MATH1050BC/1058 Assignment 5 (Answers and selected solution)

- 1. (a) **Answer.**
 - (I) for any real numbers a, a', b, b'
 - (II) $z = a'\zeta + b'\overline{\zeta}$
 - (III) a
 - (IV) b
 - (b) Solution.

Let ζ be a complex number. Suppose ζ^2 is not a real number.

Pick any complex number z. Pick any real numbers a, b, a', b'. Suppose $z = a\zeta + b\overline{\zeta}$ and $z = a'\zeta + b'\overline{\zeta}$.

Then $a\zeta + b\overline{\zeta} = a'\zeta + b'\overline{\zeta}$.

Therefore $(a - a')\zeta = (b' - b)\overline{\zeta}$.

Hence $(a - a')\zeta^2 = (b' - b)|\zeta|^2$.

Note that $b, b', |\zeta|^2$ are real numbers. Then $(b'-b)|\zeta|^2$ is a real number.

Since a, a' are real number, a - a' is also a real number. Then $(a - a')\operatorname{Im}(\zeta^2) = \operatorname{Im}((a - a')\zeta^2) = \operatorname{Im}((b' - b)|\zeta|^2) = 0$.

By assumption, ζ^2 is not a real number. Then $\mathsf{Im}(\zeta^2) \neq 0$. Therefore a - a' = 0. Hence a = a'.

Then $(b'-b)|\zeta|^2 = (a-a')\zeta^2 = 0$.

By assumption, $\zeta \neq 0$. Then b' - b = 0. Therefore b = b'.

2. Solution.

[We want to prove this statement: 'Let I be an interval in \mathbb{R} , and $f, g : I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Let $c, c' \in I$. Suppose f(c) = g(c) and f(c') = g(c'). Then c = c'.

Let I be an interval in \mathbb{R} , and $f, g : I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Pick any $c, c' \in I$. Suppose f(c) = g(c) and f(c') = g(c'). We verify that c = c' by the proof-by-contradiction method:—

• Suppose it were true that $c \neq c'$.

Without loss of generality, assume c < c'.

Since f is strictly increasing on I, we would have f(c) < f(c').

Since g is strictly decreasing on I we would have g(c) > g(c').

Recall that f(c) = g(c) and f(c') = g(c').

Then f(c) < f(c') = g(c') < g(c) = f(c). Therefore f(c) < f(c). Contradiction arises.

Hence c = c' in the first place.

3. Solution.

- (a) (M) is formally formulated as:—
 - (M): For any set A, for any functions $f, g: A \longrightarrow A$, the equality $g \circ f = f \circ g$ as functions holds.

Hence $(\sim M)$ reads:—

 $(\sim M)$: There exist some set A, and some functions $f,g:A\longrightarrow A$ such that $g\circ f\neq f\circ g$ as functions.

- (b) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be functions defined by $f(x) = \frac{x^2}{1 + x^2}$, g(x) = x 1 for any $x \in \mathbb{R}$.
 - i. For any $x \in \mathbb{R}$, we have

$$(g \circ f)(x) = -\frac{1}{1+x^2},$$

$$(f \circ g)(x) = \frac{(x-1)^2}{1+(x-1)^2}.$$

- ii. We have $(g \circ f)(0) = -1$ and $(f \circ g)(0) = \frac{1}{2}$. Hence $(g \circ f)(0) \neq (f \circ g)(0)$.
- iii. There exists some $x_0 \in \mathbb{R}$, namely, $x_0 = 0$, such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence it is not true that $g \circ f = f \circ g$ as functions.

1

(c) Let $A = \{0, 1\}$.

Define $f, g: A \longrightarrow A$ by f(0) = f(1) = 0, g(0) = g(1) = 1.

By definition, the function $g \circ f : A \longrightarrow A$ is given by $(g \circ f)(0) = g(f(0)) = g(0) = 1$, $(g \circ f)(1) = g(f(1)) = g(0) = 1$.

The function $f \circ g : A \longrightarrow A$ is given by $(f \circ g)(0) = f(g(0)) = f(1) = 0$, $(f \circ g)(1) = f(g(1)) = f(1) = 0$.

Take $x_0 = 0$. We have $(g \circ f)(x_0) = 1$ and $(f \circ g)(x_0) = 0$. Then $(g \circ f)(x_0) \neq (f \circ g)(x_0)$.

Therefore $g \circ f \neq f \circ g$ as functions.

Remark. Let A be a set. (This set is fixed in our subsequent discussion.) Suppose $f, g : A \longrightarrow A$ are two functions from the set A to A itself.

- When we want to verify that $g \circ f$, $f \circ g$ are the same function from A to A, we have to verify that for any $x \in A$, $(g \circ f)(x) = (f \circ g)(x)$.
- To verify that $g \circ f$, $f \circ g$ are not the same function from A to A, we check that there exists some $x_0 \in A$ such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence we have to name an appropriate x_0 and show that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$.

4. Solution.

(a) Suppose $\alpha: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $\alpha(x) = \frac{2x}{x^2 + 1}$ for any $x \in \mathbb{R}$.

For any
$$x \in \mathbb{R}$$
, we have $(X(\alpha))(x) = \frac{x^2}{x^2 + 1}$.

For any
$$x \in \mathbb{R}$$
, we have $(D(\alpha))(x) = \frac{-x^2 + 1}{(x^2 + 1)^2}$

For any $x \in \mathbb{R}$, we have $(I_0(\alpha))(x) = \frac{1}{2}\ln(x^2+1)$.

