MATH1050BC/1058 Assignment 6 (Answers and selected solution)

1. Answer.

(a)

(I) Let D, R be sets (VI) Let U be a subset of R
(IT) Let S be a subset of D (VII) D
(I1I) y (VIII) There exists some
(IV) There exists some (IX )
(V) such that y = h(x) (X) y = h(x)
. 1
i o= —1. : _ _
vi. V————i—l,f———i—l.
y 5 V2 V2
ii. p=1,v= T 1 1
vii. p=——+1,0=—+1.
111.52_1,5:; V2 1& 1
v, (=—V2+1,n=v2+1. vill. 7=—v2+1, = pthv=gth w=V2+L.
5 5
V. —\/§+1,m:—§+17)\:§+1,u:\/§+1.
iLa=08=3~y=10=—1. fie=-2(C=-025n=-10=0r=1.
i a=20b=3. i, 1,4. i, a=0,8=1,v7=20=4.

ii.

(I) if y € f(S) then y € I.

(IT) Suppose y € f(S)
(ITI) there exists some = € S such that y =
f(x)
(IV)y=flz)=22*—4>2-1"—4=-2
(V) Since z <2
(I) if y € I then y € f(95).
4
(II) Take z = { %
(ITT) & — \4/1%4 >1
(IV) Since y < 28, we have Y% < 16
(V) 2=/ yT—Hl <2
(VD)
flx) = 22*—4
e
Y+
= 2| {/——| —4
_ 5 Yyttt
2
= y+td—-4=y

(VII) y € £(5)

3. Answer.

(a)

I)if z € (go f)(S) then z € g(f(59))

(
(IT) Suppose = € (g o f)(S)
(III) there exists some x € S such that z
(
(

go f)(z)
IV) z = (go f)(z)

g(f(z)) =g(y)

I)ifxe f~1(U) then z € J.
1) HU)
I

IIT) there exists some y € U such that y= f(z)

iii.

Suppose = € f~

(
(
(
(IV)yeU
(V) 22 —4 = f(z) =y <4
iv. (1) if x € J then z € f~1(U)
(IT) Suppose = € J
(III) Define y = f(x)
(V) y
V)y=
(VI) an
(VII) z € f—l(U)

= f(r) =22 -4<4
( ) =22 —4> -6

(V) z € Sand y= f(z)

(V) y € £(5)

(VII) y € f(S) and z = g(y)

(VI) z € g(f(5))

(IX) if 2 € g(f(S)) then z € (go f)(S)



XVI) Suppose y € f(S)NU
XVII) y € f(S) and
XVII) y € £(5)

(X) Suppose z € g(f(S))
(XI) there exists some y € f(S) such that z = g(y)
(XII) there exists some x € S such that y = f(z)
(XI) z = g(y) = g(f(z)) = (g o f)(z)
(XIV) z € Sand z = (go f)(x)
(XV) z € (g0 f)(S)
(b) (I) Pick any subset U of B
(I) For any vy, if y €€ f(S N f~1(U)) then

XIX) there exists some z € S such that y = f(x)
XX) y = f(x)

XXI) 7 € (1)

XXII) z € SN f~1(U)

ye f(S)nU. XXIII) and y = f(x)

—

II) Pick any object y XXIV) y € f(SN f~L1(U))
V) ye f(Snf1(U))

(
(
(
(
(
(
(
(
( (
( (XXV) £(SN 1) = F(S)NU
(V)zeSnf(U)
(VD) y = f(x) () (@MA={01}
(VII) . € S and z € f~1(U) (IT) the function f: A — B
( (
(
(
(
(
(
(
(

VIII) y = f(z) I1I) f(0) =2
(IX) y € £(5) V) 0

(X) there exists some z € U such that z = f(z) V) {2}

(XI) f(z) VI) {2}
(XIn) U VD) {0,1}
(XIII) y € f(S) and VI 1

(XIV) y € f(S)NU
(XV) For any y, if y € f(S)NU then y €€
F(SnfHU)).

