of all nodes corresponding to the chosen m + n block rows, and then 
invert the submatrix Msub to solve for the seed node coordinates. Finally, by a 
direct matrix multiplication of M with the solved seed node coordinates, we 
obtain the entire linkage array.
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Linkage design. To simplify our discussion, we start by considering 
the design of a negative space surrounded by four quads represented 
as a parallelogram four-bar linkage in ℝ2 given by four points xk = (xk, yk), 
where k = 0, 1, 2, 3, with the deployment angle ϕ = ∠(x1, x0, x3) at x0  
(Fig. 1a). We parameterize its construction according to

[
I −Q Q

−Q I +Q
] [

x0

x3
] = [

x1

x2
] (1)

where Q = (1 + ϵ)R(−ϕ) is a scaled rotation matrix, with ϵ being a scalar 

that we refer to as the offset, I = [ 1 0
0 1 ]

 and R(−ϕ) = [ cosϕ sinϕ
− sinϕ cosϕ ]

 

are the identity and rotation matrices in ℝ2, respectively, and 

[ xi
xj
] =

⎡
⎢
⎢
⎢
⎣

xi
yi
xj
yj

⎤
⎥
⎥
⎥
⎦

 is a column vector of coordinates of two points in the 

parallelogram. Extending equation (1) yields an 8 × 4 linkage design 
matrix D that takes two points x0 and x3 (Fig. 1a, red nodes) as input 
and returns as output four points xk = (xk, yk), k ∈ {0, 1, 2, 3} to form the 
parallelogram:
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x0
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x3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2)

Our choice of parameterization measures a kind of eccentricity of the 
parallelogram (its departure from a rhombus) by the offset ϵ and forms 
a counterclockwise polar coordinate system (r = 1 + ϵ, −ϕ) centered at 
x0 with ϕ = 0 in the direction of x3 − x0. When ϵ = 0, the parallelogram 
is a rhombus, and when ϵ = −1, the parallelogram degenerates to two 
equal collinear line segments with x0 = x1 and x2 = x3. Otherwise, so long 
as ϕ ≠ 0, π, the generated points x form a parallelogram in ℝ2 for all 
values of ϵ. The points are ordered counterclockwise when ϕ < π, clock-
wise when ϕ > π and are collinear when ϕ = π. Holding ϵ constant keeps 
each edge length in the parallelogram constant, while varying ϕ casts 
the parallelogram as a four-bar linkage. This allows for a one-dimen-
sional (1D) deployment path, whereby two of the opposite interior 
angles in the linkage are ϕ and the other two are π − ϕ (Supplementary 
Section 1.1 provides more details). There are two major advantages for 
using parallelogram negative spaces. First, as described above, paral-
lelogram slits have a simple parameterization involving only one param-
eter ϕ and one offset parameter ϵ, substantially simplifying the final 
formulation for the kirigami design problem for large linkage arrays. 
Second, using parallelogram slits makes it easy to create rigid-deployable  
patterns that can morph from a closed and compact state to any 
deployed state, as we will discuss in Methods.

Linkage strips and linkage arrays. Now we will analyze the design of 
two parallelogram four-bar linkages having one common point and 
generalize this system to strips and arrays of connected linkages. Con-
sider the first two adjacent linkages in the first row of Fig. 1b, composed 
of seven total nodes, so that one node is shared by both. The linkage 
points can be labeled x0

j, k , where j ∈ {0, 1} is the linkage index, 
k ∈ {0, 1, 2, 3} is the point in the linkage index, and x0

0, 2 = x0
1,0 denotes 

the shared node. The linkages each have their own deployment angles 
ϕ0
j  and offsets ϵ0j . It can be observed that once x0

0,0, x0
0, 3, ϕ0

0 and ϵ00 in 
the first linkage are given, x0

0, 1 and x0
0, 2 are uniquely determined. In 

particular, as x0
0, 2 is already determined, it suffices to prescribe x0

1, 3, 
ϕ0

1  and ϵ01  to uniquely determine all points in the second linkage.
We can apply this insight to a more complex linkage strip of n  

linkages x0
j, k  as shown in the first row of Fig. 1b, where j ∈ {0, …, n − 1} is 

the linkage index, k ∈ {0, 1, 2, 3} is a point in the linkage index, and 
x0
j, 2 = x0

j+1,0  denotes a shared node. In other words, we can obtain a 
series of linkage design matrices D0

0, D
0
1 , … , D0

n−1  that encode  
the recursive dependency of the nodes on the previously determined 
nodes via dynamic programming (Supplementary Section 1.2).  
Once the relationship in a linkage strip is determined, we can proceed 
to consider the relationship in a linkage array consisting of  
multiple linkage strips analogously, noticing that the (i, j)th linkage  
in the array is dependent on all linkages ( ̃i, ̃j) with ̃i ≤ i  and ̃j ≤ j   
recursively (Supplementary Section 1.3 provides more details). More 
specifically, the entire linkage array is dependent of the seed nodes 
{x0

0,0, x
0
0, 3, x

0
1, 3, … , x0

n−1, 3, x
1
0,0, x

2
0,0, … , xm−10,0 }  consisting of all the 

left boundary points and all the top boundary points in the linkage 
array (Fig. 1b, red nodes), the deployment angle field {ϕij}  and the  
offset field {ϵij}. We remark that the deployment angles {ϕij} have to 
satisfy certain additional conditions to yield a kirigami pattern  
with different physical properties such as contractibility and compact 
reconfigurability, which will be discussed in Methods.

