MATH1050BC/1058 Assignment 4 (Answers and selected solution)

1. Answer.

- (a) $(\exists a)(\forall b)(\exists c)[P(c) \land [(\sim Q(a)) \lor (\sim R(b))]].$
- (b) $(\forall a)(\exists b)(\forall c)[(\sim P(a,c)) \vee [Q(a,b,c) \wedge (\sim R(a,b,c))]].$
- (c) $(\exists a)(\exists b)(\forall c)(\forall d)[[(\sim P(a,c)) \land (\sim Q(b,d))] \lor (\sim R(c,d))].$
- (d) $(\exists a)(\exists b)[P(a,b) \land [(\forall c)(\exists d)[(\sim Q(a,b,c,d)) \lor (\sim R(a,b,c,d))]]].$
- (e) $(\exists a)(\forall b)[[(\exists c)(\forall d)[P(a,b,c,d) \land (\sim Q(a,b,c,d))]] \lor [(\exists e)(\forall f)[(\sim S(a,b,e,f)) \land (\sim T(a,b,e,f))]]].$
- (f) $(\exists a)[[(\exists b)(\forall c)P(b,c)\longrightarrow Q(a,b,c)] \wedge [(\exists d)(\forall e)[R(a,d,e) \wedge [(\sim S(a,d,e)) \vee (\sim T(a,d,e))]]]].$

2. Answer.

- (a) For any $\zeta \in \mathbb{C}$, there exists some $\eta \in \mathbb{C}$ such that $(|\zeta| \ge |\eta| \text{ or } |\zeta + \eta| > |\zeta \eta|)$.
- (b) There exists some $x \in \mathbb{R}$ such that for any $s, t \in \mathbb{Q}$, there exists some $n \in \mathbb{Z}$ such that s < n < t and $|x n| \le |t s|$.
- (c) There exists some $p \in \mathbb{R}$, such that for any $q \in \mathbb{R}$, $n \in \mathbb{N}$, there exist some $s, t \in \mathbb{R}$ such that |s t| < |q| and $|s^n t^n| \ge |p|$.
- (d) There exists some $s, t \in \mathbb{Q}$ such that for any $p, q \in \mathbb{R}$, there exists some $n \in \mathbb{Z}$ such that $|s t| \le |q|$ and $(t^n > |p|)$ or $s^n > |p|$.
- (e) For any $n \in \mathbb{N}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $u, v \in \mathbb{C}$ such that $|u v| < \delta$ and $|u^n v^n| \ge \varepsilon$.
- (f) There exist some $p, q \in \mathbb{Z}$ such that for any $s, t \in \mathbb{Z}$, there exist some $m, n \in \mathbb{N}$ such that $|p+q| \ge s^m$ and $|p^n-q| \ge t$ and $|p-q^n| \ge t$.
- (g) There exists some $z \in \mathbb{C}$ such that for any $r \in \mathbb{R}$, there exists some $w \in \mathbb{C}$ such that $(|z w| \le r \text{ and } (z \in \mathbb{R} \text{ or } |w| \le r))$.
- (h) There exist some $z, w \in \mathbb{C}$ such that $|z w| \ge |z + w|$ and (for any $s \in \mathbb{R}$, there exists some $t \in \mathbb{R}$ such that $(|z s t| \le w \text{ and } |z| \ge 1)$).
- (i) There exist some $\zeta, \alpha, \beta \in \mathbb{C}$ such that (there exist some $s, t \in \mathbb{R}$ such that $\zeta = s\alpha + t\beta$) and (for any $p, q \in \mathbb{R}$, $\zeta \neq p\bar{\alpha} + q\bar{\beta}$.)
- (j) There exist some $\zeta, \alpha, \beta, \gamma \in \mathbb{C}$ such that $\alpha \zeta^2 + \beta \zeta + \gamma = 0$ and (there exist some $s, t \in \mathbb{R}$ such that for any $r \in \mathbb{R}$, $\zeta \neq r\alpha + s\beta + t\gamma$).
- (k) There exist some $\zeta \in \mathbb{C}$ such that (for any $\alpha \in \mathbb{C}$, there exist some $\beta, \gamma \in \mathbb{C}$ such that $\alpha \zeta^2 + \beta \zeta + \gamma = 0$) and (there exist some $\rho, \sigma \in \mathbb{C}$ and some $s, t \in \mathbb{R}$ such that for any $\tau \in \mathbb{C}$, for any $r \in \mathbb{R}$, $\zeta \neq r\rho + s\sigma + t\tau$).
- (l) There exists some $\zeta \in \mathbb{C}$ such that $|\zeta| > 1$ and (for any $\beta, \gamma \in \mathbb{C}$, if $\beta\gamma \neq 0$ then there exists some $\alpha \in \mathbb{C}$ such that $\alpha\zeta^2 + \beta\zeta + \gamma = 0$) and (there exist some $\rho, \sigma \in \mathbb{C}$ and some $s, t \in \mathbb{R}$ such that $(st \neq 0 \text{ and } \rho + \sigma \neq 0)$ and (for any $\tau \in \mathbb{C}$, for any $r \in \mathbb{R}$, $\zeta \neq r\rho + s\sigma + t\tau$)).

3. Solution.

- (a) Take n = 3. By definition, $n \in \mathbb{N}$. Note that n + 2 = 3 + 2 = 5, n + 4 = 3 + 4 = 7. The integers n, n + 2, n + 4 are prime numbers.
- (b) Take $x = \sqrt{2}$. By definition, $x \in \mathbb{R}$. Note that $x^2 2 = (\sqrt{2})^2 2 = 2 2 = 0$.
- (c) Take $z = \frac{1+i}{\sqrt{2}}$. By definition, $z \in \mathbb{C}$.

Note that
$$z^4 = \left(\frac{1+i}{\sqrt{2}}\right)^4 = \frac{1+4i+6i^2+4i^3+i^4}{4} = \frac{1+4i-6-4i+1}{4} = -1.$$

(d) Take $x = -\frac{1}{2}$. By definition, $x \in \mathbb{Q}$.

Note that
$$(\log_2(-2x))^2 = (\log_2(-2 \cdot (-\frac{1}{2})))^2 = (\log_2(1))^2 = 0^2 = 0.$$

Also note that
$$-\log_2(4x^2) = -\log_2\left(4 \cdot \left(-\frac{1}{2}\right)^2\right) = -\log_2(1) = 0.$$

Then
$$(\log_2(-2x))^2 = -\log_2(4x^2)$$
.

4. Answer.

- (a) i. There are exactly two elements in $A \cap B$. They are $\{0,1\}, \{1,2,3\}$.
 - ii. There are exactly five elements in $A \cup B$. They are $\{0,1\}, \{1\}, \{1,2,3\}, \{3,4\}, \{\{3\},\{4\}\}.$
 - iii. There are exactly two elements in $A \setminus B$. They are $\{1\}, \{3, 4\}$.
 - iv. There is exactly one element in $B \setminus A$. It is $\{\{3\}, \{4\}\}$.
 - v. There are exactly three elements in $A \triangle B$. They are $\{1\}, \{3,4\}, \{\{3\}, \{4\}\}.$
 - vi. There are exactly four elements in $(A \cap B) \times (A \setminus B)$. They are $(\{0,1\},\{1\}), (\{1,2,3\},\{1\}), (\{0,1\},\{3,4\}), (\{1,2,3\},\{3,4\}).$
 - vii. There are exactly four elements in $\mathfrak{P}(A\backslash B)$. They are \emptyset , $\{\{1\}\}, \{\{3,4\}\}, \{\{1\}, \{3,4\}\}.$
 - viii. There are exactly two elements in $\mathfrak{P}((\mathfrak{P}(B\backslash A)\backslash \{\emptyset\}))$. They are $\emptyset, \{B\backslash A\}$.
- (b) i. There are exactly four elements in $C \cup D$. They are $\emptyset, \{\emptyset\}, \mathbb{N}, \mathbb{Z}, \{\mathbb{Q}\}$.
 - ii. There are exactly two elements in $D \cap E$. They are $\emptyset, \{\mathbb{Q}\}$.
 - iii. There are exactly two elements in $F \setminus E$. They are $\{N, \mathbb{Z}\}, \{\mathbb{Z}, \mathbb{Q}\}.$
 - iv. There are exactly three elements in $(C \cup E) \setminus (D \cup F)$. They are $\{\emptyset\}, \{\mathbb{N}\}, \{\mathbb{Z}\}$.
 - v. There are exactly four elements in $\mathfrak{P}(C)$. They are $\emptyset, \{\{\emptyset\}\}, \{\mathbb{N}\}, C$.
 - vi. There are exactly four elements in $\mathfrak{P}(D) \cap \mathfrak{P}(E)$. They are $\emptyset, \{\emptyset\}, \{\{\mathbb{Q}\}\}, \{\emptyset, \{\mathbb{Q}\}\}$.
 - vii. There are exactly six elements in $C \times F$. They are $(\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\mathbb{N}, \mathbb{Z}\}), (\{\emptyset\}, \{\mathbb{Z}, \mathbb{Q}\}), (\mathbb{N}, \emptyset), (\mathbb{N}, \{\mathbb{N}, \mathbb{Z}\}), (\mathbb{N}, \mathbb{N}, \mathbb{Z}\}), (\mathbb{N}, \mathbb{N}, \mathbb{N},$
 - viii. There are exactly four elements in $(D \cap E)^2$. They are $(\emptyset, \emptyset), (\{\mathbb{Q}\}, \emptyset), (\emptyset, \{\mathbb{Q}\}), (\{\mathbb{Q}\}, \{\mathbb{Q}\})$.

