1. Answer.

- (a) (I) Let D, R be sets
 - (II) Let S be a subset of D
 - (III) y
 - (IV) There exists some
 - (V) such that y = h(x)
- (b) i. $\alpha = -1$.

ii.
$$\beta = 1, \, \gamma = \frac{5}{4}$$
.

iii.
$$\delta = -1, \, \varepsilon = \frac{5}{3}$$

iv.
$$\zeta = -\sqrt{2} + 1$$
, $\eta = \sqrt{2} + 1$.

v.
$$\theta = -\sqrt{2} + 1$$
, $\kappa = -\frac{\sqrt{5}}{2} + 1$, $\lambda = \frac{\sqrt{5}}{2} + 1$, $\mu = \sqrt{2} + 1$.

- (c) i. $\alpha = 0, \beta = 3, \gamma = 1, \delta = -1$.
- (d) i. a = 2, b = 3.

ii. 1, 4.

- (VI) Let U be a subset of R
- (VII) D
- (VIII) There exists some
- (IX) U
- (X) y = h(x)

vi.
$$\nu = -\frac{1}{\sqrt{2}} + 1$$
, $\xi = \frac{1}{\sqrt{2}} + 1$.

vii.
$$\rho = -\frac{1}{\sqrt{2}} + 1$$
, $\sigma = \frac{1}{\sqrt{2}} + 1$.

viii.
$$\tau = -\sqrt{2} + 1$$
, $\varphi = -\frac{1}{\sqrt{2}} + 1$, $\psi = \frac{1}{\sqrt{2}} + 1$, $\omega = \sqrt{2} + 1$.

- ii. $\varepsilon = -2, \zeta = -0.25, \eta = -1, \theta = 0, \kappa = 1.$
 - iii. $\alpha = 0, \, \beta = 1, \, \gamma = 2, \, \delta = 4.$

2. Answer.

- (a) i. (I) if $y \in f(S)$ then $y \in I$.
 - (II) Suppose $y \in f(S)$
 - (III) there exists some $x \in S$ such that y = f(x)
 - (IV) $y = f(x) = 2x^4 4 \ge 2 \cdot 1^4 4 = -2$
 - (V) Since $x \leq 2$
 - ii. (I) if $y \in I$ then $y \in f(S)$.

(II) Take
$$x = \sqrt[4]{\frac{y+4}{2}}$$

(III)
$$x = \sqrt[4]{\frac{y+4}{2}} \ge 1$$

(IV) Since $y \le 28$, we have $\frac{y+4}{2} \le 16$

(V)
$$x = \sqrt[4]{\frac{y+4}{2}} \le 2$$

(VI)

$$f(x) = 2x^{4} - 4$$

$$= 2\left(\sqrt[4]{\frac{y+4}{2}}\right)^{4} - 4$$

$$= 2 \cdot \frac{y+4}{2} - 4$$

$$= y+4-4 = y$$

(VII) $y \in f(S)$

- iii. (I) if $x \in f^{-1}(U)$ then $x \in J$.
 - (II) Suppose $x \in f^{-1}(U)$
 - (III) there exists some $y \in U$ such that y = f(x)
 - (IV) $y \in U$
 - (V) $2x^4 4 = f(x) = y \le 4$
- iv. (I) if $x \in J$ then $x \in f^{-1}(U)$
 - (II) Suppose $x \in J$
 - (III) Define y = f(x)
 - (IV) $y = f(x) = 2x^4 4 \le 4$
 - (V) $y = f(x) = 2x^4 4 \ge -6$
 - (VI) and
 - (VII) $x \in f^{-1}(U)$

3. Answer.

- (a) (I) if $z \in (g \circ f)(S)$ then $z \in g(f(S))$
 - (II) Suppose $z \in (g \circ f)(S)$
 - (III) there exists some $x \in S$ such that $z = (g \circ f)(x)$
 - (IV) $z = (g \circ f)(x) = g(f(x)) = g(y)$

- (V) $x \in S$ and y = f(x)
- (VI) $y \in f(S)$
- (VII) $y \in f(S)$ and z = g(y)
- (VIII) $z \in g(f(S))$
- (IX) if $z \in g(f(S))$ then $z \in (g \circ f)(S)$

	(X) Suppose $z \in g(f(S))$		(XVI) Suppose $y \in f(S) \cap U$
(b)	(XI) there exists some $y \in f(S)$ such that $z = g(y)$ (XII) there exists some $x \in S$ such that $y = f(x)$ (XIII) $z = g(y) = g(f(x)) = (g \circ f)(x)$ (XIV) $x \in S$ and $z = (g \circ f)(x)$ (XV) $z \in (g \circ f)(S)$ (I) Pick any subset U of B		(XVII) $y \in f(S)$ and
			(XVIII) $y \in f(S)$
			(XIX) there exists some $x \in S$ such that $y = f(x)$
			$(XX) \ y = f(x)$
			(XXI) $x \in f^{-1}(U)$
	(II) For any y , if $y \in f(S \cap f^{-1}(U))$ then		(XXII) $x \in S \cap f^{-1}(U)$
	$y \in f(S) \cap U$.		(XXIII) and $y = f(x)$
	(III) Pick any object y		(XXIV) $y \in f(S \cap f^{-1}(U))$
	(IV) $y \in f(S \cap f^{-1}(U))$		$(XXV) \ f(S \cap f^{-1}(U)) = f(S) \cap U$
	$(V) x \in S \cap f^{-1}(U)$	(a)	
	(VI) y = f(x)	(c)	$(I) A = \{0, 1\}$
	(VII) $x \in S$ and $x \in f^{-1}(U)$		(II) the function $f: A \longrightarrow B$
	(VIII) $y = f(x)$		$(III) \ f(0) = 2$
	$(\mathrm{IX}) \ y \in f(S)$		(IV) 0
	(X) there exists some $z \in U$ such that $z = f(x)$		(V) {2}
	(XI) f(x)		(VI) {2}
	(XII) U		(VII) $\{0,1\}$
	(XIII) $y \in f(S)$ and (XIV) $y \in f(S) \cap U$		(VIII) 1
			$(\mathrm{IX})\ 1 \notin f^{-1}(U) \cap S$
	(XV) For any y , if $y \in f(S) \cap U$ then $y \in f(S \cap f^{-1}(U))$.		$(X) f^{-1}(U \cap f(S)) \not\subset f^{-1}(U) \cap S$
	$J(\omega \cap J(\omega))$.		$(21) \ j (0 + 1) \ (0)) \ \not\leftarrow \ j (0) + 10$

4. Solution.

Let $f:\mathbb{C}\longrightarrow\mathbb{C}$ be the function defined by $f(z)=\frac{2z|z|}{1+|z|^2}$ for any $z\in\mathbb{C}$. Let $D=\{w\in\mathbb{C}:|w|<2\}$.