Global linear inverse design via matrix operations. Putting  
all of these pieces together, for an array of m × n planar parallelo-
gram four-bar linkages with nodes {xij, k}, i ∈ {0, 1, … , m − 1},
j ∈ {0, 1, … , n − 1}, k ∈ {0, 1, 2, 3} , we obtain a full linkage array  

design matrix M of size (4mn + 2m + 2n) × (2m + 2n). In particular,  
we have
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where Dij  are the linkage design matrices, which can be expressed in 
terms of the following generator matrices using dynamic programming 
(Supplementary Section 1.3 provides more details):

[
G0,0
i, j G0, 1

i, j

G1,0
i, j G1, 1

i, j

] = [
I − (1 + ϵij)R(−ϕ

i
j) (1 + ϵij)R(−ϕ

i
j)

−(1 + ϵij)R(−ϕ
i
j) I + (1 + ϵij)R(−ϕ

i
j)
] (5)

The sparsity of the matrix M forms a simple pattern (Fig. 1c): after 
the first block row, each of the next n set of three block rows has entries 
in a new block column unoccupied by all block rows above it in  
the matrix. For example, the fifth, sixth and seventh block rows in 
equation (3) contain G0, 1

0, 1, G1, 1
0, 1 and I, respectively, as entries in the third 

block column, which contains only zero entries in the block rows above 
the fifth. After that, each of the next (m − 1) set of (n + 1) block rows  
has entries in a new block column unoccupied by all block rows  
above it in the matrix. This makes it easy to observe that a submatrix 
Msub of M composed of any two block rows from the first four  
block rows, and one block row from each of the subsequent sets  
of block rows (that is, with a total of 2 + (n − 1) + (m − 1) = m + n block 
rows) will be a (2m + 2n) × (2m + 2n) square matrix with full rank and 
hence invertible.

This observation suggests a linear design strategy for quad 
kirigami patterns. To create a quad kirigami pattern consisting  
of (m + 1) × (n + 1) quads, we need to fully determine an array of  
m × n planar parallelogram four-bar linkages representing all  

i+1

a

b c

d
α

γ

δ

β

α

γ

δ

β

φj φi
j+1

π–φj

i

i–1

π–φj

φj+1
i–1

a c

10

8

6

4

2

0

b

ε

Non-contractible Contractible Compact reconfigurable
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angle constraints related to contractibility and compact reconfigurability can 
all be expressed in terms of the deployment angles of adjacent linkages and 
encoded in the design matrix. The top panel shows a contracted unit cell of four 
quads with the four angles α, β, γ, δ at the center. The bottom panel shows a 
deployed configuration of the unit cell, where ϕij, ϕ
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j−1, ϕ
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j+1 are the deployment 

angles of adjacent linkages. Note that the four angles α, β, γ, δ highlighted in red 
determine the contractibility of the unit cell, while the four angles highlighted 
in blue determine the compact reconfigurability of it. b, Example choices of the 
deployment angle field {ϕij} that lead to a non-contractible pattern (left), a 
contractible pattern (middle) and a compact reconfigurable pattern (right). 
The top row shows three patterns obtained using the proposed design method 
with a given deployment angle field, where the same linkage boundary node 

constraints (highlighted in red) and corner constraints (highlighted in blue) are 
used. In all examples, the offset field {ϵij} is set to be 0. The bottom row shows 
the two maximally contracted configurations of each pattern, where the red 
crosses indicate that the maximally contracted configurations are not closed 
and compact and the green check marks indicate that they are closed and 
compact. It can be observed that two closed and compact contracted 
configurations can be achieved only by using a deployment angle field 
satisfying the compact reconfigurability condition. c, Example choices of the 
offset field {ϵij} for the 3 × 3 negative space in a 4 × 4 kirigami pattern. Three 
compact reconfigurable, rigid-deployable heart shapes are obtained by solving 
the matrix equation, with the offset at each of 3 × 3 linkages shown in the 
corresponding square indicators (see the blue/red gradient for the values  
of each ϵ).
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negative spaces. This linear inverse design process for the linkage array 
is summarized as follows:

 1. Assemble the full linkage array design matrix M (Fig. 1c, first  
panel). Note that this requires choosing the deployment angle 
ϕij and offset ϵij for each linkage (i, j), which will be discussed in 
detail in the next section.

 2. Choose a subset of (m + n) points { ̃x0, ̃x1, … , ̃xm+n−1} in the  
linkage array such that the corresponding block rows of them in 
M form a (2m + 2n) × (2m + 2n) matrix Msub with full rank (Fig. 1c, 
second panel). The coordinates of these points can be pres cribed  
directly by the designer as boundary conditions. We can then 
use them to find the seed nodes in equation (3):

⎡
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⎢
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⎢
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(6)

In particular, if we simply choose { ̃x0, ̃x1, … , ̃xm+n−1}  to be the seed 
nodes (that is, all the top and left boundary points in the linkage array), 
then Msub is simply the (2m + 2n) × (2m + 2n) identity matrix.

 3. Calculate the full linkage array by a direct matrix multiplica-
tion using equation (6) together with equation (3) (Fig. 1c, third 
panel).

 4. For the boundary nodes of the (m + 1) × (n + 1) kirigami pattern 
that are not included in the linkage array, one can determine 
their coordinates uniquely using the linkage array obtained in 
the last step together with four prescribed corner positions and 
a set of desired boundary offsets (Supplementary Section 1.4 
provides details).

Choices of the deployment angles and the offsets. As discussed in 
the above subsection on linkage strip and linkage arrays, the full  
design matrix M is determined by the deployment angles and offsets 
of every four-bar linkage negative space. Here, the angles {ϕij} in the 
negative spaces are related by certain local angle rules. Depending  
on the desired properties of the resulting kirigami pattern, the  
degrees of freedom in them will be different. In particular, note that 
the angles of the tiles can be expressed in terms of the deployment 
angles (Fig. 2a). Therefore, we can achieve contractibility15, reconfigur-
ability17 and rigid-deployability17 by enforcing additional constraints 
on the deployment angles {ϕij} (Fig. 2b). The offsets {ϵij} of all linkages 
can be chosen independently as long as they do not lead to degene-
racies or self-intersections (Fig. 2c). More details are provided in 
Methods.

Linear and nonlinear inverse design
With the proposed additive design approach, we now have full  
control of the design of quad kirigami patterns. In particular, we have 
characterized the design space of contractible quad kirigami pat-
terns as well as that of rigid-deployable, compact reconfigurable quad  
kirigami patterns. We can inverse design all such patterns by pre-
scribing the desired interior properties via the deployment angle and  
offset fields in the design matrix, specifying certain boundary con-
ditions, solving a matrix equation to find the corresponding seed  

coordinates, and finally using direct matrix multiplication to obtain 
the resulting patterns. Moreover, as the deployment angle field and the 
boundary conditions are set in two separate steps, this linear design 
approach suggests that it is possible to control the target shape of a 
kirigami pattern (related to the boundary conditions) and the state  
of deployment (related to the deployment angle) separately. To illus-
trate this idea, in Fig. 3a we design two rigid-deployable, compact  
reconfigurable kirigami patterns that deploy to a circle at the deployed 
state with ϕ = π/2 (that is, all negative spaces are rectangular) and a 
trapezium at the deployed state with ϕ = π/4 (that is, all negative 
spaces are parallelograms with the acute angle being π/4), respec-
tively, from which it can be observed that we have precise control of the 
shape matching and the deployment angle (Supplementary Section 3  
presents more results).