5. Answer.

(a) • A is non-empty. Justification:—

We verify that $40 \in A$:—

Note that $40 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}.$

$$40 = \frac{10^3}{5^2}$$
 and $10 \in \mathbb{N}$.

• $B = \emptyset$. Justification:—

Suppose it were true that $B \neq \emptyset$.

Pick some $x_0 \in B$. Then, $x_0 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}$, and also, for any $k \in \mathbb{N}$, $x_0 = \frac{k^3}{52}$.

Since
$$0 \in \mathbb{N}$$
, $x_0 = \frac{0^3}{5^2} = 0$.

Recall that $x_0 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}$. Then $x_0 \neq 0$.

Contradiction arises.

(b) • C is non-empty. Justification:—

We verify that $20 \in \mathbb{C}$:—

Note that $20 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}$.

$$5^2 \cdot 20^2 = 10000 = (\sqrt[3]{1000})^4$$
 and $1000 \in \mathbb{N}$.

• $D = \emptyset$.

Justification:—

Suppose it were true that $D \neq \emptyset$.

Pick some $x_0 \in D$. Then, $x_0 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}$, and also, for any $k \in \mathbb{N}$, $5^2 x_0^2 = (\sqrt[3]{k})^4$.

Since
$$0 \in \mathbb{N}$$
, $5^2 x_0^2 = (\sqrt[3]{0})^4 = 0$. Then $x_0 = 0$.

Recall that $x_0 \in \mathbb{N} \setminus \{0, 1, 2, 3, 4, 5\}$. Then $x_0 \neq 0$.

Contradiction arises.

6. Answer.

- (a) i. Suppose A, B are sets. Then we say that A is a subset of B if the statement (\dagger) holds:
 - (†) For any object x, if $x \in A$ then $x \in B$.
 - ii. (I) C, D
 - (II) there exists some object x_0 such that $x_0 \in C$ and $x_0 \notin D$
- (b) i. (I) For any object x, if $x \in A$ then $x \in B$.

(IV) \mathbb{Z}

(II) $x \in A$

(V) $x = 16m^6$

(III) there exists some

(VI) $2m^2$

(VII) $2, m \in \mathbb{Z}$

(VIII) Z

(IX) $2(8m^6) = 2(2m^2)^3 = 2n^3$

 $(X) x \in B$

ii. (I) There exists some x_0 such that $x_0 \in B$ and $x_0 \notin A$.

(II) $x_0 = 2 \cdot 1^3$

(III) 1

(c) i. (I) For any $\zeta \in \mathbb{C}$, if $\zeta \in A$ then $\zeta \in B$.

(II) Suppose $\zeta \in A$

(III) $|\zeta| \leq 2$

(111) |5| =

 $(IV) \leq$

 $(V) (Im(\zeta))^2$

(VI) $|\mathsf{Re}(\zeta)| \le |\zeta|$

(VII) $|\mathsf{Re}(\zeta)| \leq 2$

(VIII) Note that $|\mathsf{Im}(\zeta)|^2 = (\mathsf{Im}(\zeta))^2 \le (\mathsf{Re}(\zeta))^2 + (\mathsf{Im}(\zeta))^2 = |\zeta|^2$. Also note that $|\mathsf{Im}(\zeta)|$ and $|\zeta|$ are non-negative. Then $|\mathsf{Im}(\zeta)| \le |\zeta|$. Therefore by (\star) , we have $|\mathsf{Im}(\zeta)| \le 2$.

(IX) and

(IV) $x_0 \in B$

(V) Suppose it were true that $x_0 \in A$.

(VI) there would exist some $m \in \mathbb{Z}$

(VII) $2 \cdot 4m^6$

(VIII) 1

Alternative answer. (VII) 1. (VIII) $2 \cdot 4m^6$

(IX) $4m^6 \in \mathbb{Z}$

(X) divisible by 2

 $(X) \zeta \in B$

ii.

(I) There exists some $\zeta_0 \in \mathbb{C}$ such that $\zeta_0 \in B$

and $\zeta_0 \notin A$.

(II) Take $\zeta_0 = 2 + 2i$.

(III) $Re(\zeta_0)$

(IV) $|\mathsf{Im}(\zeta_0)| \le 2$

(V) $\zeta_0 \in B$

(VI) $|\zeta_0|^2$

(VII) 8

(VIII) 4

(IX) 2

(X) $\zeta_0 \notin A$

7. Solution.

(a) Let
$$A = \Big\{ \zeta \in \mathbb{C} : |\zeta - i| < 1 \Big\}, B = \Big\{ \zeta \in \mathbb{C} : |\zeta + i| < 3 \Big\}.$$

[Pictorial roughwork. Give a sketch of A, B on the Argand plane.

A is the open disc with centre i and radius 1.

B is the open disc with centre -i and radius 3.

The former lies entirely inside the latter.]

i. We verify $A \subset B$.

[Reminder. This amounts to proving 'for any $\zeta \in \mathbb{C}$, if $\zeta \in A$ then $\zeta \in B$ '.]

Pick any $\zeta \in \mathbb{C}$. Suppose $\zeta \in A$.

We have $|\zeta - i| < 1$ (by the definition of A).

By the Triangle Inequality, we have $|\zeta + i| = |\zeta - i + 2i| \le |\zeta - i| + |2i| = |\zeta - i| + 2 < 1 + 2 = 3$.

Then $|\zeta + i| < 3$. Therefore, we have $\zeta \in B$ (by the definition of B).

It follows that $A \subset B$.

ii. We verify $B \not\subset A$.

[Reminder. This amounts to proving 'there exists some $\zeta_0 \in \mathbb{C}$ such that $\zeta_0 \in B$ and $\zeta_0 \notin A$ '.]

Take $\zeta_0 = 0$. By definition, $\zeta_0 \in \mathbb{C}$.

Note that $|\zeta_0 + i| = |0 + i| = 1 < 3$.

Then $\zeta_0 \in B$.

We verify that $\zeta_0 \notin A$:

• We have $|\zeta_0 - i| = |0 - i| = 1 \ge 1$.

Then $\zeta_0 \notin A$.

It follows that $B \not\subset A$.

(b) Let
$$D = \left\{ \zeta \in \mathbb{C} : |\zeta| \le 5 \right\}$$
, $E = \left\{ \zeta \in \mathbb{C} : |\zeta - 4| + |\zeta + 4| \le 10 \right\}$, $F = \left\{ \zeta \in \mathbb{C} : |\zeta| \le 3 \right\}$.

[Pictorial roughwork. Give a sketch of D, E, F on the Argand plane.

D is the closed disc with centre 0 and radius 5.

E is the closed elliptical region with centre 0, foci at 4, -4, vertices at 5, -5 and covertices 3i, -3i. (Its boundary

is given by the equation $\frac{(\mathsf{Re}(z))^2}{25} + \frac{(\mathsf{Im}(z))^2}{9} = 1$ with complex unknown z.)

F is the closed disc with centre 0 and radius 3.

It will appear that F lies entirely inside E, and E lies entirely inside D.

i. We verify $D \not\subset E$.

[Reminder. This amounts to proving 'there exists some $\zeta_0 \in \mathbb{C}$ such that $\zeta_0 \in D$ and $\zeta_0 \notin E$ '.]

Take $\zeta_0 = 5i$. By definition, $\zeta_0 \in \mathbb{C}$.

We have $|\zeta_0| = 5 \le 5$. Then $\zeta_0 \in D$.

We verify that $|\zeta_0| \notin E$:

• We have $|\zeta_0 - 4| + |\zeta_0 + 4| = |-4 + 5i| + |4 + 5i| = 2\sqrt{41} > 2\sqrt{36} = 12 > 10$. Then $\zeta_0 \notin E$.

It follows that $D \not\subset E$.

ii. We verify $E \subset D$.

[Reminder. This amounts to proving 'for any $\zeta \in \mathbb{C}$, if $\zeta \in E$ then $\zeta \in D$ '.]

Pick any $\zeta \in \mathbb{C}$. Suppose $\zeta \in E$.

We have $|\zeta - 4| + |\zeta + 4| \le 10$.

By the Triangle Inequality, we have $2|\zeta| = |2\zeta| = |(\zeta - 4) + (\zeta + 4)| \le |\zeta - 4| + |\zeta + 4| \le 10$.

Then $|\zeta| \leq 5$.

Hence $\zeta \in D$.

It follows that $E \subset D$.

iii. We verify $E \not\subset F$.

[Reminder. This amounts to proving 'there exists some $\zeta_0 \in \mathbb{C}$ such that $\zeta_0 \in E$ and $\zeta_0 \notin F$ '.]

Take $\zeta_0 = 4$. By definition, $\zeta_0 \in \mathbb{C}$.

We have $|\zeta_0 - 4| + |\zeta_0 + 4| = 8 \le 10$. Then $\zeta_0 \in E$.

We verify that $|\zeta_0| \notin F$:

• We have $|\zeta_0| = 4 > 3$.

Then $\zeta_0 \notin F$.

It follows that $E \not\subset F$.

It follows that $F \subset E$.

iv. We verify $F \subset E$.

