
MATH1050BC/1058 Assignment 4 (Answers and selected solution)

1. Answer.

(a) (∃a)(∀b)(∃c)[P (c) ∧ [(∼Q(a)) ∨ (∼R(b))]].
(b) (∀a)(∃b)(∀c)[(∼P (a, c)) ∨ [Q(a, b, c) ∧ (∼R(a, b, c))]].
(c) (∃a)(∃b)(∀c)(∀d)[[(∼P (a, c)) ∧ (∼Q(b, d))] ∨ (∼R(c, d))].
(d) (∃a)(∃b)[P (a, b) ∧ [(∀c)(∃d)[(∼Q(a, b, c, d)) ∨ (∼R(a, b, c, d))]]].
(e) (∃a)(∀b)[[(∃c)(∀d)[P (a, b, c, d) ∧ (∼Q(a, b, c, d))]] ∨ [(∃e)(∀f)[(∼S(a, b, e, f)) ∧ (∼T (a, b, e, f))]]].
(f) (∃a)[[(∃b)(∀c)P (b, c) −→ Q(a, b, c)] ∧ [(∃d)(∀e)[R(a, d, e) ∧ [(∼S(a, d, e)) ∨ (∼T (a, d, e))]]]].

2. Answer.

(a) For any ζ ∈ C, there exists some η ∈ C such that (|ζ| ≥ |η| or |ζ + η| > |ζ − η|).
(b) There exists some x ∈ R such that for any s, t ∈ Q, there exists some n ∈ Z such that s < n < t and |x−n| ≤ |t−s|.
(c) There exists some p ∈ R, such that for any q ∈ R, n ∈ N, there exist some s, t ∈ R such that |s − t| < |q| and

|sn − tn| ≥ |p|.
(d) There exists some s, t ∈ Q such that for any p, q ∈ R, there exists some n ∈ Z such that |s − t| ≤ |q| and (tn > |p|

or sn > |p|).
(e) For any n ∈ N, there exists some ε ∈ (0,+∞) such that for any δ ∈ (0,+∞), there exist some u, v ∈ C such that

|u− v| < δ and |un − vn| ≥ ε.
(f) There exist some p, q ∈ Z such that for any s, t ∈ Z, there exist some m,n ∈ N such that |p+q| ≥ sm and |pn−q| ≥ t

and |p− qn| ≥ t.
(g) There exists some z ∈ C such that for any r ∈ R, there exists some w ∈ C such that (|z − w| ≤ r and (z ∈ R or

|w| ≤ r)).
(h) There exist some z, w ∈ C such that |z − w| ≥ |z + w| and (for any s ∈ R, there exists some t ∈ R such that

(|z − s− t| ≤ w and |z| ≥ 1)).
(i) There exist some ζ, α, β ∈ C such that (there exist some s, t ∈ R such that ζ = sα + tβ) and (for any p, q ∈ R,

ζ ̸= pᾱ+ qβ̄.)

(j) There exist some ζ, α, β, γ ∈ C such that αζ2 + βζ + γ = 0 and (there exist some s, t ∈ R such that for any r ∈ R,
ζ ̸= rα+ sβ + tγ).

(k) There exist some ζ ∈ C such that (for any α ∈ C, there exist some β, γ ∈ C such that αζ2 + βζ + γ = 0) and (there
exist some ρ, σ ∈ C and some s, t ∈ R such that for any τ ∈ C, for any r ∈ R, ζ ̸= rρ+ sσ + tτ).

(l) There exists some ζ ∈ C such that |ζ| > 1 and (for any β, γ ∈ C, if βγ ̸= 0 then there exists some α ∈ C such that
αζ2 + βζ + γ = 0) and (there exist some ρ, σ ∈ C and some s, t ∈ R such that (st ̸= 0 and ρ+ σ ̸= 0) and (for any
τ ∈ C, for any r ∈ R, ζ ̸= rρ+ sσ + tτ)).

3. Solution.

(a) Take n = 3. By definition, n ∈ N. Note that n+ 2 = 3 + 2 = 5, n+ 4 = 3 + 4 = 7. The integers n, n+ 2, n+ 4 are
prime numbers.

(b) Take x =
√
2. By definition, x ∈ R. Note that x2 − 2 = (

√
2)2 − 2 = 2− 2 = 0.

(c) Take z =
1 + i√

2
. By definition, z ∈ C.

Note that z4 =

(
1 + i√

2

)4

=
1 + 4i+ 6i2 + 4i3 + i4

4
=

1 + 4i− 6− 4i+ 1

4
= −1.

(d) Take x = −1

2
. By definition, x ∈ Q.

Note that (log2(−2x))2 =

(
log2

(
−2 ·

(
−1

2

)))2

= (log2(1))
2 = 02 = 0.

Also note that − log2(4x
2) = − log2

(
4 ·
(
−1

2

)2
)

= − log2(1) = 0.

Then (log2(−2x))2 = − log2(4x
2).
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4. Answer.

(a) i. There are exactly two elements in A ∩B. They are {0, 1}, {1, 2, 3}.
ii. There are exactly five elements in A ∪B. They are {0, 1}, {1}, {1, 2, 3}, {3, 4}, {{3}, {4}}.
iii. There are exactly two elements in A\B. They are {1}, {3, 4}.
iv. There is exactly one element in B\A. It is {{3}, {4}}.
v. There are exactly three elements in A△B. They are {1},{3, 4}, {{3}, {4}}.
vi. There are exactly four elements in (A ∩ B) × (A\B). They are ({0, 1}, {1}), ({1, 2, 3}, {1}), ({0, 1}, {3, 4}),

({1, 2, 3}, {3, 4}).
vii. There are exactly four elements in P(A\B). They are ∅, {{1}}, {{3, 4}}, {{1}, {3, 4}}.
viii. There are exactly two elements in P((P(B\A)\{∅})). They are ∅, {B\A}.

(b) i. There are exactly four elements in C ∪D. They are ∅, {∅},N,Z, {Q}.
ii. There are exactly two elements in D ∩ E. They are ∅, {Q}.
iii. There are exactly two elements in F\E. They are {N,Z}, {Z,Q}.
iv. There are exactly three elements in (C ∪ E)\(D ∪ F ). They are {∅}, {N}, {Z}.
v. There are exactly four elements in P(C). They are ∅, {{∅}}, {N}, C.
vi. There are exactly four elements in P(D) ∩P(E). They are ∅, {∅}, {{Q}}, {∅, {Q}}.
vii. There are exactly six elements in C×F . They are ({∅}, ∅), ({∅}, {N,Z}), ({∅}, {Z,Q}), (N, ∅), (N, {N,Z}), (N, {Z,Q}).
viii. There are exactly four elements in (D ∩ E)2. They are (∅, ∅), ({Q}, ∅), (∅, {Q}), ({Q}, {Q}).

5. Answer.

(a) • A is non-empty. Justification:—
We verify that 40 ∈ A:—
Note that 40 ∈ N\{0, 1, 2, 3, 4, 5}.

40 =
103

52
and 10 ∈ N.

• B = ∅. Justification:—
Suppose it were true that B ̸= ∅.

Pick some x0 ∈ B. Then, x0 ∈ N\{0, 1, 2, 3, 4, 5}, and also, for any k ∈ N, x0 =
k3

52
.

Since 0 ∈ N, x0 =
03

52
= 0.

Recall that x0 ∈ N\{0, 1, 2, 3, 4, 5}. Then x0 ̸= 0.
Contradiction arises.

(b) • C is non-empty. Justification:—
We verify that 20 ∈ C:—
Note that 20 ∈ N\{0, 1, 2, 3, 4, 5}.
52 · 202 = 10000 = ( 3

√
1000)4 and 1000 ∈ N.

• D = ∅.
Justification:—
Suppose it were true that D ̸= ∅.

Pick some x0 ∈ D. Then, x0 ∈ N\{0, 1, 2, 3, 4, 5}, and also, for any k ∈ N, 52x0
2 =

(
3
√
k
)4

.