Hence $X(\alpha)$, $D(\alpha)$, $I_0(\alpha)$ are respectively the real-valued functions of one real variable, with domain \mathbb{R} , given by

$$(X(\alpha))(x) = \frac{x^2}{x^2 + 1}, \qquad (D(\alpha))(x) = \frac{-x^2 + 1}{x^2 + 1}, \qquad (I_0(\alpha))(x) = \frac{1}{2}\ln(x^2 + 1) \qquad \text{for any } x \in \mathbb{R}.$$

(b) i. Pick any $\varphi \in C^{\infty}(\mathbb{R})$, $x \in \mathbb{R}$. We have

$$((D \circ X)(\varphi))(x) = (D(X(\varphi)))(x) = (X(\varphi))'(x) = \frac{d}{dt}(t\varphi(t))\Big|_{t=x} = x\varphi'(x) + \varphi(x),$$
$$(X \circ D)(\varphi))(x) = X(D(\varphi))(x) = x(D(\varphi))(x) = x\varphi'(x)$$

Then
$$((D \circ X)(\varphi))(x) - (X \circ D)(\varphi)(x) = (x\varphi'(x) + \varphi(x)) - x\varphi'(x) = \varphi(x)$$
.

ii. Pick any $\varphi \in C^{\infty}(\mathbb{R})$, $x \in \mathbb{R}$. We have

$$((I_0 \circ X)(\varphi))(x) = (I_0(X(\varphi)))(x) = \int_0^x (X(\varphi))(t)dt = \int_0^x t\varphi(t)dt$$

$$= \int_0^x t(I_0(\varphi))'(t)dt$$

$$= t(I_0(\varphi))(t)\Big|_{t=0}^{t=x} - \int_0^x (I_0(\varphi))(t)dt$$

$$= x(I_0(\varphi))(x) - 0 - (I_0(I_0(\varphi)))(x)$$

$$= (X(I_0(\varphi)))(x) - (I_0(I_0(\varphi)))(x) = (X \circ I_0)(\varphi)(x) - (I_0 \circ I_0)(\varphi)(x)$$

Then $((X \circ I_0)(\varphi))(x) - (I_0 \circ X)(\varphi)(x) = ((I_0 \circ I_0)(\varphi))(x)$.

5. Answer.

- (a) i. Suppose A, B are sets, and $f: A \longrightarrow B$ is a function. Then we say f is surjective if the statement (S) holds:—
 (S) For any $y \in B$, there exists some $x \in A$ such that y = f(x).
 - ii. Suppose A, B are sets, and $f: A \longrightarrow B$ is a function. Then we say f is injective if the statement (I) holds:—
 (I) For any $x, w \in A$, if f(x) = f(w) then x = w.

(bi) (I) For any

(II) there exists

(III) y = f(x)

(IV) Pick any

Alternative answer. Let

Alternative answer. Suppose

Alternative answer. Assume

Alternative answer. Take any

(V) $x = (y+1)^{\frac{3}{5}}$

(VI)
$$f(x) = x^{\frac{5}{3}} - 1 = \left[(y+1)^{\frac{3}{5}} \right]^{\frac{5}{3}} - 1 = (y+1) - 1 = y$$

(VII) f is surjective.

ii. (I) For any

(II) if f(x) = f(w)

(III) $x, w \in \mathbb{R}$

(IV) Suppose

Alternative answer. Assume

(V) f(x) + 1 = f(w) + 1

(VI) $(w^{\frac{5}{3}})^{\frac{3}{5}} = w$

(VII) f is injective

(c) i. (I) There exists some

(II) for any

(III) $y_0 \neq f(x_0)$

(IV) Take

Alternative answer. Let

Alternative answer. Define

Alternative answer. Pick

Alternative answer. Suppose

Alternative answer. Assume

(V) for any $x \in \mathbb{R}$

(VI) Suppose

Alternative answer. Assume

(VII) there existed some $x_0 \in \mathbb{R}$ such that $f(x_0) = y_0$.

(VIII) 0

(IX) $\left(x_0 - \frac{1}{2}\right)^2 + \frac{3}{4} \ge 0 + \frac{3}{4}$

(X) f is not surjective.

ii. (I) there exist some

 $(II) = f(w_0)$

(III) $x_0 \neq w_0$

(IV) $w_0 = 2$.

(V) $x_0 \neq w_0$.

(VI) $f(w_0) = \frac{2}{2^2 + 1} = \frac{2}{5}$

(VII) $f(w_0)$

(VIII) f is not injective

6. Answer.

(a) (I) for any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $\zeta = f(z)$

(II) Pick any $\zeta \in \mathbb{C}$.

(III) there exists some $\theta \in \mathbb{R}$

(IV) Take
$$z = \sqrt[5]{|\zeta|} \cdot \left(\cos\left(\frac{\theta}{5}\right) + i\sin\left(\frac{\theta}{5}\right)\right)$$
.

$$(\mathrm{V}) \left[\sqrt[5]{|\zeta|} \cdot \left(\cos \left(\frac{\theta}{5} \right) + i \sin \left(\frac{\theta}{5} \right) \right) \right]^5 = \left(\sqrt[5]{|\zeta|} \right)^5 \cdot \left(\cos \left(5 \cdot \frac{\theta}{5} \right) + i \sin \left(5 \cdot \frac{\theta}{5} \right) \right) = |\zeta| (\cos(\theta) + i \sin(\theta)) = \zeta$$

(VI) f is surjective

(b) (I) there exist some $z_0, w_0 \in \mathbb{C}$ such that $f(z_0) = f(w_0)$ and $z_0 \neq w_0$

(II) Take
$$z_0 = 1$$
, $w_0 = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$.

(III) $z_0 \neq w_0$

(IV) $f(z_0) = z_0^5 = 1^5 = 1$

(V)
$$f(w_0) = w_0^5 = \cos\left(5 \cdot \frac{2\pi}{5}\right) + i\sin\left(5 \cdot \frac{2\pi}{5}\right) = \cos(2\pi) + i\sin(2\pi) = 1$$

Alternative answer.

(IV)
$$f(w_0) = w_0^5 = \cos\left(5 \cdot \frac{2\pi}{5}\right) + i\sin\left(5 \cdot \frac{2\pi}{5}\right) = \cos(2\pi) + i\sin(2\pi) = 1$$
 (V) $f(z_0) = z_0^5 = 1^5 = 1$

(VI) f is not injective

7. (a) **Answer.**

- i. Suppose A,B,C are sets, and $f:A\longrightarrow B,\,g:B\longrightarrow C$ are functions. Define the function $g\circ f:A\longrightarrow C$ by $(g\circ f)(x)=g(f(x))$ for any $x\in A$. Then $g\circ f$ is called the composition of f,g.
- ii. Suppose C is a set. Define the function $id_C: C \longrightarrow C$ by $id_C(x) = x$ for any $x \in C$. Then id_C is called the identity function on C.
- (b) Answer.

(I) Suppose f is injective or f is surjective.

(II) $x \in A$

(III) f(x)

(IV) $(f \circ f)(x)$

(V) the definition of injectivity

(VI) $f(x) = x = id_A(x)$

(VII) Suppose f is surjective.

(VIII) Pick any

(IX) there exists some $u \in A$ such that x = f(u)

 $(X) (f \circ f)(u)$

(XI) $(f \circ f)(u) = f(u)$

(XII) $f = id_A$

(c) Solution.

