
MATH1050BC/1058 Assignment 6 (Answers and selected solution)

1. Answer.

(a) (I) Let D,R be sets
(II) Let S be a subset of D
(III) y
(IV) There exists some
(V) such that y = h(x)

(VI) Let U be a subset of R
(VII) D
(VIII) There exists some
(IX) U
(X) y = h(x)

(b) i. α = −1.

ii. β = 1, γ =
5

4
.

iii. δ = −1, ε = 5

3
.

iv. ζ = −
√
2 + 1, η =

√
2 + 1.

v. θ = −
√
2+1, κ = −

√
5

2
+1, λ =

√
5

2
+1, µ =

√
2+1.

vi. ν = − 1√
2
+ 1, ξ = 1√

2
+ 1.

vii. ρ = − 1√
2
+ 1, σ =

1√
2
+ 1.

viii. τ=−
√
2+1, φ=− 1√

2
+1, ψ=

1√
2
+1, ω=

√
2+1.

(c) i. α = 0, β = 3, γ = 1, δ = −1. ii. ε = −2, ζ = −0.25, η = −1, θ = 0, κ = 1.

(d) i. a = 2, b = 3. ii. 1, 4. iii. α = 0, β = 1, γ = 2, δ = 4.

2. Answer.

(a) i. (I) if y ∈ f(S) then y ∈ I.
(II) Suppose y ∈ f(S)

(III) there exists some x ∈ S such that y =

f(x)

(IV) y = f(x) = 2x4 − 4 ≥ 2 · 14 − 4 = −2

(V) Since x ≤ 2

ii. (I) if y ∈ I then y ∈ f(S).

(II) Take x =
4

√
y + 4

2

(III) x =
4

√
y + 4

2
≥ 1

(IV) Since y ≤ 28, we have y + 4

2
≤ 16

(V) x =
4

√
y + 4

2
≤ 2

(VI)

f(x) = 2x4 − 4

= 2

(
4

√
y + 4

2

)4

− 4

= 2 · y + 4

2
− 4

= y + 4− 4 = y

(VII) y ∈ f(S)

iii. (I) if x ∈ f−1(U) then x ∈ J .
(II) Suppose x ∈ f−1(U)

(III) there exists some y∈U such that y=f(x)
(IV) y ∈ U

(V) 2x4 − 4 = f(x) = y ≤ 4

iv. (I) if x ∈ J then x ∈ f−1(U)

(II) Suppose x ∈ J

(III) Define y = f(x)

(IV) y = f(x) = 2x4 − 4 ≤ 4

(V) y = f(x) = 2x4 − 4 ≥ −6

(VI) and
(VII) x ∈ f−1(U)

3. Answer.

(a) (I) if z ∈ (g ◦ f)(S) then z ∈ g(f(S))

(II) Suppose z ∈ (g ◦ f)(S)

(III) there exists some x ∈ S such that z =

(g ◦ f)(x)

(IV) z = (g ◦ f)(x) = g(f(x)) = g(y)

(V) x ∈ S and y = f(x)

(VI) y ∈ f(S)

(VII) y ∈ f(S) and z = g(y)

(VIII) z ∈ g(f(S))

(IX) if z ∈ g(f(S)) then z ∈ (g ◦ f)(S)
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(X) Suppose z ∈ g(f(S))

(XI) there exists some y ∈ f(S) such that z = g(y)

(XII) there exists some x ∈ S such that y = f(x)

(XIII) z = g(y) = g(f(x)) = (g ◦ f)(x)
(XIV) x ∈ S and z = (g ◦ f)(x)
(XV) z ∈ (g ◦ f)(S)

(b) (I) Pick any subset U of B
(II) For any y, if y ∈∈ f(S ∩ f−1(U)) then
y ∈ f(S) ∩ U .
(III) Pick any object y
(IV) y ∈ f(S ∩ f−1(U))

(V) x ∈ S ∩ f−1(U)

(VI) y = f(x)

(VII) x ∈ S and x ∈ f−1(U)

(VIII) y = f(x)

(IX) y ∈ f(S)

(X) there exists some z ∈ U such that z = f(x)

(XI) f(x)
(XII) U
(XIII) y ∈ f(S) and
(XIV) y ∈ f(S) ∩ U
(XV) For any y, if y ∈ f(S) ∩ U then y ∈∈
f(S ∩ f−1(U)).

