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We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned
genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algo-
rithm with minimal area distortion for parameterising a surface onto a polar spherical cap with a prescribed
half angle. We then show that as a generalisation of the hemispherical harmonic analysis, the SCH analysis pro-
vides the most added value for small half angles, i.e., for nominally flat surfaces where the distortion introduced
by the parameterisation algorithm is smaller when the surface is projected onto a spherical cap with a small half
angle than onto a hemisphere. From the power spectral analysis of the expanded SCH coefficients, we estimate a
direction-independent Hurst exponent. We also estimate the wavelengths associated with the orders of the SCH
basis functions from the dimensions of the first degree ellipsoidal cap. By windowing the spectral domain, we
limit the bandwidth of wavelengths included in a reconstructed surface geometry. This bandlimiting can be
used for modifying surfaces, such as for generating finite or discrete element meshes for contact problems. The
codes and data developed in this paper are made available under the GNU LGPLv2.1 license.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
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1. Introduction

The mechanics of granular materials, such as soil mechanics, investi-
gates the interaction of particles at various loading conditions where the
shape, size and material properties of the particles can vary widely. Nu-
merical models are therefore often used to study how the mechanical be-
haviour of amaterial is influenced by the various particlemorphology and
microstructures created by these particles. Similar problems exist in struc-
tural engineeringwhenmodelling, for example, themicrostructure of con-
crete aggregates or the various stones in stone masonry elements, as the
shape and roughness of the particles affect thematrices of thesematerials.

Addressing these problemsnumerically requires themodelling of ran-
domly shaped closed objects and their interactions. In such models, the
shape of the particle is typically represented by a finite or discrete ele-
ment mesh, while the roughness of the surface is modelled through
laws that describe the interaction of two surfaces, such as frictionmodels.
Efficiently separating “shape” and “roughness” of a randomly shaped par-
ticle is a challenging problem, thoughwork in this area helps us better un-
derstand the associated constitutive laws in numerical modelling. In
recent decades, the concept of spherical harmonics (SH) analysis has
been frequently used to describe the shape and roughness of stones or
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aggregates. However, while this approach is transformative for closed ob-
jects, it is difficult to apply to the morphology of nominally flat and open
surfaces (topological disks with free edges). In this paper, we therefore
propose the use of spherical cap harmonic analysis (SCHA) for describing
the geometry of open shapes. The difference here is that while a tradi-
tional spherical harmonics analysis (SHA) describes a function mapped
onto an entire unit sphere, the SCHA describes a function mapped onto
a spherical cap via a half-angle θc (see Fig. 1). SCHs arewidely used in geo-
physics to describe field data on planetary caps, but to our knowledge
have never been used to describe the geometry of a patch with free
edges. Here we give example problemswhere SCHA can be useful for de-
scribing the topological characterisation of a patch (i.e. an open shape
with a free edge):

• For studying the topology of a rough surface patch, such as a rock sur-
face, and quantifying its fractal dimension (FD).

• For characterising different roughness regions on rocks or faults, such
as sedimentary rocks made of several strata. The traditional SH ap-
proach, which assumes a closed object, only exploits basis functions
to fit all the surface variations and does not distinguish regions of dif-
ferent roughness (multifractal surfaces).

• Formatching objects based on surface characteristics. This can be use-
ful for medical and forensic anthropology applications, such as
matching fractured bones or objects (see [1,2] as examples), or for
mechanical applications, such as characterising the surfaces of
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Representation of a polar spherical cap S2θ≤θc with half-angle θc, where the spherical
cap harmonics analysis (SCHA) is defined over.
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fragmented rocks or soil particles [3,4] by directly comparing and
matching the scanned fractured regions.

In this paper, we propose a newmethod for characterising the mor-
phology of open surface patches using SCH, focusing specifically on
nominally flat patches, such as when the global radius of the curvature
of the targeted patches approaches infinity. The herein proposed SCHA
method allows us to study the structure of any arbitrary surface patch
with faster convergence than the traditional SHA as it scales to any
level of detail with reasonable computational complexity. It can also
be used for reconstructing surfaces and modifying the morphology of
digital twins of real surfaces, which is usefulwhen numerically studying
contact problems such as friction. Additionally, the chosen orthogonal
basis functions allow us to conduct power spectral analyses of the coef-
ficients obtained from SCHA to estimate the fractal dimensions of the
surfaces.

To adapt the SCHA for these applications, a new conformal para-
meterisation algorithmwithminimal area distortion is herein proposed
for parameterising the surface patches over a unit spherical cap. The
parameterisation assures a unique assignment for each vertex and a
uniform distribution of the morphological features over the spherical
cap. Initially, the algorithm parameterises the surface patch to a planar
disk using the conformal mapping algorithm proposed by Choi and Lui
(2015) [5] followed by a suitable rescaling. Then, using the south-pole
inverse stereographic projection, we conformally map the disk to a
polar spherical cap. Finally, we find an optimal Möbius transformation
to minimise the area distortion on the conformal spherical cap.

This paper is structured as follows:We first provide a brief literature
review in Section 2. We then introduce the SCHA basis functions and
their solutions in Section 3. In Section 4, we describe the proposed con-
formal mapping algorithm and then demonstrate the overall SCHA pro-
cess in Section 5. Next,we explain the shape descriptors and the derived
fractal dimensions (FD) in Section 6. We solve the problem of finding
the optimal θc for the analysis in Section 7. In Section 8, we explain
how to modify the morphology by a proposed roughness projection
methodology for themicrostructures. The complete results are depicted
in Section 9. Finally, we summarise the main results of the paper and
discuss possible future works in Sections 10 and 11, respectively.

2. Literature review

We herein briefly present key publications on SHA and its applica-
tion in mechanics, generation and reconstruction methods for both
838
closed objects and thosewith free edges as well as SCHA and its current
applications.
2.1. Spherical harmonics analysis (SHA) and its applications in mechanics

The modern spherical harmonics analysis (SHA or SPHARM) for
closed and nonconvex particles was developed by Brechbühler and
Küble (1995) [6], who applied it to the field of medical imaging for
brain morphometry. SHA describes surfaces with few shape descriptors
that are invariant when rotating, translating and scaling the shapes. To
apply SHA to any closed, nonconvex surface, Brechbühler et al. (1995)
proposed a parameterisation method that provides a unique mapping
of each vertex on a surface onto a unit sphere S2 through the use of
equivalent coordinates x(θ,ϕ), y(θ,ϕ) and z(θ,ϕ). In other words, their
method can describe 3D, closed and randomly-shaped objects with a
relatively small number of shape descriptors derived from 2D signals
mapped onto a unit sphere. The SHA method can therefore be consid-
ered a 3D generalisation of the traditional Elliptic Fourier Descriptors
(EFDs) method (see [7–9]), which was developed to model 2D shapes
(1D signals). The SHAmethod can also be used to accurately reconstruct
3D shapes from their shape descriptors. Recently, Su et al. [10] found a
correlation between the SHA and EFD descriptors and used that for
predicting the size of the irregular particles from 2D images.

Since the original SHAworkwas published,many contributions gen-
eralised it for a broader range of applications. While the original SHA
dealt with voxel-based and simply connected meshes, the Control of
Area and Length Distortions (CALD) algorithm [11] extended the
parameterisationmethod to triangulatedmeshes, such as Standard Tes-
sellation Language (STL) meshes. The original SPHARM determines the
coefficients of the matrix by a least-squares algorithm that requires the
calculation of the inverse. Modelling complex shapes with small details
requires such a vast number of vertices that calculating the inverse is
burdensome with the traditional SHA approach. Shen and Chung
(2006) [12] used an iterative approach to expand the coefficients for
the complex and large-scale modelling of shapes. Other notable works
include the weighted SPHARM method by Chung et al. (2007) [13],
the SPHARM-PDM statistical toolbox for shape descriptors by Styner
et al. (2006) [14], and the 3D analytic framework with improved spher-
ical parameterisation and SPHARM registration algorithms developed
by Shen et al. (2009) [15].

In biomedical imaging, shape descriptors based on SHAwere used to
reconstruct surfaces and compare the morphology of organs. In engi-
neering mechanics, two further questions were investigated: (i) How
can SHA shape descriptors be linked to the well-known, traditional
shape descriptors? (ii) How can the SHA shape descriptors be linked
to mechanical parameters, such as friction coefficients, and traditional
morphology measures, such as fractal dimensions (FD)? Here, we re-
view studies in mechanics that used SHA for generating particles as
well as for simulating particle mechanics.

Zhou et al. (2015) [16] scanned real particles, computed the distribu-
tion of the SHA shape descriptors and then used these descriptors as in-
puts for a particle generator. The particle generator used the shape
descriptors to reconstruct particle shapes, which became inputs for Dis-
crete Element Method (DEM) simulations. Wei et al. (2018a) [17]
established links between the coefficients expanded from the SHA and
traditional shape descriptors, namely, the form, roundness and com-
pactness, and used these as inputs for a particle generator. They applied
their method to Leighton Buzzard sand particles, which were scanned
by Zhao et al. (2017) [18] to reveal an exponential decay of the
rotation-invariant descriptors against the degree of expansion on a
log-log scale. In Wei et al. (2018b) [19], the authors estimated the
Hurst exponent (H) from the exponential decay of the power spectrum
computed from SHA coefficients; thus the SHA is able to capture a self-
similar phenomenon akin to the traditional Power Spectral Density
(PSD) analysis associated with Fourier expansion for 1D signals. Apart
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from methods based on power spectral analysis, the authors in [20,21]
correlated the FD in SHA by investigating the surface area evolution at
an increasing reconstruction degree in a log-log scale.

More recently, Wei et al. (2020) [22] studied the contact between
rough spheres and a smooth base using finite element analysis. For
this, they constructed roughened spheres using spherical harmonics
and considering more than 2000 degrees. The locally roughened patch
on the sphere was generated by assuming a certain FD and relative
roughness measure. In contrast with the traditional concept of comput-
ing Fourier coefficients along certain lines (see Russ [1994] [23] for de-
tails), the advantage of SHA-based fractal dimensions is that they are
not direction-dependent because they are intrinsically defined every-
where along the sphere and do not expand sampled sections (1D sig-
nals). Furthermore, the SH basis functions constitute a complete
orthogonal set integrated over the entire surface of the sphere in Hilbert
space S2, which allows the power spectral analysis. Lately, Feng (2021)
[24] proposed a new energy-conserving contact model for triangulated
star-shaped particles reconstructed with the SH. Themodel reduces the
computational complexity of the discrete element simulations with
controllable mesh size obtained via the golden spiral lattice algorithm.

The SHA is therefore a very powerful tool for contact analysis. How-
ever, it is currently only valid for closed objects. In this paper, we ad-
dress this by offering an alternative method for analysing the surface
morphology—instead of analysing the surface of an entire closed object
using SHA, we study the morphology of a patch on this object using
SCHA. Depending on the size of the patch on a sphere, this usually re-
quires significantly less degrees. In addition, this method makes it pos-
sible to analyse regions of different roughness on the same closed
object. Here, we provide a general procedure suitable for nominally
flat and open surface patches and further show how the fractal dimen-
sion concept is an intrinsic property in such basis functions defined over
spheres, hemispheres and spherical caps.

