
MATH1050BC/1058 Assignment 5 (Answers and selected solution)

1. (a) Answer.
(I) for any real numbers a, a′, b, b′

(II) z = a′ζ + b′ζ

(III) a

(IV) b

(b) Solution.
Let ζ be a complex number. Suppose ζ2 is not a real number.
Pick any complex number z. Pick any real numbers a, b, a′, b′. Suppose z = aζ + bζ and z = a′ζ + b′ζ.
Then aζ + bζ = a′ζ + b′ζ.
Therefore (a− a′)ζ = (b′ − b)ζ.
Hence (a− a′)ζ2 = (b′ − b)|ζ|2.
Note that b, b′, |ζ|2 are real numbers. Then (b′ − b)|ζ|2 is a real number.
Since a, a′ are real number, a−a′ is also a real number. Then (a−a′)Im(ζ2) = Im((a− a′)ζ2) = Im((b′ − b)|ζ|2) = 0.
By assumption, ζ2 is not a real number. Then Im(ζ2) ̸= 0. Therefore a− a′ = 0. Hence a = a′.
Then (b′ − b)|ζ|2 = (a− a′)ζ2 = 0.
By assumption, ζ ̸= 0. Then b′ − b = 0. Therefore b = b′.

2. Solution.

[We want to prove this statement: ‘Let I be an interval in R, and f, g : I −→ R be functions. Suppose f is strictly
increasing on I and g is strictly decreasing on I.
Let c, c′ ∈ I. Suppose f(c) = g(c) and f(c′) = g(c′). Then c = c′.]

Let I be an interval in R, and f, g : I −→ R be functions. Suppose f is strictly increasing on I and g is strictly decreasing
on I.
Pick any c, c′ ∈ I. Suppose f(c) = g(c) and f(c′) = g(c′). We verify that c = c′ by the proof-by-contradiction method:—

• Suppose it were true that c ̸= c′.
Without loss of generality, assume c < c′.
Since f is strictly increasing on I, we would have f(c) < f(c′).
Since g is strictly decreasing on I we would have g(c) > g(c′).
Recall that f(c) = g(c) and f(c′) = g(c′).
Then f(c) < f(c′) = g(c′) < g(c) = f(c). Therefore f(c) < f(c). Contradiction arises.
Hence c = c′ in the first place.

3. Solution.

(a) (M) is formally formulated as:—
(M): For any set A, for any functions f, g : A −→ A, the equality g ◦ f = f ◦ g as functions holds.

Hence (∼M) reads:—
(∼M): There exist some set A, and some functions f, g : A −→ A such that g ◦ f ̸= f ◦ g as functions.

(b) Let f, g : R −→ R be functions defined by f(x) =
x2

1 + x2
, g(x) = x− 1 for any x ∈ R.

i. For any x ∈ R, we have

(g ◦ f)(x) = − 1

1 + x2
,

(f ◦ g)(x) =
(x− 1)2

1 + (x− 1)2
.

ii. We have (g ◦ f)(0) = −1 and (f ◦ g)(0) = 1

2
. Hence (g ◦ f)(0) ̸= (f ◦ g)(0).

iii. There exists some x0 ∈ R, namely, x0 = 0, such that (g ◦ f)(x0) ̸= (f ◦ g)(x0). Hence it is not true that
g ◦ f = f ◦ g as functions.
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(c) Let A = {0, 1}.
Define f, g : A −→ A by f(0) = f(1) = 0, g(0) = g(1) = 1.
By definition, the function g◦f : A −→ A is given by (g◦f)(0) = g(f(0)) = g(0) = 1, (g◦f)(1) = g(f(1)) = g(0) = 1.
The function f ◦ g : A −→ A is given by (f ◦ g)(0) = f(g(0)) = f(1) = 0, (f ◦ g)(1) = f(g(1)) = f(1) = 0.
Take x0 = 0. We have (g ◦ f)(x0) = 1 and (f ◦ g)(x0) = 0. Then (g ◦ f)(x0) ̸= (f ◦ g)(x0).
Therefore g ◦ f ̸= f ◦ g as functions.

Remark. Let A be a set. (This set is fixed in our subsequent discussion.) Suppose f, g : A −→ A are two functions
from the set A to A itself.

• When we want to verify that g ◦ f , f ◦ g are the same function from A to A, we have to verify that for any x ∈ A,
(g ◦ f)(x) = (f ◦ g)(x).

• To verify that g ◦ f , f ◦ g are not the same function from A to A, we check that there exists some x0 ∈ A such that
(g ◦ f)(x0) ̸= (f ◦ g)(x0). Hence we have to name an appropriate x0 and show that (g ◦ f)(x0) ̸= (f ◦ g)(x0).

4. Solution.

(a) Suppose α : R −→ R is defined by α(x) =
2x

x2 + 1
for any x ∈ R.

For any x ∈ R, we have (X(α))(x) =
x2

x2 + 1
.

For any x ∈ R, we have (D(α))(x) =
−x2 + 1

(x2 + 1)2

For any x ∈ R, we have (I0(α))(x) =
1

2
ln(x2 + 1).

Hence X(α), D(α), I0(α) are respectively the real-valued functions of one real variable, with domain R, given by

(X(α))(x) =
x2

x2 + 1
, (D(α))(x) =

−x2 + 1

x2 + 1
, (I0(α))(x) =

1

2
ln(x2 + 1) for any x ∈ R.