Let B be a set, K be a subset of B, and $\varphi : \mathfrak{P}(B) \longrightarrow \mathfrak{P}(B)$ be the function defined by $\varphi(S) = S \cap K$ for any $S \in \mathfrak{P}(B)$. Suppose φ is injective or φ is surjective.

We verify that $\varphi \circ \varphi = \varphi$:

• Pick any $S \in \mathfrak{P}(B)$. Then $\varphi(S) = S \cap K = S \cap (K \cap K) = (S \cap K) \cap K = \varphi(S \cap K) = \varphi(\varphi(S)) = (\varphi \circ \varphi)(S)$. It follows that $\varphi \circ \varphi = \varphi$.

By the result described in the Statement (T), we have $\varphi = id_{\mathfrak{P}(B)}$.

Since K is a subset of B, we have $K = B \cap K$. Then $K = B \cap K = \varphi(B) = \mathsf{id}_{\mathfrak{P}(B)}(B) = B$.

8. Answer.

(a) (I) Pick any $x \in A$

(II) Pick any $y \in B$

(III) f(t) = y for any $t \in A$

There are many correct answers: as long as the 'formula of f' is 'complete' and f(x) = y according to the 'formula of f'.

(IV) Map(A, B)

(V) $E_x(f) = f(x) = y$

(b) (I) some distinct

(II) there exists some $u \in A$ such that E_u is injective

(III) $x \in A \setminus \{u\}$

(IV) Define $f: A \longrightarrow B$ by

(V) for any

(VI) $g: A \longrightarrow B$

(VII) t = u

(VIII) $f(u) = y = g(u) = E_u(g)$

(IX) f = g

(X) $y \neq z$

(XI) $f \neq g$

(XII) and

9. Answer.

(a) Suppose A, B are sets, and $f: A \longrightarrow B, g: B \longrightarrow A$ are functions.

Then we say g is an inverse function of f if $g \circ f = id_A$ and $f \circ g = id_B$.

Alternative answer.

Suppose A, B are sets, and $f: A \longrightarrow B, g: B \longrightarrow A$ are functions.

Then we say g is an inverse function of f if both statements (\star) , $(\star\star)$ hold:—

 (\star) For any $x \in A$, $(g \circ f)(x) = x$.

 $(\star\star)$ For any $y \in B$, $(f \circ g)(y) = y$.

(b) i. a = -9, b = 16.

ii. The inverse function of f, which is the function $f^{-1}:[-9,16] \longrightarrow [-2,3]$, is given by $f^{-1}(y) = \sqrt{4 + \sqrt{y+9}}$ for any $y \in [-9,16]$.

iii. A. $\sqrt{5}$ B. π

10. Answer.

(a) $J = (1, +\infty)$.

(b) The inverse function of f, which is the function $f^{-1}: J \longrightarrow (0, +\infty)$, is given by $f^{-1}(y) = \frac{1}{4} \left(\ln \left(\frac{y+1}{y-1} \right) \right)^2$ for any $y \in J$.

11. Solution.

Denote the interval $(0, +\infty)$ by I. Let $f: I \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$ for any $x \in I$.

(a) Pick any
$$x, w \in I$$
. Suppose $f(x) = f(w)$. Then $\frac{1}{2} \left(x - \frac{1}{x} \right) = \frac{1}{2} \left(w - \frac{1}{w} \right)$.

We have $x^2w - w = w^2x - x$.

Therefore $xw(x-w) = x^2w - w^2x = w - x$. Hence (xw+1)(x-w) = 0.

Since $x, w \in I$, we have x > 0, w > 0 and xw + 1 > 0. Therefore x - w = 0. Hence x = w.

It follows that f is injective.

(b) Pick any $y \in \mathbb{R}$. Take $x = y + \sqrt{y^2 + 1}$. Note that $x \in I$.

We have

$$f(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$$

$$= \frac{1}{2} \left(y + \sqrt{y^2 + 1} - \frac{1}{y + \sqrt{y^2 + 1}} \right)$$

$$= \frac{1}{2} \left[y + \sqrt{y^2 + 1} - \frac{y - \sqrt{y^2 + 1}}{\left(y + \sqrt{y^2 + 1} \right) \left(y - \sqrt{y^2 + 1} \right)} \right] = \frac{1}{2} \left(y + \sqrt{y^2 + 1} + y - \sqrt{y^2 + 1} \right) = y$$

It follows that f is surjective.

(c) The inverse function of f, which is the function $f^{-1}: \mathbb{R} \longrightarrow I$, is given by $f^{-1}(y) = y + \sqrt{y^2 + 1}$ for any $y \in \mathbb{R}$.

12. (a) i. **Solution.**

Let $h: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $h(z) = \bar{z}$ for any $z \in \mathbb{C}$.

- [We verify that h is injective. This amounts to verifying: 'For any $z, w \in \mathbb{C}$, if h(z) = h(w) then z = w.'] Let $z, w \in \mathbb{C}$. Suppose h(z) = h(w). Then $\bar{z} = \bar{w}$. Therefore $z = \bar{\bar{z}} = \bar{\bar{w}} = w$. It follows that h is injective.
- [We verify that h is surjective. This amounts to verifying: 'For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $h(z) = \zeta$.']

Let $\zeta \in \mathbb{C}$. Take $z = \bar{\zeta}$. By definition, $z \in \mathbb{C}$. Also by definition, $h(z) = \bar{z} = \bar{\bar{\zeta}} = \zeta$. It follows that h is surjective.

Hence h is bijective.

ii. Answer.

The inverse function $h^{-1}: \mathbb{C} \longrightarrow \mathbb{C}$ of the function h is given by $h^{-1}(z) = \bar{z}$ for any $z \in \mathbb{C}$.

(b) Solution.

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^2 \bar{z}$ for any $z \in \mathbb{C}$.

- i. [We want to verify the statement 'for any $w \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that f(z) = w.'] Pick any $w \in \mathbb{C}$. We have w = 0 or $w \neq 0$.
 - * (Case 1.) Suppose w = 0. Then f(0) = 0 = w.
 - * (Case 2.) Suppose $w \neq 0$. (Note that $|w| \neq 0$. Then $\frac{1}{\sqrt[3]{|w|}}$ is well-defined as a complex number.)

Define $z = \frac{w}{(\sqrt[3]{|w|})^2}$. By definition, $z \in \mathbb{C}$.