[Reminder. This amounts to proving 'for any $\zeta \in \mathbb{C}$, if $\zeta \in F$ then $\zeta \in E$ '.]

Pick any $\zeta \in \mathbb{C}$. Suppose $\zeta \in F$.

We have $|\zeta| \leq 3$. Therefore $(\text{Re}(\zeta))^2 + (\text{Im}(\zeta))^2 = |\zeta|^2 \leq 9$.

Note that

$$(|\zeta - 4| + |\zeta + 4|)^{2} = |\zeta - 4|^{2} + |\zeta + 4|^{2} + 2|\zeta - 4| \cdot |\zeta + 4|$$

$$= (\zeta - 4)(\overline{\zeta} - 4) + (\zeta + 4)(\overline{\zeta} + 4) + 2|(\zeta - 4)(\zeta + 4)|$$

$$= 2|\zeta|^{2} + 32 + 2|\zeta^{2} - 16|$$

$$\leq 2|\zeta|^{2} + 32 + 2(|\zeta^{2}| + 16)$$

$$= 4|\zeta|^{2} + 64$$

$$\leq 4 \cdot 3^{2} + 64$$

$$= 100$$

Since $|\zeta - 4| + |\zeta + 4|$ and 100 are both non-negative, we have $|\zeta - 4| + |\zeta + 4| \le 10$.

Remark. The 'algbraic relation' $(|z-4|+|z+4|)^2=2|z|^2+32+2|z^2-16|$ ' which holds for any arbitrary complex number z is playing a crucial role in the argument. The inequality $(|z^2-16| \le |z^2|+16)$ ' which holds for any arbitrary complex number z is also crucial.

8. Solution.

(a) Let
$$A = \left\{ x \,\middle|\, \begin{array}{l} \text{There exists some } n \in \mathbb{Z} \\ \text{such that } 3x = 8n + 1 \end{array} \right\}, \, B = \left\{ x \,\middle|\, \begin{array}{l} \text{There exists some } n \in \mathbb{Z} \\ \text{such that } 9x = 4n - 1 \end{array} \right\}.$$

 $[Roughwork.\ A ext{ is the collection of rational numbers}]$

$$\cdots, -5, -\frac{7}{3}, \frac{1}{3}, 3, \frac{17}{3}, \cdots$$

B is the collection of rational numbers

$$\cdots, -\frac{7}{3}, -\frac{17}{9}, -\frac{13}{9}, -1, -\frac{5}{9}, -\frac{1}{9}, \frac{1}{3}, \frac{7}{9}, \frac{11}{9}, \frac{5}{3}, \frac{19}{9}, \frac{23}{9}, 3, \cdots$$

It seems that every element of A belongs to B, and some element of B does not belong to A.]

i. We verify $A \subset B$.

[Reminder. This amounts to proving 'for any x, if $x \in A$ then $x \in B$ '.]

Pick any object x. Suppose $x \in A$.

By the definition of A, there exists some $n \in \mathbb{Z}$ such that 3x = 8n + 1.

[Roughwork. We want to name an appropriate m which satisfies ' $s \in \mathbb{Z}$ ' and '9x = 4m - 1' simultaneously. We ask: Does the equality '3x = 8n + 1' provide any hint?]

Take m = 6n + 1. Since $1, 6, n \in \mathbb{Z}$, we have $m \in \mathbb{Z}$.

We have $9x = 3 \cdot 3x = 3(8n + 1) = 24n + 3 = 4(6n + 1) - 1 = 4m - 1$.

Hence, by the definition of B, we have $x \in B$.

It follows that $A \subset B$.

ii. We verify $B \not\subset A$. [Reminder. This amounts to proving 'there exists some x_0 such that $x_0 \in B$ and $x_0 \notin A$ '.]

Let $x_0 = -\frac{1}{9}$.

Note that $9x_0 = -1 = 4 \cdot 0 - 1$ and $0 \in \mathbb{Z}$. Then $x_0 \in B$, by the definition of B.

We verify that $x_0 \notin A$ with the method of proof-by-contradiction:

• Suppose it were true that $x_0 \in A$.

Then, by the definition of A, there would exist some $n \in \mathbb{Z}$ such that $3x_0 = 8n + 1$.

Now
$$-\frac{1}{3} = 3 \cdot -\frac{1}{9} = 3x_0 = 8n + 1.$$

Since $1, 8, n \in \mathbb{Z}$, we have $8n + 1 \in \mathbb{Z}$. Then $-\frac{1}{3} \in \mathbb{Z}$.

Note that $-\frac{1}{3}$ is not an integer.

Contradiction arises.

It follows that in the first place, $x_0 \notin A$.

Hence $A \not\subset B$.

(b) Let
$$C = \left\{ x \,\middle| \, \begin{array}{c} \text{There exist some } m,n \in \mathbb{Z} \\ \text{such that } x = 12m + 18n \end{array} \right\}, \, D = \left\{ x \,\middle| \begin{array}{c} \text{There exist some } m,n \in \mathbb{Z} \\ \text{such that } x = 6m + 8n \end{array} \right\}$$

[Roughwork. The elements of C are necessarily integral multiples of 6.

Amongst the elements of D is the integer 2 (because $2 = 6(-1) + 8 \cdot 1$). But then every even integer belongs to D

So it seems that every element of C belongs to D, but some element of D does not belong to C.

i. We verify $C \subset D$.

[Reminder. This amounts to proving 'for any x, if $x \in C$ then $x \in D$ '.]

Pick any x. Suppose $x \in C$.

Then, by the definition of C, there exists some $k, \ell \in \mathbb{Z}$ such that $x = 12k + 18\ell$.

We have $x = 6(2k + 3\ell) + 8 \cdot 0$.

Note that $0 \in \mathbb{Z}$.

Since $2, 3, k, \ell \in \mathbb{Z}$, we have $2k + 3\ell \in \mathbb{Z}$.

Then, by the definition D, we have $x \in D$.

It follows that $C \subset D$.

ii. We verify $D \not\subset C$.

[Reminder. This amounts to proving 'there exists some x such that $x \in D$ and $x \notin C$ '.]

Let $x_0 = 2$

Note that $x_0 = 6(-1) + 8 \cdot 1$ and $-1, 1 \in \mathbb{Z}$. Then $x_0 \in D$, by the definition of D.

We verify that $x_0 \notin C$ with the method of proof-by-contradiction:

• Suppose it were true that $x_0 \in C$.

Then, by the definition of C, there would exist some $m, n \in \mathbb{Z}$ such that $x_0 = 12m + 18n$.

Then
$$2 = x_0 = 12m + 18n = 6(2m + 3n)$$
. Therefore $2m + 3n = \frac{1}{3}$

Since $2, 3, m, n \in \mathbb{Z}$, we would have $2m + 3n \in \mathbb{Z}$.

Then $\frac{1}{3}$ would be an integer. But $\frac{1}{3}$ is not an integer.

Contradiction arises.

It follows that, in the first place, $x_0 \notin C$.

Hence $D \not\subset C$.

9. Answer.

(a) i. Suppose K, L be sets. Then we say K is equal to L as sets if both statements (†), (‡) hold:

- (†) For any object x, if $x \in K$ then $x \in L$.
- (‡) For any object y, if $y \in L$ then $y \in K$.

Alternative answer.

Suppose K, L be sets. Then we say K is equal to L as sets if both statements (\star) , $(\star\star)$ hold:

- (\star) K is a subset of L.
- $(\star\star)$ L is a subset of K.
- ii. The empty set is defined to be the set $\{x \mid x \neq x\}$.
- iii. Suppose A,B are sets. Then the intersection of A,B is defined to be the set $\{x \mid x \in A \text{ and } x \in B\}$.
- iv. Suppose A,B are sets. Then the union of A,B is defined to be the set $\left\{x \mid x \in A \text{ or } x \in B\right\}$.
- v. Suppose A,B are sets. Then the complement of B in A is defined to be the set $\Big\{x \ \Big| \ x \in A \text{ and } x \notin B\Big\}$.
- vi. Suppose A is a set. Then the power set of A is defined to be the set $\{S \mid S \text{ is a subset of } A\}$.
- (b) i. (I) $A \cup B \subset B$
 - (II) it were true that $A \backslash B \neq \emptyset$
 - (III) $x_0 \in A \backslash B$
 - (IV) $x_0 \in A$ and
 - (V) $x_0 \in A$
 - (VI) $x_0 \in B$

Alternative answer. (V) $x_0 \in B$ (VI) $x_0 \in A$

- (VII) $x_0 \in A \cup B$
- (VIII) $x_0 \in B$
- (IX) and
- (X) Contradiction arises
- (XI) $A \backslash B = \emptyset$
- ii. (I) Suppose C, D are sets.
 - (II) Suppose $S \in \mathfrak{P}(C) \cup \mathfrak{P}(D)$
 - (III) $S \in \mathfrak{P}(C)$ or $S \in \mathfrak{P}(D)$
 - (IV) Suppose $S \in \mathfrak{P}(C)$.
 - (V) $S \subset C$
 - (VI) Since $x \in S$ and $S \subset C$, we have $x \in C$
 - (VII) $x \in C$ or $x \in D$
 - (VIII) $x \in C \cup D$
 - (IX) $S \subset C \cup D$
 - $(X) S \in \mathfrak{P}(C \cup D)$
 - (XI) Suppose $S \in \mathfrak{P}(D)$
 - (XII) $S \in \mathfrak{P}(C \cup D)$
- iii. (I) if $x \in A \cap B$ then $x \in A$
 - (II) Suppose $x \in A \cap B$
 - (III) $x \in A$ and $x \in B$
 - (IV) $x \in A$
 - (V) For any object x, if $x \in A$ then $x \in A \cap B$
 - (VI) Pick any object x. Suppose $x \in A$.
 - (VII) $x \in A$ and $A \subset B$