(b) i. Pick any φ ∈ C∞(R), x ∈ R. We have

((D ◦X)(φ))(x) = (D(X(φ)))(x) = (X(φ))′(x) =
d

dt
(tφ(t))

∣∣∣∣
t=x

= xφ′(x) + φ(x),

(X ◦D)(φ))(x) = X(D(φ))(x) = x(D(φ))(x) = xφ′(x)

Then ((D ◦X)(φ))(x)− (X ◦D)(φ))(x) = (xφ′(x) + φ(x))− xφ′(x) = φ(x).
ii. Pick any φ ∈ C∞(R), x ∈ R. We have

((I0 ◦X)(φ))(x) = (I0(X(φ)))(x) =

∫ x

0

(X(φ))(t)dt =

∫ x

0

tφ(t)dt

=

∫ x

0

t(I0(φ))
′(t)dt

= t(I0(φ))(t)
∣∣∣t=x

t=0
−
∫ x

0

(I0(φ))(t)dt

= x(I0(φ))(x)− 0− (I0(I0(φ)))(x)

= (X(I0(φ)))(x)− (I0(I0(φ)))(x) = (X ◦ I0)(φ)(x)− (I0 ◦ I0)(φ)(x)

Then ((X ◦ I0)(φ))(x)− (I0 ◦X)(φ))(x) = ((I0 ◦ I0)(φ))(x).

5. Answer.

(a) i. Suppose A,B are sets, and f : A −→ B is a function. Then we say f is surjective if the statement (S) holds:—
(S) For any y ∈ B, there exists some x ∈ A such that y = f(x).

ii. Suppose A,B are sets, and f : A −→ B is a function. Then we say f is injective if the statement (I) holds:—
(I) For any x,w ∈ A, if f(x) = f(w) then x = w.
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(b)i. (I) For any
(II) there exists
(III) y = f(x)

(IV) Pick any
Alternative answer. Let
Alternative answer. Suppose
Alternative answer. Assume
Alternative answer. Take any

(V) x = (y + 1)
3
5

(VI) f(x)=x
5
3 −1=

[
(y+1)

3
5

]5
3

−1=(y+1)−1=y

(VII) f is surjective.
ii. (I) For any

(II) if f(x) = f(w)

(III) x,w ∈ R

(IV) Suppose
Alternative answer. Assume
(V) f(x) + 1 = f(w) + 1

(VI) (w
5
3 )

3
5 = w

(VII) f is injective
(c) i. (I) There exists some

(II) for any
(III) y0 ̸= f(x0)

(IV) Take
Alternative answer. Let
Alternative answer. Define
Alternative answer. Pick
Alternative answer. Suppose
Alternative answer. Assume
(V) for any x ∈ R

(VI) Suppose
Alternative answer. Assume
(VII) there existed some x0∈R such that f(x0)=
y0.
(VIII) 0

(IX)
(
x0 −

1

2

)2

+
3

4
≥ 0 +

3

4

(X) f is not surjective.
ii. (I) there exist some

(II) = f(w0)

(III) x0 ̸= w0

(IV) w0 = 2.
(V) x0 ̸= w0.

(VI) f(w0) =
2

22 + 1
=

2

5

(VII) f(w0)

(VIII) f is not injective

6. Answer.

(a) (I) for any ζ ∈ C, there exists some z ∈ C such that ζ = f(z)

(II) Pick any ζ ∈ C.
(III) there exists some θ ∈ R

(IV) Take z = 5
√
|ζ| ·

(
cos

(
θ

5

)
+ i sin

(
θ

5

))
.

(V)
[

5
√
|ζ| ·

(
cos

(
θ

5

)
+ i sin

(
θ

5

))]5
=
(

5
√

|ζ|
)5

·
(
cos

(
5 · θ

5

)
+ i sin

(
5 · θ

5

))
= |ζ|(cos(θ) + i sin(θ)) = ζ

(VI) f is surjective
(b) (I) there exist some z0, w0 ∈ C such that f(z0) = f(w0) and z0 ̸= w0

(II) Take z0 = 1, w0 = cos

(
2π

5

)
+ i sin

(
2π

5

)
.

(III) z0 ̸= w0

(IV) f(z0) = z0
5 = 15 = 1

(V) f(w0) = w0
5 = cos

(
5 · 2π

5

)
+ i sin

(
5 · 2π

5

)
= cos(2π) + i sin(2π) = 1

Alternative answer.

(IV) f(w0) = w0
5 = cos

(
5 · 2π

5

)
+ i sin

(
5 · 2π

5

)
= cos(2π) + i sin(2π) = 1 (V) f(z0) = z0

5 = 15 = 1

(VI) f is not injective

7. (a) Answer.
i. Suppose A,B,C are sets, and f : A −→ B, g : B −→ C are functions. Define the function g ◦ f : A −→ C by

(g ◦ f)(x) = g(f(x)) for any x ∈ A. Then g ◦ f is called the composition of f, g.
ii. Suppose C is a set. Define the function idC : C −→ C by idC(x) = x for any x ∈ C. Then idC is called the

identity function on C.
(b) Answer.
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(I) Suppose f is injective or f is surjective.
(II) x ∈ A

(III) f(x)

(IV) (f ◦ f)(x)
(V) the definition of injectivity
(VI) f(x) = x = idA(x)

(VII) Suppose f is surjective.
(VIII) Pick any
(IX) there exists some u ∈ A such that x = f(u)

(X) (f ◦ f)(u)
(XI) (f ◦ f)(u) = f(u)

(XII) f = idA

(c) Solution.
Let B be a set, K be a subset of B, and φ : P(B) −→ P(B) be the function defined by φ(S) = S ∩ K for any
S ∈ P(B). Suppose φ is injective or φ is surjective.
We verify that φ ◦ φ = φ:

• Pick any S ∈ P(B). Then φ(S) = S ∩K = S ∩ (K ∩K) = (S ∩K) ∩K = φ(S ∩K) = φ(φ(S)) = (φ ◦ φ)(S).
It follows that φ ◦ φ = φ.