(a) Pick any $w \in f(\mathbb{C})$. By definition, there exists some $z \in \mathbb{C}$ such that w = f(z). We have $|w| = |f(z)| = \left| \frac{2z|z|}{1+|z|^2} \right| = \frac{2|z| \cdot |z|}{1+|z|^2} = \frac{2|z|^2}{1+|z|^2} < \frac{2(1+|z|^2)}{1+|z|^2} = 2$.

(b) Pick any
$$w \in D$$
. Note that $w = 0$ or $w \neq 0$.

- (Case 1.) Suppose w = 0. Note that f(0) = 0 = w and $0 \in \mathbb{C}$. Then $w \in f(\mathbb{C})$.
- (Case 2.) Suppose $w \neq 0$. Then |w| > 0.

We have 0 < |w| < 2. Then $\frac{1}{|w|(2-|w|)}$ is well-defined as a real number. Moreover, $\frac{1}{|w|(2-|w|)} > 0$. Then

 $\frac{1}{\sqrt{|w|(2-|w|)}}$ is well-defined as a positive real number.

Define $z = \frac{w}{\sqrt{|w|(2-|w|)}}$. By definition, $z \in \mathbb{C}$. We have

$$f(z) = \frac{2\left[w/\sqrt{|w|(2-|w|)}\right] \cdot \left|w/\sqrt{|w|(2-|w|)}\right|}{1+\left|w/\sqrt{|w|(2-|w|)}\right|^2} = \frac{2w|w|/[|w|(2-|w|)]}{1+|w|^2/[|w|(2-|w|)]} = \frac{2w|w|}{|w|(2-|w|)+|w|^2} = w$$

Then $w \in f(\mathbb{C})$.

Hence, in any case, $w \in f(\mathbb{C})$.

It follows that $D \subset f(\mathbb{C})$.

5. Solution.

Let $f:\mathbb{C}\backslash\{0\}\longrightarrow\mathbb{C}$ be the function defined by $f(z)=\frac{i\bar{z}}{z}$ for any $z\in\mathbb{C}\backslash\{0\}$.

Let $H=\{z\in\mathbb{C}: \mathsf{Re}(z)>0\},$ and $S=\{w\in\mathbb{C}: |w|=1\}.$

(a) Pick any $w \in f(H)$.

By the definition of image sets, there exists some $z \in H$ such that w = f(z).

For the same w, z, we have $|w| = |f(z)| = \left|\frac{i\overline{z}}{z}\right| = \frac{1 \cdot |\overline{z}|}{|z|} = 1$. Then $w \in S$.

We verify that $w \neq -i$:

• Suppose it were true that w=-i. Then for the same w,z, we have $-i=\frac{i\bar{z}}{z}$. Therefore $-z=\bar{z}$.

Then
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2} = 0.$$

Since $z \in H$, we have Re(z) > 0. Now 0 = Re(z) > 0. Contradiction arises.

Hence $w \notin \{-i\}$.

Recall that $w \in S$. Then $w \in S \setminus \{-i\}$.

It follows that $f(H) \subset S \setminus \{-i\}$.

(b) Pick any $w \in S \setminus \{-i\}$.

By definition, $w \in S$ and $w \notin \{-i\}$. Since $w \in S$, we have |w| = 1. Since $w \notin \{-i\}$, we have $w \neq -i$.

Define w' = -iw. Note that |w'| = |w| = 1 and $w' \neq -1$.

For the same w', there exists some $\theta \in (-\pi, \pi)$ such that $w' = \cos(\theta) + i\sin(\theta)$.

Define
$$z = \cos\left(-\frac{\theta}{2}\right) + i\sin\left(-\frac{\theta}{2}\right)$$
.

Since $\theta \in (-\pi, \pi)$, we have $-\frac{\theta}{2} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $\cos\left(-\frac{\theta}{2}\right) > 0$. Hence Re(z) > 0. Then, by definition, $z \in H$.

We have
$$f(z) = \frac{i\overline{z}}{z} = i \cdot \frac{\cos(-\theta/2) - i\sin(-\theta/2)}{\cos(-\theta/2) + i\sin(-\theta/2)} = i(\cos(\theta) + i\sin(\theta)) = iw' = i(-iw) = w.$$

It follows that $S \setminus \{-i\} \subset f(H)$.

6. Solution.

(a) The statement (#) is true. We give a proof:

Let A, B be sets, and $f: A \longrightarrow B$ be a function.

Let U, V be subsets of B. Suppose $U \subset V$.

Pick any object x. Suppose $x \in f^{-1}(U)$.

By the definition of pre-image sets, there exists some $y \in U$ such that y = f(x).

Since $y \in U$ and $U \subset V$, we have $y \in V$.

Since $y \in V$ and y = f(x), we have $x \in f^{-1}(V)$ according to the definition of pre-image sets.

It follows that $f^{-1}(U) \subset f^{-1}(V)$.

Acceptable answer.

Let A, B be sets, and $f: A \longrightarrow B$ be a function.

Let U, V be subsets of B. Suppose $U \subset V$.

Pick any object x. Suppose $x \in f^{-1}(U)$.

By the definition of pre-image sets, $f(x) \in U$.