(XVI) Suppose y ∈ f(S) ∩ U
(XVII) y ∈ f(S) and
(XVIII) y ∈ f(S)

(XIX) there exists some x ∈ S such that y = f(x)

(XX) y = f(x)

(XXI) x ∈ f−1(U)

(XXII) x ∈ S ∩ f−1(U)

(XXIII) and y = f(x)

(XXIV) y ∈ f(S ∩ f−1(U))

(XXV) f(S ∩ f−1(U)) = f(S) ∩ U

(c) (I) A = {0, 1}
(II) the function f : A −→ B

(III) f(0) = 2

(IV) 0

(V) {2}
(VI) {2}
(VII) {0, 1}
(VIII) 1

(IX) 1 /∈ f−1(U) ∩ S

(X) f−1(U ∩ f(S)) ⊂/ f−1(U) ∩ S

4. Solution.

Let f : C −→ C be the function defined by f(z) = 2z|z|
1 + |z|2

for any z ∈ C. Let D = {w ∈ C : |w| < 2}.

(a) Pick any w ∈ f(C). By definition, there exists some z ∈ C such that w = f(z).

We have |w| = |f(z)| =
∣∣∣∣ 2z|z|
1 + |z|2

∣∣∣∣ = 2|z| · |z|
1 + |z|2

=
2|z|2

1 + |z|2
<

2(1 + |z|2)
1 + |z|2

= 2.

(b) Pick any w ∈ D. Note that w = 0 or w ̸= 0.
• (Case 1.) Suppose w = 0. Note that f(0) = 0 = w and 0 ∈ C. Then w ∈ f(C).
• (Case 2.) Suppose w ̸= 0. Then |w| > 0.

We have 0 < |w| < 2. Then 1

|w|(2− |w|)
is well-defined as a real number. Moreover, 1

|w|(2− |w|)
> 0. Then

1√
|w|(2− |w|)

is well-defined as a positive real number.

Define z = w√
|w|(2− |w|)

. By definition, z ∈ C. We have

f(z) =
2
[
w/
√
|w|(2− |w|)

]
·
∣∣∣w/√|w|(2− |w|)

∣∣∣
1 +

∣∣∣w/√|w|(2− |w|)
∣∣∣2 =

2w|w|/[|w|(2− |w|)]
1 + |w|2/[|w|(2− |w|)]

=
2w|w|

|w|(2− |w|) + |w|2
= w

Then w ∈ f(C).
Hence, in any case, w ∈ f(C).
It follows that D ⊂ f(C).

5. Solution.

Let f : C\{0} −→ C be the function defined by f(z) = iz̄

z
for any z ∈ C\{0}.

Let H = {z ∈ C : Re(z) > 0}, and S = {w ∈ C : |w| = 1}.
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(a) Pick any w ∈ f(H).
By the definition of image sets, there exists some z ∈ H such that w = f(z).

For the same w, z, we have |w| = |f(z)| =
∣∣∣∣ iz̄z
∣∣∣∣ = 1 · |z̄|

|z|
= 1. Then w ∈ S.

We verify that w ̸= −i:

• Suppose it were true that w = −i. Then for the same w, z, we have −i = iz̄

z
. Therefore −z = z̄.

Then Re(z) = z + z̄

2
= 0.

Since z ∈ H, we have Re(z) > 0. Now 0 = Re(z) > 0. Contradiction arises.
Hence w /∈ {−i}.
Recall that w ∈ S. Then w ∈ S\{−i}.
It follows that f(H) ⊂ S\{−i}.

(b) Pick any w ∈ S\{−i}.
By definition, w ∈ S and w /∈ {−i}. Since w ∈ S, we have |w| = 1. Since w /∈ {−i}, we have w ̸= −i.
Define w′ = −iw. Note that |w′| = |w| = 1 and w′ ̸= −1.
For the same w′, there exists some θ ∈ (−π, π) such that w′ = cos(θ) + i sin(θ).

Define z = cos

(
−θ
2

)
+ i sin

(
−θ
2

)
.

Since θ ∈ (−π, π), we have −θ
2
∈
(
−π
2
,
π

2

)
. Then cos

(
−θ
2

)
> 0. Hence Re(z) > 0. Then, by definition, z ∈ H.

We have f(z) = iz̄

z
= i · cos(−θ/2)− i sin(−θ/2)

cos(−θ/2) + i sin(−θ/2)
= i(cos(θ) + i sin(θ)) = iw′ = i(−iw) = w.

It follows that S\{−i} ⊂ f(H).

6. Solution.

(a) The statement (♯) is true. We give a proof:
Let A,B be sets, and f : A −→ B be a function.
Let U, V be subsets of B. Suppose U ⊂ V .
Pick any object x. Suppose x ∈ f−1(U).
By the definition of pre-image sets, there exists some y ∈ U such that y = f(x).
Since y ∈ U and U ⊂ V , we have y ∈ V .
Since y ∈ V and y = f(x), we have x ∈ f−1(V ) according to the definition of pre-image sets.
It follows that f−1(U) ⊂ f−1(V ).