A natural next question is whether it is possible to match multiple 
target shapes at multiple stages of deployment. Since the boundary 
conditions have already been used for enforcing the shape of the pat-
tern at a certain stage, we cannot use them to control the shape at 
another state. Nevertheless, there are still DOFs in the angles and edge 
lengths in setting the design matrix. This suggests a nonlinear inverse 
kirigami design approach for approximating multiple prescribed 
shapes at multiple states: given a certain nonlinear objective function 
that quantifies the optimality of a kirigami pattern, we can search for 
an optimal pattern effectively by solving the optimization problem 
over the remaining set of the design parameters. For example, we can 
solve for a second contracted target shape by fixing the deployment 
angle as ϕ = π and optimizing the offset parameters {ϵij} (Supplemen-
tary Section 2 provides more details). Figure 3b shows various nonlin-
ear inverse design results of rigid-deployable, compact reconfigurable 
kirigami patterns that morph from a closed and compact square to a 
second closed and compact target shape. For example, similar to the 
results of our recent work that uses a complementary global optimiza-
tion approach17, our current method is capable of producing a square-
to-circle shape change. However, our method can go further as we can 
design many more different target shapes with different curvature 
properties at the second contracted state (Supplementary Section 3), 
owing to the simplified parameter space in the proposed additive 
design formulation.

With the above linear and nonlinear inverse design results, one 
may ask about the limit of the shapes achievable by introducing  
cuts within a square. As the design space of the rigid-deployable,  
compact reconfigurable quad kirigami patterns is fully characterized 
by our framework, we can easily generate a large number of such  
patterns by setting the design matrix parameters randomly and  
perform a statistical analysis. Here we fix the linkage array size  
as m × n = 10 × 10 and generate 10,000 kirigami patterns on a unit 
square with random offsets {ϵij}. More specifically, for each trial, the 
boundary nodes of the pattern are enforced to lie on a unit square with 
uniform spacing, and the deployment angle ϕ is set to be 0. For the 
offset ϵij  of each linkage (i, j), we first randomly sample rij ∈ [−1, 1]  
and then set ϵij = 10r

i
j − 1 , thereby ensuring that ϵij ∈ [−0.9, 9]  and  

that there is no degeneracy. We then use the proposed method  
with the above parameters to obtain a rigid-deployable, compact 
reconfigurable square kirigami pattern, and then assess the geometric 
properties of its fully deployed configuration (ϕ = π/2) and its second 
contracted configuration (ϕ = π) such as diagonal ratio and area  
as functions of ϕ (Supplementary Section 4 provides more details). 
Specifically, by considering the ratio rd between the two diagonal 
lengths of a structure at different states, we can assess the shear of  
the overall shape as ϕ increases. As shown in Fig. 3c, the diagonal  
ratio at the fully deployed state (rd(π/2)) and that at the second con-
tracted state (rd(π)) forms a linear relationship. It is also note worthy 
that the reconfigured diagonal ratio is always larger than the  
deployed diagonal ratio, which suggests a natural limitation on  
the possible shape change achievable throughout the deployment.  
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As for the overall area of the pattern ra, it can be shown that the  
maximum deployed area of the pattern is always achieved at ϕ = π/2. 
Comparing the diagonal ratio and the maximum deployed area  
of the random patterns, we find that these quantities are positively 
correlated. One can also consider other quantities such as the  
side length ratio rl and study the relationship between them (Supple-
mentary Section 4). We remark that as the proposed design framework 
only involves simple matrix operations, the generation and  
analysis of each pattern are highly efficient and take less than 0.5 s  
on a laptop.

Physical model fabrication
Moving from the additive design of kirigami structures to physically 
realizing rigid-deployable, compact reconfigurable kirigami patterns 
requires a careful treatment of the hinges between the tiles to enable 
compact reconfigurability of the patterns in practice. Although it is 
possible to use tape joints to connect the tiles as illustrated in our 
earlier work17, the fabrication is time-consuming and the hinges are 
likely to fatigue and break. To circumvent both issues, we propose two 
fabrication techniques for manufacturing robust kirigami models: an 
additive manufacturing (3D printing) method (Fig. 4a–d) and a molded 
elastomeric composite method (Fig. 4e–h). More details are provided 
in Methods.

Discussion
Our additive perspective for kirigami design circumvents the difficulty 
of non-convex optimization in favor of a much simpler recursive method 
based on linear algebra. By parameterizing each negative space by two 
parameters ϕ and ϵ and formulating the kirigami design problem as 
a matrix multiplication based on the relationship between adjacent 
linkages, our method decouples the fields of deployment angles and 
lengths of the cut patterns and hence gives a better understanding of the 
design space of quad kirigami. From the structure of the design matrix, 
one can also precisely identify the degrees of freedom in the control 
of the overall pattern shape from the viewpoint of matrix rank. Alto-
gether, our proposed formulation effectively characterizes the design 
space of quad kirigami patterns for a range of problems in science and 
engineering. Complementing this, our combination of 3D printing 
and casting approaches provides a relatively inexpensive and efficient 
way of manufacturing kirigami models with fatigue-resistant hinges.

