
MATH1050BC/1058 Assignment 3 (Answers and selected solution)

1. Answer.

(a) i. True. ii. True. iii. True. iv. True. v. True. vi. True. vii. True. viii. True.

(b) i. 2 + 3 ̸= 6 and 3 + 1 ̸= 4.
ii. 2 + 3 > 6 or (3 + 1 < 4 and 4 + 3 > 5).
iii. 1 + 2 > 3 and 3 + 4 > 2.
iv. 3 + 2 ≥ 5 and 2 + 1 > 3.
v. 2 + 6 ≤ 5 and 3 + 2 ̸= 5.
vi. 2 + 4 ≤ 3 and 3 + 2 ̸= 7.
vii. 2 + 3 ̸= 6 iff 1 + 4 = 7.

Alternative answer.
2 + 3 = 6 iff 1 + 4 ̸= 7.

viii. [3 + 4 = 5 and (if 3 + 4 = 5 then 2 + 3 = 4)] and 2 + 3 ̸= 4.

2. Answer.

(a) The statement (P −→ R) −→ [(P −→ Q)∧ (Q −→ R)] is neither a tautology nor a contradiction; it is a contingent
statement.
P Q R P→Q Q→R P→R (P→Q)∧(Q→R) (P→R)→ [(P→Q)∧(Q→R)]

T T T T T T T T
T T F T F F F T
T F T F T T F F
T F F F T F F T
F T T T T T T T
F T F T F T F F
F F T T T T T T
F F F T T T T T

Remark. Do you see what is wrong in the logic behind the word ‘therefore’ in the argument below?
• If John visits his girlfriend then John puts aside his books. Therefore, if John visits his girlfriend then John

plays football; furthermore, if John plays football then John puts aside his books.
(b) The statement (P −→ Q) −→ [(P −→ R)∨ (Q −→ R)] is neither a tautology nor a contradiction; it is a contingent

statement.
P Q R P→Q P→R Q→R (P→R)∨(Q→R) (P→Q)→ [(P→R)∨(Q→R)]

T T T T T T T T
T T F T F F F F
T F T F T T T T
T F F F F T T T
F T T T T T T T
F T F T T F T T
F F T T T T T T
F F F T T T T T

3. Answer.

(a)

P Q P→Q (P→Q)→Q Q→P Q→ (Q→P ) ∼P (P→Q)→(∼P ) Q→(∼P ) P→ [Q→(∼P )]

T T T T T T F F F F
T F F T T T F T T T
F T T T F F T T T T
F F T F T T T T T T

(b) U is a contingent statement.
(c) V is a contingent statement.
(d) W is a contingent statement.
(e) X is a contingent statement.
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(f) U ∧ V is logically equivalent to P .
(g) W ←→ X is a tautology.
(h) U ←→W is logically equivalent to ∼(P ←→ Q).

4. Answer.
Let P,Q,R, S be statements, and denote the statements (P −→ Q) −→ (R −→ S), [P −→ (Q −→ R)] −→ S by U, V .
Suppose the truth value of U is F.
Then the truth value of P −→ Q is T and the truth value of R −→ S is F.
Since the truth value of R −→ S is F, the truth value of R is T and the truth value of S is F.
Since the truth value of R is T, the truth value of Q −→ R is T.
Since the truth value of Q −→ R is T, the truth value of P −→ (Q −→ R) is T.
Recall that the truth value of S is F. Then the truth value of V is F.
Since the truth values of U, V are both F, the truth value of V −→ U is T.

5. Answer.
We verify that the truth value of [(P ∨Q) −→ (Q ∧R)] −→ (P −→ R) is T irrespective of the respective truth values of
P,Q,R:

• Suppose it happened that the truth value [(P ∨Q) −→ (Q∧R)] −→ (P −→ R) were F for some specific truth values
of P,Q,R respectively.
Then for the same truth values of P,Q,R, it would happen that the truth value of (P ∨Q) −→ (Q ∧R) was T and
the truth value of P −→ R was F.
Since the truth value of P −→ R was F, the truth value of P was T and the truth value of R was F.
Since the truth value of R was F, the truth value of Q ∧R was F.
Since the truth value of P was T, the truth value of P ∨Q was T.
Then the truth value of (P ∨Q) −→ (Q ∧R) would be F. This is impossible.

6. Answer.

(a) F
(b) Tautology.

Remark. This is the part of a truth table relevant to the explanation for this answer:

P Q ∼P ∼Q P −→ (∼Q) U U −→ (∼P )

F T T
T T F F F T
T F F T

(c) No.
Remark. When P,Q take the truth values F,T respectively, U takes the truth value T and U −→ P takes the
truth value F.

7. Answer.

(a) (I) there exist some integers m,n

(II) n ̸= 0 and m = nx

(b) i. (I) There exist some integers s, t such that t ̸= 0 and s = t(xy).
(II) there exist some integers m,n such that
(III) such that q ̸= 0 and p = qy

(IV) nxqy = nq(xy)

(V) q ̸= 0

(VI) nq ̸= 0

(VII) since m,n, p, q are integers
(VIII) nq

(IX) xy is rational
(X) Suppose x, y are rational
(XI) There exist some integers s, t such that t ̸= 0 and t = s(x+ y).
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(XII) there exist some integers m,n such that n ̸= 0 and m = nx

(XIII) there exist some integers p, q such that q ̸= 0 and p = qy

(XIV) Note that mq + pn = nxq + qyn = nq(x + y). Since n ̸= 0 and q ̸= 0, we have nq ̸= 0. Also, since
m,n, p, q are integers, mq + pn, nq are also integers.
(XV) x+ y is rational

ii. Solution.
Let x, y be real numbers. Suppose x, y are rational.