- (VIII) $x \in A$ and $x \in B$
- (IX) $x \in A \cap B$
- (X) $A \cap B \subset A$
- (XI) $A \cap B = A$
- (XII) For any object x, if $x \in A$ then $x \in B$
- (XIII) $x \in A$
- (XIV) $A \cap B = A$
- (XV) by the definition of intersection, we have $x \in A$ and $x \in B$
- (XVI) $x \in B$
- iv. (I) Suppose $x \in C \backslash B$.
 - (II) complement
 - (III) $x \in C$ and $x \notin B$
 - (IV) Suppose it were true that $x \in A$.
 - (V) since $x \in A$ and
 - (VI) $x \in B$
 - (VII) and
 - (VIII) $x \in C$ and $x \notin A$
 - (IX) $x \in C \backslash A$
 - (X) Pick any object x. Suppose $x \in A$.
 - (XI) Suppose it were true that $x \notin B$.
 - (XII) and $A \subset C$
 - (XIII) $x \in C$
 - (XIV) and $x \notin B$
 - (XV) $x \in C \backslash B$
 - (XVI) $x \in C \backslash A$
 - (XVII) complement
 - (XVIII) $x \in C$ and $x \notin A$
 - (XIX) $x \notin A$
 - (XX) $x \in A$ and $x \notin A$

10. Solution.

(a) Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$.

[We want to deduce $A \cup B \subset C \cup D$. According to definition, this is the same as deducing 'For any object x, if $x \in A \cup B$ then $x \in C \cup D$.]

Pick any object x.

Suppose $x \in A \cup B$. [We ask whether it is true that $x \in C \cup D$.]

By the definition of union, $x \in A$ or $x \in B$.

- (Case 1). Suppose $x \in A$. Then, since $A \subset C$, we have $x \in C$ by the definition of subset relation. Therefore $x \in C$ or $x \in D$. Hence $x \in C \cup D$ by the definition of union.
- (Case 2). Suppose $x \notin A$. Then $x \in B$. Therefore, since $B \subset D$, we have $x \in D$. Then $x \in C$ or $x \in D$. Hence $x \in C \cup D$.

Hence, in any case, we have $x \in C \cup D$.

It follows that $A \cup B \subset C \cup D$.

(b) Let A, B, C be sets. Suppose $A \subset B$, $B \subset C$, and $C \subset A$.

By assumption, we have $A \subset B$. (\star)

We now verify that $B \subset A$:

• Pick any object x. Suppose $x \in B$.

Then, since $x \in B$ and $B \subset C$, we have $x \in C$ (by the definition of subset relation).

Since $x \in C$ and $C \subset A$, we have $x \in A$ (by the definition of subset relation).

Hence it follows that $B \subset A$. $(\star\star)$

By (\star) and $(\star\star)$ together, we have A=B according to the definition of set equality.

(c) Let A, B be sets. Suppose $A \subset A \backslash B$.

Further suppose it were true that $A \cap B \neq \emptyset$. Take some $x_0 \in A \cap B$. We have $x_0 \in A$ and $x_0 \in B$. In particular $x_0 \in A$. Also, $x_0 \in B$.

Since $x_0 \in A$ and $A \subset A \setminus B$, we would have $x_0 \in A \setminus B$. Then $x_0 \in A$ and $x_0 \notin B$ by definition of complement. In particular $x_0 \notin B$.

Now we have $x_0 \in B$ and $x_0 \notin B$. Contradiction arises.

It follows that $A \cap B = \emptyset$ in the first place.

Alternative argument:

Let A, B be sets. Suppose $A \subset A \backslash B$.

• Suppose it were true that $A \cap B \neq \emptyset$. Take some $x_0 \in A \cap B$.

We would have $x_0 \in A$ and $x_0 \in B$ by definition of complement. In particular $x_0 \in A$.

Also, it would be false that $x_0 \notin B$. Then it would be false that $(x_0 \in A \text{ and } x_0 \notin B)$. Therefore $x_0 \notin A \setminus B$. It would now follow that $A \not\subset A \setminus B$. Contradiction arises.

It follows that $A \cap B = \emptyset$.

(d) Let A, B be sets. Suppose $A \cap B = \emptyset$.

Pick any object x. Suppose $x \in A$.

We claim that $x \notin B$. We justify this claim by applying the proof-by-contradiction method:

• Suppose it were true that $x \in B$.

Recall that by assumption, $x \in A$ also.

Then, we would have $x \in A$ and $x \in B$.

Therefore, by the definition of intersection, $x \in A \cap B$.

Recall that by assumption, $A \cap B = \emptyset$.

Then $x \in \emptyset$. Contradiction arises.

It follows that $x \notin B$ in the first place.

Now we have $x \in A$ and $x \notin B$.

Then by the definition of complement, $x \in A \backslash B$.

It follows that $A \subset A \backslash B$.

- (e) Let A, B, C be sets. Suppose $A \subset C$ and $B \subset C$.
 - Pick any object x. Suppose $x \in (C \setminus A) \setminus (C \setminus B)$.

Then $x \in C \backslash A$ and $x \notin C \backslash B$.

In particular, $x \in C \setminus A$. Then $x \in C$ and $x \notin A$. In particular $x \notin A$.

Recall that $x \notin C \setminus B$. It is not true that $x \in C \setminus B$. Then it is not true that $(x \in C \text{ and } x \notin B)$. Therefore (it is not true that $x \in C$) or (it is not true that $x \notin B$). Hence $x \notin C$ or $x \in B$.

Recall that $x \in C$ and $x \notin A$. In particular $x \in C$. It is impossible to have $x \notin C$. Therefore $x \in B$.

Recall that $x \notin A$. Then $x \in B$ and $x \notin A$. Therefore $x \in B \setminus A$.

• Pick any object x. Suppose $x \in B \setminus A$. Then $x \in B$ and $x \notin A$. In particular $x \in B$. Since $B \subset C$, we have $x \in C$.

Recall that $x \in B$ and $x \notin A$. In particular $x \notin A$. We have $x \in C$ and $x \notin A$. Then $x \in C \setminus A$.

Recall that $x \in B$. Then $x \in B$ or $x \notin C$. Therefore (it is not true that $x \notin B$) or (it is not true that $x \in C$). Hence it is not true that $(x \notin B \text{ and } x \in C)$. Then it is not true that $x \in C \setminus B$. Now we have $x \notin C \setminus B$.

Therefore $x \in C \setminus A$ and $x \notin C \setminus B$. Hence $x \in (C \setminus A) \setminus (C \setminus B)$.

It follows that $(C \setminus A) \setminus (C \setminus B) = B \setminus A$.

(f) Let A, B be sets. Suppose $\mathfrak{P}(B) \in \mathfrak{P}(A)$.

Pick any subset S of B. We have $S \in \mathfrak{P}(B)$ by the definition of power set.

Since $\mathfrak{P}(B) \in \mathfrak{P}(A)$, we have $\mathfrak{P}(B) \subset A$ by the definition of power set.

Now we have $S \in \mathfrak{P}(B)$ and $\mathfrak{P}(B) \subset A$. Then $S \in A$ by the definition of subset relation.

11. Solution.

- (a) i. The statement concerned is true. Justification:
 - The elements of the set $\{1,3,5\}$ are 1,3,5. Each of 1,3,5 belongs to the set $\{1,3,5,7\}$. Therefore $\{1, 3, 5\}$ is a subset of $\{1, 3, 5, 7\}$.

Note that 7 belongs to the set $\{1,3,5,7\}$, and 7 does not belong to the set $\{1,3,5\}$.

Then $\{1, 3, 5\}$ is not equal to $\{1, 3, 5, 7\}$.

Hence $\{1, 3, 5\}$ is a proper subset of $\{1, 3, 5, 7\}$.

- ii. The statement concerned is false. Justification:
 - Note that 9 belongs to $\{1,3,5,9\}$ and 9 does not belong to $\{1,3,5,7\}$. Then $\{1, 3, 5, 9\}$ is not a subset of $\{1, 3, 5, 7\}$. Therefore $\{1, 3, 5, 9\}$ is not a proper subset of $\{1, 3, 5, 7\}$.
- iii. The statement concerned is false. Justification:
 - The elements of the set $\{1, 1, 3, 5, 7\}$ are $\{1, 3, 5, 7\}$. Each of $\{1, 3, 5, 7\}$ belongs to the set $\{1, 3, 5, 7, 7\}$. The elements of the set $\{1, 3, 5, 7, 7\}$ are $\{1, 3, 5, 7, 7\}$. Each of $\{1, 3, 5, 7, 7\}$ belongs to the set $\{1, 1, 3, 5, 7\}$. Then $\{1, 3, 5, 7, 7\}$ is equal to $\{1, 1, 3, 5, 7\}$. Therefore $\{1, 3, 5, 7, 7\}$ is not a proper subset of $\{1, 1, 3, 5, 7\}$.
- i. Suppose A, B are sets.
 - Suppose $A \subsetneq B$. Then $A \subset B$ and $A \neq B$. In particular $A \subset B$. Since $A \neq B$, we have $(A \not\subset B \text{ or } B \not\subset A)$. Since $A \subset B$, we have $B \not\subset A$.
 - Suppose $A \subset B$ and $B \not\subset A$. Since $B \not\subset A$, it is not true that $B \subset A$. Therefore $A \neq B$. It follows that $A \subsetneq B$.
 - ii. Let A, B, C be sets. Suppose $A \subset B$ and $B \subset C$. Further suppose $A \subsetneq B$ or $B \subsetneq C$. Since $A \subset B$ and $B \subset C$, we have $A \subset C$. We verify that $C \not\subset A$:
 - Suppose it were true that $C \subset A$. Then, since $A \subset C$, we would have A = C. Moreover, since $A \subset B$ and $B \subset C = A$, we would have A = B. Therefore B = C also. Now A = B and B = C. Then $(A \subseteq B \text{ or } B \subseteq C)$ would be false.