By the result described in the Statement (T ), we have φ = idP(B).
Since K is a subset of B, we have K = B ∩K. Then K = B ∩K = φ(B) = idP(B)(B) = B.

8. Answer.

(a) (I) Pick any x ∈ A

(II) Pick any y ∈ B

(III) f(t) = y for any t ∈ A

There are many correct answers: as long as the
‘formula of f ’ is ‘complete’ and f(x) = y accord-
ing to the ‘formula of f ’.
(IV) Map(A,B)

(V) Ex(f) = f(x) = y

(b) (I) some distinct
(II) there exists some u ∈ A such that Eu is injec-
tive

(III) x ∈ A\{u}
(IV) Define f : A −→ B by
(V) for any
(VI) g : A −→ B

(VII) t = u

(VIII) f(u) = y = g(u) = Eu(g)

(IX) f = g

(X) y ̸= z

(XI) f ̸= g

(XII) and

9. Answer.

(a) Suppose A,B are sets, and f : A −→ B, g : B −→ A are functions.
Then we say g is an inverse function of f if g ◦ f = idA and f ◦ g = idB .
Alternative answer.
Suppose A,B are sets, and f : A −→ B, g : B −→ A are functions.
Then we say g is an inverse function of f if both statements (⋆), (⋆⋆) hold:—
(⋆) For any x ∈ A, (g ◦ f)(x) = x.
(⋆⋆) For any y ∈ B, (f ◦ g)(y) = y.

(b) i. a = −9, b = 16.

ii. The inverse function of f , which is the function f−1 : [−9, 16] −→ [−2, 3], is given by f−1(y) =

√
4 +

√
y + 9

for any y ∈ [−9, 16].
iii. A.

√
5

B. π

10. Answer.

(a) J = (1,+∞).

(b) The inverse function of f , which is the function f−1 : J −→ (0,+∞), is given by f−1(y) =
1

4

(
ln

(
y + 1

y − 1

))2

for

any y ∈ J .

11. Solution.

Denote the interval (0,+∞) by I. Let f : I −→ R be the function defined by f(x) =
1

2

(
x− 1

x

)
for any x ∈ I.
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(a) Pick any x,w ∈ I. Suppose f(x) = f(w). Then 1

2

(
x− 1

x

)
=

1

2

(
w − 1

w

)
.

We have x2w − w = w2x− x.
Therefore xw(x− w) = x2w − w2x = w − x. Hence (xw + 1)(x− w) = 0.
Since x,w ∈ I, we have x > 0, w > 0 and xw + 1 > 0. Therefore x− w = 0. Hence x = w.
It follows that f is injective.

(b) Pick any y ∈ R. Take x = y +
√

y2 + 1. Note that x ∈ I.
We have

f(x) =
1

2

(
x− 1

x

)

=
1

2

(
y +

√
y2 + 1− 1

y +
√
y2 + 1

)

=
1

2

y +√y2 + 1− y −
√

y2 + 1(
y +

√
y2 + 1

)(
y −

√
y2 + 1

)
 =

1

2

(
y +

√
y2 + 1 + y −

√
y2 + 1

)
= y

It follows that f is surjective.

(c) The inverse function of f , which is the function f−1 : R −→ I, is given by f−1(y) = y +
√
y2 + 1 for any y ∈ R.

12. (a) i. Solution.
Let h : C −→ C be the function defined by h(z) = z̄ for any z ∈ C.
• [We verify that h is injective. This amounts to verifying: ‘ For any z, w ∈ C, if h(z) = h(w) then z = w.’]

Let z, w ∈ C. Suppose h(z) = h(w). Then z̄ = w̄. Therefore z = ¯̄z = ¯̄w = w.
It follows that h is injective.

• [We verify that h is surjective. This amounts to verifying: ‘ For any ζ ∈ C, there exists some z ∈ C such
that h(z) = ζ.’]
Let ζ ∈ C. Take z = ζ̄. By definition, z ∈ C. Also by definition, h(z) = z̄ = ¯̄ζ = ζ.
It follows that h is surjective.

Hence h is bijective.
ii. Answer.

The inverse function h−1 : C −→ C of the function h is given by h−1(z) = z̄ for any z ∈ C.
(b) Solution.

Let f : C −→ C be the function defined by f(z) = z2z̄ for any z ∈ C.
i. [We want to verify the statement ‘for any w ∈ C, there exists some z ∈ C such that f(z) = w.’]

Pick any w ∈ C. We have w = 0 or w ̸= 0.
∗ (Case 1.) Suppose w = 0. Then f(0) = 0 = w.

∗ (Case 2.) Suppose w ̸= 0. (Note that |w| ̸= 0. Then 1
3
√

|w|
is well-defined as a complex number.)

Define z =
w

( 3
√
|w|)2

. By definition, z ∈ C.

We have f(z) = z2z̄ =

(
w

( 3
√

|w|)2

)2 [
w

( 3
√
|w|)2

]
=

w2w̄

( 3
√
|w|)6

=
w|w|2

|w|2
= w.