[We want to deduce that x− y is rational.
This amounts to verifying this statement: ‘there exist some integers s, t such that t ̸= 0 and s = t(x− y)’.]

By the definition of rational numbers, there exist some integers m,n such that n ̸= 0 and m = nx.
Also, there exist some integers p, q such that q ̸= 0 and p = qy.
Note that mq − pn = nxq − qyn = nq(x− y).
Since n ̸= 0 and q ̸= 0, we have nq ̸= 0.
Also, since m,n, p, q ∈ are integers, mq − pn, nq are also integers.
Hence, by definition of rational numbers, x− y is rational.

iii. Solution.
Let x, y be real numbers. Suppose x, y are rational and y ̸= 0.

[We want to deduce that x

y
is rational.

This amounts to verifying this statement: ‘there exist some integers s, t such that t ̸= 0 and s = t

(
x

y

)
’.]

By the definition of rational numbers, there exist some integers m,n such that n ̸= 0 and m = nx.
Also, there exist some integers p, q such that q ̸= 0 and p = qy.
Since y ̸= 0 and q ̸= 0, we have p ̸= 0.
Note that mqy = nxp.
Then mq = np(

x

y
).

Since n ̸= 0 and p ̸= 0, we have np ̸= 0.
Also, since m,n, p, q are integers, mq, np are also integers.
Hence, by the definition of rational numbers, x

y
is rational.

8. (a) Answer.
i. Suppose x, y are integers. Then we say x is divisible by y if the statement (Div) holds:—
(Div) There exists some integer k such that x = ky.
ii. Let P (x) be a predicate with variable x.

Suppose the statements (Ini), (Ind) hold:—
(Ini) P (0) is true.
(Ind) For any natural number k, if P (k) is true, then P (k + 1) is true.

Then, for any natural number n, the statement P (n) is true.

Acceptable answer.
Let S be a subset of N.
Suppose the statements (Ini’), (Ind’) below hold:—

(Ini’) 0 ∈ N.
(Ind’) For any x ∈ N, if x ∈ S then x+ 1 ∈ S.

Then S = N.
iii. Let S be a subset of N. Suppose S is non-empty. Then S has a least element.

Acceptable answer.
Let S be a subset of Z. Suppose S is non-empty. Further suppose that S is bounded below by some integer
(not necessarily belonging to S). Then S has a least element.

(b) Solution.
i. For each natural number n, denote by P (n) the proposition below:—

n(n2 + 2) is divisible by 3.
• [We verify P (0).]

Note that 0 · (02 + 2) = 0 = 3 · 0, and 0 is an integer.
Then, by the definition of divisibility, 0 · (02 + 2) is divisible by 3.
Hence P (0) is true.
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• [We verify the statement ‘for any natural number k, if P (k) is true then P (k + 1) is true’.]
Let k be a natural number. Suppose P (k) is true. (Then k(k2 + 2) is divisible by 3.)
[We verify that P (k + 1) is true.]
By the definition of divisibility, there exists some integer q such that k(k2 + 2) = 3q.
Note that

(k + 1)[(k + 1)2 + 2] = k3 + 3k2 + 5k + 3 = k(k2 + 2) + 3(k2 + k + 1) = · · · = 3(q + k2 + k + 1)

Since k, q are integers, q + k2 + k + 1 is an integer.
Then, by the definition of divisibility, (k + 1)[(k + 1)2 + 2] is divisible by 3.
Hence P (k) is true.

By the Principle of Mathematical Induction, P (n) is true for any natural number n.
ii. For each natural number n, denote by P (n) the proposition below:—

24n+3 + 33n+1 is divisible by 11.
• [We verify P (0).]

Note that 24·0+3 + 33·0+1 = 8 + 3 = 11 = 11 · 1, and 1 is an integer.
Then, by the definition of divisibility, 24·0+3 + 33·0+1 is divisible by 11.
Hence P (0) is true.

• [We verify the statement ‘for any natural number k, if P (k) is true then P (k + 1) is true’.]
Let k be a natural number. Suppose P (k) is true. (Then 24k+3 + 33k+1 is divisible by 11.)
[We verify that P (k + 1) is true.]
By the definition of divisibility, there exists some integer q such that 24k+3 + 33k+1 = 11q.
Note that

24(k+1)+3 + 33(k+1)+1 = 16 · 24k+3 + 27 · 33k+1

= 16 · (24k+3 + 33k+1) + 11 · 33k+1

= 16 · 11q + 11 · 33k+1 = 11(16q + 33k+1)

Since q, k are integers, 16q + 33k+1 is also an integer.
Then, by the definition of divisibility, 24(k+1)+3 + 33(k+1)+1 is divisible by 11.
Hence P (k) is true.

By the Principle of Mathematical Induction, P (n) is true for any natural number n.
iii. For each natural number n, denote by P (n) the proposition below:—

7n(3n+ 1)− 1 is divisible by 9.
• [We verify P (0).]

Note that 70(3 · 0 + 1)− 1 = 0 = 9 · 0, and 0 is an integer.
Then, by the definition of divisibility, 70(3 · 0 + 1)− 1 is divisible by 9.
Therefore P (0) is true.

• [We verify the statement ‘for any natural number k, if P (k) is true then P (k + 1) is true’.]
Let k be a natural number. Suppose P (k) is true. (Then 7k(3k + 1)− 1 is divisible by 9.)
[We verify that P (k + 1) is true.]
By the definition of divisibility, there exists some integer q such that 7k(3k + 1)− 1 = 9q.
Note that

7k+1[3(k + 1) + 1]− 1 = 7 · 7k[(3k + 1) + 3]− 1

= 7 · 7k(3k + 1) + 3 · 7k+1 − 1

= 7 · [7k(3k + 1)− 1] + 3(7k+1 − 1) + 9

= 7 · 9q + 3(7− 1)

k∑
j=0

7j + 9 = 9

7q + 2

k∑
j=0

7j + 1



Since q, k are integers, 7q + 2

k∑
j=0

7j + 1 is also an integer.