Contradiction arises. Hence $C \not\subset A$ in the first place.

Now we have $A \subset C$ and $C \not\subset A$. It follows that $A \subsetneq C$.

12. Answer.

- (a) There are many correct answers for (II), (III), ..., (IX) (b) collectively.
 - (I) There exist some $x, y, z \in \mathbb{Z}$ such that each of xy, xz is divisible by 4 and xyz is not divisible by
 - (II) y = z = 1
 - (III) 4
 - (IV) 4
 - (V) $4 = 1 \cdot 4$ and $1 \in \mathbb{Z}$
 - (VI) 4
 - (VII) 4 were divisible by 8
 - (VIII) 4 = 8k
 - (IX) $\frac{1}{2}$

- (I) There exist some sets A, B, C such that $A \cap B \neq A$ \emptyset and $A \cap B \subset C$ and $A \not\subset C$ and $B \not\subset C$.
- (II) $C = \{3\}$
- (III) ∅
- (IV) $A \cap B \subset C$
- (V) and $1 \notin C$
- (VI) $A \not\subset C$
- (VII) $2 \in B$ and $2 \notin C$
- (VIII) $B \not\subset C$
- (I) There exist some $x, y \in \mathbb{R}$ such that x > 0 and (c) y > 0 and $|x^2 - 2x| < |y^2 - 2y|$ and $x^2 > y^2$.
 - (II) y = 1
 - (III) x > 0 and y > 0

(IV) 0

(V)
$$|y^2 - 2y| = 1$$

(VI) $|x^2 - x|$

(VII) $|y^2 - y|$

 $(\mathbf{v}\mathbf{n}) | y - y |$

(VIII) $x^2 = 4$

(IX) $x^2 > y^2$

(d) (I) There exist some $m, n \in \mathbb{N} \setminus \{0, 1, 2\}$, $\zeta, \omega \in \mathbb{C}$ such that $m \neq n$ and $\zeta \neq \omega$ and ζ is an m-th root of unity and ω is an n-th root of unity and $\zeta \omega$ is not an (m+n)-th root of unity.

(II) Take

(III)
$$\omega = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$$

(IV) $m \neq n$ and $\zeta \neq \omega$

(V) ζ is an *m*-th root of unity

(VI)
$$\omega^n = \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^8 = \cos\left(8 \cdot \frac{\pi}{4}\right) + i\sin\left(8 \cdot \frac{\pi}{4}\right) = \cos(2\pi) + i\sin(2\pi) = 1$$
(VII) 12

(VIII)
$$(\zeta \omega)^{m+n} = \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)^{12} = \cos\left(12 \cdot \frac{3\pi}{4}\right) + i\sin\left(12 \cdot \frac{3\pi}{4}\right) = \cos(9\pi) + i\sin\left(12 \cdot \frac{3\pi}{4}\right) = i\sin\left(12 \cdot \frac{3\pi}{4}\right) =$$

 $i\sin(9\pi) = -1$

 $(IX) \neq$

(X) $\zeta \omega$ is not an (m+n)-th root of unity

(e) (I) Suppose

(II) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$

(III) $u^6 + v^6 \le 2v^4$

(IV) $u^6 - 2u^4 + u^2 + v^6 - 2v^4 + v^2 \le 0$

(V) $v^2(v^2-1)$

(VI) $v^2(v^2-1)^2=0$

(VII) $u^2(u^2-1)^2=0$

(VIII) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$

(I) Suppose there existed some $\zeta \in \mathbb{C} \backslash \mathbb{R}$ such that ζ was both an 89-th root of unity and a 55-th root of unity.

(II) 1

(f)

(III) $\zeta^{89} = 1$

$$\begin{split} \text{(IV)} \ \zeta^{21} &= \zeta^{55}/\zeta^{34} = 1, \ \zeta^{13} = \zeta^{34}/\zeta^{21} = 1, \ \zeta^{8} = \zeta^{21}/\zeta^{13} = 1, \ \zeta^{5} = \zeta^{13}/\zeta^{8} = 1, \ \zeta^{3} = \zeta^{8}/\zeta^{5} = 1, \\ \zeta^{2} &= \zeta^{5}/\zeta^{3} = 1, \ \zeta = \zeta^{3}/\zeta^{2} = 1. \end{split}$$

 $(V) \mathbb{C} \backslash \mathbb{R}$

(VI) and

13. Solution.

(a) Denote by M the statement below:

M: Let $x, y, z \in \mathbb{N}$. Suppose x + y, y + z are divisible by 3. Then x + z is divisible by 3.

The negation of M reads:

 $\sim M$: There exist some $x, y, z \in \mathbb{N}$ such that x + y, y + z are divisible by 3 and x + z is not divisible by 3.

We verify $\sim M$:

• Take x = z = 1, y = 2.

We have $x, y, z \in \mathbb{N}$.

Note that $x + y = y + z = 3 = 1 \cdot 3$. We have $1 \in \mathbb{Z}$.

Then, by definition, x + y, y + z are divisible by 3.

Note that x + z = 2. We verify that 2 is not divisible by 3:

* Suppose 2 were divisible by 3.

Then there would exist some $k \in \mathbb{Z}$ such that 2 = 3k.

For the same k, we would have $k = \frac{2}{3}$. Then k is not an integer.

Contradiction arises.

(b) Denote by M the statement below:

M: Let $x, y, z \in \mathbb{N}$. Suppose x - y > 0 and x - z > 0 and x - z, y - z are divisible by 5. Then x + y + z is not divisible by 5.

The negation of M reads:

 $\sim M$: There exist some $x, y, z \in \mathbb{N}$ such that x - y > 0 and x - z > 0 and x - z, y - z are divisible by 5 and x + y + z is divisible by 5.

We verify $\sim M$:

• Take x = y = 10, and z = 5.

We have $x, y, z \in \mathbb{N}$.

Note that x - z = y - z = 5 > 0.

Also note that $5 = 1 \cdot 5$, and $1 \in \mathbb{Z}$. Then x - z, y - z are divisible by 5.

Note that x+y+z=25, and $25=5\cdot 5$ and $5\in\mathbb{Z}$. Then x+y+z is divisible by 5.

(c) Denote by M the statement below:

M: Suppose $x, y \in \mathbb{N}$. Then $\sqrt{x^2 + y^2} \in \mathbb{N}$.

The negation of M reads:

 $\sim M$: There exist some $x, y \in \mathbb{N}$ such that $\sqrt{x^2 + y^2} \notin \mathbb{N}$.

We verify $\sim M$:

• Take x = 1, y = 2.

Note that $x, y \in \mathbb{N}$.

We have $x^2 + y^2 = 5$. Then $\sqrt{x^2 + y^2} = \sqrt{5} \notin \mathbb{N}$.

(d) Denote by M the statement below:

M: For any $s, t \in \mathbb{R}$, if both of s + t, st are rational, then at least one of s, t is rational.

The negation of M reads:

 $\sim M$: There exist some $s, t \in \mathbb{R}$ such that both of s + t, st are rational and both of s, t are irrational.

We verify $\sim M$:

• Take $s = \sqrt{2}, t = -\sqrt{2}$.

Note that $s, t \in \mathbb{R}$. Both of s, t are irrational numbers.

We have s + t = 0 and st = -2.

Then both of s+t, st are rational.

(e) Denote by M the statement below:

M: For any $a, b, c \in \mathbb{N}$, if ab is divisible by c and c < a and c < b, then at least one of a, b is divisible by c.

The negation of M reads:

 $\sim M$: There exist some $a, b, c \in \mathbb{N}$ such that ab is divisible by c and c < a and c < b and each of a, b is not divisible by c.

We verify $\sim M$:

• Take a = 8, b = 9, c = 6. Note that $a, b, c \in \mathbb{N}$, and c < a and c < b.

We have $ab = 72 = 12 \cdot 6$ and $12 \in \mathbb{Z}$. Then ab is divisible by c.

Note that a is not divisible by c, and b is not divisible by c. (Fill in the detail.)

(f) Denote by M the statement below:

M: Let n be a positive integer, and ζ be a complex number. Suppose ζ is an n^2 -th root of unity. Then ζ^2 is an n-th root of unity.

The negation of M reads:

 $\sim M$: There exist some positive integer n and some complex number ζ such that ζ is an n^2 -th root of unity and ζ^2 is not an n-th root of unity.