A limitation of our work is that our approach currently only focuses 
on 2D quad kirigami design with parallelogram negative spaces. Possi-
ble future directions include extending the additive design formulation 
to more general kirigami patterns with non-parallelogram negative 
spaces15 or other polygons, as well as generalizations to non-planar 
linkages in 3D, which would require the consideration of additional 
geometric constraints.
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Fig. 3 | Linear and nonlinear inverse design of quad kirigami patterns using 
the proposed framework. a, Rigid-deployable, compact reconfigurable kirigami  
patterns that approximate a target circle and trapezium at two prescribed  
deployed states ϕ = π/2 and ϕ = π/4, respectively. b, Patterns that morph from a  
square to a circle (positive curvature) and a star shape (mixed curvature) in the  
second contracted state. c, Statistical analysis of 10,000 compact reconfigurable, 
rigid-deployable square kirigami patterns with random cuts. The left column 

shows the deployment paths of three random patterns. The middle and right 
plots show the relationship between the diagonal ratio at the fully deployed state 
rd(π/2), the diagonal ratio at the second contracted state rd(π) and the maximum 
deployed area ra(π/2) for all 10,000 randomly generated patterns, where each red 
dot represents a pattern. The positions of the three example patterns on the two 
scatter plots are boxed.
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Methods
Choice of deployment angles and offsets
Contractibility. For a quad kirigami pattern to be contractible, each 
unit cell consisting of four adjacent tiles has to satisfy an edge-length 
constraint and an angle-sum constraint15. Specifically, suppose the four 
edges of a negative space have length a, b, c, d and the four angles of 
the tiles are α, β, γ, δ as shown in Fig. 2a, then the following conditions 
must be satisfied:

a + d = b + c (7)

α + β + γ + δ = 2π (8)

In our formulation of the parallelogram four-bar linkages, we have 
a = c and b = d and hence the edge-length constraint in equation 
(7) is automatically satisfied (note that here we do not require the  
four angles to meet at a common point, as we have the flexibility  
to change the offset). Now, we rewrite the angle-sum constraint  
using the deployment angles of the (i, j)th four-bar linkage and its 
adjacent linkages. As shown in Fig. 2a, we have

α + δ + (π − ϕij) + (π − ϕi+1j ) = 2π (9)

β + γ + (π − ϕij) + (π − ϕi−1j ) = 2π (10)

ca b

e f hg

d

10 cm

10 cm

Fig. 4 | Physical model fabrication for rigid-deployable kirigami fabricated  
via a 3D printing-based method and a cast silicone composite method.  
a,b, Snapshots of the deployment of the heart pattern in Fig. 2c (a) and a 
corresponding 3D-printed model (b). c, A vector file of the pattern mid-deployment 
imported into 3D modeling software and extruded to a chosen thickness. Slots 
are digitally cut out for installing textile hinges, and temporary trusses added to 
fix deployment angles for hinge installation. Larger holes make it easier to insert 
hinges, and patterns can be processed in symmetric subunits for efficiency and later 

mirrored or rotated. d, Once the rigid tiles are 3D-printed, fabric hinges are inserted 
in the slots using tweezers, as shown in the zoom-in image. The hinge insertion holes 
can later be covered for esthetic purposes. e,f, Snapshots of the deployment of the 
circle-square pattern in Fig. 2c (e) and a corresponding pink elastomeric model (f). 
g, A laser-cut mold based on a deployed configuration (bottom) is created with the 
vector file of the pattern shown in the top panel. h, Fabric pieces are inserted in the 
gaps between mold pieces using tweezers (top), and the mold is filled with blue 
silicone rubber to form the final soft kirigami sheet (bottom).
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Therefore, the angle-sum constraint in equation (8) can be rewritten as

ϕi−1j + 2ϕij + ϕ
i+1
j = 2π (11)

As the deployment direction of adjacent linkages is alternating, for the 
entire m × n linkage array, we have

{
ϕi−1j + 2ϕij + ϕ

i+1
j = 2π if i + j is odd,

ϕij−1 + 2ϕij + ϕ
i
j+1 = 2π if i + j is even

(12)

where i = 0, …, m − 1 and j = 0, …, n − 1. Note that some of the above 
equations involve ghost points with out-of-range indices, namely 
ϕ−1
j , ϕmj , ϕ

i
−1, ϕ

i
n, which are free variables that can be prescribed arbi-

trarily. Once the values of them have been prescribed, equation (12) 
has full rank and gives a unique set of ϕij values for all i, j. In other words, 
the number of degrees of freedom in the space of deployment angles 
of a contractible m × n linkage array is exactly 2(m + n).

Figure 2b (left) shows an example deployed pattern obtained by 
the linear inverse design approach, where the offset field {ϵij} is set to 
be uniformly 0 in the design matrix and the deployment angle field {ϕij} 
is set arbitrarily. The coordinates of certain linkage array boundary 
nodes (red) are prescribed as the boundary conditions for solving the 
seed coordinates to obtain the linkage array, and then the four corners 
of the kirigami pattern (blue) are further prescribed to uniquely deter-
mine the remaining boundary nodes of the resulting kirigami pattern. 
It can be observed that the resulting pattern is non-contractible, with 
the two maximally contracted states containing holes. By contrast, Fig. 
2b (middle) shows an example pattern obtained by the linear inverse 
design approach with the contractibility constraint in equation (12) 
enforced in the design matrix and all other parameters being the same 
as the previous example. This time, we can see that the resulting pattern 
admits a closed and compact contracted configuration.

Reconfigurability. For a kirigami pattern to be compact reconfigur-
able, that is, admitting two closed and compact contracted states, 
it should satisfy the above contractibility constraints as well as a set 
of dual edge-length constraints a + b = c + d and dual angle-sum con-
straints17. In the formulation of the parallelogram four-bar linkages, 
the dual edge-length constraint is again automatically satisfied as we 
have a = c and b = d in Fig. 2a. Note that the dual angle-sum constraint 
at every four-bar linkage (i, j) is simply the dual case in equation (12). 
In other words, for a compact reconfigurable quad kirigami pattern, 
the corresponding linkage array should satisfy

⎧
⎨
⎩

ϕi−1j + 2ϕij + ϕ
i+1
j = 2π,

ϕij−1 + 2ϕij + ϕ
i
j+1 = 2π (13)

for every pair of (i, j) ∈ {0, 1, …, m − 1} × {0, 1, …, n − 1}. This implies that

{
ϕij = ϕ if i + j is even,

ϕij = π − ϕ if i + j is odd
(14)

where ϕ is the deployment angle of the first linkage in the array. In other 
words, there is exactly one degree of freedom in the entire deployment 
angle field {ϕij}. In particular, this degree of freedom captures the state 
of deployment of the pattern. Note that this agrees with the observation 
in our recent study17. Figure 2b (right) shows an example pattern 
obtained by solving the matrix equation with equation (13) enforced, 
where the boundary condition is given by the same set of boundary 
linkage vertices (red) and corner vertices (blue) as in the previous 
examples. It can be observed that the resulting pattern admits multiple 
closed and compact contracted configurations. We also note that, due 

to the difference in the flexibility of the angle field, the resulting pat-
terns in Fig. 2b are substantially different in shape.

