MATH1050BC/1058 Assignment 4 (Answers and selected solution)

)(vh)(3e)
(b) (Va)(3Fb)(Ve)[(~P(a, ) V [Q(a; b, ¢) A (~ER(a,b,¢))]].
(¢) (3a)(3Fb)(Ve)(Vd)[[(~P(a, c)) A (~Q(b,d))] V (~R(e, d))]-
(d) (3a)(3Fb)[P(a,b) A[(Ve)(Fd)[(~Q(a, b, ¢, d)) V (~E(a, b, ¢, d))]]].
(e) (3a)(vh)[[(Fe)(Vd)[P(a, b, ¢, d) A (~Q(a, b, ¢, d)]] V [(Be)(Vf)[(~S(a, b, e, £)) A (~T(a, b, e, f))]]]-
(f) Ba)[[(F0)(Ve) P(b; ¢) — Q(a, b, )] A[(Bd)(Ve)[R(a, d, e) A [(~S(a,d,e)) V (~T(a, d; e))]]]]-

(a) For any ¢ € C, there exists some n € C such that (|¢| > |n| or [ +n| > |¢ —n]).

(b) There exists some z € R such that for any s,¢ € Q, there exists some n € Z such that s <n < tand |z —n| < [t —s].

(¢) There exists some p € R, such that for any ¢ € IR, n € N, there exist some s, € R such that |s —¢| < |g| and
|s" — "] = |pl.

(d) There exists some s,t € Q such that for any p,q € IR, there exists some n € Z such that |s —¢| < |g| and (" > |p|
or s > |pl).

(e) For any n € N, there exists some € € (0,+00) such that for any § € (0,+00), there exist some u,v € € such that
|lu —v| <6 and |u™ —v"| > €.

(f) There exist some p, ¢ € Z such that for any s,t € Z, there exist some m,n € N such that |p+¢| > s™ and [p"—¢q| > ¢
and |[p — ¢"| > t.

(g) There exists some z € € such that for any r € R, there exists some w € € such that (|z — w| < r and (z € R or
w] <7)).

(h) There exist some z,w € C such that |z — w| > |z + w| and (for any s € R, there exists some ¢ € R such that
(lz—s—t| <wand |z| > 1)).

(i) There exist some (,«, 3 € € such that (there exist some s, € IR such that ( = sa + t3) and (for any p,q € R,
¢ #pa+qB)

(j) There exist some (,a, 3,7 € € such that a¢? 4+ S¢ + v = 0 and (there exist some s,t € R such that for any r € R,
C#ra+sf+ty).

(k) There exist some ¢ € € such that (for any a € C, there exist some 3,v € € such that a¢? + 8¢ +~ = 0) and (there
exist some p,o € € and some s,t € IR such that for any 7 € C, for any r € R, { # rp+ so +t7).

(1) There exists some ¢ € € such that |{| > 1 and (for any 3,y € C, if By # 0 then there exists some « € € such that
a¢? 4+ B¢+~ = 0) and (there exist some p,o € € and some s,t € IR such that (st # 0 and p + ¢ # 0) and (for any
TeC, forany r € R, { £ rp+ so+tr)).

3. Solution.

(a) Take n = 3. By definition, n € N. Note that n +2=3+2=5,n+4=3+4="7. The integers n,n+ 2,n + 4 are
prime numbers.

(b) Take x = v/2. By definition, z € R. Note that 22 —2 = (1/2)2 -2=2-2=0.
141

V2

Note that 2% = (

(c) Take z = . By definition, z € C.

1+i\"  14+4i+6+4®+* 1+4i—6-4i+1
V2 ) 4 B 4 B

1
(d) Take z = —3 By definition, x € Q.
2 1 ’ 2 _ (2
Note that (logy(—2x))* = | logy [ —2- -3 = (logy(1))* =0 =

2
1
Also note that —log,(42?) = —log, <4- (—2) > = —logy(1) = 0.

Then (logy(—27))% = — log, (422).



4. Answer.

(a) i. There are exactly two elements in AN B. They are {0,1}, {1,2,3}.
ii. There are exactly five elements in AU B. They are {0,1}, {1}, {1,2,3}, {3,4}, {{3}, {4}}.
iii. There are exactly two elements in A\B. They are {1}, {3,4}.
iv. There is exactly one element in B\ A. It is {{3}, {4}}.
v. There are exactly three elements in AAB. They are {1},{3,4}, {{3}, {4}}.
vi. There are exactly four elements in (AN B) x (A\B). They are ({0,1},{1}), ({1,2,3},{1}), ({0,1},{3,4}),
({1,2,3},{3,4}).
vii. There are exactly four elements in B(A\B). They are 0, {{1}}, {{3,4}}, {{1},{3,4}}.
viii. There are exactly two elements in P((B(B\A)\{0})). They are 0, { B\A}.

(b) i. There are exactly four elements in C U D. They are (), {0},N,Z, {Q}.
ii. There are exactly two elements in D N E. They are 0, {Q}.
iii. There are exactly two elements in F\E. They are {N,Z},{Z, Q}.
iv. There are exactly three elements in (C' U E)\(D U F). They are {0}, {N}, {Z}.
v. There are exactly four elements in 3(C'). They are 0, {{0}},{N},C.
vi. There are exactly four elements in B(D) N P(E). They are 0, {0}, {{Q}}, {0, {Q}}.
vii. There are exactly six elements in C'x F'. They are ({0}, 0), ({0}, {N,Z}), ({0},{Z,Q}), (N, D), (N, {N,Z}), (N,{Z,Q}).
viii. There are exactly four elements in (D N E)2. They are (0,0), ({Q},0), (0,{Q}), ({Q}, {Q}).

5. Answer.

(a) e A isnon-empty. Justification:—
We verify that 40 € A:—
Note that 40 € N\{0, 1,2, 3,4, 5}.
103
40:5—2 and 10 € N.

e B = (). Justification:—
Suppose it were true that B # ().

]413
Pick some zg € B. Then, z¢ € N\{0,1,2,3,4,5}, and also, for any k € N, 2o = =k
3
SinceOeN,m0:5—2:O.

Recall that zo € N\{0,1,2,3,4,5}. Then z( # 0.
Contradiction arises.

(b) e C is non-empty. Justification:—
We verify that 20 € C:—
Note that 20 € N\{0, 1,2, 3,4, 5}.
5% - 20% = 10000 = (v/1000)* and 1000 € N.

e D=0.
Justification:—
Suppose it were true that D # (0.