We have
$$f(z) = z^2 \bar{z} = \left(\frac{w}{(\sqrt[3]{|w|})^2}\right)^2 \overline{\left[\frac{w}{(\sqrt[3]{|w|})^2}\right]} = \frac{w^2 \bar{w}}{(\sqrt[3]{|w|})^6} = \frac{w|w|^2}{|w|^2} = w.$$

It follows that f is surjective.

ii. [We want to verify the statement 'for any $u,v\in\mathbb{C},$ if f(u)=f(v) then u=v.']

Pick any $u, v \in \mathbb{C}$. Suppose f(u) = f(v).

Then
$$|u|^3 = |u^2\bar{u}| = |f(u)| = |f(v)| = |v^2\bar{v}| = |v|^3$$
.

Since $|u|, |v| \in \mathbb{R}$, we have |u| = |v|.

Now
$$u|u|^2 = u^2\bar{u} = f(u) = f(v) = v^2\bar{v} = v|v|^2 = v|u|^2$$
.

Then
$$(u - v)|u|^2 = 0$$
. Therefore $u - v = 0$ or $|u|^2 = 0$.

- * (Csae 1.) Suppose u v = 0. Then u = v.
- * (Case 2.) Suppose $u v \neq 0$. Then $|u|^2 = 0$. Therefore u = 0.

Also, |v| = |u| = 0. Then u = 0 = v.

Hence, in any case u = v.

It follows that f is injective.

(c) Solution.

Write $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Let $g : \mathbb{C}^* \longrightarrow \mathbb{C}$ be the function defined by $g(z) = z/\bar{z}$ for any $z \in \mathbb{C}^*$.

i. [We want to verify the statement 'there exist some $u_0, v_0 \in \mathbb{C}^*$ such that $g(u_0) = g(v_0)$ and $u_0 \neq v_0$ '.] Take $u_0 = 1, v_0 = -1$.

We have $u_0, v_0 \in \mathbb{C}^*$ and $u_0 \neq v_0$.

We have $g(u_0) = 1$ and $g(v_0) = 1$. Then $g(u_0) = g(v_0)$.

It follows that g is not injective.

- ii. [We want to verify the statement 'There exists some $w_0 \in \mathbb{C}$ such that for any $z \in \mathbb{C}^*$, $g(z) \neq w_0$.'] Take $w_0 = 2$. Note that $w_0 \in \mathbb{C}$. We verify with the proof-by-contradiction method, that for any $z \in \mathbb{C}^*$, $g(z) \neq w_0$:
 - Suppose there existed some $z \in \mathbb{C}^*$ such that $g(z) = w_0$.

Then $|g(z)| = |w_0| = 2$.

For the same z, we have $|g(z)| = |z/\bar{z}| = |z|/|\bar{z}| = |z|/|z| = 1 \neq 2$.

Now |g(z)| = 2 and $|g(z)| \neq 2$. Contradiction arises.

It follows that g is not surjective.

13. Solution.

Let $a, b, c, d \in \mathbb{C}$. Suppose $c \neq 0$ and $ad - bc \neq 0$.

(a) Let $z \in \mathbb{C}$.

Note that $\frac{az+b}{cz+d} - \frac{a}{c} = \frac{c(az+b) - a(cz+d)}{c(cz+d)} = -\frac{ad-bc}{c(cz+d)} \neq 0$, because $ad-bc \neq 0$.

Then $\frac{az+b}{cz+d} \neq \frac{a}{c}$.

- (b) Define the function $f: \mathbb{C}\setminus\{-d/c\} \longrightarrow \mathbb{C}\setminus\{a/c\}$ by $f(z) = \frac{az+b}{cz+d}$ for any $z \in \mathbb{C}\setminus\{-d/c\}$.
 - i. Pick any $z, w \in \mathbb{C} \setminus \{-d/c\}$. Suppose f(z) = f(w).

Then $\frac{az+b}{cz+d} = \frac{aw+b}{cw+d}$. Therefore

aczw + bd + adz + bcw = (az + b)(cw + d) = (aw + b)(cz + d) = aczw + bd + adw + bcz.

Hence (ad - bc)z = (ad - bc)w. Since $ad - bc \neq 0$, we have z = w.

It follows that f is injective.

ii. Pick any $\zeta \in \mathbb{C} \setminus \{a/c\}$. Since $\zeta \neq \frac{a}{c}$, we have $-c\zeta + a \neq 0$. Take $z = \frac{d\zeta - b}{-c\zeta + a}$. By definition, $z \in \mathbb{C}$.

 $\text{Moreover, } z - \frac{-d}{c} = \frac{d\zeta - b}{-c\zeta + a} + \frac{d}{c} = \frac{c(d\zeta - b) + d(-c\zeta + a)}{c(-c\zeta + a)} = \frac{ad - bc}{c(-c\zeta + a)} \neq 0.$

Then $z \neq -\frac{d}{c}$. Hence $z \in \mathbb{C} \setminus \{-d/c\}$.

Also by definition, $f(z) = \frac{a[(d\zeta-b)/(-c\zeta+a)]+b}{c[(d\zeta-b)/(-c\zeta+a)]+d} = \frac{a(d\zeta-b)+b(-c\zeta+a)}{c(d\zeta-b)+d(-c\zeta+a)} = \frac{(ad-bc)\zeta+0}{0\cdot\zeta+(ad-bc)} = \zeta.$

It follows that f is surjective.

iii. The inverse function of f, which is $f^{-1}: \mathbb{C}\setminus\{a/c\} \longrightarrow \mathbb{C}\setminus\{-d/c\}$, is given by $f^{-1}(\zeta) = \frac{d\zeta - b}{-c\zeta + a}$ for any $\zeta \in \mathbb{C}\setminus\{a/c\}$.

14. Solution.

Let $f:(0,+\infty) \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \cos\left(\frac{1}{x\sqrt{x}}\right)$ for any $x \in (0,+\infty)$.

(a) Take $x_0 = \frac{2^{2/3}}{\pi^{2/3}}$, $w_0 = \frac{2^{2/3}}{3^{2/3}\pi^{2/3}}$.

Note that $x_0, w_0 \in (0, +\infty)$ and $x_0 \neq w_0$.

Also note that $f(x_0) = 0 = f(w_0)$.

It follows that f is not injective.

(b) i. Let $x \in (0, +\infty)$.