X)1¢ Y U)NS
X)fFHUNf(S) ¢ 1 U)ns

4. Solution.

2z|z|

Let f: € — C be the function defined by f(z) = m

for any z € €. Let D ={w € C: |w| < 2}.

(a) Pick any w € f(C). By definition, there exists some z € € such that w = f(2).
2202 | _2el-lal _ 202 _ 20412 _
1+ 2] 1+ 22 14|22 1+ 2|
(b) Pick any w € D. Note that w =0 or w # 0.
o (Case 1.) Suppose w = 0. Note that f(0) =0=w and 0 € C. Then w € f(C).
o (Case 2.) Suppose w # 0. Then |w| > 0.

We have |w| = |f(z)| = ‘

1 1
We have 0 < |w| < 2. Then ——————— is well-defined as a real number. Moreover, ———— > 0. Then
[w|(2 = fwl) |wl|(2 = |wl)
S S is well-defined as a positive real number.
[w|(2 = fwl)
Define » = ———© By definition, z € €. We have
wl|(2 = |w])
) 2 [/l = Tul)| - VVVWﬂZ*“”! 2wfw]/[jw](2 = [w) 2uw|
z) = = =

1+ ‘w/ [w](2 — w]) ‘ S wl/[lwl(2 = Jw])] w2 = |w]) + w]?

Then w € f(C).
Hence, in any case, w € f(C).
It follows that D C f(C).

5. Solution.
Let f: €\{0} — C be the function defined by f(z) = % for any z € C\{0}.

Let H={z¢€ C:Re(z) >0},and S ={w e C: |w| =1}



(a) Pick any w € f(H).
By the definition of image sets, there exists some z € H such that w = f(z).

For the same w, z, we have |w| = |f(2)| = % = 1|Z||Z| =1. Thenw € S.
We verify that w # —i:
e Suppose it were true that w = —i. Then for the same w, z, we have —i = g Therefore —z = Z.
Then Re(z) = z ;— Z 0.

Since z € H, we have Re(z) > 0. Now 0 = Re(z) > 0. Contradiction arises.
Hence w ¢ {—i}.
Recall that w € S. Then w € S\{—i}.
It follows that f(H) C S\{—i}.
(b) Pick any w € S\{—i}.
By definition, w € S and w ¢ {—i}. Since w € S, we have |w| = 1. Since w ¢ {—i}, we have w # —i.
Define w’ = —iw. Note that |w'| = |w| =1 and w’ # —1.

For the same w’, there exists some 6 € (—m, ) such that w’ = cos(f) + i sin(6).

Define z = cos (9> + isin (9>
2 2

Since 6 € (—7, ), we have —— E ( ) Then cos (—g) > 0. Hence Re(z) > 0. Then, by definition, z € H.
We have f(z) = ZZZ =i ngg zg; 122122 zg; = i(cos(0) +isin(9)) = iw’ = i(—iw) = w.

It follows that S\{—i} C f(H).

6. Solution.

(a) The statement () is true. We give a proof:

Let A, B be sets, and f: A — B be a function.
Let U,V be subsets of B. Suppose U C V.
Pick any object . Suppose x € f~1(U).
By the definition of pre-image sets, there exists some y € U such that y = f(z).
Since y e U and U C V, we have y € V.
Since y € V and y = f(x), we have z € f~1(V) according to the definition of pre-image sets.
It follows that f~1(U) C f=1(V).
Acceptable answer.
Let A, B be sets, and f: A — B be a function.
Let U,V be subsets of B. Suppose U C V.
Pick any object . Suppose = € f~1(U).
By the definition of pre-image sets, f(z) € U.
Since f(z) €e U and U C V, we have f(z) € V
Since f(x) € V, we have x € f~1(V) according to the definition of pre-image sets.
It follows that f~1(U) c f=4(V).
(b) The statement (b) is false. We give a dis-proof by counter-example.
Take A = {0,1}, B={0,1}. Here 0, 1 are distinct objects.
Define the function f: A — B by f(0) = f(1) =0.
Take U = {0,1}, V = {0}.
We have f~1(U) = f~1(V) = {0,1}. Then f~1(U) C f~1(V).
Note that 1€ U and 1 ¢ V. Then U ¢ V.