4
Pick some zg € D. Then, zo € N\{0,1,2,3,4,5}, and also, for any k € N, 52z¢2 = (\VE) .

4
Since 0 € N, 52202 = (%) = 0. Then zy = 0.

Recall that zo € N\{0,1,2,3,4,5}. Then z( # 0.
Contradiction arises.

6. Answer.

(a) 1. Suppose A, B are sets. Then we say that A is a subset of B if the statement (}) holds:
() For any object z, if x € A then z € B.

ii. (I Cc,D
(IT) there exists some object z such that o € C and g ¢ D
(b) i (I) For any object z, if € A then x € B. (Iv) Z
IHxeA (V) x = 16mS
(III) there exists some (VI) 2m?



ii.

I) For any ¢ € C, if € A then ¢ € B.
IT) Suppose ¢ € A

VI) [Re(Q)] < [¢]
VII) [Re(¢)| < 2

VIII) Note that [Im(¢)[2 = (Im(C))2

Re(¢))?+(Im(¢))? = |¢|>. Also note that |Im(¢)]
and |C| are non-negative. Then |Im({)| < [¢].

Therefore by (x), we have |[Im(¢)| < 2.
(IX) and

7. Solution.

@)umA:{ge¢;K—q<cq,3={<e¢wc+u<3}

ii.

ii.

V) Suppose it were true that xg € A.

(
(
(VI) there would exist some m € Z
(VII) 2 - 4mS

(

Alternative answer. (VII) 1. (VIII) 2 - 4mS
(IX) 4m® € Z

(X) divisible by 2

(X)CeB

(I) There exists some (o € € such that {, € B
and (o ¢ A.

IT) Take (o = 2 + 2i.

ITI) Re(Go)

[Pictorial roughwork. Give a sketch of A, B on the Argand plane.

A is the open disc with centre ¢ and radius 1.
B is the open disc with centre —¢ and radius 3.
The former lies entirely inside the latter.]

We verify A C B.

[Reminder. This amounts to proving ‘for any ¢ € C, if { € A then ¢ € B’]

Pick any ¢ € €. Suppose ¢ € A.
We have [¢ —i| < 1 (by the definition of A).

By the Triangle Inequality, we have | +i| = |¢ —i+2i| < | —i| + 2| =|( —i|+2<1+2=3.
Then |¢ + i| < 3. Therefore, we have ¢ € B (by the definition of B).

It follows that A C B.
We verify B ¢ A.

[Reminder. This amounts to proving ‘there exists some (y € C such that {, € B and (y ¢ A’]

Take (o = 0. By definition, (g € C.
Note that [(op+i| =|0+1i| =1 < 3.
Then Co € B.
We verify that (p ¢ A:
o We have [(p —i| =[0—i=1>1.
Then (o ¢ A.
It follows that B ¢ A.

(b) Letpz{gect:mgs},E:{ged::|g—4|+|g+4|g10},F={ce¢:|<|§3}.

i.

[Pictorial roughwork. Give a sketch of D, E, F' on the Argand plane.

D is the closed disc with centre 0 and radius 5.

E is the closed elliptical region with centre 0, foci at 4, —4, vertices at 5, —5 and covertices 3i, —3i. (Its boundary

(Re(z))? n (Im(z))?
25 9
F' is the closed disc with centre 0 and radius 3.

is given by the equation

= 1 with complex unknown z.)

It will appear that F' lies entirely inside E, and E lies entirely inside D.]

We verify D ¢ E.



[Reminder. This amounts to proving ‘there exists some (o € C such that {y € D and (s ¢ E’.]
Take (o = 5i. By definition, ¢, € C.
We have [(p| =5 < 5. Then {, € D.
We verify that |(o| ¢ E:
o We have [Co — 4] + [Co + 4] = | — 4 + 5i| + |4+ 5i| = 2v/41 > 21/36 = 12 > 10.
Then ¢, ¢ E.
It follows that D ¢ E.
ii. We verify £ C D.
[Reminder. This amounts to proving ‘for any ¢ € €, if ( € FE then ¢ € D’]
Pick any ¢ € C. Suppose ¢ € E.
We have |¢ — 4| +|¢ + 4] < 10.
By the Triangle Inequality, we have 2|¢| = |2¢| = [(( —4) + (¢ +4)| < |¢ — 4] +|¢ + 4] < 10.
Then || < 5.
Hence ¢ € D.
It follows that £ C D.
iii. We verify E ¢ F.
[Reminder. This amounts to proving ‘there exists some (o € C such that {y € E and (y ¢ F"]
Take (o = 4. By definition, {y € C.
We have [¢o — 4] + [{o + 4] =8 < 10. Then ¢, € E.
We verify that |(o| ¢ F:
o We have |(o| =4 > 3.
Then ¢ ¢ F.
It follows that £ ¢ F.
iv. We verify F' C E.
[Reminder. This amounts to proving ‘for any ¢ € €, if { € F then ¢ € E’]
Pick any ¢ € €. Suppose ¢ € F.
We have |¢| < 3. Therefore (Re(¢))? + (Im(¢))? = |¢|* < 9.
Note that

(IC—4l+[C+4D? = [C—4P+IC+4P +2(¢C—4]-[¢C+4|
=D~ +(C+HC+4) +2[(C— (¢ +4)
= 2¢]* +32+2/¢% - 16]

2|¢)? + 32+ 2(|¢?| + 16)

41¢1* + 64

4.-3%2+64
100

IN

IN

Since |¢ — 4| + |¢ + 4] and 100 are both non-negative, we have |¢ — 4| + |¢ + 4] < 10.
It follows that F' C E.
Remark. The ‘algbraic relation’ ‘(|2 — 4| + |z + 4/)? = 2|z|> + 32 + 2|22 — 16|’ which holds for any arbitrary

complex number z is playing a crucial role in the argument. The inequality ‘|z? — 16| < |22| + 16’ which holds
for any arbitrary complex number z is also crucial.

8. Solution.

(a) Let A= There exists some n € Z B— There exists some n € Z
a) Le =~ 1%| such that 3z =8n+1 ' P =1"| such that 9z =4n — 1 ’

[Roughwork. A is the collection of rational numbers

71 17
375,7§7§a3,?a'
B is the collection of rational numbers
T 8 5 1171151923
) 37 97 97 b 97 973797973?9?977

It seems that every element of A belongs to B, and some element of B does not belong to A.]

i. We verify A C B.



[Reminder. This amounts to proving ‘for any z, if ¢ € A then x € B’]

Pick any object x. Suppose xz € A.
By the definition of A, there exists some n € Z such that 3z = 8n + 1.