By the Triangle Inequality for the reals, $|x^2 - 2x + 4| \le |x^2 + 4| + |2x| = x^2 + 2x + 4 = |x^2 + 2x + 4|$. Note that $|x^2 + 2x + 4| > 0$.

Then
$$\left| \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \right| \le 1$$
.

ii. Take $y_0 = 2$. We verify that for any $x \in (0, +\infty)$, we have $f(x) \neq y_0$:

• Let $x \in (0, +\infty)$.

We have
$$|f(x)| = \left| \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \cos\left(\frac{1}{x\sqrt{x}}\right) \right| \le \left| \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \right| \cdot \left| \cos\left(\frac{1}{x\sqrt{x}}\right) \right| \le 1 \cdot 1 = 1 < 2.$$

Then $f(x) \neq 2$.

It follows that f is not surjective.

15. Solution.

- (a) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \begin{cases} x^9 & \text{if } x \in \mathbb{Q} \\ -x^3 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$.
 - i. We verify that f is injective:
 - Pick any $x, w \in \mathbb{R}$. Suppose f(x) = f(w).

We verify the statement 'x, w are both rational or x, w are both irrational' with the method of proof-by-contradiction:

Suppose it were true that one of x, w was rational and the other was irrational.

Without loss of generality, assume x was rational and w was irrational.

Then by the definition of f, we would have $f(x) = x^9$ and $f(w) = -w^3$.

Therefore by assumption, $-w^3 = f(w) = f(x) = x^9$.

Since $x, w \in \mathbb{R}$, we have $w = -x^3$. Then, since x was rational, w would be rational.

But w was assumed to be irrational. Then w was simultaneously rational and irrational. Contradiction arises.

It follows, in the first place, that x, w are both rational or x, w are both irrational.

We now verify that x = w:

* (Case 1.) Suppose x, w are both rational.

Then by the definition of f, we have $x^9 = f(x) = f(w) = w^9$. Since $x, w \in \mathbb{R}$, we have x = w.

* (Case 2.) Suppose x, w are both irrational. Then by the definition of f, we have $-x^3 = f(x) = f(w) = -w^3$. Then, since $x, w \in \mathbb{R}$, we have x = w.

Hence in any case, x = w.

It follows that f is injective.

- ii. We verify that f is not surjective:
 - Take $y_0 = 8$. Pick any $t \in \mathbb{R}$.

We verify $y_0 \neq f(t)$ by the method of proof-by-contradiction.

Suppose it were true that $y_0 = f(t)$.

Note that t is rational or t is irrational.

* (Case 1). Suppose t is rational.

Then by the definition of f, we would have $8 = y_0 = f(t) = t^9$. Since $t \in \mathbb{R}$, we would have $t = \sqrt[3]{2}$. But $\sqrt[3]{2}$ is irrational.

Contradiction arises.

* (Case 2). Suppose t is irrational. Then by the definition of f, we would have $8 = y_0 = f(t) = -t^3$. Since $t \in \mathbb{R}$, we would have t = -2. But -2 is rational.

Contradiction arises.

In any case, contradiction arises. It follows that in the first place, $y_0 \neq f(t)$.

Hence f is not surjective.

- (b) Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $g(x) = \begin{cases} x^3 & \text{if } x \in \mathbb{Q} \\ -x^9 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$
 - i. We verify that g is not injective:
 - Take $x_0 = 2$, $w_0 = -\sqrt[3]{2}$.

Note that $x_0 \neq w_0, x_0 \in \mathbb{Q}$, and $w_0 \in \mathbb{R} \setminus \mathbb{Q}$.

Since $x_0 \in \mathbb{Q}$, we have $g(x_0) = x_0^3 = 2^3 = 8$.

Since $w_0 \in \mathbb{R} \setminus \mathbb{Q}$, we have $g(w_0) = -w_0^9 = -(-\sqrt[3]{2})^9 = 8$.

Then $g(x_0) = g(w_0)$.

It follows that g is not injective.

- ii. We verify that g is surjective:
 - Pick any $y \in \mathbb{R}$. Then $\sqrt[3]{y}$, $\sqrt[9]{y}$ are well-defined as real numbers. Note that $\sqrt[3]{y}$ is rational or $\sqrt[3]{y}$ is irrational.
 - * (Case 1.) Suppose $\sqrt[3]{y}$ is rational.

Take $t = \sqrt[3]{y}$. By definition, $t \in \mathbb{Q}$. Then $g(t) = t^3 = (\sqrt[3]{y})^3 = y$.

* (Case 2.) Suppose $\sqrt[3]{y}$ is irrational.

Take $t = -\sqrt[9]{y}$. By definition, $\sqrt[3]{y} = (-t)^3$.

Since $\sqrt[3]{y}$ is irrational, -t is also irrational. Then t is irrational.

We have $g(t) = -t^9 = -(-\sqrt[9]{y})^9 = -(-y) = y$.

It follows that g is surjective.

16. Solution.

(a) i. Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose $g \circ f$ is surjective.

Pick any $z \in C$.

Since $g \circ f$ is surjective, there exists some $x \in A$ such that $z = (g \circ f)(x)$.

Define y = f(x). We have $y \in B$.

For the same $x \in A$, $y \in B$ and $z \in C$, we have $g(y) = g(f(x)) = (g \circ f)(x) = z$.

It follows that g is surjective.

ii. Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose $g \circ f$ is injective.

Pick any $x, w \in A$. Suppose f(x) = f(w).

Then g(f(x)) = g(f(w)).

Note that $(g \circ f)(x) = g(f(x))$ and $(g \circ f)(w) = g(f(w))$. Then $(g \circ f)(x) = (g \circ f)(w)$.

Since $g \circ f$ is injective, we have x = w.

It follows that f is injective.

(b) Let I, J, K be sets, and $\alpha: I \longrightarrow J, \beta: J \longrightarrow K, \gamma: K \longrightarrow I$ be functions. Suppose $\gamma \circ \beta \circ \alpha, \alpha \circ \gamma \circ \beta$ are both injective. Further suppose $\beta \circ \alpha \circ \gamma$ is surjective.

Then:

- (#) Both $\beta \circ \alpha$ and α are injective. (Reason: $\gamma \circ \beta \circ \alpha$ is injective.)
- (β) Both $\gamma \circ \beta$ and β are injective. (Reason: $\alpha \circ \gamma \circ \beta$ is injective.)
- (b) Both $\beta \circ \alpha$ and β are surjective. (Reason: $\beta \circ \alpha \circ \gamma$ is surjective.)