7. Solution.

(a) The statement (f) is true. We give a proof:

Let A, B be sets, and f: A — B be a function.
Let S be a subset of A.
Pick any object x. Suppose x € S. Define y = f(x).



Since z € S and y = f(z), we have y € f(5) according to the definition of image sets.
Since y € f(S) and y = f(x), we have x € f~1(f(S)) according to the definition of pre-image sets.
It follows that S C f=1(f(9)).

(b) The statement (b) is false. We give a dis-proof by counter-example:

Take A = {0,1}, B = {0}. Here 0,1 are distinct objects.
Define the function f: A — B by f(0) = f(1) =0.

Take S = {0}. Note that S C A.

We have f(S) = {0} and f=1(f(9)) = {0,1}.

Note that 1 € f~1(f(S)) and 1 ¢ S. Then f~1(f(S)) ¢ S.

8. Answer.

(a) URE (I) €
(IT) G is a subset of A2 (I11) ( y) € G and (y, 2) € G and
(III) For any = € A, (z,z) € G. (IV) 0
(IV) For any z,y € A, if (z,y) € G then (y,z) € (V) 1
o (Vi) 2
(V) For any z,y,z € A, if (z,y) € G and (y,z) €
G then (z,z) € G. (VII) €
(VI) R is reflexive, symmetric and transitive. (VII) §é G
. _ _ Alternative answer. (IV) 0. (V) 1. (VI) 0.
(b) i (s,t) =(0,0) and (u,v) = (1,0).
i oael Be? 1 =1, (VID) € G. (VIII) ¢ G.
iii. A. (s,t) =(0,0). (¢) i Yes. iv. Yes. vii. No.
B. (u,v) =(1,2). ii. No. v. Yes. viii. Yes.
C.  (I) There exist some iii. Yes. vi. Yes. ix. No.
9. Answer.
(a)  (I) For any ¢ € C* VD) T £0and & £0
(IT) Pick any ¢ n
(III) € C* (VII) g € R*
(IV) % (VIII) (.€)
V) R* (c) (I) symmetric
(Vi (IT) For any ¢,n € €*, if (,n) € E then (n,{) € E
(VI) € (III) Pick any ¢,n € C*
(b) (1) if (¢,n) € E and (n, &) € E then (¢,§) € (IV) (< n) €E
(II) Suppose (¢,n) € E and (n,¢) € E. (V)
) 7 e R
¢ (V1) § € R
(IV) (n,§) € E U
: (VI (.0) € B
V) ¢ €R (VIII) reflexive, symmetric and transitive

10. Answer.

I) a subset of IR?

IT) for any z € R, (z,z) € E
III) Pick any = € R
Vyz—2z=0

( X)aeQ
(

(

(

(V) (z,2) € E

(

(

(

(

XI) —a €@
XI) (y,z) € E

—

x,2) €
VI) for any z,y € R, if (z,y) € E then (y,z) € E

VII) Suppose (z,y) € E
VIII) there exists some a € Q

XIV) z,y,z € R
XV) (z,y) € E and (y,2) € E

(
(
(
(XI11) for any z,y,z € R, if (z,y) € E and (y, ) then
(
(
(
XV)z—y=a

Xyy—z=—(z—y)=—a



(XVII) Since (y, z) € E, there exists some b € Q such

that

11. Answer.

(a)