[Roughwork. We want to name an appropriate m which satisfies ‘s € Z’ and ‘92 = 4m — 1’ simultaneously.
We ask: Does the equality ‘3z = 8n 4 1’ provide any hint?]

Take m = 6n + 1. Since 1,6,n € Z, we have m € Z.
We have 92 =3-32=38n+1)=24n+3=4(6n+1) -1 =4m — L.
Hence, by the definition of B, we have x € B.
It follows that A C B.
ii. We verify B ¢ A. [Reminder. This amounts to proving ‘there exists some xg such that o € B and
o ¢ A’}
1

Let zg = e

Note that 92 = =1 =4-0—1 and 0 € Z. Then zg € B, by the definition of B.
We verify that z¢ ¢ A with the method of proof-by-contradiction:
¢ Suppose it were true that zq € A.
Then, by the definition of A, there would exist some n € Z such that 3xg = 8n + 1.

1 1
Now—§:3-—§:3x0:8n—|—1.

1
Since 1,8,n € Z, we have 8n+ 1 € Z. Then -3 eZ.

1
Note that -3 is not an integer.
Contradiction arises.
It follows that in the first place, zo ¢ A.
Hence A ¢ B.

_ There exist some m,n € Z _ There exist some m,n € Z
(b) Let C =1z , D=4z

such that z = 12m + 18n such that z = 6m + 8n
[Roughwork. The elements of C' are necessarily integral multiples of 6.

Amongst the elements of D is the integer 2 (because 2 = 6(—1) + 8- 1). But then every even integer belongs to

D.
So it seems that every element of C' belongs to D, but some element of D does not belong to C.]

i. We verify C C D.
[Reminder. This amounts to proving ‘for any z, if x € C' then x € D’]
Pick any x. Suppose z € C.
Then, by the definition of C, there exists some k,{ € Z such that x = 12k + 18¢.

We have x = 6(2k + 3¢) + 8- 0.

Note that 0 € Z.
Since 2,3, k,¢ € Z, we have 2k + 3¢ € Z.

Then, by the definition D, we have x € D.
It follows that C' C D.
ii. We verify D ¢ C.
[Reminder. This amounts to proving ‘there exists some x such that x € D and x ¢ C")
Let xg = 2.
Note that g = 6(—1) +8-1 and —1,1 € Z. Then z € D, by the definition of D.
We verify that z¢ ¢ C' with the method of proof-by-contradiction:

e Suppose it were true that zo € C.
Then, by the definition of C, there would exist some m,n € Z such that xg = 12m + 18n.

1
Then 2 = zg = 12m + 18n = 6(2m + 3n). Therefore 2m + 3n = 3
Since 2,3, m,n € Z, we would have 2m + 3n € Z.
1 1
Then - would be an integer. But 3 is not an integer.

Contradiction arises.
It follows that, in the first place, ¢ ¢ C.

Hence D ¢ C.

9. Answer.

(a) i. Suppose K, L be sets. Then we say K is equal to L as sets if both statements (t), (1) hold:



() For any object x, if x € K then x € L.
(1) For any object y, if y € L then y € K.
Alternative answer.

Suppose K, L be sets. Then we say K is equal to L as sets if both statements (%), (%%

(x) K is a subset of L.

(Jk

) L is a subset of K.

ii. The empty set is defined to be the set {a: ‘ TH#x }

) hold:

iii. Suppose A, B are sets. Then the intersection of A, B is defined to be the set {x ’ re€Aandz € B }

iv. Suppose A, B are sets. Then the union of A, B is defined to be the set {x ‘ re€AorzxeB }

v. Suppose A, B are sets. Then the complement of B in A is defined to be the set {x ‘ x€Aand x ¢ B }

vi. Suppose A is a set. Then the power set of A is defined to be the set {S ‘ S is a subset of A }

ii.

iii.

10. Solution.

(I) AUBCB

(II) it were true that A\B # 0
(I1I) =y € A\B
(IV) g € A and
(V)zpe A

(VI) 2o € B
Alternative answer.
VII) zp € AUB
VIII) zy € B

IX) and

(V) rg € B (VI) g€ A

(

(

(

(X) Contradiction arises

(XI) AAB=10

(I) Suppose C, D are sets.

(IT) Suppose S € B(C) UP(D)

(III) S € P(C) or S € P(D)

(IV) Suppose S € B(C).

(V)yscc

(VI) Since z € S and S C C, we have z € C
(VIl) xe CorzeD

(VIIl) 2 € CUD

(IX) ScCcubD

(X) Sep(CuD)

(XTI) Suppose S € B(D)

(XII) S e BP(CUD)

(I)ifze ANBthenxz e A

(IT) Suppose x € ANB

(III) r € Aand z € B

IV)ze A

(V) For any object z, if z € Athenz € ANB
(VI) Pick any object 2. Suppose z € A.
(VII) re Aand AC B

b )

(a) Let A, B,C, D be sets. Suppose A C C and B C D.

x € AUB thenx € CUD’]
Pick any object x.

Suppose x € AU B. [We ask whether it is true that z € C U D]

By the definition of union, z € A or x € B.

(VIII) z € Aand z € B

(IX)z € ANB

X)AnBCA

(XI) ANB=A

(XII) For any object x, if z € A then x € B
(XIII) z € A

(XIV) ANB = A

XV) by the definition of intersection, we have
r€Aandzx€B

(XVI) z € B

(I) Suppose z € C\B.

(IT) complement

(Ill) z € C and x ¢ B

(IV) Suppose it were true that x € A.
(V) since z € A and

(V) z € B

(VII) and

(VIII) x e Cand v ¢ A

(IX) z € C\A

(X) Pick any object x. Suppose z € A.
(XI) Suppose it were true that x ¢ B.
(XII) and A C C

(XIIT) 2 € C
(XIV) and = ¢ B
(XV)z e C\B
(XVI) z € C\A
(XVII) complement
(XVIII) z€eCand x ¢ A
(XIX) o ¢ A
XX)zeAandxz ¢ A

>

[We want to deduce AU B C C'U D. According to definition, this is the same as deducing ‘For any object x, if



()

e (Case 1). Suppose z € A. Then, since A C C, we have x € C by the definition of subset relation.
Therefore x € C or x € D. Hence x € C'U D by the definition of union.
o (Case 2). Suppose z ¢ A. Then = € B. Therefore, since B C D, we have x € D. Then « € C or x € D. Hence
reCUD.
Hence, in any case, we have x € C U D.
It follows that AUB C C'U D.
Let A, B, C be sets. Suppose A C B, BC C, and C C A.
By assumption, we have A C B. —— (%)
We now verify that B C A:
e Pick any object x. Suppose = € B.
Then, since € B and B C C, we have z € C (by the definition of subset relation).
Since z € C and C C A, we have z € A (by the definition of subset relation).
Hence it follows that B C A. —— (xx)

By (x) and (xx) together, we have A = B according to the definition of set equality.