Therefore, by (\natural) , (\flat) combined, β is both surjective and injective.

Also, by (\sharp) , (\flat) combined, $\beta \circ \alpha$ is both surjective and injective.

By (\sharp) alone, α is injective. We verify that α is surjective:

• Pick any $y \in J$. Take $z = \beta(y)$. By definition, $z \in K$.

Since $\beta \circ \alpha$ is surjective, there exists soem $x \in I$ such that $z = (\beta \circ \alpha)(x)$.

For the same x, y, z, we have $\beta(y) = z = (\beta \circ \alpha)(x) = \beta(\alpha(x))$.

Since β is injective, we have $y = \alpha(x)$.

It follows that α is surjective.

Hence α is both surjective and injective.

We verify that γ is both surjective and injective:

• Pick any $u \in I$. Take $v = \alpha(u)$, $w = \beta(v)$. By definition, $w \in K$.

Since $\beta \circ \alpha \circ \gamma$ is surjective, there exists some $t \in K$ such that $w = (\beta \circ \alpha \circ \gamma)(t)$.

For the same $\beta(\alpha(u)) = w = (\beta \circ \alpha \circ \gamma)(t) = \beta(\alpha(\gamma(t)))$

Since β is injective, we have $\alpha(u) = \alpha(\gamma(t))$. Now, since α is injective, we have $u = \gamma(t)$.

• Pick any $r, s \in K$. Suppose $\gamma(r) = \gamma(s)$.

Since β is surjective, there exist some $p, q \in J$ such that $r = \beta(p)$ and $s = \beta(q)$.

Since α is surjective, there exist some $m, n \in I$ such that $p = \alpha(m)$ and $q = \alpha(n)$.

Then, for the same m, n, p, q, r, s, we have

$$(\gamma \circ \beta \circ \alpha)(m) = \gamma(\beta(\alpha(m))) = \gamma(\beta(p)) = \gamma(r) = \gamma(s) = \gamma(\beta(q)) = \gamma(\beta(\alpha(n))) = (\gamma \circ \beta \circ \alpha)(n).$$

Since $\gamma \circ \beta \circ \alpha$ is injective, we have m = n. Then $r = \beta(p) = \beta(\alpha(m)) = \beta(\alpha(n)) = \beta(q) = s$. It follows that γ is injective.

Hence γ is both surjective and injective.

17. Solution.

(a) Take $A = \{0\}$, $B = \{1, 2\}$, $C = \{3\}$. Here $\{0, 1, 2, 3\}$ are pairwise distinct objects. Define the function $f: A \longrightarrow B$ by f(0) = 1. Define the function $g: B \longrightarrow C$ by g(1) = g(2) = 3.

The function $g \circ f : A \longrightarrow C$ is given by $(g \circ f)(0) = g(f(0)) = g(1) = 3$.

Pick any $z \in C$. Since $C = \{3\}$, we have z = 3. Note that $0 \in A$ and $(g \circ f)(0) = 3 = z$. It follows that $g \circ f$ is surjective.

Note that $2 \in B$. Pick any $x \in A$. Since $A = \{0\}$, we have x = 0. Then $f(x) = f(0) = 1 \neq 2$. Therefore the function f is not surjective.

f(0) = 1. Define the function $g: B \longrightarrow C$ by g(1) = g(2) = 3.

The function $g \circ f : A \longrightarrow C$ is given by $(g \circ f)(0) = g(f(0)) = g(1) = 3$.

Pick any $x, w \in A$. Suppose $(g \circ f)(x) = (g \circ f)(w)$. Since $A = \{0\}$, we have x = 0 = w. It follows that $g \circ f$ is injective.

Note that $1, 2 \in B$, $1 \neq 2$ and g(1) = g(2) = 3. Then the function g is not injective.

18. Solution.

(a) Let A, B, C, D be sets, and $f: A \longrightarrow C, g: B \longrightarrow D$ be functions. Suppose f(x) = g(x) for any $x \in A \cap B$. Suppose f, g are surjective.

Pick any $y \in C \cup D$. By definition of union, $y \in C$ or $y \in D$.

- (Case 1.) Suppose $y \in C$. By the surjectivity of f, there exists some $x \in A$ such that y = f(x). Since $x \in A$, we have $x \in A$ or $x \in B$. Then $x \in A \cup B$. We have $y = f(x) = (f \cup g)(x)$.
- (Case 2.) Suppose $y \in D$. By the surjectivity of g, there exists some $w \in B$ such that y = g(w). Since $w \in B$, we have $w \in A$ or $w \in B$. Then $w \in A \cup B$. We have $y = g(w) = (f \cup g)(w)$.

It follows that $f \cup g : A \cup B \longrightarrow C \cup D$ is surjective.

(b) Take $A = \{0\}$, $B = \{1\}$, $C = D = \{2\}$. (Here 0,1 are distinct objects.) Define the functions $f: A \longrightarrow C$, $g: B \longrightarrow D$ by f(0) = 2, g(0) = 2. The functions f, g are injective.

Note that $A \cap B = \emptyset$. Hence it is (trivially) true that f(x) = g(x) for any $x \in A \cap B$.

The function $f \cup g : A \cup B \longrightarrow C \cup D$ is given by $(f \cup g)(0) = f(0) = 2$, $(f \cup g)(1) = g(1) = 2$. Note that $0 \neq 1$ and $(f \cup g)(0) = (f \cup g)(1)$. Hence $f \cup g$ is not injective.

19. Answer.

- (a) (I) L is a subset of $H \times K$
 - (VII) $(x,y) \in G$ and $(x,z) \in G$ (VIII) y = z
 - (II) a relation
 - (III) For any $x \in D$ (IX) D
 - (IV) $y \in R$
 - (V) $(x,y) \in G$
 - (VI) For any $x \in D$, for any $y, z \in R$
- (X) R

(XI) G

- i. (p,q) = (0,0) or (p,q) = (0,1).
 - $(s,t)=(1,\tau)$, provided that $-2 \le \tau < 2$.
- ii. (p,q) = (1,1) and (s,t) = (2,1). Alternative answer: (p,q)=(1,2) and (s,t)=(2,2).
- iii. (m, n) = (0, 0). (p,q) = (1,1) or (p,q) = (1,2).