It follows that f is surjective.
ii. [We want to verify the statement ‘for any u, v ∈ C, if f(u) = f(v) then u = v.’]

Pick any u, v ∈ C. Suppose f(u) = f(v).
Then |u|3 = |u2ū| = |f(u)| = |f(v)| = |v2v̄| = |v|3.
Since |u|, |v| ∈ R, we have |u| = |v|.
Now u|u|2 = u2ū = f(u) = f(v) = v2v̄ = v|v|2 = v|u|2.
Then (u− v)|u|2 = 0. Therefore u− v = 0 or |u|2 = 0.
∗ (Csae 1.) Suppose u− v = 0. Then u = v.
∗ (Case 2.) Suppose u− v ̸= 0. Then |u|2 = 0. Therefore u = 0.

Also, |v| = |u| = 0. Then u = 0 = v.
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Hence, in any case u = v.
It follows that f is injective.

(c) Solution.
Write C∗ = C\{0}. Let g : C∗ −→ C be the function defined by g(z) = z/z̄ for any z ∈ C∗.

i. [We want to verify the statement ‘there exist some u0, v0 ∈ C∗ such that g(u0) = g(v0) and u0 ̸= v0’.]
Take u0 = 1, v0 = −1.
We have u0, v0 ∈ C∗ and u0 ̸= v0.
We have g(u0) = 1 and g(v0) = 1. Then g(u0) = g(v0).
It follows that g is not injective.

ii. [We want to verify the statement ‘There exists some w0 ∈ C such that for any z ∈ C∗, g(z) ̸= w0.’]
Take w0 = 2. Note that w0 ∈ C. We verify with the proof-by-contradiction method, that for any z ∈ C∗,
g(z) ̸= w0:
• Suppose there existed some z ∈ C∗ such that g(z) = w0.

Then |g(z)| = |w0| = 2.
For the same z, we have |g(z)| = |z/z̄| = |z|/|z̄| = |z|/|z| = 1 ̸= 2.
Now |g(z)| = 2 and |g(z)| ̸= 2. Contradiction arises.

It follows that g is not surjective.

13. Solution.
Let a, b, c, d ∈ C. Suppose c ̸= 0 and ad− bc ̸= 0.

(a) Let z ∈ C.

Note that az + b

cz + d
− a

c
=

c(az + b)− a(cz + d)

c(cz + d)
= − ad− bc

c(cz + d)
̸= 0, because ad− bc ̸= 0.

Then az + b

cz + d
̸= a

c
.

(b) Define the function f : C\{−d/c} −→ C\{a/c} by f(z) =
az + b

cz + d
for any z ∈ C\{−d/c}.

i. Pick any z, w ∈ C\{−d/c}. Suppose f(z) = f(w).

Then az + b

cz + d
=

aw + b

cw + d
. Therefore

aczw + bd+ adz + bcw = (az + b)(cw + d) = (aw + b)(cz + d) = aczw + bd+ adw + bcz.

Hence (ad− bc)z = (ad− bc)w. Since ad− bc ̸= 0, we have z = w.
It follows that f is injective.

ii. Pick any ζ ∈ C\{a/c}. Since ζ ̸= a

c
, we have −cζ + a ̸= 0. Take z =

dζ − b

−cζ + a
. By definition, z ∈ C.

Moreover, z − −d

c
=

dζ − b

−cζ + a
+

d

c
=

c(dζ − b) + d(−cζ + a)

c(−cζ + a)
=

ad− bc

c(−cζ + a)
̸= 0.

Then z ̸= −d

c
. Hence z ∈ C\{−d/c}.

Also by definition, f(z) = a[(dζ − b)/(−cζ + a)] + b

c[(dζ − b)/(−cζ + a)] + d
=

a(dζ − b) + b(−cζ + a)

c(dζ − b) + d(−cζ + a)
=

(ad− bc)ζ + 0

0 · ζ + (ad− bc)
= ζ.

It follows that f is surjective.

iii. The inverse function of f , which is f−1 : C\{a/c} −→ C\{−d/c}, is given by f−1(ζ) =
dζ − b

−cζ + a
for any

ζ ∈ C\{a/c}.

14. Solution.

Let f : (0,+∞) −→ R be the function defined by f(x) =
x2 − 2x+ 4

x2 + 2x+ 4
cos

(
1

x
√
x

)
for any x ∈ (0,+∞).

(a) Take x0 =
22/3

π2/3
, w0 =

22/3

32/3π2/3
.

Note that x0, w0 ∈ (0,+∞) and x0 ̸= w0.
Also note that f(x0) = 0 = f(w0).
It follows that f is not injective.
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(b) i. Let x ∈ (0,+∞).
By the Triangle Inequality for the reals, |x2 − 2x+ 4| ≤ |x2 + 4|+ |2x| = x2 + 2x+ 4 = |x2 + 2x+ 4|.
Note that |x2 + 2x+ 4| > 0.

Then
∣∣∣∣x2 − 2x+ 4

x2 + 2x+ 4

∣∣∣∣ ≤ 1.

ii. Take y0 = 2. We verify that for any x ∈ (0,+∞), we have f(x) ̸= y0:
• Let x ∈ (0,+∞).

We have |f(x)| =
∣∣∣∣x2−2x+4

x2+2x+4
cos

(
1

x
√
x

)∣∣∣∣ ≤ ∣∣∣∣x2−2x+4

x2+2x+4

∣∣∣∣ · ∣∣∣∣cos( 1

x
√
x

)∣∣∣∣ ≤ 1 · 1 = 1 < 2.