Since 0 ∈ N, 52x0
2 =

(
3
√
0
)4

= 0. Then x0 = 0.
Recall that x0 ∈ N\{0, 1, 2, 3, 4, 5}. Then x0 ̸= 0.
Contradiction arises.

6. Answer.

(a) i. Suppose A,B are sets. Then we say that A is a subset of B if the statement (†) holds:
(†) For any object x, if x ∈ A then x ∈ B.

ii. (I) C,D

(II) there exists some object x0 such that x0 ∈ C and x0 /∈ D

(b) i. (I) For any object x, if x ∈ A then x ∈ B.
(II) x ∈ A

(III) there exists some

(IV) Z

(V) x = 16m6

(VI) 2m2
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(VII) 2,m ∈ Z

(VIII) Z

(IX) 2(8m6) = 2(2m2)3 = 2n3

(X) x ∈ B

ii. (I) There exists some x0 such that x0 ∈ B and
x0 /∈ A.
(II) x0 = 2 · 13

(III) 1

(IV) x0 ∈ B

(V) Suppose it were true that x0 ∈ A.
(VI) there would exist some m ∈ Z

(VII) 2 · 4m6

(VIII) 1

Alternative answer. (VII) 1. (VIII) 2 · 4m6

(IX) 4m6 ∈ Z

(X) divisible by 2

(c) i. (I) For any ζ ∈ C, if ζ ∈ A then ζ ∈ B.
(II) Suppose ζ ∈ A

(III) |ζ| ≤ 2

(IV) ≤
(V) (Im(ζ))2

(VI) |Re(ζ)| ≤ |ζ|
(VII) |Re(ζ)| ≤ 2

(VIII) Note that |Im(ζ)|2 = (Im(ζ))2 ≤
(Re(ζ))2+(Im(ζ))2 = |ζ|2. Also note that |Im(ζ)|
and |ζ| are non-negative. Then |Im(ζ)| ≤ |ζ|.
Therefore by (⋆), we have |Im(ζ)| ≤ 2.
(IX) and

(X) ζ ∈ B

ii. (I) There exists some ζ0 ∈ C such that ζ0 ∈ B

and ζ0 /∈ A.
(II) Take ζ0 = 2 + 2i.
(III) Re(ζ0)
(IV) |Im(ζ0)| ≤ 2

(V) ζ0 ∈ B

(VI) |ζ0|2

(VII) 8

(VIII) 4

(IX) 2

(X) ζ0 /∈ A

7. Solution.

(a) Let A =
{
ζ ∈ C : |ζ − i| < 1

}
, B =

{
ζ ∈ C : |ζ + i| < 3

}
.

[Pictorial roughwork. Give a sketch of A,B on the Argand plane.
A is the open disc with centre i and radius 1.
B is the open disc with centre −i and radius 3.
The former lies entirely inside the latter.]

i. We verify A ⊂ B.
[Reminder. This amounts to proving ‘for any ζ ∈ C, if ζ ∈ A then ζ ∈ B’.]

Pick any ζ ∈ C. Suppose ζ ∈ A.
We have |ζ − i| < 1 (by the definition of A).
By the Triangle Inequality, we have |ζ + i| = |ζ − i+ 2i| ≤ |ζ − i|+ |2i| = |ζ − i|+ 2 < 1 + 2 = 3.
Then |ζ + i| < 3. Therefore, we have ζ ∈ B (by the definition of B).
It follows that A ⊂ B.

ii. We verify B ⊂/ A.
[Reminder. This amounts to proving ‘there exists some ζ0 ∈ C such that ζ0 ∈ B and ζ0 /∈ A’.]

Take ζ0 = 0. By definition, ζ0 ∈ C.
Note that |ζ0 + i| = |0 + i| = 1 < 3.
Then ζ0 ∈ B.
We verify that ζ0 /∈ A:
• We have |ζ0 − i| = |0− i| = 1 ≥ 1.

Then ζ0 /∈ A.
It follows that B ⊂/ A.

(b) Let D =
{
ζ ∈ C : |ζ| ≤ 5

}
, E =

{
ζ ∈ C : |ζ − 4|+ |ζ + 4| ≤ 10

}
, F =

{
ζ ∈ C : |ζ| ≤ 3

}
.

[Pictorial roughwork. Give a sketch of D,E, F on the Argand plane.
D is the closed disc with centre 0 and radius 5.
E is the closed elliptical region with centre 0, foci at 4,−4, vertices at 5,−5 and covertices 3i,−3i. (Its boundary

is given by the equation (Re(z))2
25

+
(Im(z))2

9
= 1 with complex unknown z.)

F is the closed disc with centre 0 and radius 3.
It will appear that F lies entirely inside E, and E lies entirely inside D.]

i. We verify D ⊂/ E.

3



[Reminder. This amounts to proving ‘there exists some ζ0 ∈ C such that ζ0 ∈ D and ζ0 /∈ E’.]
Take ζ0 = 5i. By definition, ζ0 ∈ C.
We have |ζ0| = 5 ≤ 5. Then ζ0 ∈ D.
We verify that |ζ0| /∈ E:
• We have |ζ0 − 4|+ |ζ0 + 4| = | − 4 + 5i|+ |4 + 5i| = 2

√
41 > 2

√
36 = 12 > 10.

Then ζ0 /∈ E.
It follows that D ⊂/ E.

ii. We verify E ⊂ D.
[Reminder. This amounts to proving ‘for any ζ ∈ C, if ζ ∈ E then ζ ∈ D’.]

Pick any ζ ∈ C. Suppose ζ ∈ E.
We have |ζ − 4|+ |ζ + 4| ≤ 10.
By the Triangle Inequality, we have 2|ζ| = |2ζ| = |(ζ − 4) + (ζ + 4)| ≤ |ζ − 4|+ |ζ + 4| ≤ 10.
Then |ζ| ≤ 5.
Hence ζ ∈ D.
It follows that E ⊂ D.

iii. We verify E ⊂/ F .
[Reminder. This amounts to proving ‘there exists some ζ0 ∈ C such that ζ0 ∈ E and ζ0 /∈ F ’.]

Take ζ0 = 4. By definition, ζ0 ∈ C.
We have |ζ0 − 4|+ |ζ0 + 4| = 8 ≤ 10. Then ζ0 ∈ E.
We verify that |ζ0| /∈ F :
• We have |ζ0| = 4 > 3.

Then ζ0 /∈ F .
It follows that E ⊂/ F .

iv. We verify F ⊂ E.
[Reminder. This amounts to proving ‘for any ζ ∈ C, if ζ ∈ F then ζ ∈ E’.]

Pick any ζ ∈ C. Suppose ζ ∈ F .
We have |ζ| ≤ 3. Therefore (Re(ζ))2 + (Im(ζ))2 = |ζ|2 ≤ 9.
Note that

(|ζ − 4|+ |ζ + 4|)2 = |ζ − 4|2 + |ζ + 4|2 + 2|ζ − 4| · |ζ + 4|
= (ζ − 4)(ζ̄ − 4) + (ζ + 4)(ζ̄ + 4) + 2|(ζ − 4)(ζ + 4)|

= 2|ζ|2 + 32 + 2|ζ2 − 16|

≤ 2|ζ|2 + 32 + 2(|ζ2|+ 16)

= 4|ζ|2 + 64

≤ 4 · 32 + 64

= 100

Since |ζ − 4|+ |ζ + 4| and 100 are both non-negative, we have |ζ − 4|+ |ζ + 4| ≤ 10.
It follows that F ⊂ E.
Remark. The ‘algbraic relation’ ‘(|z − 4|+ |z + 4|)2 = 2|z|2 + 32 + 2|z2 − 16|’ which holds for any arbitrary
complex number z is playing a crucial role in the argument. The inequality ‘|z2 − 16| ≤ |z2|+ 16’ which holds
for any arbitrary complex number z is also crucial.

8. Solution.

(a) Let A =
{
x
∣∣∣ There exists some n ∈ Z

such that 3x = 8n+ 1

}
, B =

{
x
∣∣∣ There exists some n ∈ Z

such that 9x = 4n− 1

}
.