20. Answer.

- (I) F is a subset of $A \times B$
- (II) there exists some $y \in B$
- (III) Pick any $x \in A$.
- (IV) 0
- (V) 4

(VI) Define
$$y = 4 + \sqrt{\frac{16 - (x - 2)^4}{4}}$$

(VII) $y \in B$

(VIII)
$$(x-2)^4 + 4 \cdot \left[4 + \sqrt{\frac{16 - (x-2)^4}{4}} - 4\right]^2 = (x-2)^4 + 4 \cdot \frac{16 - (x-2)^4}{4} = 16$$

(IX) $(x,y) \in F$

(X) if $(x, y) \in F$ and $(x, z) \in F$ then y = z

(XI) Pick any $x \in A$. Pick any $y, z \in B$. Suppose $(x, y) \in F$ and $(x, z) \in F$.

(XII)
$$(x-2)^4 + 4(y-4)^2 = 16$$

(XIII) since $(x, z) \in F$, we have $(x - 2)^4 + 4(z - 4)^2 = 16$

(XIV)
$$\frac{16 - (x-2)^4}{4}$$

(XV)
$$\sqrt{(y-4)^2} = \sqrt{(z-4)^2} = z - 4$$

(XVI)
$$y = z$$

21. (a) **Answer.**

(I) F is a subset of $\mathbb{C} \times E$

(II) relation

(III) for any $z \in \mathbb{C}$, there exists some $w \in E$ such that $(z, w) \in F$

(IV) Pick any $z \in \mathbb{C}$.

(V) well-defined

(VI) Define
$$w = i + \frac{z - 1}{1 + |z - 1|}$$

(VII)
$$\left| i + \frac{z-1}{1+|z-1|} - i \right| = \left| \frac{z-1}{1+|z-1|} \right| = \frac{|z-1|}{1+|z-1|}$$

(IX)
$$(1+|z-1|)(w-i)+1=(1+|z-1|)\cdot \left[i+\frac{z-1}{1+|z-1|}-i\right]+1=z$$

(X) for any $z \in \mathbb{C}$, for any $w, v \in E$, if $(z, w) \in F$ and $(z, v) \in F$ then w = v

(XI) Pick any

(XII) €

(XIII) E

(XIV) Suppose $(z, w) \in F$ and $(z, v) \in F$

(XV)
$$[(1+|z-1|)(w-i)+1] - [(1+|z-1|)(v-i)+1] = z-z = 0$$

(XVI) w - v = 0

(b) **Answer.**

The explicit 'formula of definition' of $f: \mathbb{C} \longrightarrow E$ is given by $f(z) = i + \frac{z-1}{1+|z-1|}$ for any $z \in \mathbb{C}$.

(c) Solution.

We verify that for any $z, u \in \mathbb{C}$, if f(z) = f(u) then z = u:

• Pick any $z, u \in \mathbb{C}$. Suppose f(z) = f(u).

We have
$$i + \frac{z-1}{1+|z-1|} = f(z) = f(u) = i + \frac{u-1}{1+|u-1|}$$
.

Then
$$\frac{z-1}{1+|z-1|} = \frac{u-1}{1+|u-1|}$$
. $---- (\star)$

Therefore
$$\frac{|z-1|}{1+|z-1|} = \left|\frac{z-1}{1+|z-1|}\right| = \left|\frac{u-1}{1+|u-1|}\right| = \frac{|u-1|}{1+|u-1|}.$$

Now
$$|z-1|+|z-1|\cdot |u-1|=(1+|u-1|)\cdot |z-1|=(1+|z-1|)\cdot |u-1|=|u-1|+|z-1|\cdot |u-1|$$
.

Then
$$|z-1| = |u-1|$$
. $\longrightarrow (\star\star)$
By (\star) , $(\star\star)$, we have $\frac{z-1}{1+|z-1|} = \frac{u-1}{1+|u-1|} = \frac{u-1}{1+|z-1|}$. Then $z-1=u-1$. Therefore $z=u$.

(d) Solution.

We verify that for any $w \in E$, there exists some $z \in \mathbb{C}$ such that w = f(z):

• Pick any $w \in E$.

Note that |w-i| < 1. Then $1 - |w-i| \neq 0$. Therefore $\frac{w-i}{1 - |w-i|}$ is well-defined as a complex number.

Define
$$z = 1 + \frac{w - i}{1 - |w - i|}$$
. By definition, $z \in \mathbb{C}$.

We have
$$|z-1| = \left| \frac{w-i}{1-|w-i|} \right| = \frac{|w-i|}{1-|w-i|}$$
.

We have
$$f(z) = i + \frac{z-1}{1+|z-1|} = i + \frac{[1+(w-i)/(1-|w-i|)]-1}{1+|w-i|/(1-|w-i|)} = i + \frac{w-i}{(1-|w-i|)+|w-i|} = w.$$

(e) Answer.

The explicit 'formula of definition' of $f^{-1}: E \longrightarrow \mathbb{C}$ is given by $f^{-1}(w) = 1 + \frac{w-i}{1-|w-i|}$ for any $w \in E$.

22. Solution.

Let $C = \{(x, y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R} \text{ and } 9x^2 + 16y^2 = 144\}.$

(a) Let A = [0, 4], B = [0, 3], and $F = C \cap (A \times B)$.

Define f = (A, B, F). By definition, F is a subset of $A \times B$. Then f is a relation from A to B with graph F. We verify the statement 'for any $x \in A$, there exists some $y \in B$ such that $(x, y) \in F$:

• Pick any $x \in A$. We have $0 \le x \le 4$. For this x, define $y = \frac{3}{4}\sqrt{16 - x^2}$. We have $0 \le y \le 3$. Then $y \in B$.

We have
$$9x^2 + 16y^2 = 9x^2 + 16\left(\frac{3}{4}\sqrt{16 - x^2}\right)^2 = 144$$
. Hence $\left(x, \frac{3}{4}\sqrt{16 - x^2}\right) \in F$.

We verify the statement 'for any $x \in A$, for any $y, z \in B$, if $(x, y) \in F$ and $(x, z) \in F$ then y = z:

• Pick any $x \in A$. Pick any $y, z \in B$. Suppose $(x, y) \in F$ and $(x, z) \in F$.

Since $(x, y) \in F$, we have $9x^2 + 16y^2 = 144$. Since $(x, z) \in F$, we have $9x^2 + 16z^2 = 144$. Then $9x^2 + 16y^2 = 9x^2 + 16z^2$. We obtain $y^2 = z^2$.