y—2z=50

I) there exists some zo € IR

IT) (zg,x0) ¢ G

IIT) Take zp =0

IV) zo — zo

V) xo - o

VI) (zg,z0) ¢ G

I) there exists some g, yo € R
IT) (z0,%0) € G and (yo,z0) ¢ G
II) 20 =1,y =0

(XVIII) Since a € Q and b € Q, we have a +b € Q
(IX) (z,

z)€E

(VII) (yo,z0) ¢ G
(VIII) (z0,y0) € G and (yo,z0) ¢ G

(I) there exists some g, Yo, 20 € IR

(I1) (xo,yo) € G and (Yo, 20) € G and (z9,20) ¢ G
(II) 2o = -2

(IV) 2o —yo = =5 > —6 = zoyo

(V) by the definition of G

(VI) (y0,20) € G

(VII) 2o — 20 = 0 < 4 = 29

[
—

(
(
(
(
(
(
(
(
(
(
(
(

V) 1>0 (VIII) (0, 20) ¢ G
V) (zo,40) € G (IX) (zo,y0) € G and (yo,20) € G and (z9, 20) ¢
VI) Yo — Lo > ToYo G

12. Solution.

Define the relation S = (C,C, F) in C by F = {(C,f) € C?:(?—¢?=aifor some a € IR}.

(a) Let ¢ € €. We have (2~ (?>=0=0-4 and 0 € IR. Therefore ((,{) € F
It follows that S is reflexive.

(b) Let ¢,n € €. Suppose (¢,n) € F. Then (? — n? = ai for some a € R. Therefore, for the same a € R, we have
n* —(? = (—a)i and —a € R. Hence (n,() € F.
It follows that S is symmetric.

(c) Let ¢,n,pu € €. Suppose (¢,n) € F and (n,u) € F. Since (¢,n) € F, we have (? —

1) € F, we have n? — u2 = bi for some b € R. Therefore, for the same a,b € R, we have (2 — u2 = (a + b)i and
K n—p M
a+0b e R. Hence ((,p) € F.

It follows that S is transitive. Since S is reflexive, symmetric and transitive, S is an equivalence relation.

n? = ai for some a € R. Since

13. Solution.
Let R = (IR, R, G) be the relation in R defined by G = {(x,y) ‘ z€Rand y € Rand |y — x| < 1}.

(a) Pick any = € IR. We have |x — 2| =0 < 1. Then (z,z) € G.
Hence R is reflexive.

(b) Pick any z,y € IR. Suppose (z,y) € G. Then |z — y| < 1. Therefore |y — z| =
Hence R is symmetric.

|z —y| < 1. So (y,z) € G.

(¢) Take 29 =0, yo = 1, z0 = 2. Note that xg,yo, 20 € R.
We have |xg — yo| = 1. Then (zg,yo) € G.
We also have |yo — 29| = 1. Then (yo, 20) € G.
But |29 — 29| = 2. Therefore (xq, 29) ¢ G.
Hence R is not transitive.

(d) Since R is not transitive, R is not an equivalence relation in RR.
14. Solution.

LetA:{w @ : N — R is a function }

and ¢(0) = 0.

For any n € N, }
p(n+1) —p(n) <dm+1) —pn) I

p(n) = ¢(n). Then (p,

Define the relation R = (4, A,H) in A by H = {(gp,w) c A%:

(a) Pick any ¢ € A. Pick any n € N. We have p(n+1) —
is reflexive.

en+1)— ) € H. It follows that R

(b) Pick any ¢,¢,0 € A. Suppose (p,) € H and (¢,0) € H. Pick any z € N. Since (p,¢) € H, we have
pn+1) —pn) < Yn+1) —e(n). Since (Y,0) € H, we have (n +1) — ¢(n) < o(n + 1) — o(n). Then
pn+1)—epn) <¢pn+1)—¢Yn) <o(n+1) —o(n). Hence (p,0) € H. It follows that R is transitive.



n for any n € N
0<1=1%(n+1)—1(n). Then (p,¢) € H.
0). It is not true that ¢(1) — ¢ (0) < (1) —(0). Then (¢, p) ¢ H.