Rigid-deployability. For the structure to be able to morph from a 
closed and compact contracted state to a deployed state with no tile 
strain, we need to satisfy certain conditions on the edge lengths and 
angles of the kirigami tiles17. Adapting this idea to the current addi-
tive design framework, we note that rigid-deployability depends on 
the geometry of the parallelogram four-bar linkages as well as the 
contractibility and compact reconfigurability discussed above. For 
any non-contractible pattern, for example the case in Fig. 2b (left), 
the pattern is always rigid-deployable between the two maximally 
contracted states, as the parallelogram four-bar linkages can deploy 
and contract without any geometrical frustration. For any contractible 
pattern, for example the case in Fig. 2b (middle), rigid-deployability 
near the fully contracted state depends on the geometry of the four-
bar linkages. If all four-bar linkages are not rhombi, they will always 
form a straight line at the fully contracted state and hence the kirigami 
pattern is rigid-deployable between the fully contracted state and the 
second maximally contracted state. However, if some of the four-bar 
linkages are rhombi, they do not necessarily form a straight line at 
the fully contracted state and hence the pattern will generally not be 
rigid-deployable unless certain extra angle constraints are enforced, 
as described in ref. 17. In fact, it can be observed that the contractible 
kirigami pattern in Fig. 2b (middle) contains negative spaces that do 
not form a straight line in the fully contracted state, which indicates 
that the pattern is not fully rigid-deployable but only rigid-deployable 
within a certain range of angles (Supplementary Section 1.5 provides a 
more detailed discussion).

For any compact reconfigurable pattern created by our approach, 
such as in Fig. 2b (right), the parallelogram four-bar linkage assumption 
together with the angle constraint in equation (14) will automatically 
satisfy the conditions for rigid-deployability in ref. 17. Therefore, the 
compact reconfigurable kirigami patterns created by our approach 
are always rigid-deployable.

Offset field. We note that the offsets {ϵij} of all linkages can be chosen 
independently as long as they do not lead to degeneracies or self-
intersections. As shown in Fig. 2c, different choices of the offsets  
can be used for creating a compact reconfigurable, rigid-deployable 
heart structure. Setting a uniform offset ϵij = 0 at all linkages leads to  
a more regular and symmetric second contracted state (top row),  
while setting a large offset ϵij ≫ 1 for one particular linkage creates a 
more irregular shape locally (middle row). Setting a large offset at 
multiple linkages produces a much more irregular second contracted 
state (bottom row). This naturally raises the question of what  
conditions would yield admissible kirigami patterns without self-
intersection, just as in origami23. A detailed analysis (Supplementary 
Section 1.6) allows us to establish a theorem ensuring no self- 
intersections, and also provides empirical insights relevant for practical 
applications.

Implementation
The proposed framework is implemented in Python. Note that our 
framework involves solving a matrix equation to determine the deploy-
ment angle field {ϕij}  (either using the contractible formulation or  
the compact reconfigurable formulation), and a matrix equation  
to find the seed positions in the linkage array from the prescribed  
node positions. These matrix equations are solved using the function 
numpy.linalg.solve.

For generating patterns that approximate a target shape, we com-
pute the projection of the boundary points onto the target shape  
using the Python package shapely and evaluate the distance between 
them. The nonlinear optimization is done using Python’s optimization 
and root finding toolbox scipy.optimize. We set all ϵij = 0  as the  
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initial condition and search for the optimal ϵij ∈ (−1, ∞) for all linkages. 
Empirically, we do not observe self-intersections in the optimization 
results, even without imposing any additional constraints, possibly 
due to the fact that the occurrence of self-intersections is related to 
extreme values of ϵij, which are far from the initial condition. However, 
if one wants to ensure that there is no self-intersection, it is possible to 
further restrict all ϵij to a smaller range or introduce additional inequal-
ity constraints enforcing that all tile and linkage orientations are con-
sistent (by considering the direction of the outward normal vector 
obtained using the cross product of two edges).

Physical model fabrication
We have introduced two fabrication approaches for producing rigid-
deployable kirigami structures, namely the 3D printing approach and 
the rubber molding approach. Although fabrication is not limited  
to these two approaches, the purpose of introducing two methods 
is to give multiple viable options for construction, which come with 
the trade-offs from variations in the fabrication strategy, as well as 
differing materials compatible with the two approaches. The 3D 
printing approach presented below can be expanded to incorporate 
more complex geometries more easily than the casting approach. The 
printed method also can be leveraged for more modular assembly 
strategies and inline customization. The molding approach can be 
modified to achieve a higher throughput than would be possible with 
the printing approach. Using a soft resin in the casting method can also 
enable some designs that must pass through geometric frustration, as 
well as simplifying the mold design by not requiring draft angles and  
relief features. Casting could also be done with a more rigid resin, or a 
combination of rigid and soft materials.

Overview. To illustrate the 3D printing method, we fabricated the  
heart pattern obtained by the linear inverse design using this  
approach (Fig. 4a–d). The rigid tiles were created by 3D printing, with 
hollow slots where fatigue-resistant fabric hinges could be glued in 
place (Fig. 4d). Although the tiles can be printed individually and 
arranged for maximal packing density on a printer bed, we chose to 
print the tiles in a configuration halfway deployed between the two 
target design configurations so as to facilitate hinge insertion and 
balancing tension in the assembly. A vector file of the tile pattern was 
imported into a CAD software (Fusion360) and extruded to the desired 
thickness (20 mm for the heart example in Fig. 4b). Slots, 0.75 mm in 
width, were cut into the tiles of the CAD file to create space for the 
insertion of a fabric hinge, and allow for the tolerance of the printer 
(Flashforge Creator Pro), as well as the printing settings used to create  
the tiles. The additional circular openings visible in Fig. 4d were 
included to enable the use of tweezers to quickly place the fabric pieces. 
The slots and circular pocket cut in the CAD were extended to 2 mm 
above the bottom face of the tiles, leaving connecting material on the 
bottom for structural integrity and to hide the hinge attachment for 
esthetic purposes. Similarly, a 2-mm cap was printed and glued in place 
to cover the insertion holes and slots for the fabric hinges. As a final CAD 
step, temporary trusses were added in the negative spaces between 
tiles to guide tile alignment for hinge insertion and gluing. Each truss 
was ~2 mm wide and 0.5 mm tall and extended between opposite tile 
faces inside the negative spaces. The trusses were aligned with the 
bottom face to be printed to avoid adding support material. The heart 
example was divided in half and mirrored to both fit the build platform 
of the fused filament fabrication (FFF) printer used and to reduce the 
amount of modeling work and modification required. Although this 
CAD preparation was done manually, it is possible to automatically 
generate parametric models, which are then used to create an STL and 
tool path that could be sent to a printer.