Since $y, z \in B$, we have $y \ge 0$ and $z \ge 0$. Then $y = \sqrt{y^2} = \sqrt{z^2} = z$.

It follows that f is a function.

(b) Let A = [2, 3], B = [-1, 4], and $F = C \cap (A \times B)$.

Define f = (A, B, F).

We dis-prove the statement 'for any $x \in A$, for any $y, z \in B$, if $(x, y) \in F$ and $(x, z) \in F$ then y = z:

• Take $x_0 = \frac{\sqrt{8\sqrt{2}}}{3}$, $y_0 = -1$, $z_0 = 1$.

Note that $x_0^2 = \frac{128}{9}$. Then $4 \le x_0^2 \le 9$. Therefore $2 \le x_0 \le 3$. Hence $x_0 \in A$.

Also note that $y_0, z_0 \in B$ and $z_0 \in B$, and $y_0 \neq z_0$.

We have $9x_0^2 + 16y_0^2 = 144$. Then $(x_0, y_0) \in F$.

We have $9x_0^2 + 16z_0^2 = 144$. Then $(x_0, z_0) \in F$.

Hence f is not a function.

(c) Let A = [1, 4], B = [0, 5/2], and $F = C \cap (A \times B)$.

Define f = (A, B, F).

We dis-prove the statement 'for any $x \in A$ there exists $y \in B$ such that $(x, y) \in F$:

• Take $x_0 = 1$. Note that $x_0 \in A$.

For any $y \in B$, we have $0 \le y \le \frac{5}{2}$. Then $y^2 \le \frac{25}{4}$.

Therefore $9 \cdot x_0^2 + 16y^2 = 9 + 16y^2 \le 9 + 16 \cdot \frac{25}{4} = 109 < 144$. Then $(x_0, y) \notin F$.

Hence f is not a function.

23. Solution.

Let $I = (0, +\infty)$.

Let
$$F = \left\{ (p, z) \,\middle|\, \begin{array}{l} z \in I \text{ and} \\ \text{there exist some } x, y \in I \text{ such that } p = (x, y) \text{ and } z^2 + 2(x + y)z = x^2 + y^2 \end{array} \right\}$$

Define $f = (I^2, I, F)$.

- (a) By definition, $F \subset I^2 \times I$. Then f is a relation from I^2 to I with graph F. We verify that for any $P \in I^2$, there exists some $z \in I$ such that $(p, z) \in F$:
 - Pick any $p \in I^2$. There exist some $x, y \in I$ such that p = (x, y).

Note that
$$x^2 + y^2 + (x+y)^2 > (x+y)^2 > 0$$
.

Then
$$\sqrt{x^2+y^2+(x+y)^2}$$
 is well-defined as a real number. Also, $\sqrt{x^2+y^2+(x+y)^2} > x+y$. (\star)

Define
$$z = -(x+y) + \sqrt{x^2 + y^2 + (x-y)^2}$$
. By (\star) , z is well-defined as a positive real number. Then $z \in I$.

We have
$$z^2 + 2(x+y)z + (x+y)^2 = [z + (x+y)]^2 = (\sqrt{x^2 + y^2 + (x+y)^2})^2 = x^2 + y^2 + (x+y)^2$$
.

Then
$$z^2 + 2(x+y)z = x^2 + y^2$$
. Therefore $(p, z) \in F$.

We verify that for any $p \in I^2$, for any $z, w \in I$, if $(p, z) \in F$ and $(p, w) \in F$ then z = w:

• Pick any $p \in I^2$. Pick any $z, w \in I$. Suppose $(p, z) \in F$ and $(p, w) \in F$.

Since
$$(p, z) \in F$$
, there exist some $x, y \in I$ such that $p = (x, y)$ and $z^2 + 2(x + y)z = x^2 + y^2$.

Since
$$(p, w) \in F$$
, there exist some $u, v \in I$ such that $p = (u, v)$ and $w^2 + 2(u + v)w = u^2 + v^2$.

Since
$$p = (x, y)$$
 and $p = (u, v)$, we have $(x, y) = (u, v)$. Then $x = u$ and $y = v$.

Then
$$z^2 + 2(x+y)z = x^2 + y^2 = u^2 + v^2 = w^2 + 2(u+v)w = w^2 + 2(x+y)w$$
.

Therefore
$$(z - w)[z + w + 2(x + y)] = z^2 - w^2 + 2(x + y)z - 2(x + y)w = 0.$$

Since $z, w, x, y \in I$, z + 2 + 2(x + y) is a positive real number. Then z - w = 0. Therefore z = w.

It follows that f is a function from I^2 to I with graph F.

- (b) i. The explicit 'formula of definition' of $f: I^2 \longrightarrow I$ is given by $f(x,y) = -(x+y) + \sqrt{x^2 + y^2 + (x+y)^2}$ for any $x,y \in \mathbb{R}$.
 - ii. Note that for any $t \in I$, we have $f(t,t) = -(t+t) + \sqrt{t^2 + t^2 + (t+t)^2} = -2t + \sqrt{t^2 + t^2 + 4t^2} = (\sqrt{6} 2)t$. We verify that for any $z \in I$, there exists some $p \in I^2$ such that z = f(p):
 - Pick any $z \in I$.

Take
$$x = \frac{z}{\sqrt{6}-2}$$
. By definition $x \in I$. Then $(x,x) \in I^2$.

We have
$$f(x,x) = (\sqrt{6} - 2)x = (\sqrt{6} - 2) \cdot \frac{z}{\sqrt{6} - 2}$$
.

It follows that f is surjective.

- iii. We verify that there exist some $p_1, p_2 \in I^2$ such that $p_1 \neq p_2$ and $f(p_1) = f(p_2)$:
 - Take $x_1 = 1, y_1 = 2, x_2 = 2, y_2 = 1$.

We have
$$(x_1, y_1) \in I^2$$
 and $(x_2, y_2) \in I^2$. Also, $(x_1, y_1) \neq (x_2, y_2)$.

Note that $x_1 = y_2$ and $x_2 = y_1$.

We have
$$f(x_1, y_1) = -(x_1 + y_1) + \sqrt{x_1^2 + y_1^2 + (x_1 + y_1)^2} = -(y_2 + x_2) + \sqrt{y_2^2 + x_2^2 + (y_2 + x_2)^2} = -(x_2 + y_2) + \sqrt{x_2^2 + y_2^2 + (x_2 + y_2)^2} = f(x_2, y_2).$$

It follows that f is not injective.