Since $f(x) \in U$ and $U \subset V$, we have $f(x) \in V$.

Since $f(x) \in V$, we have $x \in f^{-1}(V)$ according to the definition of pre-image sets.

It follows that $f^{-1}(U) \subset f^{-1}(V)$.

(b) The statement (b) is false. We give a dis-proof by counter-example.

Take $A = \{0, 1\}$, $B = \{0, 1\}$. Here 0, 1 are distinct objects.

Define the function $f: A \longrightarrow B$ by f(0) = f(1) = 0.

Take $U = \{0, 1\}, V = \{0\}.$

We have $f^{-1}(U) = f^{-1}(V) = \{0, 1\}$. Then $f^{-1}(U) \subset f^{-1}(V)$.

Note that $1 \in U$ and $1 \notin V$. Then $U \not\subset V$.

7. Solution.

(a) The statement (#) is true. We give a proof:

Let A, B be sets, and $f: A \longrightarrow B$ be a function.

Let S be a subset of A.

Pick any object x. Suppose $x \in S$. Define y = f(x).

Since $x \in S$ and y = f(x), we have $y \in f(S)$ according to the definition of image sets. Since $y \in f(S)$ and y = f(x), we have $x \in f^{-1}(f(S))$ according to the definition of pre-image sets.

It follows that $S \subset f^{-1}(f(S))$.

(b) The statement (b) is false. We give a dis-proof by counter-example:

Take $A = \{0, 1\}, B = \{0\}$. Here 0, 1 are distinct objects.

Define the function $f: A \longrightarrow B$ by f(0) = f(1) = 0.

Take $S = \{0\}$. Note that $S \subset A$.

We have $f(S) = \{0\}$ and $f^{-1}(f(S)) = \{0, 1\}$.

Note that $1 \in f^{-1}(f(S))$ and $1 \notin S$. Then $f^{-1}(f(S)) \not\subset S$.

8. Answer.

- (a) (I) G
 - (II) G is a subset of A^2
 - (III) For any $x \in A$, $(x, x) \in G$.
 - (IV) For any $x,y\in A,$ if $(x,y)\in G$ then $(y,z)\in G.$
 - (V) For any $x, y, z \in A$, if $(x, y) \in G$ and $(y, z) \in G$ then $(x, z) \in G$.
 - (VI) R is reflexive, symmetric and transitive.
- (b) i. (s,t) = (0,0) and (u,v) = (1,0).
 - ii. $\alpha = 1, \beta = 2, \gamma = -1, \delta = 1.$
 - iii. A. (s,t) = (0,0).
 - B. (u, v) = (1, 2).
 - C. (I) There exist some

- $(II) \in A$
- (III) $(x, y) \in G$ and $(y, z) \in G$ and
- (IV) 0
- (V) 1
- (VI) 2
- $(VII) \in G$
- $(VIII) \notin G$

Alternative answer. (IV) 0. (V) 1. (VI) 0. (VII) $\in G$. (VIII) $\notin G$.

- (c) i. Yes.
- iv. Yes.
- vii. No.

- ii. No.
- v. Yes.
- viii. Yes.

- iii. Yes.
- vi. Yes.
- ix. No.

9. Answer.

- (a) (I) For any $\zeta \in \mathbb{C}^*$
 - (II) Pick any
 - (III) ∈ **ℂ***
 - (IV) $\frac{\zeta}{\zeta}$
 - (V) IR*
 - $(VI) \in E$
- (b) (I) if $(\zeta, \eta) \in E$ and $(\eta, \xi) \in E$ then $(\zeta, \xi) \in E$
 - (II) Suppose $(\zeta, \eta) \in E$ and $(\eta, \xi) \in E$.
 - (III) $\frac{\eta}{\zeta} \in \mathbb{R}^*$
 - (IV) $(\eta, \xi) \in E$
 - $(V) \ \frac{\xi}{\zeta} \in \mathbb{R}$

- (VI) $\frac{\eta}{\zeta} \neq 0$ and $\frac{\xi}{\eta} \neq 0$
- (VII) $\frac{\xi}{\zeta} \in \mathbb{R}^*$
- (VIII) (ζ, ξ)
- (c) (I) symmetric
 - (II) For any $\zeta, \eta \in \mathbb{C}^*$, if $(\zeta, \eta) \in E$ then $(\eta, \zeta) \in E$
 - (III) Pick any $\zeta, \eta \in \mathbb{C}^*$
 - (IV) $(\zeta, \eta) \in E$
 - (V) $\frac{\eta}{\zeta} \neq 0$
 - (VI) $\frac{\zeta}{\eta} \in \mathbb{R}$
 - (VII) $(\eta, \zeta) \in E$
 - (VIII) reflexive, symmetric and transitive

10. **Answer.**

- (I) a subset of \mathbb{R}^2
- (II) for any $x \in \mathbb{R}$, $(x, x) \in E$
- (III) Pick any $x \in \mathbb{R}$
- (IV) x x = 0
- (V) $(x, x) \in E$
- (VI) for any $x, y \in \mathbb{R}$, if $(x, y) \in E$ then $(y, x) \in E$
- (VII) Suppose $(x, y) \in E$
- (VIII) there exists some $a \in \mathbb{Q}$
- (IX) y x = -(x y) = -a

- $(X) a \in \mathbb{Q}$
- $(XI) -a \in \mathbb{Q}$
- (XII) $(y, x) \in E$
- (XIII) for any $x,y,z\in\mathbb{R},$ if $(x,y)\in E$ and (y,z) then $(x,z)\in E$
- (XIV) $x, y, z \in \mathbb{R}$
- (XV) $(x, y) \in E$ and $(y, z) \in E$
- (XVI) x y = a

(XVII) Since $(y,z) \in E$, there exists some $b \in \mathbb{Q}$ such that y-z=b

(XVIII) Since $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, we have $a + b \in \mathbb{Q}$ (IX) $(x, z) \in E$