Then, by the definition of divisibility, 7k+1[3(k + 1) + 1]− 1 is divisible by 9.
Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any natural number n.
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(c) Solution.
i. Let x, y be integers. Suppose that x is divisible by y, and y is divisible by x.

Since x is divisible by y, there exists some integer k such that x = ky.
Since y is divisible by x, there exists some integer ℓ such that y = ℓx.
We have x = ky = kℓx.
Then (kℓ− 1)x = 0. —— (⋆)

Note that x = 0 or x ̸= 0.
• (Case 1.) Suppose x = 0. Then y = ℓx = 0. Therefore |x| = 0 = |y|.
• (Case 2.) Suppose x ̸= 0. Then by (⋆), kℓ− 1 = 0.

Therefore kℓ = 1. Then k ̸= 0 and ℓ ̸= 0.
Recall that k, ℓ are integers. Then |k| ≥ 1 and |ℓ| ≥ 1.
Now we have |x| = |ky| = |k| · |y| ≥ 1 · |y| = |y|.
We also have |y| = |ℓx| = |ℓ| · |x| ≥ 1 · |x| = |x|.
Then |x| = |y|.

Hence in any case, |x| = |y|.
Remark. Be aware that the assumption ‘x, y are integers and x is divisible by y and y is divisible by x’ does
not preclude the possibilities ‘x = 0’, ‘y = 0’.
Be careful when you are tempted to write an expression like y

x
, or ‘cancelling’ x from both sides of an equality

in which the expressions contain the ‘factor’ x.
ii. Let x, y, z be integers. Suppose that x is divisible by y2, and y is divisible by z3.

By the definition of divisibility, since x is divisible by y2, there exists some integer g such that x = gy2.
Also, since y is divisible by z3, there exists some integer h such that y = hz3.
We have x = gy2 = g(hz3)2 = (gh2)z6.
Since g, h are integers, gh2 is also an integer.
Then, by the definition of divisibility, x is divisibly by z6.

iii. Let x, n be integers. Suppose that x is divisible by n.
By definition of divisibility, there exists some integer k such that x = kn. —— (⋆)

[We are going to verify that for any integer y, (3x2 + 4y)5 + (3x2 − 4y)5 is divisible by 6n2.]
Pick any integer y.

[For such an integer y, we are going to deduce (with the help of (⋆)) that (3x2 + 4y)5 + (3x2 − 4y)5 is
divisible by 6n2. This amounts to deducing (with the help of (⋆)) that there exists some integer L such that
(3x2 + 4y)5 + (3x2 − 4y)5 = L · 6n2.]

Note that

(3x2 + 4y)5 + (3x2 − 4y)5 = [(3x2 + 4y) + (3x2 − 4y)]M

= 6x2M = 6(kn)2M (by (⋆))
= 6n2 · k2M,

in which M = (3x2 +4y)4− (3x2 +4y)3(3x2− 4y)+ (3x2 +4y)2(3x2− 4y)− (3x2 +4y)(3x2 +4y)+ (3x2− 4y)4.
Since x, y are integers, each of 3x2+4y, 3x2−4y is an integer. Then M is an integer. Recall that k is an integer
by (⋆). Then k2M is also an integer.
Therefore, by the definition of divisibility, (3x2 + 4y)5 + (3x2 − 4y)5 is divisible by 6n2.

9. (a) Solution.
Let x, y, a, b, d be integers. Suppose that x is divisible to by d, and y is divisible by d.
By the definition of divisibility, since x is divisible by d, there exists some integer k such that x = kd.
Since y is divisible by d, there exists some integer ℓ such that y = ℓd.
Note that ax+ by = akd+ bℓd = (ak + bℓ)d.
Since a, k, b, ℓ are integers, ak + bℓ is also an integer.
Then by the definition of divisibility, ax+ by is divisible by d.

(b) i. Answer.
(I) d is an integer
(II) n greater than 1

(III) a1, a2, · · · , an, x1, x2, · · · , xn

(IV) xj is divisible by d for each j = 1, 2, · · · , n

5



(V) a1x1 + a2x2 + · · ·+ anxn is divisible by d

ii. Solution.
Suppose d is an integer.
For each integer n greater than 1, denote by P (n) the proposition below:—
If a1, a2, · · · , an, x1, x2, · · · , xn are integers and xj is divisible by d for each j = 1, 2, · · · , n then a1x1 + a2x2 +

· · ·+ anxn is divisible by d.
By (∗), P (2) is true.
• [We now verify the statement ‘for any integer k greater than 1, if P (k) is true then P (k + 1) is true’.]

Let k be an integer greater than 1. Suppose P (k) is true.
[We deduce P (k + 1). It reads:
‘If a1, a2, · · · , ak, ak+1, x1, x2, · · · , xk, xk+1 are integers and xj is divisible by d for each j = 1, 2, · · · , k, k+1

then a1x1 + a2x2 + · · ·+ akxk + ak+1xk+1 is divisible by d.’]
Pick any integers a1, a2, · · · , ak, ak+1, x1, x2, · · · , xk, xk+1.
Suppose that xj is divisible by d for each j = 1, 2, · · · , k, k + 1.
Write c = a1x1 + a2x2 + · · ·+ akxk. By P (k), c is divisible by d.
Now note that a1x1 + a2x2 + · · ·+ akxk + ak+1xk+1 = 1 · c+ ak+1xk+1.——(†)
By assumption, ak+1 is an integer, and xk+1 is divisible by d.
Also note that 1 is an integer, and recall that c is divisible by d.
Then by (∗), 1 · c+ ak+1xk+1 is divisible by d.
Therefore by (†), a1x1 + a2x2 + · · ·+ akxk + ak+1xk+1 is divisible by d.
Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any integer n greater than 1.