Acceptable answer.
Let A,B be sets, and f : A −→ B be a function.
Let U, V be subsets of B. Suppose U ⊂ V .
Pick any object x. Suppose x ∈ f−1(U).
By the definition of pre-image sets, f(x) ∈ U .
Since f(x) ∈ U and U ⊂ V , we have f(x) ∈ V .
Since f(x) ∈ V , we have x ∈ f−1(V ) according to the definition of pre-image sets.
It follows that f−1(U) ⊂ f−1(V ).

(b) The statement (♭) is false. We give a dis-proof by counter-example.
Take A = {0, 1}, B = {0, 1}. Here 0, 1 are distinct objects.
Define the function f : A −→ B by f(0) = f(1) = 0.
Take U = {0, 1}, V = {0}.
We have f−1(U) = f−1(V ) = {0, 1}. Then f−1(U) ⊂ f−1(V ).
Note that 1 ∈ U and 1 /∈ V . Then U ⊂/ V .

7. Solution.

(a) The statement (♯) is true. We give a proof:
Let A,B be sets, and f : A −→ B be a function.
Let S be a subset of A.
Pick any object x. Suppose x ∈ S. Define y = f(x).
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Since x ∈ S and y = f(x), we have y ∈ f(S) according to the definition of image sets.
Since y ∈ f(S) and y = f(x), we have x ∈ f−1(f(S)) according to the definition of pre-image sets.
It follows that S ⊂ f−1(f(S)).

(b) The statement (♭) is false. We give a dis-proof by counter-example:
Take A = {0, 1}, B = {0}. Here 0, 1 are distinct objects.
Define the function f : A −→ B by f(0) = f(1) = 0.
Take S = {0}. Note that S ⊂ A.
We have f(S) = {0} and f−1(f(S)) = {0, 1}.
Note that 1 ∈ f−1(f(S)) and 1 /∈ S. Then f−1(f(S)) ⊂/ S.

8. Answer.

(a) (I) G
(II) G is a subset of A2

(III) For any x ∈ A, (x, x) ∈ G.
(IV) For any x, y ∈ A, if (x, y) ∈ G then (y, z) ∈
G.
(V) For any x, y, z ∈ A, if (x, y) ∈ G and (y, z) ∈
G then (x, z) ∈ G.
(VI) R is reflexive, symmetric and transitive.

(b) i. (s, t) = (0, 0) and (u, v) = (1, 0).
ii. α = 1, β = 2, γ = −1, δ = 1.
iii. A. (s, t) = (0, 0).

B. (u, v) = (1, 2).
C. (I) There exist some

(II) ∈ A

(III) (x, y) ∈ G and (y, z) ∈ G and
(IV) 0

(V) 1

(VI) 2

(VII) ∈ G

(VIII) /∈ G

Alternative answer. (IV) 0. (V) 1. (VI) 0.
(VII) ∈ G. (VIII) /∈ G.

(c) i. Yes.
ii. No.
iii. Yes.

iv. Yes.
v. Yes.
vi. Yes.

vii. No.
viii. Yes.
ix. No.

9. Answer.

(a) (I) For any ζ ∈ C∗

(II) Pick any
(III) ∈ C∗

(IV) ζ
ζ

(V) R∗

(VI) ∈ E

(b) (I) if (ζ, η) ∈ E and (η, ξ) ∈ E then (ζ, ξ) ∈ E

(II) Suppose (ζ, η) ∈ E and (η, ξ) ∈ E.

(III) η
ζ
∈ R∗

(IV) (η, ξ) ∈ E

(V) ξ
ζ
∈ R

(VI) η
ζ
̸= 0 and ξ

η
̸= 0

(VII) ξ
ζ
∈ R∗

(VIII) (ζ, ξ)

(c) (I) symmetric
(II) For any ζ, η ∈ C∗, if (ζ, η) ∈ E then (η, ζ) ∈ E

(III) Pick any ζ, η ∈ C∗

(IV) (ζ, η) ∈ E

(V) η
ζ
̸= 0

(VI) ζ
η
∈ R

(VII) (η, ζ) ∈ E

(VIII) reflexive, symmetric and transitive

10. Answer.

(I) a subset of R2

(II) for any x ∈ R, (x, x) ∈ E

(III) Pick any x ∈ R

(IV) x− x = 0

(V) (x, x) ∈ E

(VI) for any x, y ∈ R, if (x, y) ∈ E then (y, x) ∈ E

(VII) Suppose (x, y) ∈ E

(VIII) there exists some a ∈ Q

(IX) y − x = −(x− y) = −a

(X) a ∈ Q

(XI) −a ∈ Q

(XII) (y, x) ∈ E

(XIII) for any x, y, z ∈ R, if (x, y) ∈ E and (y, z) then
(x, z) ∈ E

(XIV) x, y, z ∈ R

(XV) (x, y) ∈ E and (y, z) ∈ E

(XVI) x− y = a
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(XVII) Since (y, z) ∈ E, there exists some b ∈ Q such
that y − z = b