11. Answer.

(a) (I) there exists some $x_0 \in \mathbb{R}$

(II) $(x_0, x_0) \notin G$

(III) Take $x_0 = 0$

(IV) $x_0 - x_0$

(V) $x_0 \cdot x_0$

(VI) $(x_0, x_0) \notin G$

(b) (I) there exists some $x_0, y_0 \in \mathbb{R}$

(II) $(x_0, y_0) \in G$ and $(y_0, x_0) \notin G$

(III) $x_0 = 1, y_0 = 0$

(IV) 1 > 0

 $(V) (x_0, y_0) \in G$

(VI) $y_0 - x_0 > x_0 y_0$

(VII) $(y_0, x_0) \notin G$

(VIII) $(x_0, y_0) \in G$ and $(y_0, x_0) \notin G$

(c) (I) there exists some $x_0, y_0, z_0 \in \mathbb{R}$

(II) $(x_0, y_0) \in G$ and $(y_0, z_0) \in G$ and $(x_0, z_0) \notin G$

(III) $z_0 = -2$

(IV) $x_0 - y_0 = -5 > -6 = x_0 y_0$

(V) by the definition of G

(VI) $(y_0, z_0) \in G$

(VII) $x_0 - z_0 = 0 \le 4 = x_0 z_0$

(VIII) $(x_0, z_0) \notin G$

(IX) $(x_0, y_0) \in G$ and $(y_0, z_0) \in G$ and $(x_0, z_0) \notin G$

12. Solution.

Define the relation $S=(\mathbb{C},\mathbb{C},F)$ in \mathbb{C} by $F=\Big\{(\zeta,\xi)\in\mathbb{C}^2:\zeta^2-\xi^2=ai \text{ for some }a\in\mathbb{R}\Big\}.$

(a) Let $\zeta \in \mathbb{C}$. We have $\zeta^2 - \zeta^2 = 0 = 0 \cdot i$ and $0 \in \mathbb{R}$. Therefore $(\zeta, \zeta) \in F$.

It follows that S is reflexive.

(b) Let $\zeta, \eta \in \mathbb{C}$. Suppose $(\zeta, \eta) \in F$. Then $\zeta^2 - \eta^2 = ai$ for some $a \in \mathbb{R}$. Therefore, for the same $a \in \mathbb{R}$, we have $\eta^2 - \zeta^2 = (-a)i$ and $-a \in \mathbb{R}$. Hence $(\eta, \zeta) \in F$.

It follows that S is symmetric.

(c) Let $\zeta, \eta, \mu \in \mathbb{C}$. Suppose $(\zeta, \eta) \in F$ and $(\eta, \mu) \in F$. Since $(\zeta, \eta) \in F$, we have $\zeta^2 - \eta^2 = ai$ for some $a \in \mathbb{R}$. Since $(\eta, \mu) \in F$, we have $\eta^2 - \mu^2 = bi$ for some $b \in \mathbb{R}$. Therefore, for the same $a, b \in \mathbb{R}$, we have $\zeta^2 - \mu^2 = (a + b)i$ and $a + b \in \mathbb{R}$. Hence $(\zeta, \mu) \in F$.

It follows that S is transitive. Since S is reflexive, symmetric and transitive, S is an equivalence relation.

13. Solution.

Let $R=(\mathbb{R},\mathbb{R},G)$ be the relation in \mathbb{R} defined by $G=\Big\{(x,y)\,\Big|\,\,x\in\mathbb{R}$ and $y\in\mathbb{R}$ and $|y-x|\leq 1\Big\}.$

(a) Pick any $x \in \mathbb{R}$. We have $|x - x| = 0 \le 1$. Then $(x, x) \in G$.

Hence R is reflexive.

(b) Pick any $x, y \in \mathbb{R}$. Suppose $(x, y) \in G$. Then $|x - y| \le 1$. Therefore $|y - x| = |x - y| \le 1$. So $(y, x) \in G$. Hence R is symmetric.

(c) Take $x_0 = 0$, $y_0 = 1$, $z_0 = 2$. Note that $x_0, y_0, z_0 \in \mathbb{R}$.

We have $|x_0 - y_0| = 1$. Then $(x_0, y_0) \in G$.

We also have $|y_0 - z_0| = 1$. Then $(y_0, z_0) \in G$.

But $|x_0 - z_0| = 2$. Therefore $(x_0, z_0) \notin G$.

Hence R is not transitive.

(d) Since R is not transitive, R is not an equivalence relation in \mathbb{R} .

14. Solution.

Let $A = \left\{ \varphi \mid \begin{array}{l} \varphi : \mathbb{N} \longrightarrow \mathbb{R} \text{ is a function} \\ \text{and } \varphi(0) = 0. \end{array} \right\}$.

Define the relation R=(A,A,H) in A by $H=\Big\{(\varphi,\psi)\in A^2: \begin{array}{l} \text{For any } n\in \mathbb{N},\\ \varphi(n+1)-\varphi(n)\leq \psi(n+1)-\psi(n) \end{array} \Big\}.$

(a) Pick any $\varphi \in A$. Pick any $n \in \mathbb{N}$. We have $\varphi(n+1) - \varphi(n) = \varphi(n+1) - \varphi(n)$. Then $(\varphi, \varphi) \in H$. It follows that R is reflexive.

(b) Pick any $\varphi, \psi, \sigma \in A$. Suppose $(\varphi, \psi) \in H$ and $(\psi, \sigma) \in H$. Pick any $x \in \mathbb{N}$. Since $(\varphi, \psi) \in H$, we have $\varphi(n+1) - \varphi(n) \leq \psi(n+1) - \varphi(n)$. Since $(\psi, \sigma) \in H$, we have $\psi(n+1) - \psi(n) \leq \sigma(n+1) - \sigma(n)$. Then $\varphi(n+1) - \varphi(n) \leq \psi(n+1) - \psi(n) \leq \sigma(n+1) - \sigma(n)$. Hence $(\varphi, \sigma) \in H$. It follows that R is transitive.