Then f(x) ̸= 2.
It follows that f is not surjective.

15. Solution.

(a) Let f : R −→ R be the function defined by f(x) =

{
x9 if x ∈ Q

−x3 if x ∈ R\Q .

i. We verify that f is injective:
• Pick any x,w ∈ R. Suppose f(x) = f(w).

We verify the statement ‘x,w are both rational or x,w are both irrational’ with the method of proof-by-
contradiction:

Suppose it were true that one of x,w was rational and the other was irrational.
Without loss of generality, assume x was rational and w was irrational.
Then by the definition of f , we would have f(x) = x9 and f(w) = −w3.
Therefore by assumption, −w3 = f(w) = f(x) = x9.
Since x,w ∈ R, we have w = −x3. Then, since x was rational, w would be rational.
But w was assumed to be irrational. Then w was simultaneously rational and irrational. Contradiction
arises.
It follows, in the first place, that x,w are both rational or x,w are both irrational.

We now verify that x = w:
∗ (Case 1.) Suppose x,w are both rational.

Then by the definition of f , we have x9 = f(x) = f(w) = w9. Since x,w ∈ R, we have x = w.
∗ (Case 2.) Suppose x,w are both irrational. Then by the definition of f , we have −x3 = f(x) = f(w) =

−w3. Then, since x,w ∈ R, we have x = w.
Hence in any case, x = w.
It follows that f is injective.

ii. We verify that f is not surjective:
• Take y0 = 8. Pick any t ∈ R.

We verify y0 ̸= f(t) by the method of proof-by-contradiction.
Suppose it were true that y0 = f(t).
Note that t is rational or t is irrational.
∗ (Case 1). Suppose t is rational.

Then by the definition of f , we would have 8 = y0 = f(t) = t9. Since t ∈ R, we would have t = 3
√
2. But

3
√
2 is irrational.

Contradiction arises.
∗ (Case 2). Suppose t is irrational. Then by the definition of f , we would have 8 = y0 = f(t) = −t3. Since
t ∈ R, we would have t = −2. But −2 is rational.
Contradiction arises.

In any case, contradiction arises. It follows that in the first place, y0 ̸= f(t).
Hence f is not surjective.

(b) Let g : R −→ R be the function defined by g(x) =

{
x3 if x ∈ Q

−x9 if x ∈ R\Q .

i. We verify that g is not injective:
• Take x0 = 2, w0 = − 3

√
2.

Note that x0 ̸= w0, x0 ∈ Q, and w0 ∈ R\Q.
Since x0 ∈ Q, we have g(x0) = x0

3 = 23 = 8.
Since w0 ∈ R\Q, we have g(w0) = −w0

9 = −(− 3
√
2)9 = 8.

Then g(x0) = g(w0).
It follows that g is not injective.
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ii. We verify that g is surjective:
• Pick any y ∈ R. Then 3

√
y, 9

√
y are well-defined as real numbers.

Note that 3
√
y is rational or 3

√
y is irrational.

∗ (Case 1.) Suppose 3
√
y is rational.

Take t = 3
√
y. By definition, t ∈ Q. Then g(t) = t3 = ( 3

√
y)3 = y.

∗ (Case 2.) Suppose 3
√
y is irrational.

Take t = − 9
√
y. By definition, 3

√
y = (−t)3.

Since 3
√
y is irrational, −t is also irrational. Then t is irrational.

We have g(t) = −t9 = −(− 9
√
y)9 = −(−y) = y.

It follows that g is surjective.

16. Solution.

(a) i. Let A,B,C be sets, and f : A −→ B, g : B −→ C be functions.
Suppose g ◦ f is surjective.
Pick any z ∈ C.
Since g ◦ f is surjective, there exists some x ∈ A such that z = (g ◦ f)(x).
Define y = f(x). We have y ∈ B.
For the same x ∈ A, y ∈ B and z ∈ C, we have g(y) = g(f(x)) = (g ◦ f)(x) = z.
It follows that g is surjective.

ii. Let A,B,C be sets, and f : A −→ B, g : B −→ C be functions.
Suppose g ◦ f is injective.
Pick any x,w ∈ A. Suppose f(x) = f(w).
Then g(f(x)) = g(f(w)).
Note that (g ◦ f)(x) = g(f(x)) and (g ◦ f)(w) = g(f(w)). Then (g ◦ f)(x) = (g ◦ f)(w).
Since g ◦ f is injective, we have x = w.
It follows that f is injective.

(b) Let I, J,K be sets, and α : I −→ J , β : J −→ K, γ : K −→ I be functions. Suppose γ ◦ β ◦ α, α ◦ γ ◦ β are both
injective. Further suppose β ◦ α ◦ γ is surjective.
Then:
(♯) Both β ◦ α and α are injective. (Reason: γ ◦ β ◦ α is injective.)
(♮) Both γ ◦ β and β are injective. (Reason: α ◦ γ ◦ β is injective.)
(♭) Both β ◦ α and β are surjective. (Reason: β ◦ α ◦ γ is surjective.)
Therefore, by (♮), (♭) combined, β is both surjective and injective.
Also, by (♯), (♭) combined, β ◦ α is both surjective and injective.
By (♯) alone, α is injective. We verify that α is surjective:
• Pick any y ∈ J . Take z = β(y). By definition, z ∈ K.