Let A, B be sets. Suppose A C A\B.

Further suppose it were true that AN B # (). Take some zg € AN B. We have z¢g € A and 2y € B. In particular
o € A. AISO, xg € B.

Since xg € A and A C A\B, we would have zg € A\B. Then zy € A and 2y ¢ B by definition of complement. In
particular zo ¢ B.

Now we have zp € B and z¢ ¢ B. Contradiction arises.

It follows that AN B = 0 in the first place.

Alternative argument:

Let A, B be sets. Suppose A C A\B.
e Suppose it were true that AN B # (). Take some 29 € AN B.
We would have g € A and zg € B by definition of complement. In particular x¢ € A.
Also, it would be false that zg ¢ B. Then it would be false that (z¢ € A and z¢ ¢ B). Therefore z¢ ¢ A\B.
It would now follow that A ¢ A\B. Contradiction arises.
It follows that AN B = (.
Let A, B be sets. Suppose AN B = (.
Pick any object x. Suppose x € A.
We claim that = ¢ B. We justify this claim by applying the proof-by-contradiction method:
e Suppose it were true that z € B.
Recall that by assumption, x € A also.
Then, we would have z € A and x € B.
Therefore, by the definition of intersection, z € AN B.
Recall that by assumption, AN B = (.
Then z € (). Contradiction arises.
It follows that = ¢ B in the first place.
Now we have v € A and = ¢ B.
Then by the definition of complement, € A\B.

It follows that A C A\B.
Let A, B, C be sets. Suppose A C C and B C C.

o Pick any object z. Suppose z € (C\A)\(C\B).
Then x € C\A and = ¢ C\B.
In particular, x € C\A. Then z € C and x ¢ A. In particular x ¢ A.
Recall that « ¢ C\B. It is not true that x € C\B. Then it is not true that (z € C and « ¢ B). Therefore (it
is not true that € C) or (it is not true that = ¢ B). Hence z ¢ C or z € B.
Recall that © € C and x ¢ A. In particular x € C. It is impossible to have z ¢ C. Therefore x € B.
Recall that z ¢ A. Then x € B and = ¢ A. Therefore z € B\ A.
o Pick any object . Suppose z € B\A. Then x € B and « ¢ A. In particular x € B. Since B C C, we have

zeC.
Recall that € B and « ¢ A. In particular © ¢ A. We have z € C and « ¢ A. Then = € C\ A.

Recall that z € B. Then z € B or « ¢ C. Therefore (it is not true that z ¢ B) or (it is not true that x € C).
Hence it is not true that (z ¢ B and = € C). Then it is not true that € C\B. Now we have z ¢ C\B.
Therefore x € C\A and = ¢ C\B. Hence x € (C\A)\(C\B).



It follows that (C\A)\(C\B) = B\ A.
(f) Let A, B be sets. Suppose P(B) € P(A).

Pick any subset S of B. We have S € P(B) by the definition of power set.
Since B(B) € P(A), we have PB(B) C A by the definition of power set.
Now we have S € B(B) and P(B) C A. Then S € A by the definition of subset relation.

11. Solution.

(a) i. The statement concerned is true. Justification:

o The elements of the set {1,3,5} are 1,3,5. Each of 1,3,5 belongs to the set {1,3,5,7}.

Therefore {1, 3,5} is a subset of {1,3,5,7}.

Note that 7 belongs to the set {1,3,5,7}, and 7 does not belong to the set {1,3,5}.

Then {1, 3,5} is not equal to {1,3,5,7}.
Hence {1,3,5} is a proper subset of {1,3,5,7}.

ii. The statement concerned is false. Justification:

o Note that 9 belongs to {1,3,5,9} and 9 does not belong to {1,3,5,7}.

Then {1, 3,5,9} is not a subset of {1,3,5,7}.

Therefore {1,3,5,9} is not a proper subset of {1,3,5,7}.

iii. The statement concerned is false. Justification:

e The elements of the set {1,1,3,5,7} are 1,3,5,7. Each of 1,3,5,7 belongs to the set {1,3,5,7,7}.
The elements of the set {1,3,5,7,7} are 1,3,5,7. Each of 1,3,5,7 belongs to the set {1,1,3,5,7}.

Then {1,3,5,7,7} is equal to {1,1,3,5,7}.

Therefore {1,3,5,7,7} is not a proper subset of {1,1,3,5,7}.

(b) i. Suppose A, B are sets.

+ Suppose A S B. Then A C B and A # B.
In particular A C B.
Since A # B, we have (A ¢ Bor B ¢ A).
Since A C B, we have B ¢ A.

e Suppose AC Band B ¢ A.

Since B ¢ A, it is not true that B C A. Therefore A # B.

It follows that A ; B.

ii. Let A, B,C be sets. Suppose A C B and B C C. Further suppose A B or B G C.

Since A C B and B C C, we have A C C.
We verify that C ¢ A:

e Suppose it were true that C C A. Then, since A C C, we would have A = C. Moreover, since A C B and

B c C = A, we would have A = B.
Therefore B = C' also.

Now A= B and B =C. Then (A G B or B C) would be false.

Contradiction arises. Hence C ¢ A in the first place.

Now we have A C C'and C ¢ A. Tt follows that A G C.
12. Answer.

(a) There are many correct answers for (I1T), (I1T), ..., IX)  (b)
collectively.

(I) There exist some x,y, z € Z such that each of
xy, xz is divisible by 4 and zyz is not divisible by

There exist some sets A, B, C such that ANB #
nd ANBCcCand A ¢ Cand B ¢ C.

—
o S~

I) There exist some z,y € R such that z > 0 and
y >0 and |2? — 22| < |y? — 2y| and 2% > 2.