10. (a) Answer.
Let p be an integer. Suppose p is not amongst 0, 1,−1. Then we say that p is a prime number if p is divisible by no
integer other than 1,−1, p,−p.
Acceptable answer.
Let p be an integer. Suppose p is not amongst 0, 1,−1. Then we say that p is a prime number if the statement (⋆)

holds:
(⋆) For any integer u, if p is divisible by u then u = 1 or u = −1 or u = p or u = −p.

(b) Solution.
Pick any integer n greater than 3.
We verify that there is some integer v such that n2 + n− 6 is divisible by v, and v is not amongst 1,−1, n2 + n−
6,−(n2 + n− 6).
Note that n2 + n− 6 = (n− 2)(n+ 3).
Since n is an integer, each of n− 2, n+ 3 is an integer.
By assumption, n > 3. Then n− 2 > 1 and n+ 3 > 1.
Further note that n2 + n− 6 = (n− 2)(n+ 3) > 1 · (n+ 3) = n+ 3 > 1 > 0.
(Hence n2 + n− 6 is not amongst −1, 0, 1.)
By the definition of divisibility, n2 + n− 6 is divisible by n+ 3.
Also, n+ 3 is not amongst −1, 1, n2 + n− 6,−(n2 + n− 6).
Therefore n2 + n− 6 is not a prime number.

11. (a) Answer.
i. Suppose m,n, c are integers. Then we say that c is a common divisor of m,n if m is divisible by c and n is

divisible by c.
ii. Let h, k, p be integers. Suppose p is a prime number. Further suppose hk is divisible by p. Then at least one

of h, k is divisible by p.
iii. Let m,n be natural numbers. Suppose n ̸= 0. Then there exists some unique natural numbers q, r such that

m = qn+ r and 0 ≤ r < n.
(b) Answer.

i. (I) Let m be an integer greater than 1, and t, u, v be real numbers. Suppose that t is non-zero and rational,
and u is irrational, and vm = tu.
(II) v was rational
Alternative answer.
v was not irrational
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(III) rational

(IV) vm

t

(V) vm

t

(VI) u would be rational
(VII) u is irrational
(VIII) Hence v is irrational in the first place.

ii. (I) Let a, p be integers. Suppose p is a prime number.
(II) If an is divisible by p, then a is divisible by p.
(III) Suppose a2 is divisible by p.
(IV) Let k be an integer greater than 1. Suppose Q(k) is true.
(V) Suppose ak+1 is divisible by p

(VI) By Euclid’s Lemma, at least one of a, ak is divisible by p

(VII) divisible by p

(VIII) by Q(k), a is divisible by p

iii. (I) Suppose it were true that 5
√
3 was rational.

Alternative answer.
Suppose 5

√
3 were rational.

Suppose it were false that 5
√
3 was irrational.

Suppose 5
√
3 were not irrational.

(II) there would exist some integers m,n such that n ̸= 0 and m = n · 5
√
3

(III) m,n have no common divisors other than 1,−1
Alternative answer.
m,n are divisible by no integers other than 1,−1
(IV) m5 = 3n5

(V) m5 would be divisible by 3

(VI) a prime number
(VII) m would be divisible by 3

(VIII) there would exist some integer k such that m = 3k

(IX) 34k5 = 3 · 33k5

(X) an integer
(XI) the definition of divisibility
(XII) divisible by 3

(XIII) n would be divisible by 3

(IV) m,n had no common divisors other than 1,−1
Alternative answer.
m,n were divisible by no integers other than 1,−1
(XV) m,n

(c) Solution.

i. Write u = 5
√
9, v = 5

√
27, w = 5

√
81.

Note that u3 = v2 = (
5
√
3)6 = 3 · 5

√
3. Then by the result described by the statement (J), u, v are irrational.

Note that w4 = (
5
√
3)16 = 27 · 5

√
3. Then by the result described by the statement (J), w is irrational.

ii. Pick any positive integer m. Suppose m is not divisible by 5.
By the Division Algorithm for Natural Numbers, there exists some natural numbers q, r such that m = 5q + r
and 0 ≤ r < 5.
Since m is not divisible by 5, we have r ̸= 0. Then r = 1 or r = 2 or r = 3 or r = 4.
By the statement (L), and by the result in the previous part, 5

√
3r is irrational.

Note that 5
√
3m =

5
√
35q+r = 3q · 5

√
3r.

Then, by the result described by the statement (J), 5
√
3m is irrational.

12. Solution.
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(a) Suppose it were true that
√
2 +
√
3 was a rational number. Write r =

√
2 +
√
3. We have

√
3 = r −

√
2.

Note that 3 = (r −
√
2)2 = r2 − 2r

√
2 + 2. Then 2r

√
2 = r2 − 1.

Since
√
2 > 0 and

√
3 > 0, we have r =

√
2 +
√
3 > 0.

Then r2 − 1

2r
is well-defined and

√
2 =

r2 − 1

2r
.

By assumption, r was a rational number. Then r2 − 1 and 2r would be rational numbers. Therefore r2 − 1

2r
would

be a rational number.
Recall that

√
2 is an irrational number.