(c) Define p,1 : N — R by ¢(n) =0, ¥(n) =
For any n € N, we have p(n + 1) — ¢(n) =
However, ¥(1) —¢(0) =1 > 0= (1) — ¢(

Hence R is not an equivalence relation in A.
15. Solution.

. . Th ist ,neN
Define the relation R = (Z,Z,G) in Z by G = {(a:, y) €Z*: Suc%ri}f;(tlsy i)r;lne;ni 17; }

(a) Pick any x € Z. We have x =1-2+0 and 1,0 € N. Then (z,z) € G. It follows that R is reflexive.

(b) Pick any z,y,z € Z. Suppose (z,y) € G and (y,z) € G.
Since (z,y) € G, there exist some m,n € N such that y = maz + n. Since (y, z) € G, there exist some p,q € N such
that z = py +q.
Now, for the same m,n,p,q € N, we have z = py + ¢ = p(mx +n) + ¢ = (pm)x + (pn + ¢q). Also, pm € N and
pn+ q € N. Then (z,2) € G.
It follows that R is transitive.

(¢) We verify that R is not symmetric:

o Take zg = —1, yo = 1. Note that xg,yo € Z. We have yp=1=0-(—-1)+1=0 209+ 1, and 0,1 € N. Then

(z0,90) € G.

Suppose it were true that (yo, o) € G. Then there would exist some p,q € N such that z¢ = pyo + g.

Then —1=p-14qg=p+q. Since p,q € N, we have p+ ¢ > 0. Then —1 = p+ ¢ > 0. Contradiction arises.
It follows that (yo,zo) ¢ G.

Hence R is not symmetric. It follows that R is not an equivalence relation in Z.

16. Solution.

Let A be the set of all real-valued functions with domain [1,400).

Let R be the relation in A with graph F given by

feAandge A
and (there exist some positive real numbers a, K

- K
such that lim M

t—+oo te

E= (f’g)

exists and equals 0).

(a) Pick any f € A.

Take o = 1, K = 1. Note that o, K are positive real numbers.

fO) - Kf®t) _ fO)=1-f()

For any ¢ € [1,+00), we have = =0.

te t!
Then lim Lf(ﬂt)

t— 400 t

Therefore (f, f) € E.
(b) Let f,g € A. Suppose (f,g) € E.

exists and equals 0.

t)— Kg(t
Then there exist some positive real numbers o, K such that lim M exists and equals 0.
t—s—+oo to
1
Take 8 = a, L = 7a (Since K is non-zero, L is well-defined as a real number.) Note that 5, L are positive real
numbers.

g) = Lf®) 1 f{t) = Kg(t)

For any ¢ € [1,+00), we have Z=——————= =

tﬁ ? to .
Then lim M exists and
t—+o0 B
i IO -LfO) 1 f() - Ke®)
t—>+oc0 th t—+oo K t

(¢) We verify that R is transitive.
o Let f,g,h € A. Suppose (f,g) € F and (g,h) € E.

Since (f,g) € E, there exist some positive real numbers «, K such that lim exists and equals

t— 400 t
0.



t) — Lh(t
Since (g, h) € E, there exist some positive real numbers 3, L such that . lim M exists and equals 0.

— 400 tﬂ
Take vy =a+ 8, M = KL. Note that v, M are positive real numbers.
For any ¢ € [1,+00), we have

f(t) = Mh(t) _ f(t) - KLh(t) 1 f(t)—Kg(t) K g(t)— Lh(t)
t - totB B to to tB
Then lim w exists and
t— 400 tY
. f(t) = Mh(t) . 1 f(t)— Kg(t) . K g(t) — Lh(t)
AT T My T e Tl T 700

Since R is reflexive, symmetric and transitive, R is an equivalence relation in A.

17. Answer.

(a)

I) there exists some (d) These sets are of cardinality equal to N:

IT) f is a bijective function N, Q, N, Map({0, 1}, N).
III) there exists some
These sets are of cardinality equal to B(N):

R\Q, [0, 1], B(N), Map(N, {0,1}), €, N x R.