2.2. Modelling arbitrarily shaped objects with free edges

Formodelling arbitrarily shaped objects using SHA,most of the liter-
ature relates exclusively to genus-0 closed objects. SHA requires an ap-
propriate parameterisation algorithm (bijective function) over a unit
sphere S2, but does not cover open objects, which have a free boundary
along their edge. This problemwas previously addressed using a hemi-
spherical harmonic (HSH) basis instead of SH basis. The HSH basis uses
shifted associate Legendre polynomials to describe a 2D function
projected onto a hemisphere S2θc≤π=2 with a free edge.

Huang et al. (2006) [25]was the first to apply HSH functions to extract
shape descriptors for anatomical structures with free edges via amodified
parameterisation algorithm of the original one proposed by [6]. By apply-
ing the proposed method to images of ventricles, they concluded that it is
more robust and natural than the SH basis for representing free edges,
which requiresmore effort to satisfactorily converge along the discontinu-
ities. In addition to having the naturally defined free edge in HSH, the con-
vergence is also faster than with the ordinary SH because of the distortion
introduced by the parameterisation algorithm and the maximum wave-
length defined on the regionally-selected patch on the targeted object,
which will be discussed and demonstrated in later sections. As a similar
strategy, Giri et al. (2020) [26] recently developed a hemispherical area-
preserving parameterisation algorithm and analysed 60 hemispherical-
like anatomical surfaces. They compared the results with ordinary SH
and also found significant improvements from 50 to 80% on the recon-
struction quality. They also proposed variants of HSH for other anatomical
shapes [27,28].

2.3. Regional modelling of spatial frequencies on a sphere

This paper uses SCH basis functions to study the local roughness and
morphological features of rough surface patches that are regionally
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distributed over, for example, natural rocks, stones, bones, faults, etc.
The idea of applying an SCHA to a regional subset of data distributed
over a sphere was previously exploited in geophysics to study physical
quantities such as geomagnetic and gravitational fields (refer to [29]
for a comprehensive review of other applications).Many othermethods
can also be found in the literature for dealing with regional data.

Multitaper spectral analysis is one common method for localising
data using global basis functions (integrated over the whole domain)
such as the spherical harmonics. In this method, the data outside the re-
gion of interest is tapered to zero. When the region of interest is a patch
with a free edge, it can be parameterised over an appropriate cap with
an assumption of a grid-of-zeros over the rest of the sphere. This tech-
nique can be implemented efficiently using sparse matrices; however,
the data tapering will affect the analysis results [30], and special rela-
tionships will be needed to link the localised analysis to the global one
[31].

Another common approach is wavelet analysis, where the signals
are multiplied (inner product) with a wavelet function and then inte-
grated over the entire domain. However, this analysis becomes a
function of thewavelet size (scale) and not the degrees of the SHexpan-
sion [30]. Although it is tempting to use these approaches, and their
computation is fast and stable, they alter the actual signals and proper-
ties of the basis functions. Instead, we herein consider a direct and ana-
lytical approach that defines global functions over the entire regional
domain without altering the actual data or basis functions.

2.4. Spherical cap harmonic (SCH) basis functions

The SCH basis functions were first proposed by Haines (1985) [32],
and his codes with the implementation details were published shortly
thereafter [33]. In his paper, he solved the SturmLiouville (self-adjoint)
boundary value problem to derive two mutually orthogonal sets over a
constrained spherical cap that satisfy the Laplacian. By applying one of
the Neumann or Dirichlet boundary conditions on the free edge of the
cap, we can get a general form of the associated Legendre function of
real fractional (non-integer) degrees and integer orders. To satisfy the
applied boundary conditions, we first solve for eigenvalues of the
SturmLiouville boundary value problem, and these real and non-
integer degrees of the associated Legendre functions can be used to de-
fine the basis functions. The resulting basis set depends on the applied
boundary conditions; two types of bases are widely used and are
named the “even” and the “odd” basis functions (for more details, see
Section 3).

Haines's basis functions have been studied and revised several times.
In general, they were derived to analyse signals on a solid spherical cap
with a finite thickness, which is described by an internal (r= a) and ex-
ternal (r= b) radii. These basis functions were used to expand physical
quantities through the Lithosphere. However, in this work, we use the
basis for a spherical cap with zero thickness, i.e. a → b. This simplifies
the problem because the normalisation of the spherical cone is ignored
and the associated extra boundary conditions do not need to be applied
through the thickness b − a. Haines's derivation of the normalisation
factor was indeed an approximation (Schmidt-normalised), and he
claims that the normalisation itself is not crucial as soon as the same
normalisation factor is used for the reconstruction. An analytical deriva-
tion for the normalisation factor was proposed by Hwang et al. (1997)
[34], and they named it the fully normalised SCH.

To capture smallerminimumwavelengths at the surface of the earth
than with the original SCH, De Santis (1991) [35] proposed a modified
version developed by shifting the origin of the spherical cap from the or-
igin of the earth towards the surface. In 1992, De Santis [36] proposed
using the ordinary SH defined over a hemisphere (using integer de-
grees) by scaling the spherical cap data to fit over a hemisphere. Al-
though it is tempting to use such approximations to relax the
complexity of the proposed functions in the original SCH, they are
only valid for small half-angles (shallow spherical caps). More recently,
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Thébault and his co-authors [37,38] proposed a new revised version of
the SCH to deal with problems mainly associated with the solid spheri-
cal cone. These papers are considered out-of-scope here because we
only deal with the surfaces of spherical caps. More details about the his-
tory and the evolution of the method and its applications in geophysics
can be found in [29,39].

2.5. Parameterisation algorithms

Before expanding spatial data using the SCH basis, the surface patch
needs to bemapped onto the spherical cap. This mapping algorithm as-
signs each vertex coordinate of the surface of the original object a
unique coordinate on the spherical cap. A proper parameterisation algo-
rithm should distribute the morphological features uniformly over the
surface without clustering [6]. The mapping algorithms used here can
be categorised into angle-preserving (conformal) [40,41] or area-
preserving [42,43]. The former preserves the angles between the mesh
elements such that that the local morphological properties are pre-
served, but this could introduce undesirable distortion in the element
areas. The latter algorithmpreserves the area of the elements but can in-
troduce sufficient angular distortion to jeopardise the representation of
the localmorphological features. In general, angle and area preservation
cannot be achieved at the same time [44], hence the choice of para-
meterisation method depends on the application. In mesh fitting, it is
often desirable to balance angle and area distortions [45].

3. Spherical cap harmonic (SCH) basis functions

In this section, we describe the set of orthogonal functions on the
surface of the spherical cap that we use for studying the geometry of a
nominally flat and open-edged patch projected onto the cap. To do
this, we propose using the basis functions of the SCHs that satisfy the La-
place equation in 3D; the derivations for these functions can be found in
[32,34]. Here, we introduce the derivation only to the extent that the
definition and meaning of the various components of the functions are
clear. It serves also as documentation for the accompanying code,
which is shared openly and in which these equations have been imple-
mented numerically.

Here,we are considering only polar spherical caps,meaning the local
polar axis of the cap coincides with the global polar axis of the unit
sphere. The coordinates of any point on the unit spherical cap are de-
fined in terms of the angles θ and ϕ. The angle θ represents the latitude
(elevation angle), measured from the positive z-axis ∈[0,θc], and the
angle ϕ represents the azimuth angle (longitude), measured counter-
clockwise from the positive x-axis ∈[0,2π]. The size of the spherical
cap S2θ≤θc is therefore characterised by the half-angle of the spherical
cap θc, which is the latitude of the rim of the spherical cap as illustrated
in Fig. 1.

A 2D signal f(θ,ϕ), for which each value is paired with (θ,ϕ), can be
written using the SCH basis as (see [32]):

f θ;ϕð Þ ¼
X∞
k¼0

∑
k

m¼−k

θc qmk
θc Cm

k θ;ϕð Þ; ð1Þ

where θcCk
m(θ,ϕ) are the SCHs and θcqk

m are specific constants (SCH coef-
ficients). The complex-valued SCHs of degree l and orderm for a cap of
size θc can be expressed as:

θc Cm
k θ,ϕð Þ ¼ P

m
l mð Þk cosθð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ALF

eimϕ
zfflffl}|fflffl{Fourier

: ð2Þ

One way of solving the Laplace equation is by separating the inde-
pendent variables, θ andϕ in our problem, into separate ordinary differ-
ential equations and then assuming the overall solution to be the
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product of the separated solutions. The SCHs can therefore be written
as a product of the term that describes the variation with regard to
the latitude θ and a term that describes the variation with regard to
the longitude ϕ. In polar caps, the longitudinal direction (ϕ) of the
spherical cap covers, by definition, complete circles (Parallels of Lati-
tude), so we apply the traditional Fourier method to capture the circular
variations.

The variations along the latitudes, represented by (θ), are captured
using, for example, associated Legendre functions (ALF) as a mutually
orthogonal set of basis functions. In the following subsections, we de-
scribe the ALFs, how to stably compute them and how the degrees ls
of theseALFs are found. Thenwe explain onepossible normalisation fac-
tor that we used in this paper.

3.1. Associated Legendre function (ALF)

In classical SH, the degree l and the order m are integers, and the
associated Legendre polynomials (ALPs) are defined for the interval
x ∈ [−1,1]. In this interval, they form an orthogonal set of equations
on a unit sphere (for x = cos θ, θ ∈ [0,π]). In the HSH basis functions,
a linear transformation shifts the orthogonality interval to either [0,1]
or [−1,0] depending on whether the lower S2θ≥π=2 or upper S2θ≤π=2 hemi-
sphere is considered (see the works in [25,26]). The hemisphere intro-
duces a new boundary (free edge) at the equator that must be defined
with an additional appropriate boundary condition. However, note
that the tangent at the edge of the equator (the gradient with respect
to θ) is zero. As will be seen next, this is one of the Neumann boundary
conditions for the boundary value problem of ALFs, which makes it a
special case of the SCH basis with integer degrees and orders. The
main challenges with SCHs are shifting the ALFs to be defined over the
interval [cosθc,1] and assuring their orthogonality.

Using SH or HSH functions to describe a spherical cap (sub-region
over thewhole valid domain)will produce a set of ill-conditioned Equa-
tions [34]. Although these sets could be used to some extent to recon-
struct the input surfaces, the power spectral analysis will be chaotic
and without the clear attenuating trends normally produced when the
equations are well-conditioned. To find a suitable set of basis functions,
Haines [32] proposed treating the problem as an inverse problem and
determining the degrees l for the ALPs that produce an orthogonal
basis over the spherical cap while satisfying the boundary conditions.
These degrees are not constrained to integers, and in our case, the de-
grees will be real-valued numbers. The orders m are still integers be-
cause, for polar caps, ϕ always varies over complete circles.