() y=1

(III) z >0 and y > 0



(IvV) 0 isin(97) = —1
(V) |y* —2y| =1 IX) #
(VD) [2* — | X) Cw is not an (m + n)-th root of unity
(VID) Jy* — ] (e) I) Suppose
(Vl>x:4 1) u € R\{~1,0,1}
(IX) 2% > y?
(d) (I) There exist some m,n € N\{0,1,2}, (,w € € ) u® o 0° < 20

such that m # n and ¢ # w and ( is an m-th root
of unity and w is an n-th root of unity and (w is

IV) u® — 2u* + u? + 05 — 20 + 02 <0
V) v2(v? - 1)

not an (m + n)-th root of unity.
(IT) Take

T T
III) w = cos (Z) + isin (Z)
IV)m#nand ( #w
V) ¢ is an m-th root of unity

VI) v2(v? —1)2 =0
VII) w?(u? —1)2=0
VIII) v € R\{-1,0,1}

(f) (I) Suppose there existed some ¢ € C\IR such that
¢ was both an 89-th root of unity and a 55-th root

(
(
(
(
(
(
(
(
(
(

(
(
(
(

8 :
VI) " = cos (Z) +isin (= = of unity.
o () (s) i
cos (8 . Z) + isin (8 . Z) = cos(27) + isin(27) = (I1T) ¢ = 1
1 .
(VII) 12 (IV) ¢?' =¢P/¢3 =1, ¢ =31/ =1, % =
3 3 12 G =1, ="/C =1, =3/ =1,
(VIII) (Cw)™+" = <cos (I) +isin (I)) - =0/ =1,¢=C32=1.
(V) C\R
08 <12 . 3:) + isin <12~ ?Zr) = cos(9m) + (VI) and

13. Solution.

(a) Denote by M the statement below:
M: Let x,y,z € N. Suppose = + y, y + z are divisible by 3. Then x + z is divisible by 3
The negation of M reads:
~M: There exist some z,y, z € N such that x + y, y + 2z are divisible by 3 and = + z is not divisible by 3.
We verify ~M:
e Takex =2=1,y=2.
We have z,y,z € N.
Note that t +y=y+2=3=1-3. We have 1 € Z.
Then, by definition, = + y, y + z are divisible by 3
Note that = 4+ z = 2. We verify that 2 is not divisible by 3:
* Suppose 2 were divisible by 3
Then there would exist some k € Z such that 2 = 3k.
2
For the same k, we would have k = 3 Then k is not an integer.

Contradiction arises.
(b) Denote by M the statement below:

M: Let xz,y,z € N. Suppose z —y >0 and £ — 2z > 0 and x — z, y — z are divisible by 5. Then z + y + z is not
divisible by 5.

The negation of M reads:

~M: There exist some x,y,z € N such that xt —y > 0 and x — 2 > 0 and =z — z, y — z are divisible by 5 and z +y + 2
is divisible by 5.
We verify ~M:
e Take x =y =10, and z = 5.
We have x,y,z € N.
Note that x — 2=y —2=5 > 0.
Also note that 5=1-5,and 1 € Z. Then x — z, y — z are divisible by 5.
Note that z +y + 2z =25,and 25 =5 -5 and 5 € Z. Then x + y + z is divisible by 5.

(¢) Denote by M the statement below:
M: Suppose z,y € N. Then /22 + y2 € N.



The negation of M reads:

~M: There exist some z,y € N such that /22 + y2 ¢ N.
We verify ~M:

o Takex =1,y =2.
Note that x,y € N.

We have 22 +y? = 5. Then /22 +y2 = /5 ¢ N.
(d) Denote by M the statement below:
M: For any s,t € R, if both of s + ¢, st are rational, then at least one of s, is rational.
The negation of M reads:
~M: There exist some s,t € R such that both of s+ ¢, st are rational and both of s,t are irrational.
We verify ~M:
. Takes:\@,t:fﬂ.

Note that s,t € IR. Both of s,t are irrational numbers.
We have s+t =0 and st = —2.
Then both of s + ¢, st are rational.

(e) Denote by M the statement below:
M: For any a,b,c € N, if ab is divisible by ¢ and ¢ < a and ¢ < b, then at least one of a, b is divisible by c.
The negation of M reads:

~M: There exist some a,b,c € N such that ab is divisible by ¢ and ¢ < a and ¢ < b and each of a, b is not divisible
by c.

We verify ~M:

e Take a =8,b=9, c=6. Note that a,b,c € N, and ¢ < a and ¢ < b.
We have ab =72 =12-6 and 12 € Z. Then ab is divisible by c.
Note that a is not divisible by ¢, and b is not divisible by ¢. (Fill in the detail.)

(f) Denote by M the statement below:

M: Let n be a positive integer, and ¢ be a complex number. Suppose ¢ is an n?-th root of unity. Then (2 is an
n-th root of unity.

The negation of M reads:

~M: There exist some positive integer n and some complex number ¢ such that ¢ is an n?-th root of unity and ¢2 is
not an n-th root of unity.

We verify ~M:

2 2
e Taken =3, ( =cos il + isin T
9 9
2
C"2 = C32 = (Y = cos <9~ 97T> —I—z'sin( g) s(2m) + isin(27) = 1.

Then ¢ is a n?-th root of unity.
> + isin ( )

¢% = cos (2297T) + ¢ sin (229> = cos

9
o = o525 i (527 (5 s () =1 i

Then ¢? is not an n-th root of unity.
(g) Denote by M the statement below:

M: Let n be a positive integer, and ¢ be a complex number. Suppose (" is an n-th root of unity. Then ( is a
(2n)-th root of unity.

The negation of M reads:

~M: There exist some positive integer n and some complex number ¢ such that (" is an n-th root of unity and ( is
not a (2n)-th root of unity.

We verify ~M:

e Take n =3, ( = cos n + isin n .
9 9
. 2 2
st = <o) 1)

10



Then (¢™)" = (¢3)3 = cos(27) + isin(27) = 1.
Therefore (" is a n-th root of unity.

2 2 4 4
Note that (2" = cos <6~ ;) + isin (6 . S;T) = cos <;—) + isin (;) # 1. Then ¢ is not a (2n)-th root of

unity.
14. Solution.

(a) Denote by M the statement below:
M: Suppose A, B,C are sets. Then A\(C\B) C AN B.
The negation of M reads:
~M: There exist some sets A, B, C such that A\(C\B) ¢ AN B.
We verify ~M:

e Regard 0, 1,2 as distinct objects.
Let A=1{0,1}, B={1}, C ={2}.
We have ANB =B ={1}, C\B=C = {2}, A\(C\B) = A={0,1}.
Note that 0 € A\(C\B) and 0 ¢ AN B.
Hence A\(C\B) ¢ AN B.