Then
√
2 would be simultaneously a rational number and an irrational number. Contradiction arises.

It follows that
√
2 +
√
3 is an irrational number.

(b) Suppose it were true that
√
3−
√
2 was a rational number. Write s =

√
3−
√
2. We have

√
3 = r +

√
2.

Note that 3 = (s+
√
2)2 = s2 + 2s

√
2 + 2. Then 2s

√
2 = 1− s2.

Since
√
3 >
√
2, we have s =

√
3−
√
2 > 0.

Then 1− s2

2s
is well-defined and

√
2 =

1− s2

2s
.

By assumption, s was a rational number. Then 1− s2 and 2s would be rational numbers. Therefore 1− s2

2s
would

be a rational number.
Recall that

√
2 is an irrational number.

Then
√
2 would be simultaneously a rational number and an irrational number. Contradiction arises.

It follows that
√
2 +
√
3 is an irrational number.

13. Solution.
Suppose it were true that

√
6 was a rational number.

Then, by the definition of rational numbers, there would exist some integers m,n such that n ̸= 0 and n
√
6 = m.

Without loss of generality, we assume that ‘
√
6 =

m

n
’ is a lowest-term representation as a fraction of integers.

Then m,n have no common divisor other than 1,−1.
We would have 2(3n2) = 6n2 = m2.

Note that 3n2 is an integer. Then m2 would be divisible by 2.
Note that 2 is a prime number.
By Euclid’s Lemma, m would be divisible by 2.
There would exist some integer k such that m = 2k.
Now 6n2 = m2 = (2k)2 = 4k2. Then 3n2 = 2k2.

Note that k2 is an integer. Then 3n2 would be divisible by 2.
Note that 3 is a prime number. Then by Euclid’s Lemma, at least one of 3, n2 would be divisible by 2.
Note that 3 is not divisible by 2.
Then n2 would be divisible by 2. Again, by Euclid’s Lemma, n would be divisible by 2.
Now simultaneously m,n had no common divisors other than 1,−1, and 2 would be a common divisor of m,n. Contra-
diction arises.
Hence

√
6 is an irrational numbers in the first place.

14. Solution.

(a) Let p, q be positive integers. Suppose p, q are prime numbers, and q is divisible by p.
By the definition of prime numbers, q is divisible by no integers other than 1,−1, q,−q.
Since q is divisible by p, we have p = 1 or p = −1 or p = q or p = −q.
Since p is a prime number, p ̸= −1 and p ̸= 1. Since p, q are positive p ̸= −q.
Then p = q.
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(b) Suppose p, q are distinct positive prime numbers, and m,n are positive integers.
Suppoe it were true that pm − qn was divisible by p.
Then there would exist some integer k such that pm − qn = kp.
Therefore qn = pm − kp = (pm−1 − k)p.
Since p, k are integers, pm−1 − k is also an integer. Then qn would be divisible by p.
Then by (the generalization of) Euclid’s Lemma (to the ‘many-numbers situation’), q would be divisible by p.
Therefore by (♯), p = q. Contradiction arises.
Hence, pm − qn is not divisible by p.
Modifying the argument above, we also deduce that pm − qn is not divisible by q.

15. Solution.

(a) Let n be a positive integer. Pick any natural number x.
By the Division Algorithm for Natural Numbers, there exist some unique natural numbers q, r such that x = nq+ r
and 0 ≤ r < n.
We verify that at least one of x, x+ 1, x+ 2, · · · , x+ n− 1 is divisible by n:

• Suppose x is not divisible by n.
[We verify that x+ n− r is amongst x, x+ 1, x+ 2, · · · , x+ n− 1 and is divisible by n.]
Since x is not divisible by n, we have r ≥ 1. Then n− r ≤ n− 1. Therefore x < x+ n− r ≤ x+ n− 1.
Note that x+ n− r = qn+ r + n− r = (q + 1)n.
Since q is a natural number, q + 1 is also a natural number.
Then, by the definition of divisibility, x+ n− r is divisible by n.

We verify that at most one of x, x+ 1, x+ 2, · · · , x+ n− 1 is divisible by n:
• Suppose two of x, x+1, x+2, · · · , x+ n− 1, say, x+ k, x+ k′, are divisible by n. By definition, 0 ≤ k < n and

0 ≤ k′ < n. Then |k − k′| < n.
By definition of divisibility, there exist some integers q, q′ such that x+ k = qn and x+ k′ = q′n.
Note that k − k′ = (x+ k)− (x+ k′) = qn− q′n = (q − q′)n.
Then |q − q′|n = |k − k′| < n

Since q, q′ are integers, |q − q′| is a natural number. Then |q − q′| = 0 or |q − q′| ≥ 1.
(Recall that n > 0.) Then |q − q′|n = 0 or |q − q′|n ≥ n.
Since |k − k′| < n, it is impossible for ‘|q − q′|n ≥ n’ to hold.
Therefore |q − q′|n = 0. (Again recall n > 0.) Then |q − q′| = 0. Therefore q = q′. Hence k = k′ also, and
furthermore x+ k = x+ k′. (Why?)

It follows that exactly one of x, x+ 1, x+ 2, · · · , x+ n− 1 is divisible by n.
(b) Suppose p is a prime number and p ≥ 5.

i. • p is not divisible by 2. (Why?) Then p is an odd number. There exists some integer k such that p = 2k+1.
Now p2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k = 4(k + 1)k.
Exactly one of k, k + 1 is divisible by 2. Then (k + 1)k is divisible by 2. (Why?) Therefore there exists
some integer ℓ such that (k + 1)k = 2ℓ.
We have p2 − 1 = 4(k + 1)k = 8ℓ. Hence p2 − 1 is divisible by 8.