(XVIII) Since a ∈ Q and b ∈ Q, we have a+ b ∈ Q

(IX) (x, z) ∈ E

11. Answer.

(a) (I) there exists some x0 ∈ R

(II) (x0, x0) /∈ G

(III) Take x0 = 0

(IV) x0 − x0

(V) x0 · x0
(VI) (x0, x0) /∈ G

(b) (I) there exists some x0, y0 ∈ R

(II) (x0, y0) ∈ G and (y0, x0) /∈ G

(III) x0 = 1, y0 = 0

(IV) 1 > 0

(V) (x0, y0) ∈ G

(VI) y0 − x0 > x0y0

(VII) (y0, x0) /∈ G

(VIII) (x0, y0) ∈ G and (y0, x0) /∈ G

(c) (I) there exists some x0, y0, z0 ∈ R

(II) (x0, y0) ∈ G and (y0, z0) ∈ G and (x0, z0) /∈ G

(III) z0 = −2

(IV) x0 − y0 = −5 > −6 = x0y0

(V) by the definition of G
(VI) (y0, z0) ∈ G

(VII) x0 − z0 = 0 ≤ 4 = x0z0

(VIII) (x0, z0) /∈ G

(IX) (x0, y0) ∈ G and (y0, z0) ∈ G and (x0, z0) /∈
G

12. Solution.

Define the relation S = (C,C, F ) in C by F =
{
(ζ, ξ) ∈ C2 : ζ2 − ξ2 = ai for some a ∈ R

}
.

(a) Let ζ ∈ C. We have ζ2 − ζ2 = 0 = 0 · i and 0 ∈ R. Therefore (ζ, ζ) ∈ F .
It follows that S is reflexive.

(b) Let ζ, η ∈ C. Suppose (ζ, η) ∈ F . Then ζ2 − η2 = ai for some a ∈ R. Therefore, for the same a ∈ R, we have
η2 − ζ2 = (−a)i and −a ∈ R. Hence (η, ζ) ∈ F .
It follows that S is symmetric.

(c) Let ζ, η, µ ∈ C. Suppose (ζ, η) ∈ F and (η, µ) ∈ F . Since (ζ, η) ∈ F , we have ζ2 − η2 = ai for some a ∈ R. Since
(η, µ) ∈ F , we have η2 − µ2 = bi for some b ∈ R. Therefore, for the same a, b ∈ R, we have ζ2 − µ2 = (a+ b)i and
a+ b ∈ R. Hence (ζ, µ) ∈ F .
It follows that S is transitive. Since S is reflexive, symmetric and transitive, S is an equivalence relation.

13. Solution.

Let R = (R,R, G) be the relation in R defined by G =
{
(x, y)

∣∣∣ x ∈ R and y ∈ R and |y − x| ≤ 1
}

.

(a) Pick any x ∈ R. We have |x− x| = 0 ≤ 1. Then (x, x) ∈ G.
Hence R is reflexive.

(b) Pick any x, y ∈ R. Suppose (x, y) ∈ G. Then |x− y| ≤ 1. Therefore |y − x| = |x− y| ≤ 1. So (y, x) ∈ G.
Hence R is symmetric.

(c) Take x0 = 0, y0 = 1, z0 = 2. Note that x0, y0, z0 ∈ R.
We have |x0 − y0| = 1. Then (x0, y0) ∈ G.
We also have |y0 − z0| = 1. Then (y0, z0) ∈ G.
But |x0 − z0| = 2. Therefore (x0, z0) /∈ G.
Hence R is not transitive.

(d) Since R is not transitive, R is not an equivalence relation in R.

14. Solution.

Let A =
{
φ
∣∣∣ φ : N −→ R is a function

and φ(0) = 0.
}

.

Define the relation R = (A,A,H) in A by H =
{
(φ,ψ) ∈ A2 :

For any n ∈ N,
φ(n+ 1)− φ(n) ≤ ψ(n+ 1)− ψ(n)

}
.

(a) Pick any φ ∈ A. Pick any n ∈ N. We have φ(n+ 1)− φ(n) = φ(n+ 1)− φ(n). Then (φ,φ) ∈ H. It follows that R
is reflexive.

(b) Pick any φ,ψ, σ ∈ A. Suppose (φ,ψ) ∈ H and (ψ, σ) ∈ H. Pick any x ∈ N. Since (φ,ψ) ∈ H, we have
φ(n + 1) − φ(n) ≤ ψ(n + 1) − φ(n). Since (ψ, σ) ∈ H, we have ψ(n + 1) − ψ(n) ≤ σ(n + 1) − σ(n). Then
φ(n+ 1)− φ(n) ≤ ψ(n+ 1)− ψ(n) ≤ σ(n+ 1)− σ(n). Hence (φ, σ) ∈ H. It follows that R is transitive.
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(c) Define φ,ψ : N −→ R by φ(n) = 0, ψ(n) = n for any n ∈ N

For any n ∈ N, we have φ(n+ 1)− φ(n) = 0 ≤ 1 = ψ(n+ 1)− ψ(n). Then (φ,ψ) ∈ H.
However, ψ(1)− ψ(0) = 1 > 0 = φ(1)− φ(0). It is not true that φ(1)− φ(0) ≤ ψ(1)− ψ(0). Then (ψ,φ) /∈ H.
Hence R is not an equivalence relation in A.