Once printed, 20-mm strips of fabric were cut and placed inside 
each of the slots with the help of tweezers. The fabric was then glued 
in place with a few drops of cyanoacrylate (superglue) placed at the 

intersection of the circular pocket and hinge slots, with care taken 
to not flood the fabric exposed in the hinge with glue as this would 
rigidify the hinge. After the hinges were installed, the trusses were 
trimmed away with an exacto blade. The caps mentioned above were 
then glued over the side of the tiles with the exposed hinge slots and 
circular pockets for esthetic purposes. This approach yields deployed 
shapes that match the computational result very well; additionally, the 
resulting rigid-deployable, compact reconfigurable kirigami structures 
have high bending stiffness.

We can also create much softer kirigami sheets using a molding 
approach (Fig. 4e–h). We start by producing a laser-cut acrylic molds 
based on a deployed configuration of the kirigami patterns obtained 
by our framework. A vector file of the pattern can be minimally edited 
in vector editing software to add alignment pin holes, add an outer 
border to the mold, and prepare the file to be received by commercial 
laser cutters. Alternately, processing of the patterns to a laser-cutter-
compatible file could also be automated with Python script. The mold 
could also be printed or machined, but laser-cut acrylic is quick to fabri-
cate, laser cutters are relatively prevalent in industrial and academic 
fabrication spaces, and the acrylic is inexpensive and compatible with 
the molding process. As an added benefit, the laser-cut acrylic does 
not require mold release. The mold can be glued together, but we 
used pins with a light press fit (less than 10 pounds of force) to both 
align the mold pieces and hold them together. The press fit pins are 
inexpensive, provide sufficiently precise locating between parts, and 
can be assembled by hand or with a pair of pliers.

Once the mold is assembled, we use tweezers to insert textile 
pieces into the mold between mold pieces, as shown in Fig. 4h. 
These textile pieces will form the hinges. Before placing them in the  
mold, the textile pieces are coated in the two-part liquid silicone  
rubber that will fill the mold to form the soft kirigami sheet in which 
the hinges will be embedded. The physical model in Fig. 4f was  
made with Elastosil (Wacker Chemie, M4601AB) with cheesecloth 
hinges (McMaster-Carr, PN8808K11), and the physical model in  
process in Fig. 4h was made with DragonSkin 20 (SmoothOn)  
and generic herringbone cotton twill tape (0.25-inch ribbon) for the 
hinges. Dipping the textile hinges in rubber before installing them  
into the mold ensures saturation of the textile and full mechanical 
incorporation in the rubber, as well as helping to minimize bubble 
entrapment during the mold-filling process. We install our rubber-
coated fabric hinges in place before the rubber cures, then fill the  
rest of the mold with a silicone rubber to produce a physical model. 
This approach facilitates the fabrication of large arrays and allows  
us to minimize the size and stiffness of the hinges. For illustra-
tion, we fabricated the square-to-circle pattern obtained by the  
nonlinear inverse design (Fig. 4e) and observed that the deployment 
of the physical models (Fig. 4f) matched that of the computational 
results very well.

Digital preparation of 3D-printed physical models. An overview 
of the process for preparing the kirigami design for the 3D printing 
is shown in Supplementary Fig. 20, and the post-processing, hinge 
insertion, and assembly of the printed kirigami tiles are shown in  
Supplementary Fig. 21. The kirigami is first saved in a vector format 
(such as a dxf file) to be imported into a 3D modeling software pack-
age. The result of importing a dxf file of the heart structure into a 
sketch within Fusion360 (Autodesk’s 3D modeling software) is shown 
in Supplementary Fig. 20a, but this approach of preparing the kirigami 
pattern for printing can be accomplished in various other 3D modeling 
software packages or automated via a Python script. The workflow, 
which may be adapted to various software packages, begins with a vec-
tor sketch of the kirigami pattern, which is extruded perpendicularly 
to the sketch plane, as shown in Supplementary Fig. 20b, to create a  
3D structure. Designs with symmetric subunits can be divided,  
as shown in Supplementary Fig. 20c, for later mirroring or rotation, 
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thus saving time and allowing larger assemblies to be made on small 
printer platforms.

For this rigid-deployable kirigami pattern, we add open slots in 
the extruded tiles into which textile hinges can be added after print-
ing. These slots are indicated on an individual tile in Supplementary  
Fig. 20d. Circular clearance pockets are added to the ends of the slots in 
the tiles, and the pockets are large enough to allow the use of tweezers  
for hinge insertion. Alternately, larger portions of the tile interior 
can be removed, as shown in the second half of the deployable heart 
in Supplementary Fig. 21. Removal of additional material maximizes 
clearance and reduces overall material usage in the printing process. 
For structural integrity and esthetic purposes, however, the hinge 
slots and clearance pockets do not extend through the full thickness 
of the tiles. The thickness of the slot will depend on the hinge textile 
used, the printer tolerance and the overall scale of the assembly. For 
this particular instantiation of the design, the tiles were 15 mm thick, 
the slots were 1.5 mm wide (tslot) and the height of the slots was 12 mm 
(hslot), thus leaving 3 mm of thickness on the bottom of the tile. The 
center line of the slot intersects the corner of the individual tiles, but it 
is not necessary for the slots to form a straight line between tiles, nor is 
it necessary for the slot to bisect the insertion angle of the tile corners, 
as is visible in Supplementary Fig. 20d,e.

As a final step before printing, temporary trusses are added in the 
negative spaces to hold the tiles in a fixed, partially deployed configura-
tion. As shown in Supplementary Fig. 20f, the trusses hold the align-
ment of the tiles for hinge insertion and are later removed. Although the 
trusses are helpful to the assembly process, they are not necessary and 
could be eliminated to allow for greater packing density on the printer 
bed. The cross-section of the trusses is ~0.5 mm × 2 mm and they are 
oriented such that they are printed against the bed, with the first few 
layers of the model. The trusses should be thick enough that they are 
not broken when the tiles are removed from the printer platform or 
when the hinges are installed, but they are also thin enough that they 
can be easily trimmed with a flush cutter or a knife.