Since β ◦ α is surjective, there exists soem x ∈ I such that z = (β ◦ α)(x).
For the same x, y, z, we have β(y) = z = (β ◦ α)(x) = β(α(x)).
Since β is injective, we have y = α(x).
It follows that α is surjective.

Hence α is both surjective and injective.
We verify that γ is both surjective and injective:
• Pick any u ∈ I. Take v = α(u), w = β(v). By definition, w ∈ K.

Since β ◦ α ◦ γ is surjective, there exists some t ∈ K such that w = (β ◦ α ◦ γ)(t).
For the same β(α(u)) = w = (β ◦ α ◦ γ)(t) = β(α(γ(t)))

Since β is injective, we have α(u) = α(γ(t)). Now, since α is injective, we have u = γ(t).
• Pick any r, s ∈ K. Suppose γ(r) = γ(s).

Since β is surjective, there exist some p, q ∈ J such that r = β(p) and s = β(q).
Since α is surjective, there exist some m,n ∈ I such that p = α(m) and q = α(n).
Then, for the same m,n, p, q, r, s, we have

(γ ◦ β ◦ α)(m) = γ(β(α(m))) = γ(β(p)) = γ(r) = γ(s) = γ(β(q)) = γ(β(α(n))) = (γ ◦ β ◦ α)(n).

Since γ ◦ β ◦ α is injective, we have m = n. Then r = β(p) = β(α(m)) = β(α(n)) = β(q) = s.
It follows that γ is injective.

Hence γ is both surjective and injective.
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17. Solution.

(a) Take A = {0}, B = {1, 2}, C = {3}. Here 0, 1, 2, 3 are pairwise distinct objects. Define the function f : A −→ B by
f(0) = 1. Define the function g : B −→ C by g(1) = g(2) = 3.
The function g ◦ f : A −→ C is given by (g ◦ f)(0) = g(f(0)) = g(1) = 3.
Pick any z ∈ C. Since C = {3}, we have z = 3. Note that 0 ∈ A and (g ◦ f)(0) = 3 = z. It follows that g ◦ f is
surjective.
Note that 2 ∈ B. Pick any x ∈ A. Since A = {0}, we have x = 0. Then f(x) = f(0) = 1 ̸= 2. Therefore the
function f is not surjective.

(b) Take A = {0}, B = {1, 2}, C = {3}. Here 0, 1, 2, 3 are pairwise distinct objects. Define the function f : A −→ B by
f(0) = 1. Define the function g : B −→ C by g(1) = g(2) = 3.
The function g ◦ f : A −→ C is given by (g ◦ f)(0) = g(f(0)) = g(1) = 3.
Pick any x,w ∈ A. Suppose (g ◦ f)(x) = (g ◦ f)(w). Since A = {0}, we have x = 0 = w. It follows that g ◦ f is
injective.
Note that 1, 2 ∈ B, 1 ̸= 2 and g(1) = g(2) = 3. Then the function g is not injective.

18. Solution.

(a) Let A,B,C,D be sets, and f : A −→ C, g : B −→ D be functions. Suppose f(x) = g(x) for any x ∈ A∩B. Suppose
f, g are surjective.
Pick any y ∈ C ∪D. By definition of union, y ∈ C or y ∈ D.
• (Case 1.) Suppose y ∈ C. By the surjectivity of f , there exists some x ∈ A such that y = f(x).

Since x ∈ A, we have x ∈ A or x ∈ B. Then x ∈ A ∪B. We have y = f(x) = (f ∪ g)(x).
• (Case 2.) Suppose y ∈ D. By the surjectivity of g, there exists some w ∈ B such that y = g(w).

Since w ∈ B, we have w ∈ A or w ∈ B. Then w ∈ A ∪B. We have y = g(w) = (f ∪ g)(w).
It follows that f ∪ g : A ∪B −→ C ∪D is surjective.

(b) Take A = {0}, B = {1}, C = D = {2}. (Here 0, 1 are distinct objects.) Define the functions f : A −→ C,
g : B −→ D by f(0) = 2, g(0) = 2. The functions f, g are injective.
Note that A ∩B = ∅. Hence it is (trivially) true that f(x) = g(x) for any x ∈ A ∩B.
The function f ∪ g : A∪B −→ C ∪D is given by (f ∪ g)(0) = f(0) = 2, (f ∪ g)(1) = g(1) = 2. Note that 0 ̸= 1 and
(f ∪ g)(0) = (f ∪ g)(1). Hence f ∪ g is not injective.

19. Answer.

(a) (I) L is a subset of H ×K

(II) a relation
(III) For any x ∈ D

(IV) y ∈ R

(V) (x, y) ∈ G

(VI) For any x ∈ D, for any y, z ∈ R

(VII) (x, y) ∈ G and (x, z) ∈ G

(VIII) y = z

(IX) D

(X) R

(XI) G

(b) i. (p, q) = (0, 0) or (p, q) = (0, 1).
(s, t) = (1, τ), provided that −2 ≤ τ < 2.

ii. (p, q) = (1, 1) and (s, t) = (2, 1).
Alternative answer: (p, q) = (1, 2) and (s, t) = (2, 2).

iii. (m,n) = (0, 0).
(p, q) = (1, 1) or (p, q) = (1, 2).