The basis functions proposed by Haines (1985) [32] satisfy three
boundary conditions: (i) continuity along the longitudes, (ii) regularity
at the pole of the cap, and (iii) an arbitrary signal value at the free-edge
(see [29,46]). The first boundary condition is assured by the use of polar
spherical caps (notice the complete circles in Fig. 1), as they force the
periodicity and the continuity along the longitudes to make the order
m a positive or negative integer:

f θ,ϕð Þ ¼ f θ,ϕþ 2πð Þ, ð3Þ

∂f θ,ϕð Þ
∂ϕ

¼ ∂f θ,ϕþ 2πð Þ
∂ϕ

: ð4Þ

The second boundary condition, the regularity at the cap's pole
θ = 0, is satisfied through the use of the first kind of ALFs, such that:

f θ ¼ 0,ϕð Þ ¼ 0 if m≠0, ð5Þ

∂f θ ¼ 0,ϕð Þ
∂ϕ

¼ 0 if m ¼ 0: ð6Þ

Note that even with the two above boundary conditions, the solu-
tion functions are still not unique. To obtain unique solution functions,



Fig. 2. The associated Legendre functions (ALFs) for θc = π/18, m = 0 and k ∈ {0,1,…,8};
(A) the even basis and the corresponding eigenvalues from Eq. (12); (B) the odd basis and
the corresponding eigenvalues from Eq. (13).
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we need to impose a proper boundary condition at the edge of the
spherical cap. The third boundary condition is applied to the free edge
at θc (xc = cos θc):

AcP
m
l mð Þk xcð Þ þ Bc

dPml mð Þk xcð Þ
dx

¼ 0: ð7Þ

Here, we use the degree notation l(m)k instead of l because the degrees
are now back calculated for a specific orderm and index k, whichwill be
explained in detail below.

In Eq. (7), the case of Ac=0andBc ≠ 0 corresponds to the application
of the Neumann boundary conditionwhere the gradientwith respect to
θ at the cap's rim at x = cos θ is zero. It implies that f(θc,ϕ) ≠ 0 ∀ ϕ ∈
[0,2π] and can take any arbitrary value at the edge of the spherical
cap. Applying this boundary condition results in basis functions referred
to by Haines (1985) [32] as the “even” (k − m = even) basis or by
Hwang et al. (1997) [34] as set 2. The case of Ac ≠ 0 and Bc = 0 corre-
sponds to the Dirichlet boundary conditions f(θc,ϕ) = 0 ∀ ϕ ∈ [0,2π],
and the resulting basis functions are known as the “odd” (k − m =
odd) set or set 1 by Haines [32] or Hwang et al. [34], respectively. The
boundary conditions for the two cases can therefore be rewritten as:

dPm
l mð Þk xcð Þ
dx

¼ 0 for k−m ¼ even, ð8Þ

Pm
l mð Þk xcð Þ ¼ 0 for k−m ¼ odd: ð9Þ

The latter boundary condition, Eqs. (8) or (9), is met by back calcu-
lating the roots l(m)k at different orders m and indices k and then
using them for constructing the basis functions for different θc. Although
it is tempting to use a combination of both sets to expand a signal (e.g.
see Haines [32]), for the uniform convergence of the series, it is note-
worthy that these basis functions are mutually orthogonal and cannot
be used together for the power spectral analysis [47]. In this paper, we
will only consider the even set, as it allows arbitrary values for the signal
at the cap's rim (f(θc,ϕ) ≠ 0 ∀ ϕ ∈ [0,2π]), which contrasts with the odd
set that equates the signal at the rim to zero. This consideration there-
fore allows us to correctly reconstruct any surface geometry.

Unlike the traditional ALPs, here the degrees l(m)k are determined
such that the third boundary condition is satisfied; thus, l(m)k are real
numbers, though not necessarily integers; hence, we use the index k
to rank the orders. k is an integer index that arranges m from 0tok,
and the degree l(m)k is the degree at the kth index and order m. The k
index is useful for finding the degrees on the applied boundary condi-
tions. For instance, when k = 0, we find the first degree l(m)k ≥ 0
where the boundary condition equation first crosses zero (first
eigenvalue).

For constructing the ALFs with integer orders and real degrees,
Hobson (1965) [48] proposed the use of hypergeometric functions.
Note that in the following, we refer to associated Legendre functions
rather than polynomials because these basis functions are truncated nu-
merically at a predefined numerical threshold. These functions can also
be referred to as fractional ALFs, because the associated degrees are not
integers. The ALFs can then be written as follows (see [32,34,48]):

Pm
l xð Þ ¼ 1

2mm!

Γ lþmþ 1ð Þ
Γ l−mþ 1ð Þ 1−x2

� �m
2
2 F1 m−l;mþ lþ 1;mþ 1;

1−x
2

� �
;

ð10Þ

where Γ(⋅) is the gamma function, 2F1(a,b;c;z) is the hypergeometric
function defined over a unit disk |Z | < 1 and x = cos θ.

To find the zeros (eigenvalues) that satisfy the third boundary con-
dition, we rewrite Legendre's differential equation in a Sturm-Liouville
(S-L) form [32,34]:
841
d
dx

1−x2
� �dPml xð Þ

dx

� �
þ l lþ 1ð Þ− m2

1−x2

� �
Pm
l xð Þ ¼ 0 ð11Þ

and subject it to the boundary conditions explained in Eq. (7). The two
equations that result from the application of theNeumann and Dirichlet
boundary conditions can then bewritten in a simpler factorised form, as
proposed by Hwang et al. (1997) [34] for hypergeometric functions:

l mð ÞkxcF l mð Þk,m, xc
� �

− l mð Þk−m
� �

F l mð Þk−1,m, xc
� � ¼ 0, ð12Þ

F l mð Þk,m, xc
� � ¼ 0, ð13Þ

where

F l,m, xð Þ¼2F1 m−l,mþ lþ 1;mþ 1;
1−x
2

� �
: ð14Þ

Eq. (12) is the equivalent of applying the Neumann boundary condi-
tions (even set), and Eq. (13) corresponds to the Dirichlet boundary
conditions (odd set).

Both Eqs. (12) and (13) have an infinite number of roots (eigen-
values) for the above-mentioned S-L problem. Here, we are interested
in finding the first k + 1 eigenvalues l(m)k where k ∈ {0,…, |m| },
which is doneusing a simple stepping solver based onMueller'smethod
for finding zeros (roots) [49]. Additional results about the roots for θc=
5π/18 are shown in Appendix 13.4.

After finding the needed roots for the differentm and k, we can sub-
stitute these roots directly into Eq. (10) to obtain the needed ALF basis.
Fig. 2 shows the ALFs associated with the roots for different k, where
m = 0 and θc = 10° = π/18 (i.e. cos(π/18) = 0.985). Graphically, the
value k − m indicates how many times the basis function changes
signs along the interval [cosθc, 1]; the (k + 1)th eigenvalue changes
signs once more than the kth root, as it divides the interval into regions
with different signs. Together, kandm define the frequency classification
(harmonics) of the basis functions as zonal (m=0), sectoral (∣m ∣ = k)

Image of Fig. 2
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or tesseral (0< ∣m ∣ < k) regions on the SCH, aswill be illustrated next.
Fig. 2 also shows the difference between even and odd sets depending
on the applied boundaries at x = cos θc.

Eqs. (10), (12) and (13) are dependent on the ordinary Gaussian
hypergeometric function evaluation 2F1(a,b;c;z). Unfortunately, the
implementations given in [32,34] using the recursive series are not nu-
merically stable for large degrees when k > 12 about the radius of con-
vergence ∣Z ∣ < 1. Indeed this is a well-known problem for such
functions, and different formulations can be found in the literature
with different implementations for different ranges of a, b, c and z (see
Pearson et al. (2015) [50], who reviewed different hypergeometric
functions and their different implementations and stability conditions).
Therefore, we herein use a Taylor series expansion for the first degrees
(up to k = 12) when a, b and c are relatively small. Otherwise, we use
a 5th order Runge-Kutta algorithm along with the Dormand-Prince
method for solving the hypergeometric differential equation (see [50]
for more details).

3.2. Normalising the SCH basis functions

Normalising the basis functions is important for ensuring their
orthonormality and for keeping the calculation of the coefficients
computationally manageable [34,46]. Many normalisation methods
have been proposed in the literature, such as the “Heiskanen and
Moritz” method [34] and the “Schmidt” or “Neumann” methods
[48], and any of these can be used as long as the same normalisation
method is used for both the expansion and the reconstruction [32].
In the following, we use the “Schmidt semi-normalised” method by
Haines [32].

This normalisation method requires solving the integral for the ALFs
over the spherical cap (mean square product), which can be retrieved
from [51] with a corrected sign from [52]:

Z θc

0
Pm
l cos θð Þ	 
2 sin θdx ¼ sin θ

∂Pm
l

∂l
∂Pm

l

∂θ|fflfflfflfflffl{zfflfflfflfflffl}
odd

−Pm
l
∂
∂l
dPm

l

dθ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
even

0BB@
1CCA

��������
��������
θc

0

1
2nþ 1

: ð15Þ

However, this complex expression is difficult to solve (see [34]
for one approach using recursive expressions). In this paper, we
use the Schmidt semi-normalised harmonics introduced by Haines
(1985) [32]:

Km
l mð Þk ¼

1, m ¼ 0

k2−mffiffiffiffiffiffiffiffi
mπ

p l mð Þk þm
l mð Þk−m

� �l mð Þk
2 þ1

4

, m>0

8><>: ð16Þ
Fig. 3. The normalised spherical cap harmonic (SCH) basis functions up to k=4 at θc = 5π/18.
surface inflation is unity and is therefore not included in the colorbar. The complex part of the
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where

k ¼ p
m
2ee1þe2þ..., ð17Þ

with

p ¼ l mð Þk
m

� �2

, ð18Þ

e1 ¼ −
1

12m
1þ 1

p

� �
, ð19Þ

e2 ¼ 1
360m3 1þ 3

p2
þ 4
p3

� �
: ð20Þ

The final form of the normalised ALFs can be written as follows (see
[32]):

P
m
l mð Þk xð Þ ¼ Km

l mð Þk 1−x2
� �m

2
2 F1 m−l;mþ lþ 1;mþ 1;

1−x
2

� �
: ð21Þ

We use Eq. (21) as a part of the final SCH basis functions.

3.3. The SCH series

The complete form of the SCH can then be expressed by combining
Legendre's functions with Fourier expansions:

θc Cm
k θ,ϕð Þ ¼ P

m
l mð Þk cos θð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ALF

eimϕ
zfflffl}|fflffl{Fourier

: ð22Þ

We can split this expression into a real part and an imaginary part:

ℜ θc Cm
k θ;ϕð Þ� � ¼ P

m
l mð Þk cosθð Þ cos mϕð Þ;

ℑ θc Cm
k θ;ϕð Þ� � ¼ P

m
l mð Þk cosθð Þ sin mϕð Þ:

8<: ð23Þ

The complex-valued Eq. (22) is only valid for non-negative orders
∣m∣. To address this, the redundant negative-orders equation can be
written in terms of the positive ones, as they reassemble π/2 rotations
about the positive z-axis. By making use of the Condon-Shortly phase
factor, we can write the SCH functions for m < 0 as:

θc C−m
k θ,ϕð Þ ¼ −1ð Þmθc Cm∗

k θ,ϕð Þ, ð24Þ

where Ck
m∗(θ,ϕ) is the complex conjugate of the SCH functions with

positive orders. Fig. 3 shows the real SCH functions (with positive and
negative orders) for the half-angle θc = 5π/18 and up to k = 4.
The figures showℜ(5π/18Ckm(θ,ϕ)). Note that at the breathingmode when k=m=0, the
basis are similar but rotated π/(2|m|) about the z-axis.