• Note that p2 − 1 = (p− 1)(p+ 1).
p is not divisible by 3. (Why?)
Exactly one of p − 1, p, p + 1 is divisible by 3. Since it cannot be p, it is exactly one of p − 1, p + 1. Then
(p− 1)(p+ 1) is divisible by 3. (Why?)

ii. Since p2 − 1 is divisible by 8, there exists some integer u such that p2 − 1 = 8u.
Since p2 − 1 is divisible by 3, there exists some integer v such that p2 − 1 = 3v.
Now we have 8u = p2 − 1 = 3v. Then 8u is divisible by 3.
3 is a prime number. Then, by Euclid’s Lemma, at least one of 8, u is divisible by 3.
Note that 8 is not divisible by 3. Then u is divisible by 3. There exists some integer w such that u = 3w.
Now p2 − 1 = 8u = 8 · 3w = 24w and w is an integer. Therefore p2 − 1 is divisible by 24.

16. (a) Answer.
(I) a common divisor of m,n

(II) For any integer
(III) if d is a common divisor of m,n then |d| ≤ g

(b) Solution.
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i. 120 is divisible by 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, and their additive inverses, but no other inte-
gers.
75 is divisible by 1, 3, 5, 10, 15, 25, 75, and their additive inverse, but no other integers.
The common divisors of 120, 75 are 1, 3, 5, 10, 15, and their additive inverses.
Hence gcd(120, 75) = 15.

ii. Repeatedly applying Division Algorithm for natural numbers, we obtain these successive equalities:—
120 = 1 · 75 + 45
75 = 1 · 45 + 30
45 = 1 · 30 + 15
30 = 2 · 15

Hence gcd(120, 75) = 15.
(c) Solution.

Let n be a positive integer.

Since n is a positive integer, we have
23∑
j=0

nj >

14∑
j=0

nj > 0.

Repeatedly applying Division Algorithm, we obtain these successive equalities:—

23∑
j=0

nj = n9 ·
14∑
j=0

nj +

8∑
j=0

nj

14∑
j=0

nj = n6 ·
8∑

j=0

nj +

5∑
j=0

nj

8∑
j=0

nj = n3 ·
5∑

j=0

nj +

2∑
j=0

nj

5∑
j=0

nj = (n3 + 1) ·
2∑

j=0

nj

Since n is a positive integer, we indeed have the inequalities
23∑
j=0

nj >

14∑
j=0

nj >

8∑
j=0

nj >

5∑
j=0

nj >

2∑
j=0

nj > 0.

Hence gcd

 23∑
j=0

nj ,

14∑
j=0

nj

 = n2 + n+ 1.

17. (a) Answer.
Suppose a, b are integers. Then there exist some integers s, t such that gcd(a, b) = sa+ tb.

(b) Solution.
i. Let x, y, z be integers. Suppose gcd(y, z) = 1. Further suppose that xy is divisible by z.

[We want to verify that there exists some integer h such that x = hz.]
By Bézout’s Lemma, there exist some integers s, t such that sy + tz = gcd(y, z). —— (⋆)

By assumption, gcd(y, z) = 1. —— (⋆⋆)

Then by (⋆), (⋆⋆), we have 1 = sy + tz.
Therefore x = s · xy + tx · z. —— (⋆ ⋆ ⋆)

Since xy is divisible by z, there exists some integer k such that xy = kz.
Then by (⋆ ⋆ ⋆), we have x = 1 · x = s · xy + tx · z = s · kz + tx · z = (sk + tx)z.
Note that s, k, t, x are integers. Then sk + tx is an integer.
Then, by the definition of divisibility, x is divisible by z.

ii. Let x, y, z be integers. Suppose gcd(y, z) = 1. Further suppose that x is divisible by y and x is divisible by z.
[We want to verify that there exists some integer h such that x = h · yz.]
By the definition of divisibility, since x is divisible by y, there exists some integer g such that x = gy.
Also, since x is divisible by z, there exists some integer h such that x = hz.
By Bézout’s Lemma, there exists some integers s, t such that gcd(y, z) = sy + tz.
Since gcd(y, z) = 1, we have 1 = gcd(y, z) = sy + tz.
Now x = x · 1 = x(sy + tz) = xsy + xtz = hz · sy + gy · tz = (hs+ gt)yz.
Therefore, by the definition of divisibility, x is divisible by yz.

(c) i. Suppose a, b be integers. Then the statements (♮1), (♮2) are logically equivalent:—
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A. Suppose gcd(a, b) = 1. Then by Bézout’s Lemma, there exist some integers s, t such that sa+ tb = 1.
B. Suppose that there exist some integers s, t such that sa+ tb = 1

Note that 1 is a common divisor of a, b.
We verify the statement ‘for any integer d, if d is a common divisor of a, b then |d| ≤ 1’:—
• Pick any integer d. Suppose d is a common divisor of a, b.

Then, for the same integers s, t, the integer sa+ tb is divisible by d.
Therefore, there exists some integer k such that sa+ tb = kd.
Now we have 1 = sa+ tb = kd = |kd| = |k| · |d|.——(∗)
Note that k ̸= 0. Then |k| ≥ 1. Then by (∗), we have 1 = |k| · |d| ≥ 1 · |d| = |d|.

Hence, by definition, gcd(a, b) = 1.
ii. Let x, y, z be integers. Suppose gcd(x, y) = 1 and gcd(x, z) = 1.