(

(

(

(IV) f is an injective function

(V) there is some injective function from A to B
(

VI) there is no bijective function from A to B These sets are of cardinality equal to B(B(N)):

(b) i. Suppose A is a set. Then we say A is infinite if T(R), Map(R, {0, 1}).

N<A.
ii. Suppose A is a set. Then we say A is countable if  (e) i. True.
ASN. ii. True.
(¢) 1. Let A, B be sets. Suppose ASB and BSA. Then iii. False.
A~B. iv. False.
ii. Suppose A is a set. Then A < PB(A). v. True.

18. (a) Answer.
Hcnc’
(I1) 0
(I11) g, ¢" are bijective functions
(IV) (CuC’,DUD',GUG) is a bijective function

I) H is a subset of J x K

IT) there exists some y € K such that (z,y) € H
) xeJ

Viy=1-=z

V)zeld

V)y=1-2<1-0=1
VI)y=1-2>1-1=0

Il y e K

X) (z,y) € H

X)if (z,y) € H and (x,2) € H theny =z
XI) Pick any z € J, y,z € K

XII) (z,y) € H and (z,2) € H

XIII) Since (z,y) € H

V)yz+z=1

V)yz=1-z

XV)y=1—-z==z

XVII) for any y € K, there exists some z € J

—

= <

slls

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
XV
(

ii. Solution.

Let L =(0,1), M

={0}, N ={1}.

XVIII) (z,
XIX) Pick any y € K

XX)o<y<1

XXI)y >0

XXM z=1-y>1-1=0

XXII) (z,y) € H

XIV) for any z,w € J, for any y € K
XV) then z = w

( y) € H
(

(

(

(

(

(

(

(XXVI) Suppose (z,y) € H and (w,y) € H
(

(

(

(

(

(

(

olls

XXVII) Since (z,y) € H

XXVII w+y=1

XXIX) z=1-y=w

XXX) h is a function

XXXI) h is surjective

XXXII) h is injective

XXXIIT) J is of cardinality equal to K



Note that J=LUM, K=LUN,and LNM =0, LN N = 0.

Let D = {(z,z) | « € L}. The identity function idy, is a bijective function from L to L with graph D.

Note that M x N = {(0,1)}. The relation (M, N, M x N) is a bijective function from M to N with graph
M x N.

Define FF = DU (M x N), and define f = (J, K, F).

By the Glueing Lemma, f is a bijective function from J to K with graph F.

It follows that J = K.

19. Answer.
Let J =10,1), L= (0,1), M =[0,400), N = (0, +00).

(a) A bijective function from J to M is ¢ : J — M, given by ¢(z) = —1 — for any x € J. It follows that J~M.

r—1

A bijective function from L to N is ¢ : L — N, given by ¢(z) = —1 — for any = € L. It follows that L~M.

rz—1

—T

l1+e "

(b) A bijective function from R to (—=1,1) is a: R — (=1, 1), given by a(x) =
R~(—1,1).

for any = € R. It follows that

1
A bijective function from (—1,1) to (0,1) is 8 : (—1,1) — (0, 1), given by S(z) = T for any x € (—1,1). Now

a~!o 7! a bijective function from L to R. It follows that L~IR.
20. Solution.
LetD:{ze(E:\z|<1},H:{w€¢:|m(w)>0}.

z+1

z€Dand w € H and w = -
12+ 1

Define F' = {(z,w)

}, and f = (D, H, F).

(a) o By definition, F C D x H. Then f is a relation from D to H with graph F'.

 Pick any z € D. Since |z| < 1, we have iz + 1 =i(z — i) # 0. Deﬁnew:Im<z+Z>~

iz +1
zZ4+1 1| z+1 zZ+1
Im(w) = Im | - == |- I
z+1 21 |1z+1 z+1
1|2

|z —il?

_1-2P

.—m

Since |z| < 1, 1 —|2|?> > 0. Then Im(w) = > 0. Therefore w € H.