Image of Fig. 3


Table 1
The results summary of 51 consecutive runs of the PSS algorithm for the benchmarking
test shown in Fig. 4.

PSS X Y darea

Mean 0.031115190925885 2.283277253594884 1.621661326243250
Median 0.032048117800906 2.418244833527807 1.621524158857667
Std 0.005932670562184 0.753260686325562 3.56905230744E-04
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We can write a bi-directional signal f(θ,ϕ) that is explicitly
parameterised to unique θ ∈ [0,θc] and ϕ ∈ [0,2π] over a unit spherical
cap S2θ≤θc as a linear sum of the independent harmonics defined over
the spherical cap:

f θ;ϕð Þ ¼
X∞
k¼0

∑
k

m¼−k

θc qmk
θc Cm

k θ;ϕð Þ; ð25Þ

where θcqk
m are the complex-valued SCH coefficients at order m and

index k. In our case, following Brechbühler's work in [6], the signal
f(θ,ϕ) is the 3D vector that comprises three orthogonal com-
ponents in the Cartesian space extracted from the coordinates of
the vertices:

f θ,ϕð Þ ¼
x θ,ϕð Þ
y θ,ϕð Þ
z θ,ϕð Þ

0B@
1CA: ð26Þ

In practice, we truncate the series in Eq. (25) at k = Kmax, which
reassembles the minimum-accumulated wavelength (equivalent to
the cut-off frequency) ωmin in the harmonic sum from the original sur-
face patch. Then, f(θ,ϕ) can be approximated by:

f θ;ϕð Þ ≈
XKmax

k¼0

∑
k

m¼−k

θc qmk
θc Cm

k θ;ϕð Þ: ð27Þ

The coefficients θcqk
m can be expanded as:

θc qmk ¼ <f θ,ϕð Þθc Cm
k θ,ϕð Þ>, ð28Þ

θc qmk ¼
Z θc

0

Z 2π

0
f θ,ϕð Þθc Cm

k θ,ϕð Þ sin θdϕdθ: ð29Þ

However, this integral is valid only when the signal f(θ,ϕ) is defined
everywhere over the spherical cap (continuous signal). For discrete sig-
nals, we can estimate the coefficients using least-square fitting algo-
rithms, as will be discussed later in Section 5.

4. Spherical cap conformal parameterisation

Herewe develop a conformal parameterisationmethod formapping
any surface S with disk topology to the spherical cap S2θ≤θc , where θc
is the prescribed half angle. The overall spherical cap parameterisation
f : S ! S2θ≤θc is desired to be not only conformal but also with low area
distortion.

First, note that the south-pole stereographic projection τ given by

τ x, y, zð Þ ¼ x
1þ z

,
y

1þ z

� �
ð30Þ

maps the spherical cap S2θ≤θc to a planar disk Dr centred at the origin
with radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos θc
1þ cos θc

s
, ð31Þ

and the inverse south-pole stereographic projection τ−1 given by

τ−1 X;Yð Þ ¼ 2X

1þ X2 þ Y2 ;
2Y

1þ X2 þ Y2 ;
1−X2−Y2

1þ X2 þ Y2

 !
ð32Þ

mapsDr to S2θ≤θc . As both τ and τ−1 are conformal, weweremotivated to
find an optimal conformal mapping from the given surface S to the pla-
nar disk Dr so that we could apply the inverse projection τ−1 to obtain
the desired parameterisation.
843
To achieve this, we first apply the disk conformal mapping method
[5] to map S onto the unit disk D in an angle-preserving manner (see
[5] for the algorithmic details). Denote the conformal mapping by
g : S ! D. Now, we search for a conformal mapping h : D ! Dr that
can further reduce the distortion in area of the parameterisation. Math-
ematically, a Möbius transformation is a function that maps a complex
number z= X+ Yi (where X, Y are real numbers and i is the imaginary
number with i2 = − 1) to another complex number (az+ b)/(cz+ d),
where a, b, c, d are complex coefficients with ad− bc ≠ 0. Möbius trans-
formations are conformal and hence are a good candidate for the map-
ping h in our problem. More specifically, here we consider a Möbius
transformation h : D ! Dr in the form

h X, Yð Þ ¼ r
X þ Yið Þ− Aþ Bið Þ

1− A−Bið Þ X þ Yið Þ , ð33Þ

where A, B are two real numbers to be determined. To find the optimal
h, we minimise the following area distortion measure

darea ¼ meanT∈F log

Area τ−1∘h∘g Tð Þ� �
∑T 0∈FArea τ−1∘h∘g T 0� �� �

Area Tð Þ
∑T 0∈FArea T 0� �

���������

���������; ð34Þ

where F is the set of all triangular faces of S. The desired spherical cap
parameterisation is then given by

f ¼ τ−1∘h∘g: ð35Þ

In particular, since every step described above is conformal, the
overall mapping f is also conformal.

To explain the formulation of the area distortion measure darea in
Eq. (34) more clearly, we first consider the mathematical definition of
area distortion. For any two surfaces M,N in the Euclidean space ℝ3

with the same total surface area, a mapping f : M ! N is said to be
area-preserving if for every open set U on M, the surface area of U is
equal to the surface area of f(U). More generally, the area distortion of a
mapping f can therefore be evaluated using the dimensionless quantity

log Area f Uð Þð Þ
Area Uð Þ

��� ���, which equals 0 if and only if Area(f(U)) = Area(U). In our

problem, M corresponds to the input triangulated surface S and hence it
is natural to evaluate the area distortion by considering every triangular
face T. In other words, by minimising Eq. (34) we look for a Möbius trans-
formation h such that the area change of every triangular face under the
spherical cap conformal parameterisation is as small as possible. Moreover,
note that the total surface areaof the input surfaceS is not necessarily equal
to that of the target spherical cap domain S2θ≤θc . Therefore, we use the two
summation terms in Eq. (34) for normalising the total surface area of the
input surface and that of the spherical cap in the area distortion measure.

In practice, the solution of this objective function can be found using a
global search heuristic such as the Pareto-like Sequential Sampling (PSS)
approach (see [53] for details). Using apopulation size of 30 and an accep-
tance rate of α=0.97, only 20 iterations are needed formost of the prob-
lems to reach a good approximation. This approach is gradient-free and
does not require an initial value that could converge locally. Table 1
shows the stability of the PSS approach, while Fig. 4 shows the conver-
gence and the final result of the parameterisation step. Alternatively, the



Fig. 4. Parameterisation of the monkey head model. A) The monkey head (Suzanne) benchmark mesh [76], with the heat map (texture) illustrating the radial distance from the model's
centroid; B) The back view of the model reveals the open boundary location; C) The conformal mapping onto the unit disk obtained using [5]; D) The convergence curve for finding the

optimal Möbius transformation that minimises the area distortion on the spherical cap using the PSS algorithm f : S ! S2θ≤θc for θc = 40∘ (i.e. r = 0.3640).

Fig. 5. Spherical cap parameterisation of the Stanford bunny. A) The Stanford Bunny
benchmark model [54] with an open base, where the heat map (texture) illustrates the
radial distance from the model's centroid; B) The conformal mapping onto the unit disk

obtained using [5]; C) The spherical cap parameterisation f : S ! S2θ≤θc for θc = 120∘ (i.e.

r = 1.7321); D) The spherical cap parameterisation f : S ! S2θ≤θc for θc = 90∘ (a

hemisphere, i.e. r = 1.0); E) The spherical cap parameterisation f : S ! S2θ≤θc for θc =
40∘ (i.e. r = 0.3640).
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minimisation problem can also be solved using MATLAB's fmincon, using
themodulus and argument of the complexnumberA+Bi as variable. The
solution obtained from this function was darea = 1.621523941729933
with X = 0.032055812166766 and Y = 2.416521766598053, which is
consistent with the PSS result. Fig. 5 shows several spherical cap
parameterisation results with different prescribed θc for the Stanford
bunny model [54]. To further assess the conformality of the
parameterisation results, we define the angle distortion dangle as the aver-
age of the absolute difference between every angle [vi,vj,vk] in a triangular
face in the input surface and that in the spherical cap parameterisation f:

dangle ¼ mean
vi , vj , vk½ �

∣∠ f við Þ, f vj
� �

, f vkð Þ	 
� �
−∠ vi, vj, vk

	 
� �
∣

180∘ : ð36Þ

The values of dangle for the parameterisations in Fig. 5(C), (D), and
(E) are 0.00828069, 0.00869725, and0.00919996 respectively. The results
show that the proposed parameterisation method is highly conformal.

5. Numerical implementation of the spherical cap harmonic analysis
(SCHA)

In this section, we describe the numerical implementation of
the SCHA method and use it to reconstruct triangulated surface meshes.

5.1. Spherical cap harmonic analysis (SCHA)

SCHA comprises the computation of the weights θcqk
m by the integral

in Eq. (29). However, this integral cannot be calculated directly as the
844
data is not defined everywhere over the spherical cap. Instead, it can
be estimated for discrete points that are distributed randomly over the
cap. For this reason, we estimate these coefficients using the least
squares method (statistical regularisation). Following the indexing sys-
tem proposed in [6], the coefficients can be estimated as follows:

θc qmk ≈ BTB

 �−1

BTV , ð37Þ

where B contains the basis functions evaluated at the coordinates V that
define the geometry of the surface patch. If nv vertices describe the ge-
ometry of this surface patch in spatial coordinates, the matrix V can be
written as:

V ¼

x0 y0 z0
x1 y1 z1
⋮ ⋱ ⋮

xnv−1 ynv−1 znv−1

0BBB@
1CCCA: ð38Þ

It should be noticed that the vertices defined in Eq. (38) are normal-
ised against the mean, so the actual expanded signals will be identified
about a mean of zero. The matrix B holds the SCH basis functions that
can be obtained by evaluating Eqs. (22) and (24) for the positive and
negative orders, respectively, and can be written as:

B ¼

c 0,0ð Þ c 0,1ð Þ . . . c 0,jð Þ
c 1,0ð Þ c 1,1ð Þ . . . c 1,jð Þ
⋮ ⋮ ⋱ ⋮

c nv−1,0ð Þ c nv−1,1ð Þ c nv−1,jð Þ

0BBB@
1CCCA, ð39Þ

where ci,j is the basis function evaluated at the ith vertex for index j. The
index j is calculated as j(m,k) ≔ k2 + k+m and−k ≤m ≤ k for the zero-
based numbering programming convention. Thismeanswe need to fit 3
(Kmax + 1)2 coefficients simultaneously for all the x(θ,ϕ), y(θ,ϕ) and z
(θ,ϕ) signals in f(θ,ϕ). The final complex-valued θcqk

m coefficient matrix
can be written as:

θc qmk ¼

q0x q0y q0z
q1x q1y q1z
⋮ ⋱ ⋮
qjx qjy qjz

0BBBB@
1CCCCA: ð40Þ

The least squares fitting is a statistical regularisation method that
provides a good approximations for the coefficients θcqk

m, as long
as the number of equations on the spherical cap is significantly larger
than the expanded coefficients. Here, this condition is always satis-
fied because our surfaces are defined by dense point clouds. Other
regularisation methods that enhance the accuracy of the least squares
fitting and obtain a better orthogonality among the columns in

Image of Fig. 4
Image of Fig. 5
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Eq. (39) can be found in the literature (e.g. see [55]) but are not applied
here.