[We want to verify that there exist some integers p, q such that px+ q · yz = 1.]
By (♮), since gcd(x, z) = 1, there exist some integers s, t such that sx+ ty = 1.——(†1)
Also, since gcd(x, z) = 1, there exist some integers u, v such that ux+ vz = 1.——(†2)
Now by (†1), (†2), we have sux · x = sx · ux = (1− ty)(1− vz) = 1− ty − vz + tv · yz. ——(†3)
Then by (†3) and again by (†1), (†2), we have sux ·x− tv ·yz = 1− ty−vz = (1− ty)+(1−vz)−1 = sx+ux−1.
Therefore 1 = sx+ ux− sux · x+ tv · yz = (s+ u− sux) · x+ tv · yz.
Note that s, u, x, t, v are integers. Then s+ u− sux, tv are also integers.
Therefore by (♮), gcd(x, yz) = 1.

18. Solution.

(a) Let u, n be integers. Suppose n > 0.
i. [We handle the ‘existence part’ here.

We verify the statement ‘there exist some unique integers q, r such that u = qn+ r and 0 ≤ r < n’.]
A. Suppose u ≥ 0. Then by the Division Algorithm for natural numbers, there exist some unique natural

numbers q, r such that u = qn+ r and 0 ≤ r < n.
Such q, r are integers automatically.

B. Suppose u < 0.
Write t = |u|. Note that t is a positive integer.
Then, by the Division Algorithm, there exist some natural numbers q′, r′ such that t = q′n + r′ and
0 ≤ r′ < n.
We verify that there exist some integers q, r such that u = qn+ r and 0 ≤ r < n:
• (Case 1.) Suppose 0 < r′ < n.

Define q = −q′ − 1 and r = n− r′. By definition, q, r are integers.
Since 0 < r′ < n, we have 0 < r < n. Also, u = −t = −q′n− r′ = (−q′ − 1)n+ (v − r′) = qn+ r.

• (Case 2.) Suppose r′ = 0.
Define q = −q′ and r = 0. By definition, q, r are integers.
We have 0 ≤ r < n. Also, u = −t = −q′n− r′ = qn+ r.

C. [We handle the ‘uniqueness part’.
We verify the statemen ‘For any integers q, r, q′, r′, if (u = qn + r and 0 ≤ r < n and u = q′n + r′ and
0 ≤ r′ < n) then q = q′ and r = r′’.]
Let q, r, q′, r′ be integers. Suppose u = qn+ r and 0 ≤ r < n and u = q′n+ r′ and 0 ≤ r′ < n.
We have qn+ r = u = q′n+ r′. Then (q − q′)n = r′ − r. (Recall n > 0.) Therefore |q − q′|n = |r − r′|.
Since 0 ≤ r < n and 0 ≤ r′ < n, we have |r − r′| < n.
Therefore 0 ≤ |q − q′|n = |r − r′| < n.
Note that q, q′ are integers. Then |q − q′| is a natural number.
Therefore |q − q′| = 0 or |q − q′| ≥ 1.
(Again recall n > 0.) Hence |q − q′|n = 0 or |q − q′|n ≥ n.
Since |q − q′|n = |r − r′| < n, it is impossibe for ‘|q − q′|n ≥ n’ to hold.
Therefore |q − q′|n = 0. Since n ̸= 0, we have |q − q′| = 0. Then q = q′.
We now have |r − r′| = |q − q′|n = 0. Hence r = r′ also.

(b) Let x, y, p be integers. Suppose p is a positive prime number, and x is not divisible by p, and 0 < y < p.

i. [Here we handle the ‘existence part’.
We verify the stateemtn ‘there exists some unique integer s such that 0 < s < p and sx− y is divisible by p’.]
Since x is not divisible by p, we have gcd(x, p) = 1.
By Bézout’s Lemma, there exists some integers u, v such that ux+ vp = gcd(x, p).
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Then ux+ vp = gcd(x, p) = 1.
Therefore (yu)x+ vyp = y.——(†)
(Note that yu is an integer.) By (♯), there exist some unique integers q, r such that yu = qp+ r and 0 ≤ r < p.
Then by (†), we have y = (yu)x+ vyp = (qp+ r)x+ vyp = rx+ (q + v)p. Therefore rx− y = −(q + v)p.
Since q, v are integers, −(q + v) is also an integer. Then rx− y is divisible by p.
Recall that 0 ≤ r < p. Note that r ̸= 0; otherwise, −y, and also y, would be divisible by p, which is impossible
(because 0 < y < p). Then 0 < r < p.

ii. [Here we handle the ‘uniqueness part’.
We verify the stateemtn ‘For any integers s, s′, if (0 < s < p and sx − y is divisible by p and 0 < s′ < p and
s′x− y is divisible by p) then s = s′’.]
Let s, s′ be integers. Suppose 0 < s < p and sx− y is divisible by p and 0 < s′ < p and s′x− y is divisible by p.
Since sx− y is divisible by p and s′x− y is divisible by p, (s− s′)x is divisible by p. (Why?)
By Euclid’s Lemma, at least one of s− s′, x is divisible by p.
By assumption x is not divisible by p. Then s− s′ is divisible by p. Therefore there exists some integer k such
that s− s′ = kp.
(Recall p > 0.) Then |s− s′| = |kp| = |k|p.——(‡)
Note that |k| is a natural number. Then |k| = 0 or |k| ≥ 1. Then |k|p = 0 or |k|p ≥ p.
Since 0 < s < p and 0 < s′ < p, we have |s− s′| < p. Then by (‡), it is impossible for ‘|k|p ≥ p’ to hold.
Then |k|p = 0. (Again recall p > 0.) Then k = 0. Therefore s = s′.