20. Answer.

(I) F is a subset of A×B

(II) there exists some y ∈ B

(III) Pick any x ∈ A.
(IV) 0

(V) 4

(VI) Define y = 4 +

√
16− (x− 2)4

4
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(VII) y ∈ B

(VIII) (x− 2)4 + 4 ·

[
4 +

√
16− (x− 2)4

4
− 4

]2
= (x− 2)4 + 4 · 16− (x− 2)4

4
= 16

(IX) (x, y) ∈ F

(X) if (x, y) ∈ F and (x, z) ∈ F then y = z

(XI) Pick any x ∈ A. Pick any y, z ∈ B. Suppose (x, y) ∈ F and (x, z) ∈ F .

(XII) (x− 2)4 + 4(y − 4)2 = 16

(XIII) since (x, z) ∈ F , we have (x− 2)4 + 4(z − 4)2 = 16

(XIV) 16− (x− 2)4

4

(XV)
√

(y − 4)2 =
√

(z − 4)2 = z − 4

(XVI) y = z

21. (a) Answer.
(I) F is a subset of C× E

(II) relation
(III) for any z ∈ C, there exists some w ∈ E such that (z, w) ∈ F

(IV) Pick any z ∈ C.
(V) well-defined

(VI) Define w = i+
z − 1

1 + |z − 1|

(VII)
∣∣∣∣i+ z − 1

1 + |z − 1|
− i

∣∣∣∣ = ∣∣∣∣ z − 1

1 + |z − 1|

∣∣∣∣ = |z − 1|
1 + |z − 1|

(VIII) w ∈ E

(IX) (1 + |z − 1|)(w − i) + 1 = (1 + |z − 1|) ·
[
i+

z − 1

1 + |z − 1|
− i

]
+ 1 = z

(X) for any z ∈ C, for any w, v ∈ E, if (z, w) ∈ F and (z, v) ∈ F then w = v

(XI) Pick any
(XII) C

(XIII) E

(XIV) Suppose (z, w) ∈ F and (z, v) ∈ F

(XV) [(1 + |z − 1|)(w − i) + 1]− [(1 + |z − 1|)(v − i) + 1] = z − z = 0

(XVI) w − v = 0

(b) Answer.

The explicit ‘formula of definition’ of f : C −→ E is given by f(z) = i+
z − 1

1 + |z − 1|
for any z ∈ C.

(c) Solution.
We verify that for any z, u ∈ C, if f(z) = f(u) then z = u:

• Pick any z, u ∈ C. Suppose f(z) = f(u).

We have i+
z − 1

1 + |z − 1|
= f(z) = f(u) = i+

u− 1

1 + |u− 1|
.

Then z − 1

1 + |z − 1|
=

u− 1

1 + |u− 1|
. —— (⋆)

Therefore |z − 1|
1 + |z − 1|

=

∣∣∣∣ z − 1

1 + |z − 1|

∣∣∣∣ = ∣∣∣∣ u− 1

1 + |u− 1|

∣∣∣∣ = |u− 1|
1 + |u− 1|

.

Now |z − 1|+ |z − 1| · |u− 1| = (1 + |u− 1|) · |z − 1| = (1 + |z − 1|) · |u− 1| = |u− 1|+ |z − 1| · |u− 1|.
Then |z − 1| = |u− 1|. —— (⋆⋆)

By (⋆), (⋆⋆), we have z − 1

1 + |z − 1|
=

u− 1

1 + |u− 1|
=

u− 1

1 + |z − 1|
. Then z − 1 = u− 1. Therefore z = u.

(d) Solution.
We verify that for any w ∈ E, there exists some z ∈ C such that w = f(z):
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• Pick any w ∈ E.

Note that |w − i| < 1. Then 1− |w − i| ̸= 0. Therefore w − i

1− |w − i|
is well-defined as a complex number.

Define z = 1 +
w − i

1− |w − i|
. By definition, z ∈ C.

We have |z − 1| =
∣∣∣∣ w − i

1− |w − i|

∣∣∣∣ = |w − i|
1− |w − i|

.

We have f(z) = i+
z − 1

1 + |z − 1|
= i+

[1 + (w − i)/(1− |w − i|)]− 1

1 + |w − i|/(1− |w − i|)
= i+

w − i

(1− |w − i|) + |w − i|
= w.

(e) Answer.

The explicit ‘formula of definition’ of f−1 : E −→ C is given by f−1(w) = 1 +
w − i

1− |w − i|
for any w ∈ E.

22. Solution.
Let C = {(x, y) | x ∈ R and y ∈ R and 9x2 + 16y2 = 144}.

(a) Let A = [0, 4], B = [0, 3], and F = C ∩ (A×B).
Define f = (A,B, F ). By definition, F is a subset of A×B. Then f is a relation from A to B with graph F .
We verify the statement ‘for any x ∈ A, there exists some y ∈ B such that (x, y) ∈ F :

• Pick any x ∈ A. We have 0 ≤ x ≤ 4. For this x, define y =
3

4

√
16− x2. We have 0 ≤ y ≤ 3. Then y ∈ B.

We have 9x2 + 16y2 = 9x2 + 16

(
3

4

√
16− x2

)2

= 144. Hence
(
x,

3

4

√
16− x2

)
∈ F .

We verify the statement ‘for any x ∈ A, for any y, z ∈ B, if (x, y) ∈ F and (x, z) ∈ F then y = z:
• Pick any x ∈ A. Pick any y, z ∈ B. Suppose (x, y) ∈ F and (x, z) ∈ F .

Since (x, y) ∈ F , we have 9x2 + 16y2 = 144. Since (x, z) ∈ F , we have 9x2 + 16z2 = 144. Then 9x2 + 16y2 =

9x2 + 16z2. We obtain y2 = z2.
Since y, z ∈ B, we have y ≥ 0 and z ≥ 0. Then y =

√
y2 =

√
z2 = z.