5

(c) Define $\varphi, \psi : \mathbb{N} \longrightarrow \mathbb{R}$ by $\varphi(n) = 0$, $\psi(n) = n$ for any $n \in \mathbb{N}$ For any $n \in \mathbb{N}$, we have $\varphi(n+1) - \varphi(n) = 0 \le 1 = \psi(n+1) - \psi(n)$. Then $(\varphi, \psi) \in H$. However, $\psi(1) - \psi(0) = 1 > 0 = \varphi(1) - \varphi(0)$. It is not true that $\varphi(1) - \varphi(0) \le \psi(1) - \psi(0)$. Then $(\psi, \varphi) \notin H$. Hence R is not an equivalence relation in A.

15. Solution.

Define the relation $R = (\mathbb{Z}, \mathbb{Z}, G)$ in \mathbb{Z} by $G = \{(x, y) \in \mathbb{Z}^2 : \text{There exist some } m, n \in \mathbb{N} \}$.

- (a) Pick any $x \in \mathbb{Z}$. We have $x = 1 \cdot x + 0$ and $1, 0 \in \mathbb{N}$. Then $(x, x) \in G$. It follows that R is reflexive.
- (b) Pick any $x, y, z \in \mathbb{Z}$. Suppose $(x, y) \in G$ and $(y, z) \in G$.

Since $(x, y) \in G$, there exist some $m, n \in \mathbb{N}$ such that y = mx + n. Since $(y, z) \in G$, there exist some $p, q \in \mathbb{N}$ such that z = py + q.

Now, for the same $m, n, p, q \in \mathbb{N}$, we have z = py + q = p(mx + n) + q = (pm)x + (pn + q). Also, $pm \in \mathbb{N}$ and $pn + q \in \mathbb{N}$. Then $(x, z) \in G$.

It follows that R is transitive.

- (c) We verify that R is not symmetric:
 - Take $x_0 = -1$, $y_0 = 1$. Note that $x_0, y_0 \in \mathbb{Z}$. We have $y_0 = 1 = 0 \cdot (-1) + 1 = 0 \cdot x_0 + 1$, and $0, 1 \in \mathbb{N}$. Then $(x_0, y_0) \in G$.

Suppose it were true that $(y_0, x_0) \in G$. Then there would exist some $p, q \in \mathbb{N}$ such that $x_0 = py_0 + q$.

Then $-1 = p \cdot 1 + q = p + q$. Since $p, q \in \mathbb{N}$, we have $p + q \ge 0$. Then $-1 = p + q \ge 0$. Contradiction arises.

It follows that $(y_0, x_0) \notin G$.

Hence R is not symmetric. It follows that R is not an equivalence relation in \mathbb{Z} .

16. Solution.

Let A be the set of all real-valued functions with domain $[1, +\infty)$.

Let R be the relation in A with graph E given by

$$E = \left\{ (f,g) \middle| \begin{array}{l} f \in A \text{ and } g \in A \\ \text{and (there exist some positive real numbers } \alpha, K \\ \text{such that } \lim_{t \longrightarrow +\infty} \frac{f(t) - Kg(t)}{t^{\alpha}} \text{ exists and equals 0).} \end{array} \right\}.$$

(a) Pick any $f \in A$.

Take $\alpha = 1$, K = 1. Note that α, K are positive real numbers.

For any $t \in [1, +\infty)$, we have $\frac{f(t) - Kf(t)}{t^{\alpha}} = \frac{f(t) - 1 \cdot f(t)}{t^1} = 0$.

Then $\lim_{t \longrightarrow +\infty} \frac{f(t) - Kf(t)}{t^{\alpha}}$ exists and equals 0.

Therefore $(f, f) \in E$.

(b) Let $f, g \in A$. Suppose $(f, g) \in E$.

Then there exist some positive real numbers α, K such that $\lim_{t \to +\infty} \frac{f(t) - Kg(t)}{t^{\alpha}}$ exists and equals 0.

Take $\beta = \alpha$, $L = \frac{1}{K}$. (Since K is non-zero, L is well-defined as a real number.) Note that β , L are positive real numbers.

For any $t \in [1, +\infty)$, we have $\frac{g(t) - Lf(t)}{t^{\beta}} = -\frac{1}{K} \cdot \frac{f(t) - Kg(t)}{t^{\alpha}}$.

Then $\lim_{t\longrightarrow +\infty}\frac{g(t)-Lf(t)}{t^{\beta}}$ exists and

$$\lim_{t\longrightarrow +\infty}\frac{g(t)-Lf(t)}{t^{\beta}}=\lim_{t\longrightarrow +\infty}-\frac{1}{K}\cdot\frac{f(t)-Kg(t)}{t^{\alpha}}=0.$$

- (c) We verify that R is transitive.
 - Let $f, g, h \in A$. Suppose $(f, g) \in E$ and $(g, h) \in E$. Since $(f, g) \in E$, there exist some positive real numbers α, K such that $\lim_{t \to +\infty} \frac{f(t) - Kg(t)}{t^{\alpha}}$ exists and equals 0.

Since $(g,h) \in E$, there exist some positive real numbers β, L such that $\lim_{t \to +\infty} \frac{g(t) - Lh(t)}{t^{\beta}}$ exists and equals 0. Take $\gamma = \alpha + \beta$, M = KL. Note that γ, M are positive real numbers. For any $t \in [1, +\infty)$, we have

$$\frac{f(t)-Mh(t)}{t^{\gamma}} = \frac{f(t)-KLh(t)}{t^{\alpha}t^{\beta}} = \frac{1}{t^{\beta}} \cdot \frac{f(t)-Kg(t)}{t^{\alpha}} + \frac{K}{t^{\alpha}} \cdot \frac{g(t)-Lh(t)}{t^{\beta}}$$

Then $\lim_{t \longrightarrow +\infty} \frac{f(t) - Mh(t)}{t^{\gamma}}$ exists and

$$\lim_{t\longrightarrow +\infty}\frac{f(t)-Mh(t)}{t^{\gamma}}\quad =\quad \lim_{t\longrightarrow +\infty}\frac{1}{t^{\beta}}\cdot\frac{f(t)-Kg(t)}{t^{\alpha}}+\lim_{t\longrightarrow +\infty}\frac{K}{t^{\alpha}}\cdot\frac{g(t)-Lh(t)}{t^{\beta}}=0+0=0.$$

Since R is reflexive, symmetric and transitive, R is an equivalence relation in A.