[Roughwork. A is the collection of rational numbers

· · · ,−5,−7

3
,
1

3
, 3,

17

3
, · · · .

B is the collection of rational numbers

· · · ,−7

3
,−17

9
,−13

9
,−1,−5

9
,−1

9
,
1

3
,
7

9
,
11

9
,
5

3
,
19

9
,
23

9
, 3, · · · .

It seems that every element of A belongs to B, and some element of B does not belong to A.]
i. We verify A ⊂ B.
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[Reminder. This amounts to proving ‘for any x, if x ∈ A then x ∈ B’.]
Pick any object x. Suppose x ∈ A.
By the definition of A, there exists some n ∈ Z such that 3x = 8n+ 1.

[Roughwork. We want to name an appropriate m which satisfies ‘s ∈ Z’ and ‘9x = 4m− 1’ simultaneously.
We ask: Does the equality ‘3x = 8n+ 1’ provide any hint?]

Take m = 6n+ 1. Since 1, 6, n ∈ Z, we have m ∈ Z.
We have 9x = 3 · 3x = 3(8n+ 1) = 24n+ 3 = 4(6n+ 1)− 1 = 4m− 1.
Hence, by the definition of B, we have x ∈ B.
It follows that A ⊂ B.

ii. We verify B ⊂/ A. [Reminder. This amounts to proving ‘there exists some x0 such that x0 ∈ B and
x0 /∈ A’.]

Let x0 = −1

9
.

Note that 9x0 = −1 = 4 · 0− 1 and 0 ∈ Z. Then x0 ∈ B, by the definition of B.
We verify that x0 /∈ A with the method of proof-by-contradiction:
• Suppose it were true that x0 ∈ A.

Then, by the definition of A, there would exist some n ∈ Z such that 3x0 = 8n+ 1.

Now −1

3
= 3 · −1

9
= 3x0 = 8n+ 1.

Since 1, 8, n ∈ Z, we have 8n+ 1 ∈ Z. Then −1

3
∈ Z.

Note that −1

3
is not an integer.

Contradiction arises.
It follows that in the first place, x0 /∈ A.

Hence A ⊂/ B.

(b) Let C =
{
x
∣∣∣ There exist some m,n ∈ Z

such that x = 12m+ 18n

}
, D =

{
x
∣∣∣ There exist some m,n ∈ Z

such that x = 6m+ 8n

}
.

[Roughwork. The elements of C are necessarily integral multiples of 6.
Amongst the elements of D is the integer 2 (because 2 = 6(−1) + 8 · 1). But then every even integer belongs to
D.
So it seems that every element of C belongs to D, but some element of D does not belong to C.]

i. We verify C ⊂ D.
[Reminder. This amounts to proving ‘for any x, if x ∈ C then x ∈ D’.]

Pick any x. Suppose x ∈ C.
Then, by the definition of C, there exists some k, ℓ ∈ Z such that x = 12k + 18ℓ.
We have x = 6(2k + 3ℓ) + 8 · 0.
Note that 0 ∈ Z.
Since 2, 3, k, ℓ ∈ Z, we have 2k + 3ℓ ∈ Z.
Then, by the definition D, we have x ∈ D.
It follows that C ⊂ D.

ii. We verify D ⊂/ C.
[Reminder. This amounts to proving ‘there exists some x such that x ∈ D and x /∈ C’.]

Let x0 = 2.
Note that x0 = 6(−1) + 8 · 1 and −1, 1 ∈ Z. Then x0 ∈ D, by the definition of D.
We verify that x0 /∈ C with the method of proof-by-contradiction:
• Suppose it were true that x0 ∈ C.

Then, by the definition of C, there would exist some m,n ∈ Z such that x0 = 12m+ 18n.

Then 2 = x0 = 12m+ 18n = 6(2m+ 3n). Therefore 2m+ 3n =
1

3
Since 2, 3,m, n ∈ Z, we would have 2m+ 3n ∈ Z.

Then 1

3
would be an integer. But 1

3
is not an integer.

Contradiction arises.
It follows that, in the first place, x0 /∈ C.

Hence D ⊂/ C.

9. Answer.

(a) i. Suppose K,L be sets. Then we say K is equal to L as sets if both statements (†), (‡) hold:
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(†) For any object x, if x ∈ K then x ∈ L.
(‡) For any object y, if y ∈ L then y ∈ K.
Alternative answer.
Suppose K,L be sets. Then we say K is equal to L as sets if both statements (⋆), (⋆⋆) hold:
(⋆) K is a subset of L.

(⋆⋆) L is a subset of K.

ii. The empty set is defined to be the set
{
x
∣∣∣ x ̸= x

}
.

iii. Suppose A,B are sets. Then the intersection of A,B is defined to be the set
{
x
∣∣∣ x ∈ A and x ∈ B

}
.

iv. Suppose A,B are sets. Then the union of A,B is defined to be the set
{
x
∣∣∣ x ∈ A or x ∈ B

}
.

v. Suppose A,B are sets. Then the complement of B in A is defined to be the set
{
x
∣∣∣ x ∈ A and x /∈ B

}
.

vi. Suppose A is a set. Then the power set of A is defined to be the set
{
S
∣∣∣ S is a subset of A

}
.

(b) i. (I) A ∪B ⊂ B

(II) it were true that A\B ̸= ∅
(III) x0 ∈ A\B
(IV) x0 ∈ A and
(V) x0 ∈ A

(VI) x0 ∈ B

Alternative answer. (V) x0 ∈ B (VI) x0 ∈ A

(VII) x0 ∈ A ∪B

(VIII) x0 ∈ B

(IX) and
(X) Contradiction arises
(XI) A\B = ∅

ii. (I) Suppose C,D are sets.
(II) Suppose S ∈ P(C) ∪P(D)

(III) S ∈ P(C) or S ∈ P(D)

(IV) Suppose S ∈ P(C).
(V) S ⊂ C

(VI) Since x ∈ S and S ⊂ C, we have x ∈ C

(VII) x ∈ C or x ∈ D

(VIII) x ∈ C ∪D

(IX) S ⊂ C ∪D

(X) S ∈ P(C ∪D)

(XI) Suppose S ∈ P(D)

(XII) S ∈ P(C ∪D)

iii. (I) if x ∈ A ∩B then x ∈ A

(II) Suppose x ∈ A ∩B

(III) x ∈ A and x ∈ B

(IV) x ∈ A

(V) For any object x, if x ∈ A then x ∈ A ∩B

(VI) Pick any object x. Suppose x ∈ A.
(VII) x ∈ A and A ⊂ B

(VIII) x ∈ A and x ∈ B

(IX) x ∈ A ∩B

(X) A ∩B ⊂ A

(XI) A ∩B = A

(XII) For any object x, if x ∈ A then x ∈ B

(XIII) x ∈ A

(XIV) A ∩B = A

(XV) by the definition of intersection, we have
x ∈ A and x ∈ B

(XVI) x ∈ B

iv. (I) Suppose x ∈ C\B.
(II) complement
(III) x ∈ C and x /∈ B

(IV) Suppose it were true that x ∈ A.
(V) since x ∈ A and
(VI) x ∈ B

(VII) and
(VIII) x ∈ C and x /∈ A

(IX) x ∈ C\A
(X) Pick any object x. Suppose x ∈ A.
(XI) Suppose it were true that x /∈ B.
(XII) and A ⊂ C

(XIII) x ∈ C

(XIV) and x /∈ B

(XV) x ∈ C\B
(XVI) x ∈ C\A
(XVII) complement
(XVIII) x ∈ C and x /∈ A

(XIX) x /∈ A

(XX) x ∈ A and x /∈ A

10. Solution.
(a) Let A,B,C,D be sets. Suppose A ⊂ C and B ⊂ D.

[We want to deduce A ∪B ⊂ C ∪D. According to definition, this is the same as deducing ‘For any object x, if
x ∈ A ∪B then x ∈ C ∪D’.]