We have (z,w) € F.
e Pick any z € D. Pick any w,w’ € H. Suppose (z,w) € F and (z,w’) € F.

By definition, w = ,Z te and w' = .Z R . Then w = w'.
iz +1 iz+1
Therefore f is a function.
(b) Note that f(z) = ;_:_21 for any z € D.

We verify that f is bijective:

z+1 )

o Pick "eD.S = ). Th = .

ick any z,2" € uppose f(z) = f(2') e T T i1

Therefore izz' — 2" + z24+i=(z+1i)(iz' +1) = (' +4)(iz+ 1) =422’ — 2+ 2’ +i. Hence z = 2'.
It follows that f is injective.

o Pick any w € H. Since Im(w) > 0, we have —iw + 1 = —i(w + i) # 0. Define z = L—Q—Zl
—iw
22 = 25 = w—1i w—i \  |wP+1-2Im(w)
7T w1 )\ —iw 1) T w2+ 1+ 2Im(w)’
241-2 4l
Then 1 —[z>=1— [wl” + m(w) = m(w) .
w2+ 1+ 2Im(w)  |w]?2 + 1+ 2Im(w)
Since Im(w) > 0, 1 — |2|2> > 0. Then |z| < 1. Therefore z € D.
We have f(2) = z4+i  (w—i)/(~w+1)+i  (w—i)+i(—iw+1) _ 2w w

iz+1  d(w—14)/(—iw+1)+1 i(w—1d)+(—iw+1) 2
It follows that f is surjective.

It follows that D~H.



Remark. This bijective function f : D — H is a very special bijective function from the ‘unit disc’ to the ‘upper-half
plane’ in the Argand plane. It is an example of ‘fractional linear transformations’. But this belongs to another story; you
will find out more about it in your complex variables course.

21. Solution.
Let I = (0,+00), J =[-1,1].

1 1
(a) Pick any a € I. We have @ > 0. Then a4+ 1 > 1. Therefore 0 < —— < 1. Hence eJ.
a-+1 a+1
1 1
(b) Pick any z,w € I. Suppose g(z) = g(w). Then Tl wrl Therefore z +1 = w + 1. Hence z = w.
It follows that g is injective.
(¢) For any y € J, we have -1 <y <1,2<y+3 <4 and hence y+ 3 € I.
Define the function h: J — I by h(y) =y + 3 for any y € J.
We verify that h is injective:
e Pick any y,z € J. Suppose h(y) = h(z). Then y 4+ 3 = 2z + 3. Therefore y = 2.
There is an injective function from I to J, namely g. Then I<J.
There is an injective function from J to I, namely h. Then J<I.
According to the Schréder-Bernstein Theorem, we have I~.J.
22. Solution.
Let A=[~1,1], B = (—4,-2] U[2,4).
. r 5 r 5
(a) o Pick any x € A. We have —1 <z < 1. Then 2 < 3 + 3 < 3. Therefore 3 + 5 € (2,3] C B.
5
Define the function f: A — B by f(z) = g + 3 for any x € A.

We verify that f is injective:

+ —. We have z = w.

N | Ot

5
o Pick any z,w € A. Suppose f(x) = f(w). Then g + 3=

(b) e Pick any y € B. We have —4 <y < 4. Then —1 < % < 1. Therefore % c A.

w
2

Define the function g : B — A by ¢g(y) = % for any y € B.
We verify that g is injective:

e Pick any y,z € B. Suppose g(y) = g(z). Then % = Z We have y = 2.

There is an injective function from A to B, namely, f : A — B. Then ASB.
There is an injective function from B to A, namely, g : B — A. Then B<A.
According to the Schroder-Bernstein Theorem, since ASB and BSA, we have A~B.