5.2. Spherical cap harmonic reconstruction

We can reconstruct the surface patch from Eq. (27) when the coeffi-
cients are known. To obtain a homogeneous representation of all the
morphological features over the cap domain, this step requires uni-
formly sampled points (vertices). In ordinary SHA, convex icosahedrons
(geodesic polyhedrons) with differentmesh refinements are often used
for the reconstruction because the vertices of these icosahedrons are
equally spaced. Analogously, for SCHA, we use geodesic domes with
uniformly distributed vertices over a spherical cap (see Fig. 7). To con-
struct these domes, we first construct a uniformly meshed unit disk
and then use the inverse Lambert azimuthal equal-area projection to
project it to the desired spherical cap. Like the approach presented in
Section 4, we need to rescale the unit disk by an appropriate scaling fac-
tor rl to yield a spherical cap with the correct area under the projection:

rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1− cos θcð Þ

p
: ð41Þ

For reconstructing the surface patch, we need to choose a suitable
mesh refinement for practical and theoretical aspects. Practically, the
complexity of the numerical models, e.g. finite and discrete element
methods, depends on the number of elements used to discretise the
continuum. Theoretically, we need a mesh size that represents the
smallest required detail depending on the application. If we imagine
that a simple 1D wave propagates along a discrete line, we need at
least five knots (points) to capture the sign changes along a full wave.
This means that the distance between two adjacent vertices at a certain
mesh refinement must be at least one-fourth of the target minimum
wavelength. The trade-off between capturing morphological features
and the numerical complexity should be calibrated through several re-
construction trials. More details about the minimum and maximum
wavelength associated with the SCHA will be discussed in Section 7.1.

We consider two approaches for constructing a disk with a uniform
grid. The first approach, proposed by Roşca (2010) [56], builds the disk-
grid by transforming a rectangular grid of squares to a quad-grid disk
using an area-preserving map, which can be subsequently triangulated
using standard Delaunay triangulation. This approach gives us direct
control of the number of vertices on the spherical cap. Another approach
Fig. 6. Transformation of a square grid to a geodesic dome grid (before triangulating the surface
and vertical lines resulting in 900 points of intersection (vertices); B) An area-preserving ma
hemisphere); D) The final geodesic dome with θc = π/3; E) The final geodesic dome with θc =
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is the DistMeshmethod proposed by Persson and Strang (2004) [57], in
which one can construct a uniformmesh on a unit disk by a force-based
smoothing approach. For this approach, the desired length of the edge
elements on the unit disk is a required input that indirectly controls
the number of vertices on the surface mesh. For both approaches, we
need to rescale the resulting unit disk meshes using Eq. (41) (the
rescaled disk is denoted by Dl) before applying the inverse Lambert's
projection τl−1 so that every (x,y) point on the rescaled disk is projected
to the (X,Y,Z) on a spherical cap to S2θ≤θc as:

τ−1
l x; yð Þ ¼ X;Y ; Zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2 þ y2

4

s
x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

x2 þ y2

4

s
y;−1þ x2 þ y2

2

0@ 1A:

ð42Þ

Fig. 6 visualises the process in [56], and Fig. 7 shows the final geode-
sic domes obtained using the two approaches.

6. Shape descriptors and fractal dimension (FD)

Like the traditional Elliptical Fourier Descriptors (EFD) [48] and their
3D extension to SH [6], SCHA also yields coefficients that can describe
and reconstruct surfaces. Because the SCH is a “local extension” of the
ordinary SH, it matches most of its properties [47], such as the spectral
power analysis for determining the surface fractality. In this section,
we describe the interpretation of the shape descriptors derived from
SCHA and their relationship to those derived from other traditional
methods like HSH. We also show how to estimate the wavelengths as-
sociated with each degree and extract the fractal dimension (FD) from
the attenuation of the shape descriptors.

6.1. Shape descriptors derived from SCHA

Shape descriptors tell us how similar or dissimilar surfaces are to
each other and are particularly useful for matching or classifying com-
plex topologies. These shape descriptors must be invariant to the loca-
tion, rotation and size of the targeted surface. In this section, we
compare the shape descriptors derived from SCHA to those derived
from SHA or EFD and explain some additional properties of the SCH re-
gional analysis.
s) using the algorithm proposed by Rosca (2010) [56]. A) A square gridwith 60 horizontal
p of the square grid onto a quad-grid disk; C) The final geodesic dome with θc = π/2 (a
π/18.

Image of Fig. 6


Fig. 7.Geodesic domes for θc= π/3 with different refinement cycles (N). The domes in A–Cwere obtained using the unit diskmesh generationmethod in [56] followed by the rescaling in
Eq. (41) and inverse Lambert's projection in Eq. (42). The domes in D–E were obtained using the DistMesh method [57] followed by rescaling and the inverse Lambert's projection. A) A
mesh grid resolution of 12 results in 36 vertices; B) A mesh grid resolution of 20 results in 100 vertices; C) A mesh grid resolution of 60 results in 900 vertices; D) An edge element size of
0.325 results in 35 vertices; E) An edge element size of 0.185 results 103 vertices; F) An edge element size of 0.635 results in 896 vertices.
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By expanding the signal f(θ,ϕ) = (x(θ,ϕ),y(θ,ϕ),z(θ,ϕ))T, we simul-
taneously obtain the coefficients for the three orthogonal signals. We
first consider the “breathing” mode (corresponding to k = 0), where
we have a constant shift for all the points in the signal. The correspond-
ing real-valued (k = m = 0) coefficients along the x, y and z axes are
represented by θcq0,x

0 , θcq0,y0 and θcq0,z
0 . These coefficients correspond to

the geometric centroid of the surface, which is similar to the EFD and
SHA methods. Practically, we ignore these coefficients and set them to
zero to make the shape descriptors and the reconstruction invariant to
the location.

For k=1, EFD basis functions define an ellipse in 2D, and SH functions
define an ellipsoid in 3D. However, in our case, the basis functions de-
scribe an ellipsoidal cap that is sized by the 3 × 3 matrix θcq1

m, m ∈
{−1,0,1}, herein referred to as the first-degree ellipsoidal cap (FDEC).
The FDEC determines the size and the orientation of the reconstructed
surface, and it also shapes the main domain (spatial space) of the other
harmonics (for all ∣m ∣ > 1). Following Brechbühler et al. [6], the size of
the FDEC can be determined by rearranging the coefficients from k = 1
to correspond to the ellipsoidal equation in the Cartesian coordinates:

A ¼ θc q−1
1 −θc q11, i

θc q−1
1 þθc q11

� �
,
ffiffiffi
2

p θc
q01


 �
: ð43Þ

Solving the eigenvalue problem of AAT will provide three eigen-
values ∣λ1 ∣ ≥ ∣ λ2 ∣ ≥ ∣ λ3∣. Their roots a ¼ ffiffiffiffiffiffiffiffi

∣λ1∣
p

≥ b ¼ ffiffiffiffiffiffiffiffi
∣λ2∣

p
≥ c ¼ ffiffiffiffiffiffiffiffi

∣λ3∣
p

correspond to the amount of “stretch” along the three principal axes
Fig. 8. Thefirst-degree ellipsoidal cap (FDEC) defined by k=1; a is the half-major axis, b is
the half-minor axis and c is the ellipsoidal cap depth, where ∣c ∣ ≤ ∣ b ∣ ≤ ∣ a∣.
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of the ellipsoidal cap. The directions of the “stretches” will follow
three eigenvectors; two of them are in-plane orthogonal vectors and
the third is an out-of-plane perpendicular vector. These three unit
vectors describe the principal directions of the ellipsoidal cap. Fig. 8
shows the FDEC in an arbitrarily rotated Cartesian space.

When the sizeof the ellipsoidal cap is determined, thehigher frequency
basis functions will be overlaid onto the domain of the FDEC. Numerically,
the basis functions of the SCH are similar for different θc’s, but they are ei-
ther “stretched”or “compressed”overS2θ≤θc . This constrains all thedomains
to the size of the FDEC, whichmakes the proposedmethod invariant to θc.
From the point of viewof the basis functions, this theoretically implies that
there is no difference between the SCHA and the HSHA, providing that we
are using the same normalisation factor (e.g. Schmidt semi-normalised).
However, the results of the analysis will depend on the introduced distor-
tion between the real Cartesian space and the parameterisation space. This
problem will be discussed in Section 7.

The FDEC size is also important for estimating thewavelengths asso-
ciated with the harmonics expanded over the surfaces. In geophysics,
the SCHA is used for a regional analysis over planets and moons to di-
rectly estimate the average circumference. As we do not have a closed
surface that is approximately spherical, however, we use the FDEC to es-
timate the average circumference of a full “virtual” ellipse that lies at θc ≡
π/2 (Greenwich line) to estimate the circumference (more details will
be discussed in Section 7).
6.2. Shape descriptors for estimating the fractal dimension

Shape descriptors have been extensively studied in the SH literature.
The most commonly used descriptors are rotation-invariant ones that
do not require the registration of the surface. Based on the amplitudes
calculated in the expansion stage θcqk

m, we can express the shape de-
scriptors (for instance see [18,58,59]) as follows:

bDk,x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

m¼−k
‖θc qmk,x‖

2

s
,

bDk,y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

m¼−k
‖θc qmk,y‖

2

s
,

bDk,z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

m¼−k
‖θc qmk,z‖

2

s
:

ð44Þ

Image of Fig. 8
Image of Fig. 7
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Then, the resultant (radial) rotation-invariant descriptors can be
expressed as:

bD2
k ¼ bD2

k,x þ bD2
k,y þ bD2

k,z: ð45Þ

These descriptors need to be normalisedwith the size of the FDEC to
obtain size-invariant descriptors and to estimate the Hurst exponent,
important for removing the dimensionality of the data [23]. Thus, the
final shape descriptors can be written as:

D2
k ¼

bD2
kbD2
1

,∀k>1: ð46Þ

For nominally flat and circular surface patches, where the roughness

(noise) only shifts the z−coordinates, bD2
k,x≈bD2

k,y ! 0 for k > 1.
The power spectral analysis determines the power accumulated at a

certain wavelength of the analysed surface, while the spectral attenua-
tion computes the FD of the surface. Similar to the PSD analysis, herewe
found that the accumulated power at each degree correlates with the
Hurst exponent H (see [23,60] for details) as follows:

D2
k ∝ k

−2H
: ð47Þ

The FD can then be computed as (see [23]):

FD ¼ 3−H: ð48Þ

For fractal surfaces, theHurst coefficient is between 0 and 1 (0<H<
1), and the FD is between 2 and 3 (2 < FD < 3). The higher the H expo-
nent, the smoother the surface.