Pick any object x.
Suppose x ∈ A ∪B. [We ask whether it is true that x ∈ C ∪D.]
By the definition of union, x ∈ A or x ∈ B.
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• (Case 1). Suppose x ∈ A. Then, since A ⊂ C, we have x ∈ C by the definition of subset relation.
Therefore x ∈ C or x ∈ D. Hence x ∈ C ∪D by the definition of union.

• (Case 2). Suppose x /∈ A. Then x ∈ B. Therefore, since B ⊂ D, we have x ∈ D. Then x ∈ C or x ∈ D. Hence
x ∈ C ∪D.

Hence, in any case, we have x ∈ C ∪D.
It follows that A ∪B ⊂ C ∪D.

(b) Let A,B,C be sets. Suppose A ⊂ B, B ⊂ C, and C ⊂ A.
By assumption, we have A ⊂ B. —— (⋆)

We now verify that B ⊂ A:
• Pick any object x. Suppose x ∈ B.

Then, since x ∈ B and B ⊂ C, we have x ∈ C (by the definition of subset relation).
Since x ∈ C and C ⊂ A, we have x ∈ A (by the definition of subset relation).
Hence it follows that B ⊂ A. —— (⋆⋆)

By (⋆) and (⋆⋆) together, we have A = B according to the definition of set equality.
(c) Let A,B be sets. Suppose A ⊂ A\B.

Further suppose it were true that A ∩ B ̸= ∅. Take some x0 ∈ A ∩ B. We have x0 ∈ A and x0 ∈ B. In particular
x0 ∈ A. Also, x0 ∈ B.
Since x0 ∈ A and A ⊂ A\B, we would have x0 ∈ A\B. Then x0 ∈ A and x0 /∈ B by definition of complement. In
particular x0 /∈ B.
Now we have x0 ∈ B and x0 /∈ B. Contradiction arises.
It follows that A ∩B = ∅ in the first place.
Alternative argument:

Let A,B be sets. Suppose A ⊂ A\B.
• Suppose it were true that A ∩B ̸= ∅. Take some x0 ∈ A ∩B.

We would have x0 ∈ A and x0 ∈ B by definition of complement. In particular x0 ∈ A.
Also, it would be false that x0 /∈ B. Then it would be false that (x0 ∈ A and x0 /∈ B). Therefore x0 /∈ A\B.
It would now follow that A ⊂/ A\B. Contradiction arises.

It follows that A ∩B = ∅.
(d) Let A,B be sets. Suppose A ∩B = ∅.

Pick any object x. Suppose x ∈ A.
We claim that x /∈ B. We justify this claim by applying the proof-by-contradiction method:

• Suppose it were true that x ∈ B.
Recall that by assumption, x ∈ A also.
Then, we would have x ∈ A and x ∈ B.
Therefore, by the definition of intersection, x ∈ A ∩B.
Recall that by assumption, A ∩B = ∅.
Then x ∈ ∅. Contradiction arises.
It follows that x /∈ B in the first place.

Now we have x ∈ A and x /∈ B.
Then by the definition of complement, x ∈ A\B.
It follows that A ⊂ A\B.

(e) Let A,B,C be sets. Suppose A ⊂ C and B ⊂ C.

• Pick any object x. Suppose x ∈ (C\A)\(C\B).
Then x ∈ C\A and x /∈ C\B.
In particular, x ∈ C\A. Then x ∈ C and x /∈ A. In particular x /∈ A.
Recall that x /∈ C\B. It is not true that x ∈ C\B. Then it is not true that (x ∈ C and x /∈ B). Therefore (it
is not true that x ∈ C) or (it is not true that x /∈ B). Hence x /∈ C or x ∈ B.
Recall that x ∈ C and x /∈ A. In particular x ∈ C. It is impossible to have x /∈ C. Therefore x ∈ B.
Recall that x /∈ A. Then x ∈ B and x /∈ A. Therefore x ∈ B\A.

• Pick any object x. Suppose x ∈ B\A. Then x ∈ B and x /∈ A. In particular x ∈ B. Since B ⊂ C, we have
x ∈ C.
Recall that x ∈ B and x /∈ A. In particular x /∈ A. We have x ∈ C and x /∈ A. Then x ∈ C\A.
Recall that x ∈ B. Then x ∈ B or x /∈ C. Therefore (it is not true that x /∈ B) or (it is not true that x ∈ C).
Hence it is not true that (x /∈ B and x ∈ C). Then it is not true that x ∈ C\B. Now we have x /∈ C\B.
Therefore x ∈ C\A and x /∈ C\B. Hence x ∈ (C\A)\(C\B).
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It follows that (C\A)\(C\B) = B\A.
(f) Let A,B be sets. Suppose P(B) ∈ P(A).

Pick any subset S of B. We have S ∈ P(B) by the definition of power set.
Since P(B) ∈ P(A), we have P(B) ⊂ A by the definition of power set.
Now we have S ∈ P(B) and P(B) ⊂ A. Then S ∈ A by the definition of subset relation.

11. Solution.

(a) i. The statement concerned is true. Justification:
• The elements of the set {1, 3, 5} are 1, 3, 5. Each of 1, 3, 5 belongs to the set {1, 3, 5, 7}.

Therefore {1, 3, 5} is a subset of {1, 3, 5, 7}.
Note that 7 belongs to the set {1, 3, 5, 7}, and 7 does not belong to the set {1, 3, 5}.
Then {1, 3, 5} is not equal to {1, 3, 5, 7}.
Hence {1, 3, 5} is a proper subset of {1, 3, 5, 7}.

ii. The statement concerned is false. Justification:
• Note that 9 belongs to {1, 3, 5, 9} and 9 does not belong to {1, 3, 5, 7}.

Then {1, 3, 5, 9} is not a subset of {1, 3, 5, 7}.
Therefore {1, 3, 5, 9} is not a proper subset of {1, 3, 5, 7}.

iii. The statement concerned is false. Justification:
• The elements of the set {1, 1, 3, 5, 7} are 1, 3, 5, 7. Each of 1, 3, 5, 7 belongs to the set {1, 3, 5, 7, 7}.

The elements of the set {1, 3, 5, 7, 7} are 1, 3, 5, 7. Each of 1, 3, 5, 7 belongs to the set {1, 1, 3, 5, 7}.
Then {1, 3, 5, 7, 7} is equal to {1, 1, 3, 5, 7}.
Therefore {1, 3, 5, 7, 7} is not a proper subset of {1, 1, 3, 5, 7}.

(b) i. Suppose A,B are sets.
• Suppose A $ B. Then A ⊂ B and A ̸= B.

In particular A ⊂ B.
Since A ̸= B, we have (A ⊂/ B or B ⊂/ A).
Since A ⊂ B, we have B ⊂/ A.

• Suppose A ⊂ B and B ⊂/ A.
Since B ⊂/ A, it is not true that B ⊂ A. Therefore A ̸= B.
It follows that A $ B.

ii. Let A,B,C be sets. Suppose A ⊂ B and B ⊂ C. Further suppose A $ B or B $ C.
Since A ⊂ B and B ⊂ C, we have A ⊂ C.
We verify that C ⊂/ A:
• Suppose it were true that C ⊂ A. Then, since A ⊂ C, we would have A = C. Moreover, since A ⊂ B and

B ⊂ C = A, we would have A = B.
Therefore B = C also.
Now A = B and B = C. Then (A $ B or B $ C) would be false.
Contradiction arises. Hence C ⊂/ A in the first place.

Now we have A ⊂ C and C ⊂/ A. It follows that A $ C.

12. Answer.

(a) There are many correct answers for (II), (III), ..., (IX)
collectively.