19. Solution.

(a) Let a, b be complex numbers. Suppose a4 + a3b+ a2b2 + ab3 + b4 ̸= 0.
Further suppose it were true that both of a, b were zero.
Then we would have a4 + a3b+ a2b2 + ab3 + b4 = 04 + 03 · 0 + 02 · 02 + 0 · 03 + 04 = 0.
However, by assumption, a4 + a3b+ a2b2 + ab3 + b4 ̸= 0. Then 0 ̸= 0. Contradiction arises.
Hence at least one of a, b is non-zero in the first place.

(b) Let a, b be a real number and b be a complex number. Suppose a3|b| > 2.
Further suppose it were true that a6 + 9|b|2 ≤ 6.
Since a3|b| > 2, we have −3a3|b| < −6.
Therefore (a3 − 3|b|)2 = a6 + 9|b|2 − 6a3|b| < 6− 6 = 0.
Note that |b| is a real number. Since a, |b| are real numbers, a3 − 3|b| is a real number. Then (a3 − 3|b|)2 ≥ 0.
Then 0 ≤ (a3 − 3|b|)2 < 0. Contradiction arises.
Hence a6 + 9|b|2 > 6 in the first place.

(c) Let ζ be a complex number. Suppose that for any positive real number ε, the inequality |ζ| ≤ ε holds.
Further suppose it were true that ζ ̸= 0.
Since ζ ̸= 0, we would have |ζ| ̸= 0. Then |ζ| > 0.

Define ε =
|ζ|
2

. Since |ζ| > 0 and 1

2
> 0, we would have ε > 0.

Then by assumption, |ζ| ≤ ε =
|ζ|
2

.

Therefore |ζ|
2

= |ζ| − |ζ|
2
≤ 0. Hence |ζ| = 2 · |ζ|

2
≤ 0 (because 2 > 0).

Now we have 0 < |ζ| ≤ 0. Contradiction arises.
Hence ζ = 0 in the first place.

(d) Let a, b be real numbers. Suppose a > b > 0.
Further suppose that it were true that

√
a2 − b2 +

√
2ab− b2 ≤ a.

Note that
√
a2 − b2 ≥ 0 and

√
2ab− b2 ≥ 0. Then a ≥

√
a2 − b2 +

√
2ab− b2 ≥ 0.——(♯1)

Since a > b > 0, we have a2 − b2 = (a− b)(a+ b) ≥ 0. Then (
√
a2 − b2)2 = a2 − b2.——(♯2)

Similarly, since a > b > 0, we have 2ab− b2 = (2a− b)b ≥ 0. Then (
√
2ab− b2)2 = 2ab− b2.——(♯3)

Therefore we would have

a2 ≥
(√

a2 − b2 +
√
2ab− b2

)2

(by (♯1))

= (a2 − b2) + (2ab− b2) + 2
√

(a2 − b2)(2ab− b2) (by (♯2), (♯3))

= a2 − 2b2 + 2ab+ 2
√
(a− b)(a+ b)(2a− b)b.
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Hence 0 ≤
√

(a− b)(a+ b)(2a− b)b ≤ b2 − ab = b(b− a).
Recall that by assumption, a > b > 0. Then b > 0 and b− a < 0. Therefore b(b− a) < 0.
Hence 0 ≤ b(b− a) < 0.
Contradiction arises.
Hence, in the first place,

√
a2 − b2 +

√
2ab− b2 > a.

20. Solution.

For each positive integer n, define An =

n∑
j=1

1

j
, Bn =

n∑
k=1

1

2k
, Cn =

n∑
k=1

1

2k − 1
.

(a) i. Suppose n is a positive integer.

Then Bn =

n∑
j=1

1

2j
=

1

2

n∑
j=1

1

j
=

1

2
An.

Now A2n −
1

2
An = A2n −Bn =

2n∑
j=1

1

j
−

n∑
k=1

1

2k
=

n∑
k=1

1

2k − 1
= Cn.

ii. Suppose n is an integer greater than 1.

Whenever j = 2, 3, · · · , n, we have 1

2j − 1
− 1

2j
=

1

2j(2j − 1)
≥ 0.

Then

Cn −Bn =

n∑
j=1

1

2j − 1
−

n∑
j=1

1

2j

=
1

2 · 1− 1
+

n∑
j=2

1

2j − 1
− 1

2 · 1
−

n∑
j=2

1

2j

=
1

2
+

n∑
j=2

(
1

2j − 1
− 1

2j

)
≥ 1

2
.

(b) Suppose it were true that {An}∞n=1 converged in R. Write lim
n→∞

An = ℓ.

Then the infinite sequence {A2n}∞n=1 would converge in R also, and lim
n→∞

A2n = ℓ.

Since Bn =
1

2
An for each positive integer n, the infinite sequence {Bn}∞n=1 would converge in R. Moreover

lim
n→∞

Bn = lim
n→∞

1

2
An =

1

2
lim
n→∞

An =
ℓ

2
.

Since Cn = A2n −
1

2
An for any positive integer n, the infinite sequence {Cn}∞n=1 would converge in R. Moreover,

lim
n→∞

Cn = lim
n→∞

(
A2n −

1

2
An

)
= lim

n→∞
A2n −

1

2
lim

n→∞
An =

ℓ

2
.

Then the infinite sequence {Cn −Bn}∞n=1 would converge in R. Moreover,

lim
n→∞

(Cn −Bn) = lim
n→∞

Cn − lim
n→∞

Bn =
ℓ

2
− ℓ

2
= 0.

However, since Cn −Bn ≥
1

2
for each positive integer n ∈ N, we have lim

n→∞
(Cn −Bn) ≥

1

2
.

(Then 0 = lim
n→∞

(Cn −Bn) ≥
1

2
.) Contradiction arises.

Hence, in the first place, {An}∞n=1 does not converge in R.
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