17. Answer.

- (a) (I) there exists some
 - (II) f is a bijective function
 - (III) there exists some
 - (IV) f is an injective function
 - (V) there is some injective function from A to B
 - (VI) there is no bijective function from A to B
- (b) i. Suppose A is a set. Then we say A is infinite if $\mathbb{N} \lesssim A$.
 - ii. Suppose A is a set. Then we say A is countable if $A \le \mathbb{N}$.
- (c) i. Let A, B be sets. Suppose $A \lesssim B$ and $B \lesssim A$. Then $A \sim B$.
 - ii. Suppose A is a set. Then $A < \mathfrak{P}(A)$.

(d) These sets are of cardinality equal to N:

$$N, Q, N^3, Map(\{0,1\}, N).$$

These sets are of cardinality equal to $\mathfrak{P}(N)$:

$$\mathbb{IR}\setminus\mathbb{Q}, [0,1], \mathfrak{P}(\mathbb{N}), \mathsf{Map}(\mathbb{N},\{0,1\}), \mathbb{C}, \mathbb{N}\times\mathbb{IR}.$$

These sets are of cardinality equal to $\mathfrak{P}(\mathfrak{P}(N))$:

$$\mathfrak{P}(\mathbb{R}), \operatorname{Map}(\mathbb{R}, \{0, 1\}).$$

- (e) i. True.
 - ii. True.
 - iii. False.
 - iv. False.
 - v. True.

- 18. (a) **Answer.**
 - (I) $C \cap C'$
 - (II) ∅
 - (III) g, g' are bijective functions
 - (IV) $(C \cup C', D \cup D', G \cup G')$ is a bijective function
 - (b) i. (I) H is a subset of $J \times K$
 - (II) there exists some $y \in K$ such that $(x, y) \in H$
 - (III) $x \in J$
 - (IV) y = 1 x
 - (V) $x \in J$
 - (VI) $y = 1 x \le 1 0 = 1$
 - (VII) y = 1 x > 1 1 = 0
 - (VIII) $y \in K$
 - $(IX) (x,y) \in H$
 - (X) if $(x, y) \in H$ and $(x, z) \in H$ then y = z
 - (XI) Pick any $x \in J$, $y, z \in K$
 - (XII) $(x, y) \in H$ and $(x, z) \in H$
 - (XIII) Since $(x, y) \in H$
 - (XIV) x + z = 1
 - (XV) z = 1 x
 - (XVI) y = 1 x = z
 - (XVII) for any $y \in K$, there exists some $x \in J$

- (XVIII) $(x, y) \in H$
- (XIX) Pick any $y \in K$
- $(XX) \ 0 < y \le 1$
- (XXI) y > 0
- (XXII) $x = 1 y \ge 1 1 = 0$
- (XXIII) $(x, y) \in H$
- (XXIV) for any $x, w \in J$, for any $y \in K$
- (XXV) then x = w
- (XXVI) Suppose $(x, y) \in H$ and $(w, y) \in H$
- (XXVII) Since $(x, y) \in H$
- (XXVIII) w + y = 1
- (XXIX) x = 1 y = w
- (XXX) h is a function
- (XXXI) h is surjective
- (XXXII) h is injective
- (XXXIII) J is of cardinality equal to K

ii. Solution.

Let
$$L = (0, 1), M = \{0\}, N = \{1\}.$$

Note that $J = L \cup M$, $K = L \cup N$, and $L \cap M = \emptyset$, $L \cap N = \emptyset$.

Let $D = \{(x, x) \mid x \in L\}$. The identity function id_L is a bijective function from L to L with graph D.

Note that $M \times N = \{(0,1)\}$. The relation $(M,N,M\times N)$ is a bijective function from M to N with graph $M \times N$.

Define $F = D \cup (M \times N)$, and define f = (J, K, F).

By the Glueing Lemma, f is a bijective function from J to K with graph F.

It follows that $J \equiv K$.

19. Answer.

Let $J = [0, 1), L = (0, 1), M = [0, +\infty), N = (0, +\infty).$

- (a) A bijective function from J to M is $\varphi: J \longrightarrow M$, given by $\varphi(x) = -1 \frac{1}{x-1}$ for any $x \in J$. It follows that $J \sim M$. A bijective function from L to N is $\psi: L \longrightarrow N$, given by $\psi(x) = -1 - \frac{1}{x-1}$ for any $x \in L$. It follows that $L \sim M$.
- (b) A bijective function from \mathbb{R} to (-1,1) is $\alpha:\mathbb{R}\longrightarrow (-1,1)$, given by $\alpha(x)=\frac{1-e^{-x}}{1+e^{-x}}$ for any $x\in\mathbb{R}$. It follows that $\mathbb{R} \sim (-1, 1).$

A bijective function from (-1,1) to (0,1) is $\beta:(-1,1)\longrightarrow(0,1)$, given by $\beta(x)=\frac{x+1}{2}$ for any $x\in(-1,1)$. Now $\alpha^{-1} \circ \beta^{-1}$ a bijective function from L to IR. It follows that $L \sim IR$.

20. Solution.

Let
$$D = \Big\{z \in \mathbb{C} : |z| < 1\Big\}, H = \Big\{w \in \mathbb{C} : \mathsf{Im}(w) > 0\Big\}.$$

Define $F = \left\{ (z, w) \mid z \in D \text{ and } w \in H \text{ and } w = \frac{z+i}{iz+1} \right\}$, and f = (D, H, F).