(I) There exist some x, y, z ∈ Z such that each of
xy, xz is divisible by 4 and xyz is not divisible by
8.
(II) y = z = 1

(III) 4

(IV) 4

(V) 4 = 1 · 4 and 1 ∈ Z

(VI) 4

(VII) 4 were divisible by 8

(VIII) 4 = 8k

(IX) 1

2

(b) (I) There exist some sets A,B,C such that A∩B ̸=
∅ and A ∩B ⊂ C and A ⊂/ C and B ⊂/ C.
(II) C = {3}
(III) ∅
(IV) A ∩B ⊂ C

(V) and 1 /∈ C

(VI) A ⊂/ C

(VII) 2 ∈ B and 2 /∈ C

(VIII) B ⊂/ C

(c) (I) There exist some x, y ∈ R such that x > 0 and
y > 0 and |x2 − 2x| < |y2 − 2y| and x2 > y2.
(II) y = 1

(III) x > 0 and y > 0
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(IV) 0

(V) |y2 − 2y| = 1

(VI) |x2 − x|
(VII) |y2 − y|
(VIII) x2 = 4

(IX) x2 > y2

(d) (I) There exist some m,n ∈ N\{0, 1, 2}, ζ, ω ∈ C

such that m ̸= n and ζ ̸= ω and ζ is an m-th root
of unity and ω is an n-th root of unity and ζω is
not an (m+ n)-th root of unity.
(II) Take

(III) ω = cos
(π
4

)
+ i sin

(π
4

)
(IV) m ̸= n and ζ ̸= ω

(V) ζ is an m-th root of unity

(VI) ωn =
(
cos
(π
4

)
+ i sin

(π
4

))8
=

cos
(
8 · π

4

)
+ i sin

(
8 · π

4

)
= cos(2π) + i sin(2π) =

1
(VII) 12

(VIII) (ζω)m+n =

(
cos

(
3π

4

)
+ i sin

(
3π

4

))12

=

cos

(
12 · 3π

4

)
+ i sin

(
12 · 3π

4

)
= cos(9π) +

i sin(9π) = −1

(IX) ̸=
(X) ζω is not an (m+ n)-th root of unity

(e) (I) Suppose
(II) u ∈ R\{−1, 0, 1}
(III) u6 + v6 ≤ 2v4

(IV) u6 − 2u4 + u2 + v6 − 2v4 + v2 ≤ 0

(V) v2(v2 − 1)

(VI) v2(v2 − 1)2 = 0

(VII) u2(u2 − 1)2 = 0

(VIII) u ∈ R\{−1, 0, 1}

(f) (I) Suppose there existed some ζ ∈ C\R such that
ζ was both an 89-th root of unity and a 55-th root
of unity.
(II) 1

(III) ζ89 = 1

(IV) ζ21 = ζ55/ζ34 = 1, ζ13 = ζ34/ζ21 = 1, ζ8 =

ζ21/ζ13 = 1, ζ5 = ζ13/ζ8 = 1, ζ3 = ζ8/ζ5 = 1,
ζ2 = ζ5/ζ3 = 1, ζ = ζ3/ζ2 = 1.
(V) C\R
(VI) and

13. Solution.

(a) Denote by M the statement below:
M : Let x, y, z ∈ N. Suppose x+ y, y + z are divisible by 3. Then x+ z is divisible by 3.
The negation of M reads:

∼M : There exist some x, y, z ∈ N such that x+ y, y + z are divisible by 3 and x+ z is not divisible by 3.
We verify ∼M :

• Take x = z = 1, y = 2.
We have x, y, z ∈ N.
Note that x+ y = y + z = 3 = 1 · 3. We have 1 ∈ Z.
Then, by definition, x+ y, y + z are divisible by 3.
Note that x+ z = 2. We verify that 2 is not divisible by 3:
∗ Suppose 2 were divisible by 3.

Then there would exist some k ∈ Z such that 2 = 3k.
For the same k, we would have k =

2

3
. Then k is not an integer.

Contradiction arises.
(b) Denote by M the statement below:

M : Let x, y, z ∈ N. Suppose x − y > 0 and x − z > 0 and x − z, y − z are divisible by 5. Then x + y + z is not
divisible by 5.

The negation of M reads:
∼M : There exist some x, y, z ∈ N such that x− y > 0 and x− z > 0 and x− z, y− z are divisible by 5 and x+ y+ z

is divisible by 5.
We verify ∼M :

• Take x = y = 10, and z = 5.
We have x, y, z ∈ N.
Note that x− z = y − z = 5 > 0.
Also note that 5 = 1 · 5, and 1 ∈ Z. Then x− z, y − z are divisible by 5.
Note that x+ y + z = 25, and 25 = 5 · 5 and 5 ∈ Z. Then x+ y + z is divisible by 5.

(c) Denote by M the statement below:

M : Suppose x, y ∈ N. Then
√
x2 + y2 ∈ N.
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The negation of M reads:

∼M : There exist some x, y ∈ N such that
√
x2 + y2 /∈ N.

We verify ∼M :
• Take x = 1, y = 2.

Note that x, y ∈ N.
We have x2 + y2 = 5. Then

√
x2 + y2 =

√
5 /∈ N.

(d) Denote by M the statement below:
M : For any s, t ∈ R, if both of s+ t, st are rational, then at least one of s, t is rational.
The negation of M reads:

∼M : There exist some s, t ∈ R such that both of s+ t, st are rational and both of s, t are irrational.
We verify ∼M :

• Take s =
√
2, t = −

√
2.

Note that s, t ∈ R. Both of s, t are irrational numbers.
We have s+ t = 0 and st = −2.
Then both of s+ t, st are rational.

(e) Denote by M the statement below:
M : For any a, b, c ∈ N, if ab is divisible by c and c < a and c < b, then at least one of a, b is divisible by c.
The negation of M reads:

∼M : There exist some a, b, c ∈ N such that ab is divisible by c and c < a and c < b and each of a, b is not divisible
by c.

We verify ∼M :
• Take a = 8, b = 9, c = 6. Note that a, b, c ∈ N, and c < a and c < b.

We have ab = 72 = 12 · 6 and 12 ∈ Z. Then ab is divisible by c.
Note that a is not divisible by c, and b is not divisible by c. (Fill in the detail.)

(f) Denote by M the statement below:
M : Let n be a positive integer, and ζ be a complex number. Suppose ζ is an n2-th root of unity. Then ζ2 is an

n-th root of unity.
The negation of M reads:

∼M : There exist some positive integer n and some complex number ζ such that ζ is an n2-th root of unity and ζ2 is
not an n-th root of unity.

We verify ∼M :

• Take n = 3, ζ = cos

(
2π

9

)
+ i sin

(
2π

9

)
.

ζn
2

= ζ3
2

= ζ9 = cos

(
9 · 2π

9

)
+ i sin

(
9 · 2π

9

)
= cos(2π) + i sin(2π) = 1.

Then ζ is a n2-th root of unity.

ζ2 = cos

(
2 · 2π

9

)
+ i sin

(
2 · 2π

9

)
= cos

(
4π

9

)
+ i sin

(
4π

9

)
.

(ζ2)n = (ζ2)3 = cos

(
3 · 4π

9

)
+ i sin

(
3 · 4π

9

)
= cos

(
4π

3

)
+ i sin

(
4π

3

)
= −1

2
−

√
3

2
i ̸= 1.

Then ζ2 is not an n-th root of unity.
(g) Denote by M the statement below:

M : Let n be a positive integer, and ζ be a complex number. Suppose ζn is an n-th root of unity. Then ζ is a
(2n)-th root of unity.

The negation of M reads:
∼M : There exist some positive integer n and some complex number ζ such that ζn is an n-th root of unity and ζ is

not a (2n)-th root of unity.
We verify ∼M :

• Take n = 3, ζ = cos

(
2π

9

)
+ i sin

(
2π

9

)
.

Note that ζn = ζ3 = cos

(
2π

3

)
+ i sin

(
2π

3

)
.
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Then (ζn)n = (ζ3)3 = cos(2π) + i sin(2π) = 1.
Therefore ζn is a n-th root of unity.

Note that ζ2n = cos

(
6 · 2π

9

)
+ i sin

(
6 · 2π

9

)
= cos

(
4π

3

)
+ i sin

(
4π

3

)
̸= 1. Then ζ is not a (2n)-th root of

unity.

14. Solution.

(a) Denote by M the statement below:
M : Suppose A,B,C are sets. Then A\(C\B) ⊂ A ∩B.
The negation of M reads:

∼M : There exist some sets A,B,C such that A\(C\B) ⊂/ A ∩B.
We verify ∼M :

• Regard 0, 1, 2 as distinct objects.
Let A = {0, 1}, B = {1}, C = {2}.
We have A ∩B = B = {1}, C\B = C = {2}, A\(C\B) = A = {0, 1}.
Note that 0 ∈ A\(C\B) and 0 /∈ A ∩B.
Hence A\(C\B) ⊂/ A ∩B.