15. Solution.

Define the relation R = (Z,Z, G) in Z by G =
{
(x, y) ∈ Z2 :

There exist some m,n ∈ N
such that y = mx+ n.

}
.

(a) Pick any x ∈ Z. We have x = 1 · x+ 0 and 1, 0 ∈ N. Then (x, x) ∈ G. It follows that R is reflexive.
(b) Pick any x, y, z ∈ Z. Suppose (x, y) ∈ G and (y, z) ∈ G.

Since (x, y) ∈ G, there exist some m,n ∈ N such that y = mx+ n. Since (y, z) ∈ G, there exist some p, q ∈ N such
that z = py + q.
Now, for the same m,n, p, q ∈ N, we have z = py + q = p(mx + n) + q = (pm)x + (pn + q). Also, pm ∈ N and
pn+ q ∈ N. Then (x, z) ∈ G.
It follows that R is transitive.

(c) We verify that R is not symmetric:
• Take x0 = −1, y0 = 1. Note that x0, y0 ∈ Z. We have y0 = 1 = 0 · (−1) + 1 = 0 · x0 + 1, and 0, 1 ∈ N. Then

(x0, y0) ∈ G.
Suppose it were true that (y0, x0) ∈ G. Then there would exist some p, q ∈ N such that x0 = py0 + q.
Then −1 = p · 1 + q = p+ q. Since p, q ∈ N, we have p+ q ≥ 0. Then −1 = p+ q ≥ 0. Contradiction arises.
It follows that (y0, x0) /∈ G.

Hence R is not symmetric. It follows that R is not an equivalence relation in Z.

16. Solution.
Let A be the set of all real-valued functions with domain [1,+∞).
Let R be the relation in A with graph E given by

E =

(f, g)

∣∣∣∣∣∣∣
f ∈ A and g ∈ A
and (there exist some positive real numbers α,K
such that lim

t−→+∞

f(t)−Kg(t)

tα
exists and equals 0).

 .

(a) Pick any f ∈ A.
Take α = 1, K = 1. Note that α,K are positive real numbers.

For any t ∈ [1,+∞), we have f(t)−Kf(t)

tα
=
f(t)− 1 · f(t)

t1
= 0.

Then lim
t−→+∞

f(t)−Kf(t)

tα
exists and equals 0.

Therefore (f, f) ∈ E.
(b) Let f, g ∈ A. Suppose (f, g) ∈ E.

Then there exist some positive real numbers α,K such that lim
t−→+∞

f(t)−Kg(t)

tα
exists and equals 0.

Take β = α, L =
1

K
. (Since K is non-zero, L is well-defined as a real number.) Note that β, L are positive real

numbers.

For any t ∈ [1,+∞), we have g(t)− Lf(t)

tβ
= − 1

K
· f(t)−Kg(t)

tα
.

Then lim
t−→+∞

g(t)− Lf(t)

tβ
exists and

lim
t−→+∞

g(t)− Lf(t)

tβ
= lim

t−→+∞
− 1

K
· f(t)−Kg(t)

tα
= 0.

(c) We verify that R is transitive.
• Let f, g, h ∈ A. Suppose (f, g) ∈ E and (g, h) ∈ E.

Since (f, g) ∈ E, there exist some positive real numbers α,K such that lim
t−→+∞

f(t)−Kg(t)

tα
exists and equals

0.
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Since (g, h) ∈ E, there exist some positive real numbers β, L such that lim
t−→+∞

g(t)− Lh(t)

tβ
exists and equals 0.

Take γ = α+ β, M = KL. Note that γ,M are positive real numbers.
For any t ∈ [1,+∞), we have

f(t)−Mh(t)

tγ
=
f(t)−KLh(t)

tαtβ
=

1

tβ
· f(t)−Kg(t)

tα
+
K

tα
· g(t)− Lh(t)

tβ

Then lim
t−→+∞

f(t)−Mh(t)

tγ
exists and

lim
t−→+∞

f(t)−Mh(t)

tγ
= lim

t−→+∞

1

tβ
· f(t)−Kg(t)

tα
+ lim

t−→+∞

K

tα
· g(t)− Lh(t)

tβ
= 0 + 0 = 0.

Since R is reflexive, symmetric and transitive, R is an equivalence relation in A.