- By definition, $F \subset D \times H$. Then f is a relation from D to H with graph F.
 - Pick any $z \in D$. Since |z| < 1, we have $iz + 1 = i(z i) \neq 0$. Define $w = \operatorname{Im} \left(\frac{z + i}{iz + 1} \right)$.

$$\operatorname{Im}(w) = \operatorname{Im}\left(\frac{z+i}{iz+1}\right) = \frac{1}{2i}\left\lceil\frac{z+i}{iz+1} - \overline{\left(\frac{z+i}{iz+1}\right)}\right\rceil = \ldots = \frac{1-|z|^2}{|z-i|^2}.$$

Since |z| < 1, $1 - |z|^2 > 0$. Then $Im(w) = \frac{1 - |z|^2}{|z - i|^2} > 0$. Therefore $w \in H$.

We have $(z, w) \in F$.

• Pick any $z \in D$. Pick any $w, w' \in H$. Suppose $(z, w) \in F$ and $(z, w') \in F$. By definition, $w = \frac{z+i}{iz+1}$ and $w' = \frac{z+i}{iz+1}$. Then w = w'.

Therefore f is a function.

(b) Note that $f(z) = \frac{z+i}{iz+1}$ for any $z \in D$.

We verify that f is bijective:

- Pick any $z, z' \in D$. Suppose f(z) = f(z'). Then $\frac{z+i}{iz+1} = \frac{z'+i}{iz'+1}$. Therefore izz' - z' + z + i = (z+i)(iz'+1) = (z'+i)(iz+1) = izz' - z + z' + i. Hence z = z'. It follows that f is injective.
- Pick any $w \in H$. Since Im(w) > 0, we have $-iw + 1 = -i(w+i) \neq 0$. Define $z = \frac{w-i}{-iw + 1}$.

$$|z|^2 = z\bar{z} = \left(\frac{w-i}{-iw+1}\right)\overline{\left(\frac{w-i}{-iw+1}\right)} = \ldots = \frac{|w|^2 + 1 - 2\mathrm{Im}(w)}{|w|^2 + 1 + 2\mathrm{Im}(w)}.$$

$$\text{Then } 1-|z|^2=1-\frac{|w|^2+1-2\mathsf{Im}(w)}{|w|^2+1+2\mathsf{Im}(w)}=\frac{4\mathsf{Im}(w)}{|w|^2+1+2\mathsf{Im}(w)}.$$

Since
$$\text{Im}(w) > 0$$
, $1 - |z|^2 > 0$. Then $|z| < 1$. Therefore $z \in D$.
We have $f(z) = \frac{z+i}{iz+1} = \frac{(w-i)/(-w+1)+i}{i(w-i)/(-iw+1)+1} = \frac{(w-i)+i(-iw+1)}{i(w-i)+(-iw+1)} = \frac{2w}{2} = w$.

It follows that f is surjective

It follows that $D \sim H$.

Remark. This bijective function $f: D \longrightarrow H$ is a very special bijective function from the 'unit disc' to the 'upper-half plane' in the Argand plane. It is an example of 'fractional linear transformations'. But this belongs to another story; you will find out more about it in your *complex variables* course.

21. Solution.

Let
$$I = (0, +\infty), J = [-1, 1].$$

- (a) Pick any $a \in I$. We have a > 0. Then a + 1 > 1. Therefore $0 < \frac{1}{a+1} < 1$. Hence $\frac{1}{a+1} \in J$.
- (b) Pick any $x, w \in I$. Suppose g(x) = g(w). Then $\frac{1}{x+1} = \frac{1}{w+1}$. Therefore x+1=w+1. Hence x=w. It follows that g is injective.
- (c) For any $y \in J$, we have $-1 \le y \le 1$, $2 \le y + 3 \le 4$ and hence $y + 3 \in I$. Define the function $h: J \longrightarrow I$ by h(y) = y + 3 for any $y \in J$.

We verify that h is injective:

• Pick any $y, z \in J$. Suppose h(y) = h(z). Then y + 3 = z + 3. Therefore y = z.

There is an injective function from I to J, namely g. Then $I \lesssim J$.

There is an injective function from J to I, namely h. Then $J\lesssim I$.

According to the Schröder-Bernstein Theorem, we have $I \sim J$.

22. Solution.

Let
$$A = [-1, 1], B = (-4, -2] \cup [2, 4).$$

(a) • Pick any $x \in A$. We have $-1 \le x \le 1$. Then $2 \le \frac{x}{2} + \frac{5}{2} \le 3$. Therefore $\frac{x}{2} + \frac{5}{2} \in [2,3] \subset B$.

Define the function $f:A\longrightarrow B$ by $f(x)=\frac{x}{2}+\frac{5}{2}$ for any $x\in A$.

We verify that f is injective:

- Pick any $x, w \in A$. Suppose f(x) = f(w). Then $\frac{x}{2} + \frac{5}{2} = \frac{w}{2} + \frac{5}{2}$. We have x = w.
- (b) Pick any $y \in B$. We have $-4 \le y \le 4$. Then $-1 \le \frac{y}{4} \le 1$. Therefore $\frac{y}{4} \in A$.

Define the function $g: B \longrightarrow A$ by $g(y) = \frac{y}{4}$ for any $y \in B$.

We verify that g is injective:

• Pick any $y, z \in B$. Suppose g(y) = g(z). Then $\frac{y}{4} = \frac{z}{4}$. We have y = z.

There is an injective function from A to B, namely, $f:A\longrightarrow B$. Then $A\lesssim B$.

There is an injective function from B to A, namely, $g: B \longrightarrow A$. Then $B \lesssim A$.

According to the Schröder-Bernstein Theorem, since $A \lesssim B$ and $B \lesssim A$, we have $A \sim B$.

23. Solution.

Let $A = [1010, 1050] \setminus \{1030\}$ and $B = (2040, 2050) \cup ([2060, +\infty) \cap \mathbb{Q})$.

(a) Define the function $f:A\longrightarrow B$ by $f(x)=\frac{x}{1050}+2040$ for any $x\in A$.

Note that $\frac{x}{1050} + 2040 \in B$ for any $x \in A$. Then f is well-defined as a function.