(b) Denote by M the statement below:
M : Suppose A,B,C be non-empty sets. Then B\A ⊂ (C\A)\(C\B).
The negation of M reads:

∼M : There exist some sets A,B,C such that each of A,B,C is non-empty and B\A ⊂/ (C\A)\(C\B).
We verify ∼M :

• Regard 0, 1, 2 as distinct objects.
Let A = {0}, B = {1}, C = {2}.
A,B,C are non-empty sets.
We have B\A = B = {1}, C\A = C = {2}, C\B = C = {2}, and (C\A)\(C\B) = ∅.
Note that 1 ∈ B\A and 1 /∈ (C\A)\(C\B).
Hence B\A ⊂/ (C\A)\(C\B).

(c) Denote by M the statement below:
M : Suppose A,B,C are non-empty sets. Then A ∪ (B ∩ C) ⊂ (A ∪B) ∩ C.
The negation of M reads:

∼M : There exists some sets A,B,C such that each of A,B,C is non-empty and A ∪ (B ∩ C) ⊂/ (A ∪B) ∩ C.
We verify ∼M :

• Regard 0, 1, 2 as distinct objects.
Let A = {0}, B = {1}, C = {2}.
We have B ∩ C = ∅. Then A ∪ (B ∩ C) = {0}.
We also have A ∪B = {0, 1}. Then (A ∪B) ∩ C = ∅.
Note that 0 ∈ A ∪ (B ∩ C) and 0 ̸= (A ∪B) ∩ C

Here A ∪ (B ∩ C) ⊂/ (A ∪B) ∩ C.
(d) Denote by M the statement below:

M : Suppose A,B,C are non-empty sets. Then B ∩ C ⊂ [A\(B\C)] ∪ [B\(C\A)].
The negation of M reads:

∼M : There exist some sets A,B,C such that each of A,B,C is non-empty and B ∩ C ⊂/ [A\(B\C)] ∪ [B\(C\A)].
We verify ∼M :

• Regard 0, 1 as distinct objects.
Let A = {0} and B = C = {0, 1}.
We have B ∩ C = {0, 1}.
We also have B\C = ∅, A\(B\C) = {0}.
Moreover C\A = {1}, B\(C\A) = {0}.
Then we have [A\(B\C)] ∪ [B\(C\A)] = {0}.
Note that 1 ∈ B ∩ C and 1 /∈ [A\(B\C)] ∪ [B\(C\A)].
Hence B ∩ C ⊂/ [A\(B\C)] ∪ [B\(C\A)].
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(e) Denote by M the statement below:
M : Let A,B,C be sets. Suppose A ∩B ⊂ C. Then C ⊂ (A ∩ C) ∪ (B ∩ C).
The negation of M reads:

∼M : There exist some sets A,B,C such that A ∩B ⊂ C and C ⊂/ (A ∩ C) ∪ (B ∩ C).
We verify ∼M :

• Regard 0, 1, 2 as distinct objects.
Take A = {1}, B = {2}, C = {0, 1, 2}. We have A ∩B = ∅ ⊂ C.
Note that A ∩ C = A = {1} and B ∩ C = B = {2}. Then (A ∩ C) ∪ (B ∩ C) = {1, 2}.
0 ∈ C and 0 /∈ (A ∩ C) ∪ (B ∩ C).
Hence C ⊂/ (A ∩ C) ∪ (B ∩ C).

(f) Denote by M the statement below:
M : Let A,B,C be sets. Suppose A\B, A\C are non-empty. Then A\(B ∩ C) ⊂ (A\B) ∩ (A\C).
The negation of M reads:

∼M : There exist some sets A,B,C such that A\B, A\C are non-empty and A\(B ∩ C) ⊂/ (A\B) ∩ (A\C).
We verify ∼M :

• Regard 0, 1, 2 as distinct objects.
Take A = {0, 2}, B = {1}, C = {1, 2}.
We have A\B = {0, 2} ̸= ∅ and A\C = {1} ̸= ∅.
We have B ∩ C = {1}, A\(B ∩ C) = {0, 2}.
We have (A\B) ∩ (A\C) = ∅.
Note that 0 ∈ A\(B ∩ C) and 0 /∈ (A\B) ∪ (A\C).
Then A\(B ∩ C) ⊂/ (A\B) ∩ (A\C).

(g) Denote by M the statement below:
M : Let A,B,C,D be non-empty sets. Suppose A ⊂ C and B ⊂ D. Further suppose C∩D ̸= ∅. Then A∪B ⊂ C∩D.
The negation of M reads:

∼M : There exist some sets A,B,C,D such that each of A,B,C,D is non-empty and A ⊂ C and B ⊂ D and C∩D ̸= ∅
and A ∪B ⊂/ C ∩D.

We verify ∼M :
• Regard 0, 1, 2 as distinct objects.

Take A = {1}, B = {2}, C = {0, 1}, D = {0, 2}.
A,B,C,D are all non-empty sets. A ⊂ C and B ⊂ D.
C ∩D = {0}. Then C ∩D ̸= ∅.
A ∪B = {1, 2}. Note that 1 ∈ A ∪B and 1 /∈ C ∩D. Then A ∪B ⊂/ C ∩D.

15. Solution.

(a) Method (A).
Denote by N the statement below:
N : There exists some x ∈ R such that x2 + 2x+ 3 < 0.
The negation of N reads:

∼N : For any x ∈ R, x2 + 2x+ 3 ≥ 0.
We verify ∼N :

• Pick any x ∈ R.
We have x2 + 2x+ 3 = (x+ 1)2 + 2. —— (⋆)

Since x ∈ R, we have x+ 1 ∈ R. Then (x+ 1)2 ≥ 0.
Therefore by (⋆), we have x2 + 2x+ 3 ≥ 0 + 2 = 2 ≥ 0.

Method (B).
[Denote by N the statement below:
N : There exists some x ∈ R such that x2 + 2x+ 3 < 0.
We dis-prove the statement N by obtaining a contradiction from it.]
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Suppose it were true that there existed some x ∈ R such that x2 + 2x+ 3 < 0.
Note that x2 + 2x+ 3 = (x+ 1)2 + 2. —– (⋆)

Since x ∈ R, we would have x+ 1 ∈ R. Then (x+ 1)2 ≥ 0.
By (⋆), we would have x2 + 2x+ 3 ≥ 0 + 2 = 2 ≥ 0.
Then 0 ≤ x2 + 2x+ 3 < 0. Contradiction arises.
Hence, in the first place, it is false that there exists some x ∈ R such that x2 + 2x+ 3 < 0.

(b) Method (A).
Denote by N the statement below:
N : There exist some x, y ∈ R\{0} such that (x+ y)2 = x2 + y2.
The negation of N reads:

∼N : For any x, y ∈ R\{0}, (x+ y)2 ̸= x2 + y2.
We verify ∼N :
• Pick any x, y ∈ R\{0}.

We have xy ̸= 0. Then (x+ y)2 − x2 − y2 = 2xy ̸= 0.
Therefore (x+ y)2 ̸= x2 + y2.

Method (B).

[Denote by N the statement below:
N : There exist some x, y ∈ R\{0} such that (x+ y)2 = x2 + y2.
We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some x, y ∈ R\{0} such that (x+ y)2 = x2 + y2.
Then we would have 2xy = (x+ y)2 − x2 − y2 = 0.
Since x ̸= 0 and y ̸= 0 and 2 ̸= 0, we have 2xy ̸= 0.
Contradiction arises.