17. Answer.

(a) (I) there exists some
(II) f is a bijective function
(III) there exists some
(IV) f is an injective function
(V) there is some injective function from A to B
(VI) there is no bijective function from A to B

(b) i. Suppose A is a set. Then we say A is infinite if
N.A.

ii. Suppose A is a set. Then we say A is countable if
A.N.

(c) i. Let A,B be sets. Suppose A.B and B.A. Then
A∼B.

ii. Suppose A is a set. Then A < P(A).

(d) These sets are of cardinality equal to N:

N, Q, N3, Map({0, 1},N).

These sets are of cardinality equal to P(N):

R\Q, [0, 1], P(N), Map(N, {0, 1}), C, N × R.

These sets are of cardinality equal to P(P(N)):

P(R), Map(R, {0, 1}).

(e) i. True.
ii. True.
iii. False.
iv. False.
v. True.

18. (a) Answer.
(I) C ∩ C ′

(II) ∅
(III) g, g′ are bijective functions
(IV) (C ∪ C ′, D ∪D′, G ∪G′) is a bijective function

(b) i. (I) H is a subset of J ×K

(II) there exists some y ∈ K such that (x, y) ∈ H

(III) x ∈ J

(IV) y = 1− x

(V) x ∈ J

(VI) y = 1− x ≤ 1− 0 = 1

(VII) y = 1− x > 1− 1 = 0

(VIII) y ∈ K

(IX) (x, y) ∈ H

(X) if (x, y) ∈ H and (x, z) ∈ H then y = z

(XI) Pick any x ∈ J , y, z ∈ K

(XII) (x, y) ∈ H and (x, z) ∈ H

(XIII) Since (x, y) ∈ H

(XIV) x+ z = 1

(XV) z = 1− x

(XVI) y = 1− x = z

(XVII) for any y ∈ K, there exists some x ∈ J

(XVIII) (x, y) ∈ H

(XIX) Pick any y ∈ K

(XX) 0 < y ≤ 1

(XXI) y > 0

(XXII) x = 1− y ≥ 1− 1 = 0

(XXIII) (x, y) ∈ H

(XXIV) for any x,w ∈ J , for any y ∈ K

(XXV) then x = w

(XXVI) Suppose (x, y) ∈ H and (w, y) ∈ H

(XXVII) Since (x, y) ∈ H

(XXVIII) w + y = 1

(XXIX) x = 1− y = w

(XXX) h is a function
(XXXI) h is surjective
(XXXII) h is injective
(XXXIII) J is of cardinality equal to K

ii. Solution.
Let L = (0, 1), M = {0}, N = {1}.
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Note that J = L ∪M , K = L ∪N , and L ∩M = ∅, L ∩N = ∅.
Let D = {(x, x) | x ∈ L}. The identity function idL is a bijective function from L to L with graph D.
Note that M × N = {(0, 1)}. The relation (M,N,M × N) is a bijective function from M to N with graph
M ×N .
Define F = D ∪ (M ×N), and define f = (J,K, F ).
By the Glueing Lemma, f is a bijective function from J to K with graph F .
It follows that J ≡ K.

19. Answer.
Let J = [0, 1), L = (0, 1), M = [0,+∞), N = (0,+∞).

(a) A bijective function from J to M is φ : J −→M , given by φ(x) = −1− 1

x− 1
for any x ∈ J . It follows that J∼M .

A bijective function from L to N is ψ : L −→ N , given by ψ(x) = −1− 1

x− 1
for any x ∈ L. It follows that L∼M .

(b) A bijective function from R to (−1, 1) is α : R −→ (−1, 1), given by α(x) = 1− e−x

1 + e−x
for any x ∈ R. It follows that

R∼(−1, 1).

A bijective function from (−1, 1) to (0, 1) is β : (−1, 1) −→ (0, 1), given by β(x) = x+ 1

2
for any x ∈ (−1, 1). Now

α−1 ◦ β−1 a bijective function from L to R. It follows that L∼R.

20. Solution.

Let D =
{
z ∈ C : |z| < 1

}
, H =

{
w ∈ C : Im(w) > 0

}
.

Define F =

{
(z, w)

∣∣∣∣ z ∈ D and w ∈ H and w =
z + i

iz + 1

}
, and f = (D,H,F ).

(a) • By definition, F ⊂ D ×H. Then f is a relation from D to H with graph F .

• Pick any z ∈ D. Since |z| < 1, we have iz + 1 = i(z − i) ̸= 0. Define w = Im
(
z + i

iz + 1

)
.

Im(w) = Im
(
z + i

iz + 1

)
=

1

2i

[
z + i

iz + 1
−
(
z + i

iz + 1

)]
= ... =

1− |z|2

|z − i|2
.