We verify $\sim M$:

• Take
$$n = 3$$
, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)$.

$$\zeta^{n^2}=\zeta^{3^2}=\zeta^9=\cos\left(9\cdot\frac{2\pi}{9}\right)+i\sin\left(9\cdot\frac{2\pi}{9}\right)=\cos(2\pi)+i\sin(2\pi)=1.$$

Then ζ is a n^2 -th root of unity.

$$\zeta^2 = \cos\left(2 \cdot \frac{2\pi}{9}\right) + i\sin\left(2 \cdot \frac{2\pi}{9}\right) = \cos\left(\frac{4\pi}{9}\right) + i\sin\left(\frac{4\pi}{9}\right).$$

$$(\zeta^2)^n = (\zeta^2)^3 = \cos\left(3 \cdot \frac{4\pi}{9}\right) + i\sin\left(3 \cdot \frac{4\pi}{9}\right) = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \neq 1.$$

Then ζ^2 is not an *n*-th root of unity.

- (g) Denote by M the statement below:
 - M: Let n be a positive integer, and ζ be a complex number. Suppose ζ^n is an n-th root of unity. Then ζ is a (2n)-th root of unity.

The negation of M reads:

 $\sim M$: There exist some positive integer n and some complex number ζ such that ζ^n is an n-th root of unity and ζ is not a (2n)-th root of unity.

We verify $\sim M$:

• Take
$$n = 3$$
, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)$.

Note that
$$\zeta^n = \zeta^3 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$$
.

Then $(\zeta^n)^n = (\zeta^3)^3 = \cos(2\pi) + i\sin(2\pi) = 1$.

Therefore ζ^n is a *n*-th root of unity.

Note that $\zeta^{2n} = \cos\left(6 \cdot \frac{2\pi}{9}\right) + i\sin\left(6 \cdot \frac{2\pi}{9}\right) = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) \neq 1$. Then ζ is not a (2n)-th root of unity.

14. Solution.

(a) Denote by M the statement below:

M: Suppose A, B, C are sets. Then $A \setminus (C \setminus B) \subset A \cap B$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that $A \setminus (C \setminus B) \not\subset A \cap B$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0, 1\}, B = \{1\}, C = \{2\}.$$

We have
$$A \cap B = B = \{1\}, C \setminus B = C = \{2\}, A \setminus (C \setminus B) = A = \{0, 1\}.$$

Note that $0 \in A \setminus (C \setminus B)$ and $0 \notin A \cap B$.

Hence $A \setminus (C \setminus B) \not\subset A \cap B$.

(b) Denote by M the statement below:

M: Suppose A, B, C be non-empty sets. Then $B \setminus A \subset (C \setminus A) \setminus (C \setminus B)$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that each of A, B, C is non-empty and $B \setminus A \not\subset (C \setminus A) \setminus (C \setminus B)$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0\}, B = \{1\}, C = \{2\}.$$

A, B, C are non-empty sets.

We have
$$B \setminus A = B = \{1\}$$
, $C \setminus A = C = \{2\}$, $C \setminus B = C = \{2\}$, and $(C \setminus A) \setminus (C \setminus B) = \emptyset$.

Note that $1 \in B \setminus A$ and $1 \notin (C \setminus A) \setminus (C \setminus B)$.

Hence $B \setminus A \not\subset (C \setminus A) \setminus (C \setminus B)$.

(c) Denote by M the statement below:

M: Suppose A, B, C are non-empty sets. Then $A \cup (B \cap C) \subset (A \cup B) \cap C$.

The negation of M reads:

 $\sim M$: There exists some sets A, B, C such that each of A, B, C is non-empty and $A \cup (B \cap C) \not\subset (A \cup B) \cap C$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0\}, B = \{1\}, C = \{2\}.$$

We have
$$B \cap C = \emptyset$$
. Then $A \cup (B \cap C) = \{0\}$.

We also have $A \cup B = \{0, 1\}$. Then $(A \cup B) \cap C = \emptyset$.

Note that $0 \in A \cup (B \cap C)$ and $0 \neq (A \cup B) \cap C$

Here $A \cup (B \cap C) \not\subset (A \cup B) \cap C$.

(d) Denote by M the statement below:

M: Suppose A, B, C are non-empty sets. Then $B \cap C \subset [A \setminus (B \setminus C)] \cup [B \setminus (C \setminus A)]$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that each of A, B, C is non-empty and $B \cap C \not\subset [A \setminus (B \setminus C)] \cup [B \setminus (C \setminus A)]$.

We verify $\sim M$:

• Regard 0, 1 as distinct objects.

Let
$$A = \{0\}$$
 and $B = C = \{0, 1\}$.

We have
$$B \cap C = \{0, 1\}.$$

We also have
$$B \setminus C = \emptyset$$
, $A \setminus (B \setminus C) = \{0\}$.

Moreover
$$C \setminus A = \{1\}, B \setminus (C \setminus A) = \{0\}.$$

Then we have
$$[A \setminus (B \setminus C)] \cup [B \setminus (C \setminus A)] = \{0\}.$$

Note that $1 \in B \cap C$ and $1 \notin [A \setminus (B \setminus C)] \cup [B \setminus (C \setminus A)]$.

Hence $B \cap C \not\subset [A \setminus (B \setminus C)] \cup [B \setminus (C \setminus A)]$.

(e) Denote by M the statement below:

M: Let A, B, C be sets. Suppose $A \cap B \subset C$. Then $C \subset (A \cap C) \cup (B \cap C)$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that $A \cap B \subset C$ and $C \not\subset (A \cap C) \cup (B \cap C)$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Take $A = \{1\}, B = \{2\}, C = \{0, 1, 2\}$. We have $A \cap B = \emptyset \subset C$.

Note that $A \cap C = A = \{1\}$ and $B \cap C = B = \{2\}$. Then $(A \cap C) \cup (B \cap C) = \{1, 2\}$.

 $0 \in C$ and $0 \notin (A \cap C) \cup (B \cap C)$.

Hence $C \not\subset (A \cap C) \cup (B \cap C)$.

(f) Denote by M the statement below:

M: Let A, B, C be sets. Suppose $A \setminus B$, $A \setminus C$ are non-empty. Then $A \setminus (B \cap C) \subset (A \setminus B) \cap (A \setminus C)$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that $A \setminus B$, $A \setminus C$ are non-empty and $A \setminus (B \cap C) \not\subset (A \setminus B) \cap (A \setminus C)$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Take $A = \{0, 2\}, B = \{1\}, C = \{1, 2\}.$

We have $A \setminus B = \{0, 2\} \neq \emptyset$ and $A \setminus C = \{1\} \neq \emptyset$.

We have $B \cap C = \{1\}, A \setminus (B \cap C) = \{0, 2\}.$

We have $(A \backslash B) \cap (A \backslash C) = \emptyset$.

Note that $0 \in A \setminus (B \cap C)$ and $0 \notin (A \setminus B) \cup (A \setminus C)$.

Then $A \setminus (B \cap C) \not\subset (A \setminus B) \cap (A \setminus C)$.

(g) Denote by M the statement below:

M: Let A, B, C, D be non-empty sets. Suppose $A \subset C$ and $B \subset D$. Further suppose $C \cap D \neq \emptyset$. Then $A \cup B \subset C \cap D$.

The negation of M reads:

 $\sim M$: There exist some sets A, B, C, D such that each of A, B, C, D is non-empty and $A \subset C$ and $B \subset D$ and $C \cap D \neq \emptyset$ and $A \cup B \not\subset C \cap D$.

We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects.

Take $A = \{1\}, B = \{2\}, C = \{0, 1\}, D = \{0, 2\}.$

A, B, C, D are all non-empty sets. $A \subset C$ and $B \subset D$.

 $C \cap D = \{0\}$. Then $C \cap D \neq \emptyset$.

 $A \cup B = \{1, 2\}$. Note that $1 \in A \cup B$ and $1 \notin C \cap D$. Then $A \cup B \not\subset C \cap D$.

15. Solution.

(a) Method(A).

Denote by N the statement below:

N: There exists some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.

The negation of N reads:

 $\sim N$: For any $x \in \mathbb{R}$, $x^2 + 2x + 3 \ge 0$.

We verify $\sim N$:

• Pick any $x \in \mathbb{R}$.

We have $x^2 + 2x + 3 = (x+1)^2 + 2$. (\star)

Since $x \in \mathbb{R}$, we have $x + 1 \in \mathbb{R}$. Then $(x + 1)^2 \ge 0$.

Therefore by (\star) , we have $x^2 + 2x + 3 \ge 0 + 2 = 2 \ge 0$.

Method (B).

[Denote by N the statement below:

N: There exists some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.

Note that $x^2 + 2x + 3 = (x+1)^2 + 2$. — (\star)

Since $x \in \mathbb{R}$, we would have $x + 1 \in \mathbb{R}$. Then $(x + 1)^2 \ge 0$.

By (\star) , we would have $x^2 + 2x + 3 \ge 0 + 2 = 2 \ge 0$.

Then $0 \le x^2 + 2x + 3 \le 0$. Contradiction arises.

Hence, in the first place, it is false that there exists some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.

(b) Method (A).

Denote by N the statement below:

N: There exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$.

The negation of N reads:

 $\sim N$: For any $x, y \in \mathbb{R} \setminus \{0\}$, $(x+y)^2 \neq x^2 + y^2$.