(c) Method (A).
Denote by N the statement below:
N : There exists some r ∈ R such that r < r5 ≤ r3.
We may re-formulation N as:
N : There exists some r ∈ R such that r < r5 and r5 ≤ r3.
One formulation of the negation of N reads:

∼N : For any r ∈ R, if r < r5 then r5 > r3.
We verify ∼N :

Pick any r ∈ R. Suppose r < r5.
Then r(r2 − 1)(r2 + 1) = r5 − r > 0. —— (♯)

Since r is a real number, r2 ≥ 0. Then r2 + 1 > 0.
By (♯), we have r(r2 − 1) > 0. —— (♮)

Note that r ̸= 0; otherwise we would have r(r2 − 1) = 0. Then r2 > 0.
Therefore by (♮), we have r5 − r3 = r2 · r(r2 − 1) > 0.
Hence r5 > r3.

Method (B).
[Denote by N the statement below:
N : There exists some r ∈ R such that r < r5 ≤ r3.
We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some r ∈ R such that r < r5 ≤ r3.
We would have r < r3.
Note that r ̸= 0; otherwise we would have r = r3 = r5 = 0. Since r is a real number, r2 > 0.

Then, since r5 ≤ r3, we would have r3 =
r5

r2
≤ r3

r2
= r.

Now we would have r < r3 and r3 ≤ r. Therefore r < r. Contradiction arises.
(d) Method (A).

Denote by N the statement below:
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N : There exists some ζ ∈ C\{1}, n ∈ N\N\{0, 1} such that ζ is an (n+1)-th root of unity and ζ is an (n2+n+1)-th
root of unity.

One formulation of the negation of N reads:
∼N : For any ζ ∈ C\{1}, for any n\{0, 1}, if ζ is an (n+ 1)-th root of unity then ζ is not an (n2 + n+ 1)-th root of

unity.
We verify ∼N :

Pick any ζ ∈ C\{1}, n ∈ N\{0, 1}. Suppose ζ is an (n+ 1)-th root of unity.
[We want to deduce that ζ is not an (n2 + n+ 1)-th root of unity.]

By assumption, we have ζn+1 = 1.
Then ζn

2+n+1 = ζ(n+1)n+1 = (ζn+1)n · ζ = 1n · ζ = ζ ̸= 1.
Therefore ζ is not an (n2 + n+ 1)-th root of unity.

Method (B).
[Denote by N the statement below:
N : There exists some ζ ∈ C\{1}, n ∈ N\{0, 1} such that ζ is an (n+1)-th root of unity and ζ is an (n2+n+1)-th

root of unity.
We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some ζ ∈ C\{1}, n ∈ N\{0, 1} such that ζ was an (n + 1)-th root of unity
and ζ was an (n2 + n+ 1)-th root of unity.
By assumption, we would have ζn+1 = 1 and ζn

2+n+1 = 1.
Then 1 = ζn

2+n+1 = ζ(n+1)n+1 = (ζn+1)n · ζ = 1n · ζ = ζ.
But ζ ̸= 1 by assumption. Contradiction arises.

(e) Method (A).
Denote by N the statement below:
N : There exists some s ∈ Q such that (for any t ∈ Q, s = 2t+ 1).
The negation of N reads:

∼N : For any s ∈ Q, there exists some t ∈ Q such that s = 2t+ 1.
We verify ∼N :

• Pick any s ∈ Q.

Define t =
s− 1

2
. Since s, 1, 2 ∈ Q, we have t ∈ Q.

By definition, we have 2t+ 1 = 2 · s− 1

2
+ 1 = (s− 1) + 1 = s.

Method (B).
[Denote by N the statement below:
N : There exists some s ∈ Q such that (for any t ∈ Q, s = 2t+ 1).
We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some s ∈ Q such that (for any t ∈ Q, s = 2t+ 1).
Note that 0 ∈ Q. Then, for the same s, we would have s = 2 · 0 + 1 = 1.
Also note that 1 ∈ Q. Then, for the same s, we would have s = 2 · 1 + 1 = 3.
Then 1 = 3. Contradiction arises.
Hence, in the first place, it is false that there exists some s ∈ Q such that (for any t ∈ Q, s = 2t+ 1).

(f) Method (A).
Denote by N the statement below:
N : There exists some t ∈ R such that (for any s ∈ C, |s| ≤ t).
The negation of N reads:

∼N : For any t ∈ R, there exists some s ∈ C such that |s| > t.
We verify ∼N :

• Pick any t ∈ R.
Take s = |t|+ 1. By definition, s ∈ C.
Note that s is a positive real number. Then |s| = ||t|+ 1| = |t|+ 1 > |t| ≥ t.
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Method (B).
[Denote by N the statement below:
N : There exists some t ∈ R such that (for any s ∈ C, |s| ≤ t).
We dis-prove the statement N by obtaining a contradiction from it.]

Suppose it were true that there existed some t ∈ R such that (for any s ∈ C, |s| ≤ t).
For this real number t, the statement ‘for any s ∈ C, |s| ≤ t’ would be true.
Note that |t|+ 1 is a complex number.
Then ||t|+ 1| ≤ t.
Since |t|+ 1 is a non-negative real number, we have ||t|+ 1| = |t|+ 1.
Then we have |t|+ 1 ≤ t ≤ |t|. Therefore 1 ≤ 0.
Contradiction arises.

(g) Method (A).
Denote by N the statement below:

N : There exist some a ∈ R, n ∈ N\{0, 1, 2, 3} such that (1 +
√
|a|)n

n(n− 1)(n− 2)(n− 3)
≤ a2

24
.

The negation of N reads:

∼N : For any a ∈ R, for any n ∈ N\{0, 1, 2, 3}, (1 +
√

|a|)n

n(n− 1)(n− 2)(n− 3)
>

a2

24
.

We verify ∼N :
• Pick any a ∈ R. Pick any n ∈ N\{0, 1, 2, 3}.

By the Binomial Theorem,

(
1 +

√
|a|
)n

=

n∑
j=0

(
n
j

)
· (
√
|a|)j

≥ 1 +
n(n− 1)(n− 2)(n− 3)

4!
(
√

|a|)
4

>
n(n− 1)(n− 2)(n− 3)

24
a2.

(The first inequality holds because
(

n
j

)
· (
√

|a|)j ≥ 0 for each j. The second holds because 1 > 0.)
Since n ∈ N\{0, 1, 2, 3}, we have n(n− 1)(n− 2)(n− 3) > 0.

Then (1 +
√

|a|)n

n(n− 1)(n− 2)(n− 3)
>

a2

24
.

Method (B).
[Denote by N the statement below:

N : There exist some a ∈ R, n ∈ N\{0, 1, 2, 3} such that (1 +
√
|a|)n

n(n− 1)(n− 2)(n− 3)
≤ a2

24
.

We dis-prove the statement N by obtaining a contradiction from it.]
Suppose it were true that there existed some a ∈ R, n ∈ N\{0, 1, 2, 3} such that(

1 +
√

|a|
)n

n(n− 1)(n− 2)(n− 3)
≤ a2

24
.

By the Binomial Theorem,

(
1 +

√
|a|
)n

=

n∑
j=0

(
n
j

)
· (
√
|a|)j

≥ 1 +
n(n− 1)(n− 2)(n− 3)

4!
(
√

|a|)
4

>
n(n− 1)(n− 2)(n− 3)

24
a2.
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Since n ∈ N\{0, 1, 2, 3}, we have n(n− 1)(n− 2)(n− 3) > 0.

Then (1 +
√

|a|)n

n(n− 1)(n− 2)(n− 3)
>

a2

24
.

Now, by assumption, a2

24
≥

(1 +
√
|a|)n

n(n− 1)(n− 2)(n− 3)
>

a2

24
.

Contradiction arises.

16. Solution.

(a) Method (A).
Denote by N the statement below:
N : There exists some x ∈ R such that |x+ 1| > |x|+ 1.
The negation of N reads:

∼N : For any x ∈ R, |x+ 1| ≤ |x|+ 1.
We verify ∼N :
• Pick any x ∈ R. We have x < −1 or −1 ≤ x ≤ 0 or x > 0.