We verify that f is injective:

* Pick any $x, w \in A$. Suppose f(x) = f(w). Then $\frac{x}{1050} + 2040 = \frac{w}{1050} + 2040$. Therefore $\frac{x}{1050} = \frac{w}{1050}$. Hence x = w.

Therefore $A \leq B$.

(b) • Define the function $g: B \longrightarrow A$ by $g(y) = \frac{1}{y} + 1010$ for any $y \in B$.

Note that $\frac{1}{y} + 1010 \in A$ for any $y \in B$. Then g is well-defined as a function.

We verify that g is injective:

* Pick any $y, z \in B$. Suppose g(y) = g(z). Then $\frac{1}{y} + 1010 = \frac{1}{z} + 1010$. Therefore $\frac{1}{y} = \frac{1}{z}$. Hence y = z.

Therefore $B \lesssim A$.

• By Schröder-Bernstein Theorem, since $A \leq B$ and $B \leq A$, we have $A \sim B$.

24. Solution.

$$\text{Let } D = \Big\{ \zeta \in \mathbb{C} : |\zeta| \leq 1 \Big\}. \text{ Define } F = \Big\{ (z,w) \, \bigg| \, z \in \mathbb{C} \text{ and } w \in D \text{ and } w = \frac{iz|z|}{1+|z|+|z|^2} \Big\}. \text{ Note that } F \subset \mathbb{C} \times D.$$
 Define $f = (\mathbb{C}, D, F).$

(a) • We verify that for any $z \in \mathbb{C}$, there exists some $w \in D$ such that $(z, w) \in F$:

Pick any $z \in \mathbb{C}$.

We have $|z|^2 < 1 + |z| + |z|^2$.

Then
$$\left| \frac{iz|z|}{1+|z|+|z|^2} \right| = \frac{|z|^2}{1+|z|+|z^2|} < 1.$$

Define
$$w = \frac{iz|z|}{1 + |z| + |z|^2}$$
.

By definition, $w \in D$.

Therefore $(z, w) \in F$.

• We verify that for any $z \in \mathbb{C}$, for any $w, v \in D$, if $(z, w) \in F$ and $(z, v) \in F$ then w = v:

Pick any $z \in \mathbb{C}$, $w, v \in D$. Suppose $(z, w) \in F$ and $(z, v) \in F$.

Then
$$w = \frac{iz|z|}{1+|z|+|z|^2}$$
 and $v = \frac{iz|z|}{1+|z|+|z|^2}$.

Therefore w = v.

Hence f is a function.

(b) We claim that f is injective. We verify that for any $z, u \in \mathbb{C}$, if f(z) = f(u) then z = u:

Pick any $z, u \in \mathbb{C}$. Suppose f(z) = f(u).

Then
$$\frac{iz|z|}{1+|z|+|z|^2} = \frac{iu|u|}{1+|u|+|u|^2}.$$

Therefore
$$\frac{|z|^2}{1+|z|+|z|^2} = \left|\frac{iz|z|}{1+|z|+|z|^2}\right| = |f(z)| = |f(u)| = \left|\frac{iu|u|}{1+|u|+|u|^2}\right| = \frac{|u|^2}{1+|u|+|u|^2}.$$

Then
$$|z|^2 + |z|^2 |u| + |z|^2 |u|^2 = |z|^2 (1 + |u| + |u|^2) = |u|^2 (1 + |z| + |z|^2) = |u|^2 + |u|^2 |z| + |u|^2 |z|^2$$
.

Therefore (|z| - |u|)(|z| + |u| + |u||z|) = 0. Hence |z| = |u| or |z| + |u| + |z||u| = 0. If |z| + |u| + |u||z| = 0 then |z| = |u| = 0. Hence in any case |z| = |u|.

$$\text{Now } \frac{iz|z|}{1+|z|+|z|^2} = f(z) = f(u) = \frac{iu|u|}{1+|u|+|u|^2} = \frac{iu|z|}{1+|z|+|z|^2}.$$

Then
$$(z-u)|z|=0$$
. Therefore $z=u$ or $|z|=0$. If $|z|=0$ then $|u|=0$ and $z=u=0$. Hence in any case $z=u$.

(c) We claim that f is not surjective. We verify that there exists some $w_0 \in D$ such that for any $z \in \mathbb{C}$, $f(z) \neq w_0$.

Take $w_0 = 1$. Note that $w_0 \in D$.

Suppose it were true that there existed some $z_0 \in \mathbb{C}$ such that $f(z_0) = w_0$.

Then we would have
$$1 = w_0 = \frac{iz_0|z_0|}{1 + |z_0| + |z_0|^2}$$

Therefore
$$1 = \left| \frac{iz_0|z_0|}{1 + |z_0| + |z_0|^2} \right| = \frac{|z_0|^2}{1 + |z_0| + |z_0|^2} < 1.$$

Contradiction arises.

Alternative argument.

Take $w_0 = 1$. Note that $w_0 \in D$.

Pick any $z \in \mathbb{C}$.

We have
$$f(z) = \frac{iz|z|}{1+|z|+|z|^2}$$

Note that
$$|z|^2 < 1 + |z| + |z|^2$$
.

Then we would have
$$|f(z)| = \left| \frac{iz|z|}{1 + |z| + |z|^2} \right| = \frac{|z|^2}{1 + |z| + |z|^2} < 1 = w_0.$$

Therefore $f(z) \neq w_0$.

(d) By Part (a), (b), there is an injective function from \mathbb{C} to D, namely, $f:\mathbb{C}\longrightarrow D$ given by $f(z)=\frac{iz|z|}{1+|z|+|z|^2}$ for any $z\in\mathbb{C}$. Then $\mathbb{C}\lesssim D$.

Note that $D \subset \mathbb{C}$. The inclusion function $\iota_D : D \longrightarrow \mathbb{C}$ given by g(z) = z for any $z \in D$ is injective. Then $D \lesssim \mathbb{C}$. By the Schröder-Bernstein Theorem, we have $D \sim \mathbb{C}$.