Since |z| < 1, 1− |z|2 > 0. Then Im(w) =
1− |z|2

|z − i|2
> 0. Therefore w ∈ H.

We have (z, w) ∈ F .
• Pick any z ∈ D. Pick any w,w′ ∈ H. Suppose (z, w) ∈ F and (z, w′) ∈ F .

By definition, w =
z + i

iz + 1
and w′ =

z + i

iz + 1
. Then w = w′.

Therefore f is a function.

(b) Note that f(z) = z + i

iz + 1
for any z ∈ D.

We verify that f is bijective:

• Pick any z, z′ ∈ D. Suppose f(z) = f(z′). Then z + i

iz + 1
=

z′ + i

iz′ + 1
.

Therefore izz′ − z′ + z + i = (z + i)(iz′ + 1) = (z′ + i)(iz + 1) = izz′ − z + z′ + i. Hence z = z′.
It follows that f is injective.

• Pick any w ∈ H. Since Im(w) > 0, we have −iw + 1 = −i(w + i) ̸= 0. Define z = w − i

−iw + 1
.

|z|2 = zz̄ =

(
w − i

−iw + 1

)(
w − i

−iw + 1

)
= ... =

|w|2 + 1− 2Im(w)

|w|2 + 1 + 2Im(w)
.

Then 1− |z|2 = 1− |w|2 + 1− 2Im(w)

|w|2 + 1 + 2Im(w)
=

4Im(w)

|w|2 + 1 + 2Im(w)
.

Since Im(w) > 0, 1− |z|2 > 0. Then |z| < 1. Therefore z ∈ D.

We have f(z) = z + i

iz + 1
=

(w − i)/(−w + 1) + i

i(w − i)/(−iw + 1) + 1
=

(w − i) + i(−iw + 1)

i(w − i) + (−iw + 1)
=

2w

2
= w.

It follows that f is surjective.
It follows that D∼H.
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Remark. This bijective function f : D −→ H is a very special bijective function from the ‘unit disc’ to the ‘upper-half
plane’ in the Argand plane. It is an example of ‘fractional linear transformations’. But this belongs to another story; you
will find out more about it in your complex variables course.

21. Solution.
Let I = (0,+∞), J = [−1, 1].

(a) Pick any a ∈ I. We have a > 0. Then a+ 1 > 1. Therefore 0 <
1

a+ 1
< 1. Hence 1

a+ 1
∈ J .

(b) Pick any x,w ∈ I. Suppose g(x) = g(w). Then 1

x+ 1
=

1

w + 1
. Therefore x+ 1 = w + 1. Hence x = w.

It follows that g is injective.
(c) For any y ∈ J , we have −1 ≤ y ≤ 1, 2 ≤ y + 3 ≤ 4 and hence y + 3 ∈ I.

Define the function h : J −→ I by h(y) = y + 3 for any y ∈ J .
We verify that h is injective:

• Pick any y, z ∈ J . Suppose h(y) = h(z). Then y + 3 = z + 3. Therefore y = z.
There is an injective function from I to J , namely g. Then I.J .
There is an injective function from J to I, namely h. Then J.I.
According to the Schröder-Bernstein Theorem, we have I∼J .

22. Solution.
Let A = [−1, 1], B = (−4,−2] ∪ [2, 4).

(a) • Pick any x ∈ A. We have −1 ≤ x ≤ 1. Then 2 ≤ x

2
+

5

2
≤ 3. Therefore x

2
+

5

2
∈ [2, 3] ⊂ B.

Define the function f : A −→ B by f(x) = x

2
+

5

2
for any x ∈ A.

We verify that f is injective:

• Pick any x,w ∈ A. Suppose f(x) = f(w). Then x

2
+

5

2
=
w

2
+

5

2
. We have x = w.

(b) • Pick any y ∈ B. We have −4 ≤ y ≤ 4. Then −1 ≤ y

4
≤ 1. Therefore y

4
∈ A.

Define the function g : B −→ A by g(y) = y

4
for any y ∈ B.

We verify that g is injective:

• Pick any y, z ∈ B. Suppose g(y) = g(z). Then y

4
=
z

4
. We have y = z.

There is an injective function from A to B, namely, f : A −→ B. Then A.B.
There is an injective function from B to A, namely, g : B −→ A. Then B.A.
According to the Schröder-Bernstein Theorem, since A.B and B.A, we have A∼B.

23. Solution.
Let A = [1010, 1050]\{1030} and B = (2040, 2050) ∪ ([2060,+∞) ∩ Q).

(a) Define the function f : A −→ B by f(x) = x

1050
+ 2040 for any x ∈ A.

Note that x

1050
+ 2040 ∈ B for any x ∈ A. Then f is well-defined as a function.

We verify that f is injective:

∗ Pick any x,w ∈ A. Suppose f(x) = f(w). Then x

1050
+ 2040 =

w

1050
+ 2040. Therefore x

1050
=

w

1050
. Hence

x = w.
Therefore A.B.