(Case 1). Suppose x < −1. Then x+1 < 0 and x < 0. We have |x+1| = −(x+1) = −x−1 = |x|−1 ≤ |x|+1.
(Case 2). Suppose −1 ≤ x ≤ 0. Then x+ 1 ≥ 0 also. We have |x+ 1| = x+ 1 ≤ 0 + 1 = 1 ≤ |x|+ 1.
(Case 3). Suppose x > 0. Then x+ 1 > 0 also. We have |x+ 1| = x+ 1 = |x|+ 1 ≤ |x|+ 1.

Hence, in any case, we have |x+ 1| ≤ |x|+ 1.
Alternative argument with Method (A).
Denote by N the statement below:
N : There exists some x ∈ R such that |x+ 1| > |x|+ 1.
The negation of N reads:

∼N : For any x ∈ R, |x+ 1| ≤ |x|+ 1.
We verify ∼N :

Pick any x ∈ R. Suppose it were true that |x+ 1| > |x|+ 1 for this x.
Note that |x+ 1| > |x|+ 1 ≥ 1 > 0.
Then x2 + 2x+ 1 = (x+ 1)2 = |x+ 1|2 > (|x|+ 1)2 = x2 + 2|x|+ 1.
Therefore x > |x| ≥ x.
Contradiction arises.
Hence |x+ 1| ≤ |x|+ 1.

Method (B).
Suppose it were true that there existed some x ∈ R such that |x+ 1| > |x|+ 1.
Note that |x+ 1| > |x|+ 1 ≥ 1 > 0.
Then x2 + 2x+ 1 = (x+ 1)2 = |x+ 1|2 > (|x|+ 1)2 = x2 + 2|x|+ 1.
Then x > |x| ≥ x.
Contradiction arises.

(b) Suppose it were true that there existed some z ∈ C such that |z + 3− 4i| > |z|+ 5.
Note that |z|+ 5 ≥ 0.
Then

|z|2 + 10|z|+ 25 = (|z|+ 5)2

< |z + 3− 4i|2

= (z + 3− 4i)(z̄ + 3 + 4i)

= |z|2 + (3 + 4i)z + (3− 4i)z̄ + 25

= |z|2 + 2Re((3 + 4i)z) + 25.

Therefore 10|z| < 2Re((3 + 4i)z) ≤ 2|(3 + 4i)z| = 2|3 + 4i||z| = 10|z|. Contradiction arises.
Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some z ∈ R such that |z + 3− 4i| > |z|+ 5.
By Triangle Inequality, we have |z + 3− 4i| ≤ |z|+ |3− 4i| = |z|+ 5.
Then |z + 3− 4i| ≤ |z|+ 5 < |z + 3− 4i|. Contradiction arises.
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(c) Suppose it were true that there existed some x ∈ R such that |x+ 4| > 2|x+ 1|+ |x− 2|.
Then

4|x+ 1|2 + |x− 2|2 + 4|x+ 1||x− 2| = (2|x+ 1|+ |x− 2|)2

< |x+ 4|2

= (x+ 4)2

= [2(x+ 1) + (−x+ 2)]2

= 4(x+ 1)2 + (2− x)2 + 4(x+ 1)(−x+ 2)

= 4|x+ 1|2 + |x− 2|2 + 4(x+ 1)(−x+ 2)

Therefore |x+ 1||x− 2| < (x− 1)(−x+ 2) ≤ |(x+ 1)(−x+ 2)| = |x+ 1||x− 2|. Contradiction arises.
Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some x ∈ R such that |x+ 4| > 2|x+ 1|+ |x− 2|.
By Triangle Inequality, we have |x+ 4| = |2(x+ 1) + (−x+ 2)| ≤ |2(x+ 1)|+ | − x+ 2| = 2|x+ 1|+ |x− 2|.
Then |x+ 4| ≤ 2|x+ 1|+ |x− 2| < |x+ 4|. Contradiction arises.

(d) Suppose it were true that there existed some z, w ∈ C such that w ̸= 2z and 2|z − 2w − 3− 6i|+ 3|w + 2 + 4i|
|2z − w|

< 1.

By the Triangle Inequality, we have

2|z − 2w − 3− 6i|+ 3|w + 2 + 4i| = |2z − 4w − 6− 12i|+ |3w + 6 + 12i|
≥ |(2z − 4w − 6− 12i) + (3w + 6 + 12i)| = |2z − w|.—— (†)

Since w ̸= 2z, we would have 2z − w ̸= 0. Then |2z − w| > 0.

Then by (†), we would have 2|z − 2w − 3− 6i|+ 3|w + 2 + 4i|
|2z − w|

≥ 1. Contradiction arises.

Alternative argument.
We prove the statement

‘For any z, w ∈ C, if w ̸= 2z then 2|z − 2w − 3− 6i|+ 3|w + 2 + 4i|
|2z − w|

≥ 1’.

Pick any z, w ∈ C. Suppose w ̸= 2z.
By the Triangle Inequality, we have

2|z − 2w − 3− 6i|+ 3|w + 2 + 4i| = |2z − 4w − 6− 12i|+ |3w + 6 + 12i|
≥ |(2z − 4w − 6− 12i) + (3w + 6 + 12i)| = |2z − w|.—— (†)

Since w ̸= 2z, we have 2z − w ̸= 0. Then |2z − w| > 0.

Then by (†), we have 2|z − 2w − 3− 6i|+ 3|w + 2 + 4i|
|2z − w|

≥ 1.

17. Solution.
(a) Method (A).

The negation of (⋆) reads:
∼(⋆): For any positive real numbers x, y, the inequality (x+ y)2 > x2 + y2 holds.

We verify ∼(⋆):
• Pick any positive real numbers x, y.

Note that (x+ y)2 − x2 − y2 = 2xy. —— (⋆)

Since x > 0 and y > 0, we have 2xy > 0.
Then, by (⋆), we have (x+ y)2 − x2 − y2 > 0.
Therefore (x+ y)2 > x2 + y2.

Method (B).
[We dis-prove the statement (⋆) by obtaining a contradiction from it.]

Suppose there existed some positive real numbers x, y such that (x+ y)2 ≤ x2 + y2.

Then, for the same x, y, we would have xy =
1

2
[(x+ y)2 − x2 − y2] ≤ 0.

Since x > 0 and y > 0, we have xy > 0.
Then 0 < xy ≤ 0. Contradiction arises.
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(b) [We disprove the statement (⋆⋆) by obtaining a contradiction from it.]
Suppose it were true that there existed some positive real numbers u, v such that

√
u+

√
v ≤

√
u+ v.

We claim that (⋆) would hold:

• Define x =
√
u, y =

√
v. By definition, x, y would be positive real numbers. Then x + y would be a positive

real number also.
Therefore we would have 0 < x+ y =

√
u+

√
v ≤

√
u+ v.

Since
√
u+ v > 0 and u = x2 and v = y2, we would have (

√
u+ v)2 = u+ v = x2 + y2.

Then (x+ y)2 ≤ (
√
u+ v)2 = u+ v = x2 + y2.

Therefore (⋆) would hold.
However, (⋆) is a false statement. Contradiction arises.

18. Solution.
Suppose there existed some k ∈ N\{0, 1} such that for any positive integer n, the number k1/n was an integer.
Define the set S by

S =

{
x ∈ N\{0, 1} :

There exists some n ∈ N\{0}
such that x = k1/n

}
.

By definition, S would be a subset of N.

Note that k = k1/1, and k ̸= 0 and k ̸= 1. Then, by definition, k ∈ S. Therefore S is a non-empty subset of N.
Then, by the Well-ordering Principle for Integers, S has a least element, say, u.
By definition, u ≥ 2.

Also, by definition, there exists some n0 ∈ N\{0} such that u = k1/n0 .
Note that u ̸= 0; otherwise we would have k = 0.

Now define v = k1/(2n0).
Note that 2n0 ∈ N\{0}. By definition, v ∈ S. Moreover, u = v2.

Since u ̸= 0, we would have v ̸= 0; otherwise, u = v2 = 0.
Also, since u ̸= 1, we would have v ̸= 1; otherwise u = v2 = 1.
Then v ≥ 2.
Then, since u, v ∈ N, we would have u = v · v ≥ 2v > v.
But u was a least element of S. Contradiction arises.
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