3D printing of physical models and hinge installation. The proto-
type shown in Supplementary Fig. 21 was printed on an FFF printer 
(Flashforge Creator pro, Zhejiang Flashforge 3D Technology Co.), 
using 1.75-mm polylactic acid (PLA) filament (Hatchbox), and can be 
easily translated to other printers and printed materials. By print-
ing the tiles in a deployed configuration and not in either of the fully 
compact states, we minimize the processing after printing that needs 
to be done to separate the tiles. An example of a single textile hinge 
before installation is shown in Supplementary Fig. 21a. The length of 
the hinge does not need to be precise, but a hinge is easier to insert 
with the use of one or two tweezers, in which case the hinge must be 
long enough to span two of the clearance pockets. After the hinges are 
in place and positioned as desired, superglue can be used to tack the 
fabric to the inside of the tiles, adding a few drops to the slot from the 
inside of the clearance pockets, leveraging the low viscosity of the glue 
to wick into the slot. Care should be taken to not get glue on the span 
of hinge exposed between tiles, as this would rigidify the hinge textile 
and prevent the hinge from bending freely.

Finishing details for 3D-printed models. For esthetic purposes, we use 
a set of 3D-printed caps to cover the holes and form the closed tiles of 
the kirigami structure. The caps are the same profile as the tiles and can 
be glued or press-fit into place. In the example shown in Supplementary 
Fig. 21, the caps are 2 mm thick and have 2-mm-thick circular extrusions 
on the inner surface that line up with the clearance pockets. These extru-
sions are not necessary but assist with alignment. Depending on the 
printer and material used, as well as the press fit desired, the extrusions 
may vary from oversized to undersized for the fit with the clearance 
pockets. In the example shown, the physical model is printed in PLA 
with 30% infill, three outer solid layers, a line-to-line fit and a chamfer. 

The purpose of the chamfer is to help with insertion. The result was a 
light press fit capable of holding most of the caps in place. The tolerance 
and print quality was such that a couple of the caps did not stay in place 
without light applied pressure, but permanent installation of the caps 
was accomplished by gluing them in place and thus the tolerances were 
sufficient. To fix the caps in place, a bead of hot glue was piped into the 
clearance pockets and the cap was pressed on top. The hot glue can also 
reinforce the interior attachment between the hinges and tiles or may 
replace the superglue if there is enough contact area of the textile, glue 
and tile interior. Given the low melting temperature of PLA, care must 
be taken with applying hot glue. This can also be improved by print-
ing parts in a higher-temperature plastic such as nylon, acrylonitrile 
butadiene styrene (ABS) or stereolithography (SLA) resin.

Living hinges as a 3D-printed alternative. A construction technique 
using living hinges could be used in place of the textile hinge installation 
process described above. For a living hinge, the hinge material is the 
same as that of the tile in a thin enough geometry that it can bend with-
out breaking. The textile was chosen for our physical models because 
it is less likely to fatigue or tear while reaching a near-zero pivot radius.

Mold preparation for molded rubber physical models. Details of the 
fabrication procedure of the rubber molding approach are given below, 
with illustrations of the mold preparation in Supplementary Fig. 22 and 
pictures of the molding and hinge installation in Supplementary Fig. 23. 
The mold is cut from a 6.35-mm (0.25 inch) sheet of acrylic. The mold 
consists of two layers that are held together with 0.0625-inch-diameter 
stainless-steel pins that are press-fit into holes that span both layers. 
The mold pieces could also be glued or bolted together. We find that 
the press-fit attachment is easy to deconstruct and the ability to quickly 
pull rigid mold tiles from the assembly without any tools required 
facilitates removal from the mold after the rubber has fully cured.

To create a mold, we start with a vector file of the kirigami design 
and turn it into a vector file like the ones shown in Supplementary  
Fig. 22a,b to laser-cut an acrylic sheet. A shown, we use a configuration 
approximately halfway through the transition between fully compact 
states to minimize small angles and small parts that could be difficult 
to assemble. Laser-cutting the transition state creates tiles of both 
the positive tile shapes and negative spaces of the four-bar linkage 
network that makes up the kirigami sheet. Assembling a mold of the 
tiles that represent negative spaces creates a positive model of the 
intended design when filled with a rubber or plastic. For this fabrica-
tion approach, the necessary gaps for installing hinges are created by 
the laser kerf, and the design and dimensions are not altered from the 
vector pattern exported from the script described above other than 
uniformly scaling the entire assembly. An example molding process is 
shown for the physical model of the rigid-deployable square-to-circle 
kirigami pattern in Fig. 3b, for which the assembly was scaled to fit 
within a square mold with 8-inch sides.

File preparation will vary for a given laser cutter, but a file set-up 
similar to the one shown in Supplementary Fig. 22a,b was used on both 
a Versalaser and an Epilog laser cutter to make suitable mold from 
6-mm-thick acrylic sheets. For this example, Adobe illustrator was used 
to create the vector files to run the laser cutter. There are two copies of 
the pattern, one for the top layer of the mold (shown in Supplementary  
Fig. 22a) and one for the bottom layer (shown in Supplementary  
Fig. 22b). A bounding box around the pattern was added to cut the 
exterior border of the mold, and circles were added throughout the 
pattern to create holes where press-fit pins would hold a tile defining 
a negative space to the bottom of the mold. The color coding in the file 
allows for different power settings between cuts and control over the 
order in which different paths are cut. In the vector files shown, pink 
and red are used for through-cuts with two different speed settings, 
and the blue lines are etched into the acrylic as references to guide the 
mold assembly but are not cut through.
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The only critical power setting to tune and test before laser-cutting 
the mold parts is for the circular holes that are used for the press-fit 
pins that hold the various parts of the mold together. The press fit of 
the pins was designed to be tight enough so that they would not fall out 
if the mold is inverted but also loose enough that they could be read-
ily pulled out without the aid of pliers. In this size range (1/16-inch- or 
1.59-mm-diameter pins) this can be done by specifying the hole to be 
~50–200 μm smaller in the vector file than the physical pin diameter 
and adjusting the power and speed settings of the laser cuter to adjust 
the kerf. (To be clear, the kerf or cut width of the laser has a non-zero 
thickness, and directing the laser around a circular path of a given 
diameter will result in a hole of a larger diameter than the guiding 
circle.) Slower cuts and higher power cuts will remove more material, 
creating a larger kerf, larger hole and looser fit. We found that a test 
piece to calibrate the pin press-fit with several holes at increments of 
25 or 50 μm was sufficient to calibrate the fit for a given laser cutter. 
The cut speed can also be used to fine-tune the kerf and fit. The recom-
mended order of cutting operations is for the press-fit pin holes to be 
cut first. Otherwise, if the laser cutter bed is not flat and the tiles are 
cut first, the tiles may shift or drop lower once cut free from the piece 
of acrylic. When a tile shifts, this alters the laser focus for when the 
press-fit holes are then cut.