(b) • Define the function g : B −→ A by g(y) = 1

y
+ 1010 for any y ∈ B.

Note that 1

y
+ 1010 ∈ A for any y ∈ B. Then g is well-defined as a function.

We verify that g is injective:

∗ Pick any y, z ∈ B. Suppose g(y) = g(z). Then 1

y
+ 1010 =

1

z
+ 1010. Therefore 1

y
=

1

z
. Hence y = z.
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Therefore B.A.
• By Schröder-Bernstein Theorem, since A.B and B.A, we have A∼B.

24. Solution.

Let D =
{
ζ ∈ C : |ζ| ≤ 1

}
. Define F =

{
(z, w)

∣∣∣∣ z ∈ C and w ∈ D and w =
iz|z|

1 + |z|+ |z|2

}
. Note that F ⊂ C×D.

Define f = (C, D, F ).

(a) • We verify that for any z ∈ C, there exists some w ∈ D such that (z, w) ∈ F :
Pick any z ∈ C.
We have |z|2 < 1 + |z|+ |z|2.

Then
∣∣∣∣ iz|z|
1 + |z|+ |z|2

∣∣∣∣ = |z|2

1 + |z|+ |z2|
< 1.

Define w =
iz|z|

1 + |z|+ |z|2
.

By definition, w ∈ D.
Therefore (z, w) ∈ F .

• We verify that for any z ∈ C, for any w, v ∈ D, if (z, w) ∈ F and (z, v) ∈ F then w = v:
Pick any z ∈ C, w, v ∈ D. Suppose (z, w) ∈ F and (z, v) ∈ F .

Then w =
iz|z|

1 + |z|+ |z|2
and v =

iz|z|
1 + |z|+ |z|2

.

Therefore w = v.
Hence f is a function.

(b) We claim that f is injective. We verify that for any z, u ∈ C, if f(z) = f(u) then z = u:
Pick any z, u ∈ C. Suppose f(z) = f(u).

Then iz|z|
1 + |z|+ |z|2

=
iu|u|

1 + |u|+ |u|2
.

Therefore |z|2

1 + |z|+ |z|2
=

∣∣∣∣ iz|z|
1 + |z|+ |z|2

∣∣∣∣ = |f(z)| = |f(u)| =
∣∣∣∣ iu|u|
1 + |u|+ |u|2

∣∣∣∣ = |u|2

1 + |u|+ |u|2
.

Then |z|2 + |z|2|u|+ |z|2|u|2 = |z|2(1 + |u|+ |u|2) = |u|2(1 + |z|+ |z|2) = |u|2 + |u|2|z|+ |u|2|z|2.
Therefore (|z| − |u|)(|z|+ |u|+ |u||z|) = 0. Hence |z| = |u| or |z|+ |u|+ |z||u| = 0. If |z|+ |u|+ |u||z| = 0 then
|z| = |u| = 0. Hence in any case |z| = |u|.

Now iz|z|
1 + |z|+ |z|2

= f(z) = f(u) =
iu|u|

1 + |u|+ |u|2
=

iu|z|
1 + |z|+ |z|2

.

Then (z−u)|z| = 0. Therefore z = u or |z| = 0. If |z| = 0 then |u| = 0 and z = u = 0. Hence in any case z = u.
(c) We claim that f is not surjective. We verify that there exists some w0 ∈ D such that for any z ∈ C, f(z) ̸= w0.

Take w0 = 1. Note that w0 ∈ D.
Suppose it were true that there existed some z0 ∈ C such that f(z0) = w0.

Then we would have 1 = w0 =
iz0|z0|

1 + |z0|+ |z0|2
.

Therefore 1 =

∣∣∣∣ iz0|z0|
1 + |z0|+ |z0|2

∣∣∣∣ = |z0|2

1 + |z0|+ |z0|2
< 1.

Contradiction arises.
Alternative argument.

Take w0 = 1. Note that w0 ∈ D.
Pick any z ∈ C.

We have f(z) = iz|z|
1 + |z|+ |z|2

.

Note that |z|2 < 1 + |z|+ |z|2.

Then we would have |f(z)| =
∣∣∣∣ iz|z|
1 + |z|+ |z|2

∣∣∣∣ = |z|2

1 + |z|+ |z|2
< 1 = w0.

Therefore f(z) ̸= w0.

(d) By Part (a), (b), there is an injective function from C to D, namely, f : C −→ D given by f(z) = iz|z|
1 + |z|+ |z|2

for

any z ∈ C. Then C.D.
Note that D ⊂ C. The inclusion function ιD : D −→ C given by g(z) = z for any z ∈ D is injective. Then D.C.
By the Schröder-Bernstein Theorem, we have D∼C.
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