The Hurst exponent can be estimated from the rate of power atten-
uation with an increasing k, as the slope of the fitted line on a log-log
graph is −1/(2H). One common way to estimate the exponent is
through the least squares fit of the equation Dk

2 = ak−2H, where a is
the proportionality constant in Eq. (47). This approach estimates a radi-
ally symmetric Hurst exponent for self-affine surfaces. Unlike the Hurst
exponents computed by traditional methods that investigate profiles
along different directions, the Hurst exponent herein computed on the
basis of SCH coefficients is invariant to directions or rotations. We
benchmarked this approach against artificial fractal surfaces, and the re-
sults are presented in Section 9.3.

7. Choosing the optimal half-angle θc and the appropriate surface
patch

7.1. Choosing the optimal half-angle θc

In Section 6,we explained that the SCHbasis is invariant to θc, raising
the question: What is the optimal half-angle θc for the analysis? To an-
swer this, we need to consider two aspects: i) the numerical stability
of the hypergeometric functions and ii) the distortion between the
object's space and the parameterisation space. The stability of the
hypergeometric functions was briefly discussed in Section 3. In general,
the smaller the θc, the faster the convergence (less terms needed), but θc
should not be too close to the singularity points θc ∈ {0,π}.

If this restraint is considered, we can choose the half-angle θc such
that the distortion introduced by the parameterisation is minimised.
As compared to HSH, SCH offers this additional parameter θc to mini-
mise the distortion. We here adopt the area distortion (darea) used in
Eq. (34) to determine the optimal θc, though other measures can also
be used.

Tofind theoptimal θc thatminimises the area distortion,we used the
PSS algorithm [53], which we used already for finding the optimal
Möbius transformation for h(X,Y) (see Section 4). Note that we used
the area distortion measure darea as the objective function as the
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proposed parameterisation method is highly conformal and always
yields a minimal angular distortion regardless of θc. We searched for
the optimal θc in a domain limited by a lower bound θLB and an upper
bound θUB. The optimisation problem can then be written as:

min
θc

min
X;Y

darea

� �
;

s:t: θLB ≤ θc ≤ θUB:
ð49Þ

By investigating several benchmarks, we observed that the algo-
rithm chooses the θc that best represents the global concavity of the
open surface. For instance, for the nominally flat surfaces examined
in Section 9, we find that θc is always as low as θLB, which we set to
π/18 = 10°. For the portion extracted from the scanned stone (see
Section 13.2), we obtain an optimal half angle of 99.9158°, which corre-
sponds to an area distortion of 0.240406. For practical reasons, we can
assume θc ≈ 90° (a hemisphere) with an area distortion of 0.253300.
In addition to the natural free edge, this helps explain why using HSH
led to better results than SH when studying skulls and ventricles in
medical-imaging problems [25,26].

7.2. Wavelength analysis with θc

The literature review in Section 2.1 highlighted that separating the
shape of an object from its roughness is a challenging problem, with
most prior works proposing the use of empirical rules based on the re-
construction quality. We here offer an alternative approach adopted
from the geophysics literature on SCH that determines the required
number of degrees based on the targeted wavelength range.

Bullard (1967) [61] defined the wavelength in SH by ω = 2πr/n,
where n is the SH degree and r is the average radius of the sphere.
Haines (1988) [33] derived the relationship between the degree and
the spherical cap half-angle θc using an asymptotic approximation (for
large k and small m):

l mð Þk≈
π
2θc

kþ 1
2

� �
−

1
2
, ð50Þ

where θc is in radians. Analogous to [61], Haines concluded that
the minimum spherical cap wavelength associated with the kmax is
ωmin = 2πr/l(m)k,max

. Solving Eq. (50) for kmax gives:

kmax≈
2θc
π

2πr
ωmin

þ 1
2

� �
−

1
2
, ð51Þ

where kmax is themaximum index required to cover or represent amin-
imumwavelength on the expanded cap.

In geophysics, the term 2πr is the average circumference of the earth
(or any other planet under consideration). As wementioned earlier and
unlike in geophysics, here we expand three orthogonal signals instead
of the radial one. The size of thedomain is described by the three param-
eters a, b and c, which are determined by the FDEC for k = 1.

Bullard (1967) [61] derived this expression from the number of
divisions along the circumference for a certain degree n; the maximum
circle defined over the sphere (equator) occurs when m = n (sectoral
harmonics). Furthermore, he proved that this is true at any point on
the sphere for any arbitrary pole. Here, we apply the same concept by
replacing n with k (the index of the degrees). At m = k, the largest
ellipse defined over the spherical cap changes its sign k times. Thus,
ω = ζ/k, where ζ is the circumference of the largest ellipse defined
over the first degree ellipsoidal cap (FDEC) (Fig. 8). Additionally, ζ can
be estimated from the FDEC, which is described by the orthogonal

vectors θc q
!−1
1 , θc q

!0
1 and θc q

!1
1 (Section 6). The wavelength at an index k

can then be written as:
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ωk≈
2π
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

2

s
,∀k≥1: ð52Þ

Eq. (52) can also be reached by assuming that the largest ellipse on
an ellipsoidal cap corresponds to the equator (runs through the Green-

wich line), and thus θc → π/2. Then, by letting r≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

 �

=2
r

, the as-

ymptotic formula in Eq. (51) will be the same as in Eq. (52). Note that
the (≈) sign in the above expressions denote that these formulae
have been derived asymptotically [29], the circumference of the largest
ellipse is also approximated, and the circumference of the FDEC is not
the final circumference of the expanded surface patch. This equation is
more accurate for circular patches where the FDEC perimeter is more
circular than elliptical.

7.3. Choosing the appropriate surface patch

Choosing the appropriate sampled surface patch eases the para-
meterisation process. It also avoids over−/under-representation of cer-
tain morphological features over the targeted surface, accordingly
preventing potential problems in the subsequent analysis step. The fol-
lowing points are recommendations for sampling a surface patch:

• Manifold edges and surfaces without opening (genus-0) meshes are
required for the parameterisation algorithm proposed in this paper.

• The input mesh must not contain duplicated faces, edges, vertices or
skewed faces with close-to-zero areas.

• A round surface patch avoids point clusters at sharp corners as a result
of the parameterisation algorithm, which would lead to a poorly rep-
resented morphology.

• Circular patches with no sharp edges will cause the first ellipse to be
mostly circular. As a result, thewavelength definitionwill bemore ac-
curate because the circumference estimate is more precise.

• The scanned surface patch should be sampled as uniformly as possi-
ble, which will make the parameterisation algorithm more accurate
due to the use of the least-squares fitting method for computing the
coefficients of the SCHA.

• When the surface patch does not have enough vertices to compute all
degrees (results in badly conditionedmatrix B in Eq. [37]), the surface
should be subdivided as needed to increase the number of expanded
equations and increase the quality of the coefficients.

• When the results arewavywhen reconstructedwith high degrees,we
recommend subdividing the overall surface or the local wavy areas to
increase the number of expanded equations, thus reducing the fitting
error.

8. Windowing the spectral domain and roughness projection

In this section, we introduce a method for projecting the roughness
on surfaces using the analysis results expanded from the SCH, HSH and
ordinary SHmethods. This is useful for studies of contact problems, as it
allows for systematically modifying the bandwidth of wavelengths in-
cluded in the reconstruction and for altering a surface geometry. The
isolated or generated surface roughness can then be projected onto a
donor mesh of the user's choice.

Let us assume that we have obtained the SCH coefficients up to the
order Kmax either through expansion or through artificial generation
(not included in this paper). The rough surface is to be projected onto
a mesh that donates the general shape of the object, henceforth called
the “donor mesh”. The targeted vertices on the donor mesh can be de-
termined and parameterised to obtain fd(θ,ϕ) = (xd(θ,ϕ),yd(θ,ϕ),zd
(θ,ϕ))T.

For the SH, we combined the parameterisation approaches by Choi
et al. in 2015 [62] and 2020 [63] to obtain a conformal spherical
parameterisation of the donor mesh with minimal area distortion. For
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the HSH and the SCH, we used the approach proposed in Section 4.
However, instead of parameterising only the spherical cap, we
parameterised the whole donor mesh over a unit sphere and then
constrained the targeted domain of the vertices to a spherical cap with
θc.

After parameterising the targeted vertices over the donor mesh, we
projected the roughness onto the surface using a simple bandwidth-
limiting (windowing) function in the spectral domain. Let us assume

that kmin ≥ 1 and kmax ≤ Kmax are the minimum and maximum indices,
which correspond to ωmax and ωmin wavelengths computed from
Eq. (52). The roughness projection can then be implemented bymodify-
ing Eq. (27) to:

f d θ;ϕð Þ ≈
Xkmax

k¼kmin

∑
k

m¼−k

θc qmk
θc Cm

k;d θ;ϕð Þ; ð53Þ

where Ck,d
m (θ,ϕ) are the basis functions evaluated for the targeted do-

main on the donor mesh. This expression is equivalent to multiplying
the reconstruction expression in Eq. (27) by the traditional rectangular
eigenfunction window H(k) in the spectral domain (a sharp cut-off in
the spectral domain) where:

f d θ,ϕð Þ≈ ∑
Kmax

k¼0
∑
k

m¼−k
H kð Þθc qmk θc Cm

k,d θ,ϕð Þ, ð54Þ

and

H kð Þ ¼ 1; kmin ≤ k ≤ kmax;
0; otherwise:

�
ð55Þ

The coefficients can be manipulated in the spectral domain by rotat-
ing and scaling as needed. In this paper, wewill not demonstrate the co-
efficients manipulation methods or the random generation of fractal
surfaces with a certain Hurst exponent.

9. Numerical examples and discussions for SCHA

In this section, we present and discuss the results of the proposed
SCHA method. We begin with a visual benchmark that helps build the
intuitive argumentswe raise about the scalability andwavelengths. Sec-
ond, we benchmark the SCHA against various random fractal surfaces to
estimate the Hurst exponent. Then, we analyse and study a rough sur-
face patch of a rockwhose geometry was obtained by laser scanning. Fi-
nally, we demonstrate an example of a roughness projection from the
scanned stone to alter the microstructure of a donor mesh.

9.1. Visual benchmark

We use a sculpture of a face (retrieved from [64]) for visualising the
reconstruction evolution with k. The 3D-scanned geometry of the face
was first cleaned and remeshed to a manifold surface with a reasonable
number of vertices that sufficiently describe the details. Fig. 9(A) shows
the input geometry that was used. This benchmark was chosen for the
following reasons:

• It is a nominally flat surface that contains large and small wavelengths
(facial features). To capture all the small details, a high number of or-
ders is required.