The kerf of a laser cutter is tapered and wider at the top. We found 
that this effect was not detrimental for 6.25-mm acrylic, but other mold 
fabrication methods could include milling or 3D printing if the taper 
proved problematic or thicker tiles would be desirable. Laser cutting 
was used for this work because it is a fast and inexpensive method with 
which to makes the molds for kirigami patterns with embedded textile 
hinges. Additional layers could be added to a laser-cut mold for thicker 
tiles or added complexity. Additionally, although we demonstrate the 
creation of soft kirigami sheets, a similar process could be used to mold 
a rigid plastic with textile hinges. The mold would need to be modified 
to facilitate the release of rigid molded tiles. This can be accomplished 
with added draft angles, which may be accomplished with the laser kerf, 
or the mold could be made of a soft material.

As mentioned above, the blue lines visible in Supplementary  
Fig. 22a,b are etched and not cut through the acrylic sheet. These  
lines may be omitted but provide visual guidelines for assembling  
the mold. A partially assembled mold is shown in Supplementary  
Fig. 22c, where it is difficult to see the etched lines on the white acrylic. 
To make the lines more easily visible, ink can be wiped into the etched 
lines, as shown in Supplementary Fig. 22d. The ink used in this case 
was a silicone dye (Silc Pig, SmoothOn), and the excess was wiped  
away with a paper towel. The pin holes provide mechanical align-
ment and the etched numbers and lines help to visually guide manual  
assembly of the mold, as shown in Supplementary Fig. 22e. The 
modular press-fit mold is useful for small scale manufacturing but, 
ultimately, this could be converted to a two-part injection mold for 
higher-throughput fabrication.

Hinge installation and molding of soft kirigami sheets. Once fully 
assembled, the acrylic mold is ready for rubber casting and does not 
require mold release, because silicone rubber will not bond to the 
acrylic sheet or stainless-steel pins. The molding process is shown in 
Supplementary Fig. 23, starting with preparation of the textile (Sup-
plementary Fig. 23a) that is used to create the hinges of the kirigami 
pattern. The pattern can be molded out of rubber alone (without textile 
hinges) but would then rip very easily. The textile reinforces the hinge 
while still allowing a full range of motion and transformation of the 
mechanism. The fabric used in the rigid-deployable square-to-circle 
kirigami model in Fig. 4 was a cotton cheesecloth, whereas the fabric 
used for the model in Supplementary Fig. 23 is a herringbone cotton 
twill tape. The cheesecloth is cut into ~12-mm squares and folded in half 
(creating rectangles) before insertion into the mold. The twill tape is 
~6 mm wide and thus only needs to be cut to length to fit into the mold 

of 6.35-mm acrylic. The cotton fibers in either choice of textile have a 
high surface area and create a strong mechanical bond with the silicone. 
Synthetic fibers will work but were found delaminate more readily from 
the cast silicone. As shown in Supplementary Fig. 23b, the twill tape is 
prepared by cutting it into pieces ~6–12-mm in length, long enough to 
span into neighboring cast tiles.

A two-part silicone rubber is mixed and then placed under vacuum 
to remove bubbles. While the rubber is degassing a small portion is 
set aside, as shown in Supplementary Fig. 23b, to start coating the cut 
pieces of twill tape. By coating the textile hinges (twill tape or cheese-
cloth) before inserting them, we found we could improve the saturation 
of the rubber in the textile, reduce bubbles, and improve the mechani-
cal integration between the textile and rubber. The rubber used in the 
model shown in Fig. 4 was a two-part silicone rubber, Elastosil m4601 
A/B (Wacker). The rubber used in Supplementary Fig. 23 is DragonSkin 
20 (SmoothOn), with blue dye added (Silc Pig, SmoothOn) to help moni-
tor the mixing and improve visibility in pictures for documentation. 
Silicone is an appealing material to use because of its durability, elastic 
strain behavior, and ease of use, but a large variety of rubbers would 
work to create these structures. A soft silicone rubber is also relatively 
easy to pull out of the rigid mold and does not require mold release. 
A rigid plastic or urethane could also be cast-molded with relatively 
minor mold modifications.

Once coated with rubber, the textile pieces are inserted into the 
mold to form the hinges (Supplementary Fig. 23c) and covered with  
a liquid rubber to form the kirigami structure (Supplementary  
Fig. 23d,e). In the example shown (Supplementary Fig. 23c), the textile 
is pinched between the corners of the acrylic mold tiles that define the 
open spaces of the kirigami structure to create a cotton and silicone 
composite hinge. The laser kerf is sufficient to create a gap between 
the mold tiles for the textile. Two pairs of tweezers, one on either side 
of the hinge, are very helpful for the process of inserting the textile, as 
shown in Supplementary Fig. 23c. The hinges can be inserted before or 
after the rubber is poured into the mold, as shown in Supplementary 
Fig. 23c–e. Once the rubber is fully cured, the soft kirigami sheet can 
be peeled out of the mold and trimmed of excess rubber, as shown 
in Supplementary Fig. 23f. If the excess rubber is not trimmed, it  
can over-constrain the kirigami sheet, preventing the hinges from 
pivoting through the intended motion. The excess rubber can also  
be prevented with careful pouring, by wiping the excess before curing, 
or by creating a fully enclosed mold with a precise or compliant inter-
face. The reconfiguration of the hinges can be seen in the translucent 
soft kirigami sheet as it is transformed from a square (Supplementary 
Fig. 23g) to a mid-deployment state (Supplementary Fig. 23h) and to 
a circle (Supplementary Fig. 23i).

Data availability
Source data for Fig. 3c are available with this manuscript. Kirigami 
pattern files are available on Zenodo24.

Code availability
The kirigami design codes are available on Zenodo24.
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