We verify $\sim N$:

• Pick any $x, y \in \mathbb{R} \setminus \{0\}$.

We have $xy \neq 0$. Then $(x + y)^2 - x^2 - y^2 = 2xy \neq 0$.

Therefore $(x+y)^2 \neq x^2 + y^2$.

Method (B).

[Denote by N the statement below:

N: There exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x + y)^2 = x^2 + y^2$.

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$.

Then we would have $2xy = (x + y)^2 - x^2 - y^2 = 0$.

Since $x \neq 0$ and $y \neq 0$ and $2 \neq 0$, we have $2xy \neq 0$.

Contradiction arises.

(c) Method (A).

Denote by N the statement below:

N: There exists some $r \in \mathbb{R}$ such that $r < r^5 \le r^3$.

We may re-formulation N as:

N: There exists some $r \in \mathbb{R}$ such that $r < r^5$ and $r^5 \le r^3$.

One formulation of the negation of N reads:

 $\sim N$: For any $r \in \mathbb{R}$, if $r < r^5$ then $r^5 > r^3$.

We verify $\sim N$:

Pick any $r \in \mathbb{R}$. Suppose $r < r^5$.

Then
$$r(r^2-1)(r^2+1) = r^5 - r > 0$$
. (#)

Since r is a real number, $r^2 \ge 0$. Then $r^2 + 1 > 0$.

By (\sharp) , we have $r(r^2 - 1) > 0$. —— (\natural)

Note that $r \neq 0$; otherwise we would have $r(r^2 - 1) = 0$. Then $r^2 > 0$.

Therefore by (\natural) , we have $r^5 - r^3 = r^2 \cdot r(r^2 - 1) > 0$.

Hence $r^5 > r^3$.

Method (B).

[Denote by N the statement below:

N: There exists some $r \in \mathbb{R}$ such that $r < r^5 \le r^3$.

We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some $r \in \mathbb{R}$ such that $r < r^5 \le r^3$.

We would have $r < r^3$.

Note that $r \neq 0$; otherwise we would have $r = r^3 = r^5 = 0$. Since r is a real number, $r^2 > 0$.

Then, since $r^5 \leq r^3$, we would have $r^3 = \frac{r^5}{r^2} \leq \frac{r^3}{r^2} = r$.

Now we would have $r < r^3$ and $r^3 \le r$. Therefore r < r. Contradiction arises.

(d) Method (A).

Denote by N the statement below:

N: There exists some $\zeta \in \mathbb{C} \setminus \{1\}$, $n \in \mathbb{N} \setminus \mathbb{N} \setminus \{0,1\}$ such that ζ is an (n+1)-th root of unity and ζ is an (n^2+n+1) -th root of unity.

One formulation of the negation of N reads:

 $\sim N$: For any $\zeta \in \mathbb{C} \setminus \{1\}$, for any $n \setminus \{0,1\}$, if ζ is an (n+1)-th root of unity then ζ is not an (n^2+n+1) -th root of unity.

We verify $\sim N$:

Pick any $\zeta \in \mathbb{C} \setminus \{1\}$, $n \in \mathbb{N} \setminus \{0,1\}$. Suppose ζ is an (n+1)-th root of unity.

[We want to deduce that ζ is not an $(n^2 + n + 1)$ -th root of unity.]

By assumption, we have $\zeta^{n+1} = 1$.

Then $\zeta^{n^2+n+1} = \zeta^{(n+1)n+1} = (\zeta^{n+1})^n \cdot \zeta = 1^n \cdot \zeta = \zeta \neq 1$.

Therefore ζ is not an $(n^2 + n + 1)$ -th root of unity.

Method (B).

[Denote by N the statement below:

N: There exists some $\zeta \in \mathbb{C} \setminus \{1\}$, $n \in \mathbb{N} \setminus \{0,1\}$ such that ζ is an (n+1)-th root of unity and ζ is an (n^2+n+1) -th root of unity.

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $\zeta \in \mathbb{C} \setminus \{1\}$, $n \in \mathbb{N} \setminus \{0,1\}$ such that ζ was an (n+1)-th root of unity and ζ was an $(n^2 + n + 1)$ -th root of unity.

By assumption, we would have $\zeta^{n+1} = 1$ and $\zeta^{n^2+n+1} = 1$.

Then
$$1 = \zeta^{n^2 + n + 1} = \zeta^{(n+1)n + 1} = (\zeta^{n+1})^n \cdot \zeta = 1^n \cdot \zeta = \zeta$$
.

But $\zeta \neq 1$ by assumption. Contradiction arises.

(e) Method (A).

Denote by N the statement below:

N: There exists some $s \in \mathbb{Q}$ such that (for any $t \in \mathbb{Q}$, s = 2t + 1).

The negation of N reads:

 $\sim N$: For any $s \in \mathbb{Q}$, there exists some $t \in \mathbb{Q}$ such that s = 2t + 1.

We verify $\sim N$:

• Pick any $s \in \mathbb{Q}$.

Define
$$t = \frac{s-1}{2}$$
. Since $s, 1, 2 \in \mathbb{Q}$, we have $t \in \mathbb{Q}$.

By definition, we have $2t + 1 = 2 \cdot \frac{s-1}{2} + 1 = (s-1) + 1 = s$.

Method(B).

Denote by N the statement below:

N: There exists some $s \in \mathbb{Q}$ such that (for any $t \in \mathbb{Q}$, s = 2t + 1).

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $s \in \mathbb{Q}$ such that (for any $t \in \mathbb{Q}$, s = 2t + 1).

Note that $0 \in \mathbb{Q}$. Then, for the same s, we would have $s = 2 \cdot 0 + 1 = 1$.

Also note that $1 \in \mathbb{Q}$. Then, for the same s, we would have $s = 2 \cdot 1 + 1 = 3$.

Then 1 = 3. Contradiction arises.

Hence, in the first place, it is false that there exists some $s \in \mathbb{Q}$ such that (for any $t \in \mathbb{Q}$, s = 2t + 1).

(f) Method(A).

Denote by N the statement below:

N: There exists some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).

The negation of N reads:

 $\sim N$: For any $t \in \mathbb{R}$, there exists some $s \in \mathbb{C}$ such that |s| > t.

We verify $\sim N$:

• Pick any $t \in \mathbb{R}$.

Take s = |t| + 1. By definition, $s \in \mathbb{C}$.

Note that s is a positive real number. Then $|s| = ||t| + 1| = |t| + 1 > |t| \ge t$.

Method (B).

Denote by N the statement below:

N: There exists some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).

For this real number t, the statement 'for any $s \in \mathbb{C}$, $|s| \leq t$ ' would be true.

Note that |t| + 1 is a complex number.

Then $||t| + 1| \le t$.

Since |t| + 1 is a non-negative real number, we have |t| + 1 = |t| + 1.

Then we have $|t| + 1 \le t \le |t|$. Therefore $1 \le 0$.

Contradiction arises.

(g) Method (A).

Denote by N the statement below:

N: There exist some $a \in \mathbb{R}, n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ such that $\frac{(1 + \sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} \le \frac{a^2}{24}$

The negation of N reads:

$$\sim N$$
: For any $a \in \mathbb{R}$, for any $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$, $\frac{(1 + \sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} > \frac{a^2}{24}$.

We verify $\sim N$:

• Pick any $a \in \mathbb{R}$. Pick any $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By the Binomial Theorem,

$$\left(1 + \sqrt{|a|}\right)^n = \sum_{j=0}^n \binom{n}{j} \cdot (\sqrt{|a|})^j$$

$$\geq 1 + \frac{n(n-1)(n-2)(n-3)}{4!} (\sqrt{|a|})^4$$

$$> \frac{n(n-1)(n-2)(n-3)}{24} a^2.$$

(The first inequality holds because $\binom{n}{j} \cdot (\sqrt{|a|})^j \ge 0$ for each j. The second holds because 1 > 0.) Since $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$, we have n(n-1)(n-2)(n-3) > 0.

Then
$$\frac{(1+\sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} > \frac{a^2}{24}$$

Method (B).

[Denote by N the statement below:

N: There exist some
$$a \in \mathbb{R}$$
, $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ such that $\frac{(1 + \sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} \le \frac{a^2}{24}$.

We dis-prove the statement N by obtaining a contradiction from it.

Suppose it were true that there existed some $a \in \mathbb{R}$, $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ such that

$$\frac{\left(1+\sqrt{|a|}\right)^n}{n(n-1)(n-2)(n-3)} \le \frac{a^2}{24}.$$

By the Binomial Theorem,

$$\left(1 + \sqrt{|a|}\right)^n = \sum_{j=0}^n \binom{n}{j} \cdot (\sqrt{|a|})^j$$

$$\geq 1 + \frac{n(n-1)(n-2)(n-3)}{4!} (\sqrt{|a|})^4$$

$$> \frac{n(n-1)(n-2)(n-3)}{24} a^2.$$

Since $n \in \mathbb{N} \setminus \{0, 1, 2, 3\}$, we have n(n-1)(n-2)(n-3) > 0.

Then
$$\frac{(1+\sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} > \frac{a^2}{24}$$
.

Now, by assumption,
$$\frac{a^2}{24} \ge \frac{(1+\sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} > \frac{a^2}{24}$$
.

Contradiction arises.

16. Solution.

(a) Method(A).