(b) Denote by M the statement below:
M: Suppose A, B,C be non-empty sets. Then B\A C (C\A)\(C\B).
The negation of M reads:
~M: There exist some sets A, B, C' such that each of A, B, C is non-empty and B\A ¢ (C\A)\(C\B).
We verify ~M:
e Regard 0, 1,2 as distinct objects.
Let A ={0}, B={1}, C ={2}.
A, B, C are non-empty sets.
We have B\A =B = {1}, C\A =C = {2}, C\B = C = {2}, and (C\A)\(C\B) = 0.
Note that 1 € B\A and 1 ¢ (C\A)\(C\B).
Hence B\A ¢ (C\A)\(C\B).
(c) Denote by M the statement below:
M: Suppose A, B,C are non-empty sets. Then AU(BNC)C (AUB)NC.
The negation of M reads:
~M: There exists some sets A, B, C such that each of A, B,C' is non-empty and AU(BNC) ¢ (AuB)NC.
We verify ~M:
e Regard 0,1,2 as distinct objects.
Let A={0},B={1},C ={2}.
We have BNC = (. Then AU (BN C) = {0}.
We also have AU B = {0,1}. Then (AUB)NC =.
Note that 0 € AU(BNC)and 0 # (AUB)NC
Here AU(BNC) ¢ (AuB)NC.

(d) Denote by M the statement below:
M: Suppose A, B, C are non-empty sets. Then BN C C [A\(B\C)] U[B\(C\A)].
The negation of M reads:
~M: There exist some sets A, B, C' such that each of A, B,C is non-empty and BNC ¢ [A\(B\C)] U [B\(C\A4)].
We verify ~M:
e Regard 0,1 as distinct objects.
Let A= {0} and B=C = {0,1}.
We have BN C = {0,1}.
We also have B\C = 0, A\(B\C) = {0}.
Moreover C\A = {1}, B\(C\A) = {0}.
Then we have [A\(B\C)] U [B\(C\A)] = {0}.
Note that 1 € BN C and 1 ¢ [A\(B\C)] U [B\(C\A)].
Hence BNC ¢ [A\(B\C)]U[B\(C\A4)].

11



(e) Denote by M the statement below:
M: Let A, B,C be sets. Suppose ANB C C. Then C C (ANC)U(BNC).
The negation of M reads:
~M: There exist some sets A, B,C such that ANBC Cand C ¢ (ANC)U(BNC).
We verify ~M:

e Regard 0, 1,2 as distinct objects.
Take A= {1}, B ={2},C ={0,1,2}. Wehave ANB=0cC C.
Note that ANC = A= {1} and BNC = B ={2}. Then (ANC)U(BNC)={1,2}.
0eCand0¢ (ANC)U(BNCQO).
Hence C ¢ (ANC)U(BNC).

(f) Denote by M the statement below:
M: Let A, B, C be sets. Suppose A\B, A\C are non-empty. Then A\(BNC) C (A\B) N (A\C).
The negation of M reads:
~M: There exist some sets A, B, C' such that A\B, A\C are non-empty and A\(BNC) ¢ (A\B)N (4\C).
We verify ~M:
e Regard 0, 1,2 as distinct objects.
Take A = {0,2}, B= {1}, C ={1,2}.
We have A\B = {0,2} # 0 and A\C = {1} # 0.
We have BN C = {1}, A\(BN C) ={0,2}.
We have (A\B) N (A\C) = 0.
Note that 0 € A\(BNC) and 0 ¢ (A\B) U (A\C).
Then A\(BNC) ¢ (A\B)nN (A\C).
(¢) Denote by M the statement below:
M: Let A, B, C, D be non-empty sets. Suppose A C C and B C D. Further suppose CND # (). Then AUB C CND.
The negation of M reads:

~M: There exist some sets A, B, C, D such that each of A, B, C, D is non-empty and A ¢ Cand B C Dand CND # 0
and AUB ¢ CnND.

We verify ~M:

e Regard 0,1,2 as distinct objects.
Take A = {1}, B = {2}, C ={0,1}, D = {0,2}.
A, B,C, D are all non-empty sets. A C C' and B C D.
CND={0}. Then CND #10.
AUB=1{1,2}. Note that 1l c AUBand 1¢ CND. Then AUB ¢ CND.

15. Solution.
(a) Method (A).

Denote by N the statement below:

N: There exists some 2 € R such that 22 + 22 + 3 < 0.

The negation of N reads:

~N: For any z € R, 22 + 2z + 3 > 0.
We verify ~N:
o Pick any z € R.

We have 2% + 22 +3 = (z+1)? +2. —— (%)
Since z € R, we have x + 1 € R. Then (z + 1) > 0.
Therefore by (%), we have 22 + 22 +3 > 0+2=2 > 0.

Method (B).
[Denote by N the statement below:

N: There exists some x € IR such that 2 + 2z + 3 < 0.
We dis-prove the statement N by obtaining a contradiction from it.]

12



Suppose it were true that there existed some z € IR such that 22 + 22 + 3 < 0.
Note that 2% + 2z +3 = (z +1)? + 2. — (%)
Since = € IR, we would have x + 1 € R. Then (z +1)? > 0.
By (%), we would have 2% +2x +3>0+2 =2 > 0.
Then 0 < 22 + 2z + 3 < 0. Contradiction arises.
Hence, in the first place, it is false that there exists some x € IR such that z2 + 2z + 3 < 0.
Method (A).
Denote by N the statement below:
N: There exist some x,y € R\{0} such that (z +y)? = 2% + y%.
The negation of N reads:
~N: For any z,y € R\{0}, (z + y)? # 2% +3°.
We verify ~N:
e Pick any x,y € R\{0}.
We have xy # 0. Then (z + y)? — 22 — y? = 22y # 0.
Therefore (x + y)? # 2% + 2.
Method (B).

[Denote by N the statement below:
N: There exist some z,y € R\{0} such that (z + y)? = 22 + y>.

We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some x,y € R\{0} such that (z + y)? = 22 + ¢
Then we would have 2zy = (z + y)? — 22 — y? = 0.
Since x # 0 and y # 0 and 2 # 0, we have 2zy # 0.
Contradiction arises.
Method (A).
Denote by N the statement below:
N: There exists some r € R such that r < r® < r3.
We may re-formulation N as:
N: There exists some r € R such that r < r® and r® < r3,
One formulation of the negation of N reads:
~N: For any r € R, if r < 7 then 7% > r3.
We verify ~N:
Pick any r € R. Suppose r < r°.
Then r(r?> —1)(r? +1) =75 —r > 0. (£)
Since r is a real number, 72 > 0. Then r2 4+ 1 > 0.
By (#), we have r(r? — 1) > 0. —— ()
Note that r # 0; otherwise we would have r(r? — 1) = 0. Then r? > 0.
Therefore by (), we have 75 —r3 =r%.r(r?2 — 1) > 0.
Hence r° > r3.
Method (B).
[Denote by N the statement below:

N: There exists some r € R such that r < r® < r3.

We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some r € IR such that r < r® < r3,

We would have r < r3.