23. Solution.
Let A = [1010,1050]\{1030} and B = (2040, 2050) U (]2060, +0c0) N Q).

x

(a) Define the function f: A — B by f(z) = 1050 + 2040 for any x € A.
Note that 1 03;5 0 + 2040 € B for any x € A. Then f is well-defined as a function.
We verify that f is injective:
x w x w
Pick A. S = . Then ——— + 2040 = ——— + 2040. Theref =——"H
* Pick any z,w € A. Suppose f(z) = f(w) en 7oro -+ 2040 1050 + 2040 erefore 705 = 7o7g- Henee

T =w.
Therefore ASB.

1
(b) o Define the function g : B — A by g(y) = — 4+ 1010 for any y € B.
Y

1

Note that — + 1010 € A for any y € B. Then g is well-defined as a function.
Y

We verify that g is injective:

1 1 1 1
x Pick any y,z € B. Suppose g(y) = g(z). Then — 4+ 1010 = — + 1010. Therefore — = —. Hence y = z.
Y z Y z



Therefore BSA.
o By Schroder-Bernstein Theorem, since ASB and BSA, we have A~B.

24. Solution.

Ze(ﬂandwEDandw:72
1+ |2z| + |2

Let D = {Q eC: ¢ < 1}. Define F = {(z,w)

}. Note that F* C C x D.

Define f = (C, D, F).

(a) o We verify that for any z € C, there exists some w € D such that (z,w) € F:
Pick any z € C.
We have |22 < 1+ |2] + |2]2.

iz|2| |22
Then = < 1.
Lzl + 22| 142+ |22
Define w = &
L+ |z| + |2[?

By definition, w € D.
Therefore (z,w) € F.
o We verify that for any z € C, for any w,v € D, if (z,w) € F and (z,v) € F then w = v:
Pick any z € €, w,v € D. Suppose (z,w) € F and (z,v) € F.
——andv=—"7"-—"—.
1+ |z + 2] 1+ |z + [2]?
Therefore w = v.
Hence f is a function.

(b) We claim that f is injective. We verify that for any z,u € C, if f(z) = f(u) then z = u:
Pick any z,u € C. Suppose f(z) = f(u).

Then w =

Then iz|z| - iulul N
T+ 2E 1]+ 4]
ER iz|z] iuful |ul?
Therefore = = 2)| = u)| = = .
el gy e B VGO Rl FACO el - Bl v By

Then [2[* + [2*ul + [2][uf® = [2[*(1 + [u] + [uf?) = [u* (1 + |2] + [2]*) = [uf* + |uf*|2] + [ul*|2]*.
Therefore (|z| — |u|)(|z| + |u| + |u||z]) = 0. Hence |z| = |u] or |2z| + |u| + |z||u| = 0. If |z] + |u| + |u||z] = O then
|z| = |u] = 0. Hence in any case |z| = |ul.

Now —————— =
L+ |z] + |2

Tl P T T AP
Then (z —u)|z| = 0. Therefore z = w or |z] = 0. If |z2| = 0 then |u| = 0 and z = v = 0. Hence in any case z = u.
(c) We claim that f is not surjective. We verify that there exists some wy € D such that for any z € €, f(z) # wo.

Take wg = 1. Note that wg € D.
Suppose it were true that there existed some zo € € such that f(zg) = wp.

Then we would have 1 = wg = %.
1+ |zo| + |20
. 2
Therefore 1 = iz0|20] 5| = 20l 5 < 1.
1+ |20 + 20| 1+ |20 + 20|
Contradiction arises.
Alternative argument.
Take wy = 1. Note that wg € D.
Pick any z € C.
We have f(z) = —————.
T& =T e
Note that |22 < 1+ |2] + |2|2.
Then we would have |f(z)| = = < 1=wy.
101 = || = T T :

Therefore f(z) # wp.

- rEL
T+ 22 O

(d) By Part (a), (b), there is an injective function from C to D, namely, f : € — D given by f(z)

any z € €. Then C<D.
Note that D C C. The inclusion function ¢p : D — € given by g(z) = z for any z € D is injective. Then D<C.
By the Schroder-Bernstein Theorem, we have D~C.
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