It follows that f is a function.
(b) Let A = [2, 3], B = [−1, 4], and F = C ∩ (A×B).

Define f = (A,B, F ).
We dis-prove the statement ‘for any x ∈ A, for any y, z ∈ B, if (x, y) ∈ F and (x, z) ∈ F then y = z:

• Take x0 =

√
8
√
2

3
, y0 = −1, z0 = 1.

Note that x0
2 =

128

9
. Then 4 ≤ x0

2 ≤ 9. Therefore 2 ≤ x0 ≤ 3. Hence x0 ∈ A.
Also note that y0, z0 ∈ B and z0 ∈ B, and y0 ̸= z0.
We have 9x0

2 + 16y0
2 = 144. Then (x0, y0) ∈ F .

We have 9x0
2 + 16z0

2 = 144. Then (x0, z0) ∈ F .
Hence f is not a function.

(c) Let A = [1, 4], B = [0, 5/2], and F = C ∩ (A×B).
Define f = (A,B, F ).
We dis-prove the statement ‘for any x ∈ A there exists y ∈ B such that (x, y) ∈ F :
• Take x0 = 1. Note that x0 ∈ A.

For any y ∈ B, we have 0 ≤ y ≤ 5

2
. Then y2 ≤ 25

4
.

Therefore 9 · x0
2 + 16y2 = 9 + 16y2 ≤ 9 + 16 · 25

4
= 109 < 144. Then (x0, y) /∈ F .

Hence f is not a function.

23. Solution.
Let I = (0,+∞).

Let F =

{
(p, z)

∣∣∣∣ z ∈ I and
there exist some x, y ∈ I such that p = (x, y) and z2 + 2(x+ y)z = x2 + y2

}
.

Define f = (I2, I, F ).
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(a) By definition, F ⊂ I2 × I. Then f is a relation from I2 to I with graph F .
We verify that for any P ∈ I2, there exists some z ∈ I such that (p, z) ∈ F :

• Pick any p ∈ I2. There exist some x, y ∈ I such that p = (x, y).
Note that x2 + y2 + (x+ y)2 > (x+ y)2 > 0.
Then

√
x2 + y2 + (x+ y)2 is well-defined as a real number. Also,

√
x2 + y2 + (x+ y)2 > x+ y. —— (⋆)

Define z = −(x+ y) +
√
x2 + y2 + (x− y)2. By (⋆), z is well-defined as a positive real number. Then z ∈ I.

We have z2 + 2(x+ y)z + (x+ y)2 = [z + (x+ y)]2 =
(√

x2 + y2 + (x+ y)2
)2

= x2 + y2 + (x+ y)2.

Then z2 + 2(x+ y)z = x2 + y2. Therefore (p, z) ∈ F .

We verify that for any p ∈ I2, for any z, w ∈ I, if (p, z) ∈ F and (p, w) ∈ F then z = w:

• Pick any p ∈ I2. Pick any z, w ∈ I. Suppose (p, z) ∈ F and (p, w) ∈ F .
Since (p, z) ∈ F , there exist some x, y ∈ I such that p = (x, y) and z2 + 2(x+ y)z = x2 + y2.
Since (p, w) ∈ F , there exist some u, v ∈ I such that p = (u, v) and w2 + 2(u+ v)w = u2 + v2.
Since p = (x, y) and p = (u, v), we have (x, y) = (u, v). Then x = u and y = v.
Then z2 + 2(x+ y)z = x2 + y2 = u2 + v2 = w2 + 2(u+ v)w = w2 + 2(x+ y)w.
Therefore (z − w)[z + w + 2(x+ y)] = z2 − w2 + 2(x+ y)z − 2(x+ y)w = 0.
Since z, w, x, y ∈ I, z + 2 + 2(x+ y) is a positive real number. Then z − w = 0. Therefore z = w.

It follows that f is a function from I2 to I with graph F .

(b) i. The explicit ‘formula of definition’ of f : I2 −→ I is given by f(x, y) = −(x+ y) +
√
x2 + y2 + (x+ y)2 for any

x, y ∈ R.
ii. Note that for any t ∈ I, we have f(t, t) = −(t+ t) +

√
t2 + t2 + (t+ t)2 = −2t+

√
t2 + t2 + 4t2 = (

√
6− 2)t.

We verify that for any z ∈ I, there exists some p ∈ I2 such that z = f(p):
• Pick any z ∈ I.

Take x =
z√
6− 2

. By definition x ∈ I. Then (x, x) ∈ I2.

We have f(x, x) = (
√
6− 2)x = (

√
6− 2) · z√

6− 2
.

It follows that f is surjective.
iii. We verify that there exist some p1, p2 ∈ I2 such that p1 ̸= p2 and f(p1) = f(p2):

• Take x1 = 1, y1 = 2, x2 = 2, y2 = 1.
We have (x1, y1) ∈ I2 and (x2, y2) ∈ I2. Also, (x1, y1) ̸= (x2, y2).
Note that x1 = y2 and x2 = y1.
We have f(x1, y1) = −(x1 + y1) +

√
x1

2 + y12 + (x1 + y1)2 = −(y2 + x2) +
√

y22 + x2
2 + (y2 + x2)2 =

−(x2 + y2) +
√
x2

2 + y22 + (x2 + y2)2 = f(x2, y2).
It follows that f is not injective.
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