Note that r # 0; otherwise we would have r = r
, 153

Then, since r° < 7%, we would have r° = — <

3 =% = 0. Since r is a real number, r2 > 0.

=r.

<
(V)

r
Now we would have r < r3 and 72 < r. Therefore r < r. Contradiction arises.

Method (A).
Denote by N the statement below:
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N: There exists some ¢ € C\{1}, n. € N\N\{0, 1} such that ¢ is an (n+1)-th root of unity and ¢ is an (n®+n+1)-th
root of unity.

One formulation of the negation of N reads:

~N: For any ¢ € C\{1}, for any n\{0,1}, if ¢ is an (n + 1)-th root of unity then ¢ is not an (n? + n + 1)-th root of
unity.

We verify ~N:
Pick any ¢ € C\{1}, n € N\{0,1}. Suppose ¢ is an (n + 1)-th root of unity.
[We want to deduce that ¢ is not an (n? + n + 1)-th root of unity.]
By assumption, we have ¢"t! = 1.
Then ("4 = (Dt — (W) (=17 (= (£ L.
Therefore ¢ is not an (n? + n + 1)-th root of unity.
Method (B).
[Denote by N the statement below:

N: There exists some ¢ € C\{1}, n € N\{0, 1} such that ( is an (n+1)-th root of unity and ¢ is an (n®>+n-+1)-th
root of unity.

We dis-prove the statement N by obtaining a contradiction from it.]
Suppose it were true that there existed some ¢ € C\{1}, n € N\{0,1} such that ¢ was an (n + 1)-th root of unity
and ¢ was an (n? 4+ n + 1)-th root of unity.

By assumption, we would have ("1 =1 and ("' +n+1 = 1.
Then 1 — Cn2+n+1 = ((rHDn+l = (Y =17 ¢ = (.
But ¢ # 1 by assumption. Contradiction arises.
Method (A).
Denote by N the statement below:
N: There exists some s € Q such that (for any t € Q, s = 2t + 1).
The negation of N reads:
~N: For any s € Q, there exists some ¢t € Q such that s = 2t + 1.
We verify ~N:
e Pick any s € Q.
Define t = % Since s,1,2 € Q, we have t € Q.

-1
Bydeﬁnitiomwehave2t+1:2-sT+1:(s—l)—i—lzs.

Method (B).
[Denote by N the statement below:
N: There exists some s € Q such that (for any t € Q, s =2t +1).
We dis-prove the statement N by obtaining a contradiction from it.]
Suppose it were true that there existed some s € Q such that (for any t € Q, s = 2t + 1).
Note that 0 € Q. Then, for the same s, we would have s =2-0+1=1.
Also note that 1 € Q. Then, for the same s, we would have s =2-1+1 = 3.

Then 1 = 3. Contradiction arises.
Hence, in the first place, it is false that there exists some s € Q such that (for any t € Q, s = 2t + 1).

Method (A).
Denote by N the statement below:

N: There exists some t € R such that (for any s € C, |s| < t).
The negation of N reads:

~N: For any t € R, there exists some s € € such that |s| > t.
We verify ~N:

e Pick any t € R.
Take s = [t| + 1. By definition, s € C.
Note that s is a positive real number. Then |s| = ||t| + 1| = |¢|+1 > |t| > ¢.
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Method (B).

[Denote by N the statement below:
N: There exists some ¢ € IR such that (for any s € C, |s| < t).

We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some t € IR such that (for any s € C, |s| < t).
For this real number ¢, the statement ‘for any s € €, |s| < ¢’ would be true.
Note that |¢| + 1 is a complex number.
Then ||| +1] <t.
Since |t| + 1 is a non-negative real number, we have ||¢t| + 1| = [¢| + 1.
Then we have [t| + 1 <t < |¢|. Therefore 1 < 0.
Contradiction arises.
(g) Method (A).
Denote by N the statement below:

1 / n 2
N: There exist some a € R, n € N\{0,1,2,3} such that e —(1)—i(_n —|(;))(n =3 < 3—4.

The negation of N reads:

1 / n 2
~N: For any a € R, for any n € N\{0, 1,2, 3}, i _(1)J(rn —|l;|))(n =3 > ;—4.

We verify ~N:

o Pick any a € R. Pick any n € N\{0,1,2,3}.
By the Binomial Theorem,

Il
[
—~
.3
~—
5]
e

(1 V)"

§=0
> 14 n(n — 1)(n4!— 2)(n —3) (\/W)Al
S n(nfl)(an)(n—S)GQ.

(The first inequality holds because < 7; ) -(v/]a])? > 0 for each j. The second holds because 1 > 0.)
Since n € N\{0, 1,2, 3}, we have n(n — 1)(n — 2)(n — 3) > 0.

(L ++/|a])™ a?
Th —.
M- —2)(n—3) ~ 24
Method (B).
[Denote by N the statement below:
1 / n 2
N: There exist some a € R, n € N\{0,1,2,3} such that i _(1;(—71 _C;|))(n ey < %.

We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some a € R, n € N\{0, 1,2, 3} such that

(1+\/m>n a2

nn—D(n—2)(n—3) = 24"

By the Binomial Theorem,

(1)

Il
—
.3
~—

—

%

=
<.

v
—_
+

=N
S

\
=
B

\
N
=

\
N

5

vﬂk
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Since n € N\{0, 1,2, 3}, we have n(n — 1)(n — 2)(n — 3) > 0.
1 n 2
Then (1 + vlal) a

n(n—1D(n—2)(n_3)  24°

a? (1+ \/H)" a?

Now, b tion, — > =
ow, by assumption, 24_n(n—1)(n—2)(n—3)>24

Contradiction arises.
16. Solution.
(a) Method (A).
Denote by N the statement below:
N: There exists some x € R such that |z + 1| > |z]| + 1.
The negation of N reads:
~N: For any x € R, |z + 1] < |z| + 1.
We verify ~N:
e Pick any z € R. Wehavex < —1lor -1 <z <0orz > 0.
(Case 1). Suppose < —1. Then 241 < 0 and z < 0. We have |z+1| = —(z+1) = —2—1 = |z|-1 < |z|+1.
(Case 2). Suppose —1 <z < 0. Then z+1 >0 also. Wehave [zt + 1| =2+1<0+1=1<|z|+1.
(Case 3). Suppose > 0. Then 4+ 1 > 0 also. We have [z + 1| =2+ 1=|z|+1 < |z| + 1.
Hence, in any case, we have |z + 1| < |z| 4+ 1.
Alternative argument with Method (A).
Denote by N the statement below:
N: There exists some x € R such that |z + 1| > |z| + 1.
The negation of N reads:
~N: For any x € R, |z + 1] < |z| + 1.
We verify ~N:

Pick any « € R. Suppose it were true that |z + 1| > || + 1 for this z.
Note that |z + 1| > |z|+1>1> 0.