Denote by N the statement below:

N: There exists some $x \in \mathbb{R}$ such that |x+1| > |x| + 1.

The negation of N reads:

 $\sim N$: For any $x \in \mathbb{R}$, $|x+1| \le |x| + 1$.

We verify $\sim N$:

• Pick any $x \in \mathbb{R}$. We have x < -1 or $-1 \le x \le 0$ or x > 0.

(Case 1). Suppose x < -1. Then x+1 < 0 and x < 0. We have $|x+1| = -(x+1) = -x - 1 = |x| - 1 \le |x| + 1$.

(Case 2). Suppose $-1 \le x \le 0$. Then $x + 1 \ge 0$ also. We have $|x + 1| = x + 1 \le 0 + 1 = 1 \le |x| + 1$.

(Case 3). Suppose x > 0. Then x + 1 > 0 also. We have $|x + 1| = x + 1 = |x| + 1 \le |x| + 1$.

Hence, in any case, we have $|x+1| \le |x| + 1$.

Alternative argument with Method (A).

Denote by N the statement below:

N: There exists some $x \in \mathbb{R}$ such that |x+1| > |x| + 1.

The negation of N reads:

 $\sim N$: For any $x \in \mathbb{R}$, $|x+1| \le |x| + 1$.

We verify $\sim N$:

Pick any $x \in \mathbb{R}$. Suppose it were true that |x+1| > |x| + 1 for this x.

Note that $|x+1| > |x| + 1 \ge 1 > 0$.

Then $x^2 + 2x + 1 = (x+1)^2 = |x+1|^2 > (|x|+1)^2 = x^2 + 2|x| + 1$.

Therefore $x > |x| \ge x$.

Contradiction arises.

Hence $|x+1| \le |x| + 1$.

Method (B).

Suppose it were true that there existed some $x \in \mathbb{R}$ such that |x+1| > |x| + 1.

Note that $|x+1| > |x| + 1 \ge 1 > 0$.

Then
$$x^2 + 2x + 1 = (x+1)^2 = |x+1|^2 > (|x|+1)^2 = x^2 + 2|x| + 1$$
.

Then $x > |x| \ge x$.

Contradiction arises.

(b) Suppose it were true that there existed some $z \in \mathbb{C}$ such that |z+3-4i| > |z|+5.

Note that $|z| + 5 \ge 0$.

Then

$$|z|^{2} + 10|z| + 25 = (|z| + 5)^{2}$$

$$< |z + 3 - 4i|^{2}$$

$$= (z + 3 - 4i)(\bar{z} + 3 + 4i)$$

$$= |z|^{2} + (3 + 4i)z + (3 - 4i)\bar{z} + 25$$

$$= |z|^{2} + 2\operatorname{Re}((3 + 4i)z) + 25.$$

Therefore $10|z| < 2\text{Re}((3+4i)z) \le 2|(3+4i)z| = 2|3+4i||z| = 10|z|$. Contradiction arises.

Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some $z \in \mathbb{R}$ such that |z+3-4i| > |z|+5.

By Triangle Inequality, we have $|z+3-4i| \le |z|+|3-4i| = |z|+5$.

Then $|z+3-4i| \leq |z|+5 < |z+3-4i|$. Contradiction arises.

(c) Suppose it were true that there existed some $x \in \mathbb{R}$ such that |x+4| > 2|x+1| + |x-2|. Then

$$4|x+1|^{2} + |x-2|^{2} + 4|x+1||x-2| = (2|x+1| + |x-2|)^{2}$$

$$< |x+4|^{2}$$

$$= (x+4)^{2}$$

$$= [2(x+1) + (-x+2)]^{2}$$

$$= 4(x+1)^{2} + (2-x)^{2} + 4(x+1)(-x+2)$$

$$= 4|x+1|^{2} + |x-2|^{2} + 4(x+1)(-x+2)$$

Therefore $|x+1||x-2| < (x-1)(-x+2) \le |(x+1)(-x+2)| = |x+1||x-2|$. Contradiction arises.

Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some $x \in \mathbb{R}$ such that |x+4| > 2|x+1| + |x-2|.

By Triangle Inequality, we have $|x+4| = |2(x+1) + (-x+2)| \le |2(x+1)| + |-x+2| = 2|x+1| + |x-2|$.

Then $|x+4| \le 2|x+1| + |x-2| < |x+4|$. Contradiction arises.

(d) Suppose it were true that there existed some $z, w \in \mathbb{C}$ such that $w \neq 2z$ and $\frac{2|z-2w-3-6i|+3|w+2+4i|}{|2z-w|} < 1$.

By the Triangle Inequality, we have

$$2|z - 2w - 3 - 6i| + 3|w + 2 + 4i| = |2z - 4w - 6 - 12i| + |3w + 6 + 12i|$$

$$> |(2z - 4w - 6 - 12i) + (3w + 6 + 12i)| = |2z - w|. \tag{\dagger}$$

Since $w \neq 2z$, we would have $2z - w \neq 0$. Then |2z - w| > 0.

Then by (†), we would have $\frac{2|z-2w-3-6i|+3|w+2+4i|}{|2z-w|} \ge 1$. Contradiction arises.

Alternative argument.

We prove the statement

'For any
$$z, w \in \mathbb{C}$$
, if $w \neq 2z$ then $\frac{2|z - 2w - 3 - 6i| + 3|w + 2 + 4i|}{|2z - w|} \geq 1$ '.

Pick any $z, w \in \mathbb{C}$. Suppose $w \neq 2z$.

By the Triangle Inequality, we have

$$\begin{aligned} 2|z-2w-3-6i|+3|w+2+4i| &= |2z-4w-6-12i|+|3w+6+12i| \\ &\geq |(2z-4w-6-12i)+(3w+6+12i)| = |2z-w|. \end{aligned}$$

Since $w \neq 2z$, we have $2z - w \neq 0$. Then |2z - w| > 0.

Then by (†), we have
$$\frac{2|z-2w-3-6i|+3|w+2+4i|}{|2z-w|} \ge 1$$
.

17. Solution.

(a) Method(A).

The negation of (\star) reads:

 $\sim(\star)$: For any positive real numbers x,y, the inequality $(x+y)^2 > x^2 + y^2$ holds.

We verify $\sim(\star)$:

• Pick any positive real numbers x, y.

Note that $(x+y)^2 - x^2 - y^2 = 2xy$. —— (*)

Since x > 0 and y > 0, we have 2xy > 0.

Then, by (\star) , we have $(x+y)^2 - x^2 - y^2 > 0$.

Therefore $(x+y)^2 > x^2 + y^2$.

Method (B).

[We dis-prove the statement (\star) by obtaining a contradiction from it.]

Suppose there existed some positive real numbers x, y such that $(x+y)^2 \le x^2 + y^2$.

Then, for the same x, y, we would have $xy = \frac{1}{2}[(x+y)^2 - x^2 - y^2] \le 0$.

Since x > 0 and y > 0, we have xy > 0.

Then $0 < xy \le 0$. Contradiction arises.

- (b) [We disprove the statement $(\star\star)$ by obtaining a contradiction from it.] Suppose it were true that there existed some positive real numbers u, v such that $\sqrt{u} + \sqrt{v} \leq \sqrt{u+v}$. We claim that (\star) would hold:
 - Define $x = \sqrt{u}$, $y = \sqrt{v}$. By definition, x, y would be positive real numbers. Then x + y would be a positive real number also.

Therefore we would have $0 < x + y = \sqrt{u} + \sqrt{v} \le \sqrt{u + v}$.

Since $\sqrt{u+v} > 0$ and $u = x^2$ and $v = y^2$, we would have $(\sqrt{u+v})^2 = u + v = x^2 + y^2$.

Then $(x+y)^2 \le (\sqrt{u+v})^2 = u + v = x^2 + y^2$.

Therefore (\star) would hold.

However, (\star) is a false statement. Contradiction arises.

18. Solution.

Suppose there existed some $k \in \mathbb{N} \setminus \{0,1\}$ such that for any positive integer n, the number $k^{1/n}$ was an integer.

Define the set S by

$$S = \left\{ x \in \mathbb{N} \backslash \{0,1\} : \begin{array}{l} \text{There exists some } n \in \mathbb{N} \backslash \{0\} \\ \text{such that } x = k^{1/n} \end{array} \right\}.$$

By definition, S would be a subset of \mathbb{N} .

Note that $k = k^{1/1}$, and $k \neq 0$ and $k \neq 1$. Then, by definition, $k \in S$. Therefore S is a non-empty subset of N.

Then, by the Well-ordering Principle for Integers, S has a least element, say, u.

By definition, $u \geq 2$.

Also, by definition, there exists some $n_0 \in \mathbb{N} \setminus \{0\}$ such that $u = k^{1/n_0}$.

Note that $u \neq 0$; otherwise we would have k = 0.

Now define $v = k^{1/(2n_0)}$.

Note that $2n_0 \in \mathbb{N} \setminus \{0\}$. By definition, $v \in S$. Moreover, $u = v^2$.

Since $u \neq 0$, we would have $v \neq 0$; otherwise, $u = v^2 = 0$.

Also, since $u \neq 1$, we would have $v \neq 1$; otherwise $u = v^2 = 1$.

Then $v \geq 2$.

Then, since $u, v \in \mathbb{N}$, we would have $u = v \cdot v \ge 2v > v$.

But u was a least element of S. Contradiction arises.