• It has a significant number of vertices (more than 20,000), which in-
creases the problem complexity.

In this example, we used θc = π/18 to parameterise, expand and re-
construct the surface, as this half angle is low enough to minimise the
area distortion but also high enough for the hypergeometric functions
to be stable. The results in Fig. 9(B)–(H) show the evolution of the re-
construction stages with k.



Fig. 9. The reconstruction of the face sculpturewith SCH. A) The input surface after remeshingwith 21,280 vertices. Itwas expanded up to k=40 and reconstructedwith an edge length of
0.032 on a unit disk; B) The reconstruction with k = 1 results in an FDEC with 2a = 123.381,2b = 111.336 and c = 19.844; C) Reconstruction at k = 3; D) Reconstruction at k = 5;
E) Reconstruction at k = 10; F) Reconstruction at k = 15; G) Reconstruction at k = 20; H) Reconstruction at k = 40.

Fig. 10. The root mean square error (RMSE) for the face sculpture. The inset shows the
Hausdorff distance at k = 40, where 1,221,276 points were sampled on the original
mesh and were compared with the reconstructed mesh. For θc = π/18, the RMSE for the
Hausdorff distance was 0.229886, the mean error was 0.141412 and the highest error
value scored was 2.799484. The reported data was extracted with the open source
package MeshLab [65].
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The method starts with fitting the large wavelengths (low k’s). The
large facial features, such as the nose bone, begin to take shape at k = 3.
The eyebrow ridges begin to take shape at k = 10. Fine details like the
mouth and the hair curls become visible only with higher k’s. One way
to measure the convergence of the spatial details is by simply measuring
the distance between the sampled points (Monte Carlo) on the input sur-
face and the closest equivalent ones on the reconstructed surface at a cer-
tain k. The root mean square error (RMSE) of these points is then
calculated using MeshLab [65] as the Euclidean distance normalised by
the diagonal of the bounding box of the surface. The results are shown in
Fig. 10; for k=40, the RMSE averaged over all points is 0.158282. Another
measurement that can compare the reconstruction of the original shape is
the Hausdorff distance; see the inset included in the same figure. It should
be mentioned that when k= 40, the largest captured feature varied at a
wavelength of 184.589 mm, and the smallest varied at 4.858 mm.

Additionally, to investigate the influence of θc on the quality of the
reconstruction, we also expanded the input mesh up to k = 40 assum-
ing θc = 5π/18. The RMSE for an expansion and reconstruction with
θc = 5π/18 was only 0.1215% larger than the one with θc = π/18. Prac-
tically, this means that the analysis is invariant to θc, with the small dif-
ference due to the numerical accuracy of the hypergeometric functions
and the area distortion introduced by the parameterisation. The area
distortion after finding the optimal Möbius transformation was
0.377619 for θc = 5π/18 and 0.341917 for θc = π/18.

9.2. Wavelength and patch size

As the face sculpture example contains large and small wavelengths,
high orders of SCH were needed to reconstruct the small details; com-
pare Fig. 9(G) and (H), where 20 additional orders were added to cap-
ture the hair curls, the mouth and the nasal openings. To demonstrate
that the number of orders needed for reconstructing a certain detail de-
pends on the size of the patch, we considered a regional patch from the
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hair details to filter out the larger wavelength (facial features, e.g. the
nose). The considered local patch is the red-dotted region circled on
Fig. 10(A).

We expanded the local patch by assuming θc = π/18 and using only
k=15. As we see from Fig. 11, 15 degrees were enough to reach almost
the same RMSE accuracy as the whole face with k=40. This resembles
about 15.23% of the overall computed SCH basis functions, though this
ratio does not scale linearly with the computational time. Theminimum
RMSE for the simple distance between the surfaces at k = 15 was
0.104812. By changing the range of targeted wavelengths, we can

Image of Fig. 9
Image of Fig. 10


Fig. 11. The root mean square error (RMSE) for the local patch on the visual benchmark.
The inset shows the Hausdorff distance at k = 15 where we used 602,087 points
sampled on the original mesh and compared these with the reconstructed mesh. At
θc = π/18, the RMSE for the Hausdorff distance was 0.149861, the mean error was
0.087238 and the highest error value scored was 1.594269. The reported data was
extracted with the open source package MeshLab [65].
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clearly see the faster convergence of this method with relatively close
scales of detail (wavelengths). At only k= 15, the largest captured fea-
ture varied at a wavelength of 59.761 mm and the smallest varied at
4.269mm, in comparisonwith k=40, with 4.858mm for the full sculp-
ture. Furthermore, we compared this with the HSHA, andwe show that
the error at least doubles for the differentmeasures; see Section 13.3 for
full details.
Fig. 12. The analysis results for artificially generated fractal surfaces with different Hurst expone
fit of Eq. (47). (A) a surface generated with H = 0.4; (B) a surface generated with H = 0.5; (C
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9.3. Analysis of rough fractal surfaces

Here, we analysed rough artificially generated fractal surfaces, com-
puted the Hurst coefficient from the SCHA for these surfaces and com-
pared the obtained coefficients to the input values used for the
generation. Many libraries have been developed for generating such
surfaces using the traditional power spectral density (PSD) method
(reviewed in [66,67]), such as Tamaas Library [68]. These benchmarks
are important in contactmechanics, which usually depends on exact as-
perity shapes, distributions and their effects on the real contact area, as
per Hyun et al. (2004) [69].

We generated four fractal surfaceswith a root-mean-squared rough-
ness of 0.7E − 2 mm and Hurst exponents of H ∈ {0.4,0.5,0.6,0.9}; see
Fig. 12. To avoid biasing the first few k’s on fitting the shape of the
boundary lines and to expand the surfaces with fewer ks, notice that
the generated samples are all disks (circular boundary lines). To ensure
reproducibility, all the surfaces were generated with a fixed seed num-
ber of 10 and with no roll-off wave vector. In the same figure, we show
the analysis results (up to k = 40) in terms of the shape descriptors
(solid lines) in Eq. (46) and the fit of Eq. (47) (dashed lines).

The surface in Fig. 12(A)was generatedwith aHurst exponent of 0.4,
and we estimated a Hurst exponent of H = 0.4175, which corresponds
to a fractal dimension of 2.5825 and an error of+4.4%. For the generated
surface with H = 0.5 (Fig. 12(B)), we estimated H = 0.5197 (+3.9%)
and FD= 2.4802. For the third example with H = 0.6 (Fig. 12(C)), we
estimated the H = 0.5922 (−1.3%) and FD= 2.4078. However, for the
fourth sample generated with H = 0.9 (Fig. 12(D)), we obtained H =
0.8370 (−7.0%) and FD= 2.1630. This error is typical for higher values
ofH, as the surface seems finer andmost of the spatial details are part of
nts. The solid lines represent the descriptors in Eq. (47) and the dashed lines represent the
) surface generated with H = 0.6; (D) surface generated with H = 0.9.

Image of Fig. 12
Image of Fig. 11
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smaller wavelengths, meaning that additional ks are needed to capture
these finer details. Making use of the scalability of the SCHA together
with the nature of the fractal surfaces (repeats itself at all scales), we
cut out a smaller area at the centre of the patch in Fig. 12(D). We
analysed the latter with k = 8, and the estimated Hurst exponent was
0.8850 and FD = 2.1150. This agrees with the conclusions drawn by
Florindo and Bruno (2011) [70], who found using the PSD that the at-
tenuation slope of FD changes with the value of k and that most of the
fractal information is contained in the microscopic wavelengths when
the change in the slope is negligible.
Fig. 14. The SCHA for a patch sampled over the stone in Fig. 17. The analysis of the results
for k = 40 and the best fit for the first k = 12 are shown, with H = 0.9464 and FD =
2.0537. The colour bar shows the height map of the patch in mm. The upper x-axis
shows the corresponding wavelengths ωk.
9.4. Laser-scanned rough surface patch

Here, we scanned a real stone that had been previously used in an
experimental campaign [71]. This type of stone is common in historical
stone masonry walls, so studying the stones' interfacial properties
helps define the mechanical behaviour of the walls. The stone surface
was acquired by laser scanning (Fig. 13) with an accuracy of 0.01 mm
(Fig. 17). Additionally, we sampled (extracted) a small patch over the
scanned surface of the stone, see Fig. 17, to study the roughness of the
surface.

The surface patchwas expanded up to k=40. The estimated dimen-
sions of the FDEC (computed from Eq. (43)) were: a = 24.7879 mm,
b = 23.3502 mm and c = 5.7899 mm. From FDEC, we can estimate
the wavelengths of any index k from Eq. (52). For instance, with an es-
timated average FDEC circumference of 151.2980 mm, the maximum
and minimum computed wavelengths ω2 ≈ 75.6490 mm and ω40 ≈
1.9908 mm, respectively. Fig. 14 summarises the results of the analysis
Fig. 13. The laser scanner setup using theQuantumFAROArm®; the left side of the picture
shows the laser scanner used to scan the stone, and the right side shows the stone pinned
on a steel frame for the scan to minimise the loss of surface data.
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of the descriptors. From the analysis, the decay of the shape descriptors
gives us a Hurst exponent of H = 0.9464, which suggests that the sur-
face is not very rough. Later, this roughness information will be used
for modifying the microstructure of a selected object.

9.5. Example of roughness projection

As explained in Section 7, we start the roughness projection by
parameterising the patch on the donor mesh over a sphere with a pre-
scribed θc. Fig. 15 shows the parameterisation of a selected patch on a
donor mesh with various half-angles θc. For the projection, we used
the coefficients extracted from the patch in Fig. 14. To alter the micro-
structure of the selected face on the donor mesh, we only include
Fig. 15. The parameterisation of a selectedpatch on a donormesh over a unit spherewith a
prescribed θc. (A) The donormeshwith the selected (red-shaded) patch for projecting the

roughness; B) S2∪S2θ≤π=2; C) S2∪S2θ≤5π=18; D) S2∪S2θ≤π=9.