Then 22 + 22+ 1= (2 +1)?2 = |z + 12> > (|| + 1)? = 2% + 2|z| + 1.
Therefore x > |x| > x.

Contradiction arises.
Hence |z 4+ 1] < |z| + 1.

Method (B).
Suppose it were true that there existed some = € R such that |z + 1| > |z| + 1.
Note that |z + 1| > 2| +1>1 > 0.
Then 22 +2x 4+ 1= (z+ 1) = |z + 12> > (|z| + 1)? = 2® + 2|z| + 1.
Then z > |z| > «.
Contradiction arises.
(b) Suppose it were true that there existed some z € € such that |z + 3 — 4i| > |z| + 5.
Note that |z| +5 > 0.
Then

(|2 +5)?

|z + 3 — 4i|?
(243 — 4i)(Z + 3 + 4i)

2|2 + (34 4i)z + (3 — 4i)2 + 25
|2|? + 2Re((3 + 44)z) + 25.

|2|* + 10|2| + 25

A

Therefore 10|z| < 2Re((3 + 44)z) < 2|(3 + 4i)z| = 2|3 + 4i||z| = 10|z|. Contradiction arises.
Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some z € IR such that |z + 3 — 4i| > |z| + 5.
By Triangle Inequality, we have |z + 3 — 4i| < |z| + |3 — 4i| = |2| + 5.
Then |z 4+ 3 — 4i| < |z| + 5 < |z + 3 — 4i|. Contradiction arises.
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(c) Suppose it were true that there existed some x € R such that |z + 4| > 2|z + 1| + |z — 2|.
Then
(2lz + 1] + | — 2])*
< |z +4)7?
= (z+4)?
= [2@+1)+ (-z+2)7
= 4z+1)2+2-2)?+4(x+1)(-2+2)
= dz+1P+ |z -2 +4(z+1)(~-z +2)

4z + 112 + |z — 2| + 4z + 1|z — 2|

Therefore |z + 1||z — 2| < (x — 1)(—z 4+ 2) < |(x + 1)(—z + 2)| = |= + 1||x — 2|. Contradiction arises.

Remark. We may simply quote the Triangle Inequality in the argument:
Suppose it were true that there existed some = € IR such that |z + 4| > 2|z + 1| + |z — 2|.
By Triangle Inequality, we have |z +4| = 2(z + 1)+ (-2 +2)| < 2(z + )|+ | -z + 2| =2z + 1| + |z — 2|
Then |z + 4| < 2|z + 1| + | — 2| < |z + 4]. Contradiction arises.

|2 — 2w — 3 — 6i] + 3w + 2 + 4i
<1

2
(d) Suppose it were true that there existed some z,w € C such that w # 2z and 2 |
zZ—w
By the Triangle Inequality, we have
2]z — 2w —3—6i| +3lw+2+4i] = |22 —4w—6— 12|+ |3w + 6 + 124
> (22 —4w —6—12i) + Bw+ 6 + 12¢)| = |22 — w|.— (})

Since w # 2z, we would have 2z — w # 0. Then |2z — w| > 0.
2|z — 2w — 3 — 6i] + 3|lw + 2 + 44|

Then by (1), we would have
|2z — w|

> 1. Contradiction arises.

Alternative argument.
We prove the statement

2|z — 2w — 3 — 6i| + 3|w + 2 + 4|

‘For any z,w € C, if w # 2z then 2 | > 1.
z—w
Pick any z,w € C. Suppose w # 2z.
By the Triangle Inequality, we have
2z — 2w —3—6i| +3lw+2+4i] = [2z2—4w—6—12i| + |3w+ 6 + 121
> (22 — 4w — 6 — 12¢) + (Bw + 6 + 124)| = |22 — w|—— ()

Since w # 2z, we have 2z — w # 0. Then |2z — w| > 0.
2|z — 2w — 3 — 6i] + 3|lw + 2 + 44|
|22 — w

Then by (1), we have > 1.

17. Solution.
(a) Method (A).
The negation of (x) reads:
~(x): For any positive real numbers x,y, the inequality (z + y)? > 2% + y? holds.
We verify ~(x):
e Pick any positive real numbers x, y.

Note that (z +y)? — 22 — y? = 22y. —— (%)
Since x > 0 and y > 0, we have 2zy > 0.
Then, by (), we have (x + y)? — 22 — y? > 0.
Therefore (z + y)? > 2? + y2.

Method (B).

[We dis-prove the statement (x) by obtaining a contradiction from it.]

Suppose there existed some positive real numbers x,y such that (z + y)? < 22 + 2.

1
Then, for the same x,7, we would have zy = 5[(m +9)? —2? —y? <0.

Since x > 0 and y > 0, we have xy > 0.
Then 0 < zy < 0. Contradiction arises.

17



(b) [We disprove the statement (%) by obtaining a contradiction from it.]
Suppose it were true that there existed some positive real numbers u, v such that /u + v < u + v.
We claim that (x) would hold:

e Define z = \/u, y = /v. By definition, x,y would be positive real numbers. Then x + y would be a positive

real number also.
Therefore we would have 0 < z 4y = \/u + v < Vu + v.

Since vu +v > 0 and u = 2% and v = y?, we would have (vu +v)? = u +v = 2% + y2.
Then (z+y)? < (Vu+v)? =u+v=2%+y%
Therefore (x) would hold.

However, (%) is a false statement. Contradiction arises.

18. Solution.
Suppose there existed some k € N\{0, 1} such that for any positive integer n, the number k'™ was an integer.

Define the set S by
There exists some n € N\{0} }

5= {:c € N\{0,1} such that z = k'/"
By definition, S would be a subset of N.
Note that k = k1, and k # 0 and k # 1. Then, by definition, k € S. Therefore S is a non-empty subset of N.
Then, by the Well-ordering Principle for Integers, S has a least element, say, u.
By definition, u > 2.
Also, by definition, there exists some ng € N\{0} such that u = k'/™,
Note that u # 0; otherwise we would have k = 0.
Now define v = k*/(270),
Note that 2ng € N\{0}. By definition, v € S. Moreover, u = v?.
Since u # 0, we would have v # 0; otherwise, u = v? = 0.
Also, since u # 1, we would have v # 1; otherwise u = v? = 1.
Then v > 2.
Then, since u,v € N, we would have u = v -v > 2v > v.

But v was a least element of S. Contradiction arises.
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