Image of Fig. 13
Image of Fig. 14
Image of Fig. 15


Fig. 16. Roughness projected on the selected face shown in Fig. 15. (A) The roughness
projection on the triangulated face (STL file); (B), (C) The remeshed STL surface with
different refinements performed using the OpenCASCADE [72] library followed by
volumetric finite element meshes generated by GMESH [73].
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wavelengths between wmax = 15.12 mm (kmin = 10) and wmin =
1.99 mm (kmax = 40). The resulting microstructure (see Eq. (53)) is
shown in Fig. 16(A). To obtain the final finite element mesh, we
remeshed the STL surface using theOpenCASCADE library [72]with var-
ious refinements (see Fig. 16(B) and (C)). The final volumetric finite el-
ement mesh was obtained using GMESH [73].
10. Conclusions

In this paper, we conducted morphological analyses of open and
nominally flat rough surfaces using the spherical cap harmonics
(SCH), whose basis functions are a generalisation of the hemispherical
harmonics (HSH) basis. SCHs form an orthogonal basis and is suitable
for analysing an open surface that is projected onto a spherical cap
with any half-angle θc (Fig. 1), while HSHs form a basis for a hemisphere
(θc = π/2). SCHs have been widely used in geophysics for describing
fields (e.g. the magnetic field over a continent), but to our knowledge,
they have not yet been applied for characterising and reconstructing
the morphology of surfaces. We exploited the solution for the even set
of Legendre functions of the first kind together with the Fourier func-
tions to constitute the final SCHs that satisfy the Laplace equation on a
spherical cap. We chose the even set to perform surface reconstruction
with free edges using theNeumann boundary conditionswhile simulta-
neously conducting a power spectral analysis using the orthogonality of
the even basis functions.We also used SCH to analyse simply connected
surfaceswith vertices, edges and triangulated faces (the Standard Trian-
gle Language STL files). The first step of such analyses is to couple each
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vertex on the surface with a unique pair of θ and ϕ (surface
parameterisation). Thus, we proposed a parameterisation algorithm
that provides conformal one-to-onemappingwithminimal area distor-
tion over a unit spherical cap with a prescribed half-angle θc (S2θ≤θc).

We showed that the proposed analysis approach is invariant to θc yet
is sensitive to the distortion introduced in the parameterised surface at
different half angles (θc’s). The unavoidable distortion caused by the
parameterisation algorithm can limit the analysis to certain half angles.
Therefore, we used a global optimisation approach to identify the opti-
mal half-angle θc that minimises the area distortion between the input
and parameterised surfaces. As expected, we found that the conven-
tional HSH analysis is suitable for surfaces that can be parameterised
over a unit hemispherewithout introducing significant area and angular
distortions. For nominally flat surfaces, however, the traditional HSH
fails to analyse and reconstruct the surfaces correctly because of the
distortion.

To show the robustness of the morphological analysis and recon-
struction convergence, we applied the proposed method to a scanned
face sculpture as a visual benchmark. This benchmark was chosen to
contain relatively large and small wavelengths to test the convergence
to the smallest details. The face was analysed for two selected half an-
gles to demonstrate that themethod is invariant to θc and that the qual-
ity of the analysis depends only on the distortion introduced on the
parameterised surface. We then demonstrated the convergence and
the scalability of the method to expand and reconstruct complex sur-
faces of a selected local patch on the face. Because the patchwas smaller
than the entire face, fewer degreeswere needed to capture the same de-
tails (faster convergence). We finally compared this method with the
HSH and found that the reconstruction fromHSHwaswavy and showed
larger error margins, as was expected due to the distortion in the
parameterisation.

We derived an approximate formula that links the size of the first
degree ellipsoidal cap (FDEC) with the wavelengths as a function of
the index k. We then used the power spectral analysis of the rotation-
invariant shape descriptors that are invariant to translation, rotation,
scale and half-angle θc to find the fractal dimension (FD) of the analysed
open surfaces. To benchmark this approach, we generated fractal sur-
faces with the traditional PSD method and computed the Hurst expo-
nent for these surfaces from the SCHA results. The method yielded
good estimates of the Hurst exponent (errors between −7.0 and
+4.4%).

As this method was proposed to study rough surfaces in contact, we
also outline a method for projecting real or artificially generated rough-
ness onto a selected donormesh. This method can be used for the tradi-
tional SH, HSH and the SCH. We limited the bandwidth in the spectral
domain to reconstruct and alter the roughness of surfaces between
user-defined upper and lower limits.

The computational cost of this method was found especially expen-
sive when evaluating the sequential hypergeometric function, the criti-
cal loop, for k > 12. This is mostly due to using a high-level
programming language such as MATLAB and can be bested with using
C or C++.

11. Future works

In this section, we outline future developments for SCHA:

• This work hinges on the numerical stability and accuracy of the com-
puted basis functions of SCH, which depends on the Gaussian
hypergeometric function evaluation 2F1(a,b;c;z). We provide a
proof-of-concept implementation inMATLAB, whichmay not be opti-
mal in terms of computational efficiency.We nowneed a faster imple-
mentation of the hypergeometric functions in a more efficient
environment (e.g. C++) that is also stable for high orders.

Image of Fig. 16
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• The herein proposedmethod can be seen as a corner stone for regional
wavelet analyses for shape morphology. Wavelet analyses conducted
via traditional methods like SH could take advantage of the stable and
well-studied evaluation techniques of the traditional basis function as
well as any traditional recursive formulae (e.g. SH basis). The SCH
serves as an exact solution to compare with other potential regional
analysis methods using traditional basis functions.

• Implementing a recursive approach for computing the SCH basis can
improve the speed and efficiency.

• A physical regularisation method based on optimising the estimated
SCH coefficients of the basis will improve the accuracy and noise
levels of the analysis (see [12] as an example for SHA).

12. Reproducibility

The codes and generated data and the surfaces are allmade available
in this paper and can be found on Zenodo (GitHub) [74]:

• Zenodo: https://doi.org/10.5281/zenodo.4890809
• GitHub: git@github.com:eesd-epfl/spherical-cap-harmonics
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Appendix A. Supplementary data

A.1. The scanned stone and the ordinary spherical harmonics analysis

Fig. 17 shows the scans of the stone produced using the FARO arm
laser scanner after down-sampling the point cloud and remeshing the
surface. Using the first degree of the ellipsoid (FDE), which results
from the degree l=1 in the SHA, we can estimate themaximum ellipse
size at θ = π/2. The size of the ellipse can be written as [6]:

A ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffi
2π

p q−1
1 −q11; i q

−1
1 þ q11

� �
;
ffiffiffi
2

p
q01


 �
: ð56Þ

For the SHA, we used 45 degrees and set the size of themaximumel-
lipse on the FDE to a=66.913mm, b=65.088mmand c=47.998mm.
This corresponds to ωmax = 207.3668 mm (at l = 1) and ωmin =
4.8225 mm (at l = 45), which was calculated using the approximate
formula (50). The result of the reconstruction of the SH is shown in
Fig. 18.

The size of the resulted basis function matrix, from SHA, is
(lmax + 1)2 × nv with exactly 2,116 × 444,653, and if we use double
precision with ×64 bit-based systems, the size required to store
only the basis matrix will be 7.5270 gigabytes. With the SCH, we
captured details up to a wavelength of ωmin = 1.99 mm with only
k = 40 (equivalent to l = 40), making the size of the basis matrix
853
stored only 220.1438 megabytes. The former calculations were es-
timated based on the IEEE Standard for Floating-Point Arithmetic
(IEEE 754) [75].

Fig. 17. The laser scanning data after down-sampling the point cloud to 444,653
points instead of nearly 23,000,000 points; the colour map shows the radial dis-
tance measured from the centroid of the stone.

Fig. 18. The reconstruction of the stonemade using SH to analyse thewhole stone (Lmax=
45), HSH for a regional analysis (Lmax = 45) and SCH for the regional analysis of
nominally-flat patches (Kmax = 40).

A.2. Optimal half-angle θc for a part of the scanned stone

Fig. 19 shows the convergence to the optimal half-angle θc
that minimises the area distortion for extracted part of the

https://doi.org/10.5281/zenodo.4890809
mailto:git@github.com
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scanned stone. The results were obtained by solving Eq. (49) using
the PSS algorithm. The HSH reconstruction result is shown in
Fig. 18.

Fig. 19. The optimal half-angle θc for the spherical cap parameterisation obtained
for the area extracted from the scanned stone in Fig. 17; the map shows the radial
distance from the centroid of the extracted part.
A.3. Hemispherical harmonics for nominally flat surfaces

Using HSH (refer to the basis functions in [26]) to analyse and
reconstruct nominally flat surfaces introduces waviness and does
not necessarily require many more degrees to converge as the re-
construction will not improve. To demonstrate this, we analysed
the surface patch sampled over the 3D face shown in Figs 9 and
11 with HSH. By assuming that l = 15 (the same maximum
order used in Fig. 11), we found that the RMSE was 0.283845 in-
stead of 0.104812 as found by the SCHA. The RMSE of Hausdorff
was 0.310431 instead of 0.149861, with a mean value of
0.174521 compared with 0.087238 in SCHA. The area distortion
introduced by the parameterisation algorithm for a hemisphere
was 0.4691203496 compared to 0.2187252197 for θc = π/18.
Using orders beyond l = 15 in the HSH analysis, the overfitting
waviness starts appearing in the reconstruction because of the in-
creasing error from the least-squares regularisation method.
Fig. 20 summarises the analysis results. A closer look at the
Hausdorff distance (the inset from the same figure) shows a little
waviness in the domain.
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Fig. 20. The root mean square error (RMSE) for the local patch on the visual
benchmark, as computer using HSH. The inset shows the Hausdorff distance at
k = 15 where we used 1,202,087 points sampled on the original mesh and
compared this value with the reconstructed mesh. At θc = π/18, the RMSE for
the Hausdorff distance was 0.310431, and the mean error was 0.087238, while
the highest error value scored was 1.594269. The reported data was extracted
using the open source package MeshLab [65].

A.4. Additional results for the Sturm-Liouville eigenvalues

In this section, we show the Neumann boundary conditions and ei-
genvalues of the S-L problem for visualising the sequence of eigenvalues
and their effects on thewavelengths. Fig. 21 shows the boundary condi-
tion of the even set. The locations of the eigenvalues on this figure occur
where we see the asymptotic points all over the surface that approach

−∞ when the
dPml mð Þk xcð Þ

dx →0 (eigenvalues), localising the points (asymp-
totics). These asymptotic lines are more obvious when the equations
are plotted with greater accuracy (smaller step-size). Fig. 22 shows
the boundary conditions for three selected orders and explains how
the size of the plateaus increase with m and thus how they affect the
wavelength contributions at different levels when they come into effect
in the expansion series. Fig. 23 shows an example of the identified roots
(eigenvalues) for the even boundary conditions at θc = π/18.

Fig. 21. Surface plot of the boundary condition (7) plotted on a log scale along the l(m)k

and ∣
dPml mð Þk xcð Þ

dx ∣ axes and plotted on the arithmetic scale for m (even Legendre’s basis at
θc = 5π/18). The pointy locals on the surface are the locations of the eigenvalues when

log ∣
dPml mð Þk xcð Þ

dx ∣ ! −∞.
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Fig. 22. Plot of the boundary condition in Eq. (7) form∈ {5,10,20} (even Legendre’s basis at
θc=5π/18). The vertical dashed linesmark the first identified eigenvalue at the end of the
plateau area and define the size of these plateaus for each m. Notice the matched colour
code of the solid and dashed lines. The vibrations (local minima) announce the locations

of the eigenvalues for different ks as log ∣
dPml mð Þk xcð Þ

dx ∣ ! −∞.

Fig. 23. Eigenvalues for the even setwhen the half-angle θc= π/18 and for k ∈ {0,1,…,40}.
Notice when m > k l(m)k = 0.
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