MATH1050BC/1058 Assignment 2 (Answers and selected solution)

1. Answer.

(a) True.

(c) True.

(e) True.

(g) False.

(i) False.

(b) False.

(d) False.

(f) False.

(h) False.

(j) False.

2. Answer.

(a) (I) Suppose x + y > 1 and x > y

(II) (x-y)(x+y-1)

(III) Since

(IV) x > y

(V) x + y - 1 > 0 and x - y > 0

(VI) (x-y)(x+y) - (x-y) > 0

(VII) $x^2 - y^2 > x - y$

(b) (I) Let $x, y \in \mathbb{R}$. Suppose x > 0 and y > 0.

(II) $(x+y)(x^2-xy+y^2)-xy(x+y)=(x+y)(x^2-2xy+y^2)=(x+y)(x-y)^2$

(III) x - y is (also) a real number

 $(IV) \ge 0$

(V) $(x^3 + y^3) - xy(x+y) \ge 0$

(c) (I) Suppose $x^2 + y^2 + z^2 + xy - yz - xz \le 0$.

(II) 0

(III) $(y^2 + z^2 - 2yz) + (x^2 + z^2 - 2xz)$

(IV) $(x+y)^2 + (y-z)^2 + (x-z)^2$

(V) $(y-z)^2 > 0$ and $(x-z)^2 > 0$

(VI) $(x+y)^2 + (y-z)^2 + (x-z)^2$

(VII) 0

(VIII) $(y-z)^2 = 0$ and $(x-z)^2 = 0$

(IX) x + y = 0 and y - z = 0 and x - z = 0

(X) x = 0 and y = 0

(XI) z = 0

(d) (I) Suppose y > x > 0 and z > -y

(II) z > -y

(III) > 0

(IV) Suppose

(V) zy > zx

(VI) $\frac{(x+z)y - x(y+z)}{y(y+z)} > 0$

(VII) Suppose $\frac{x+z}{y+z} > \frac{x}{y}$

(VIII) $\frac{x+z}{y+z} \cdot y(y+z) > \frac{x}{y} \cdot y(y+z)$

(IX) zy - zx = (xy + zy) - (xy + zx) > 0

(X) and

(XI) z < 0 and y - x < 0

(XII) $\frac{x+z}{y+z} > \frac{x}{y}$ iff z > 0

3. Solution.

(a) Let x be a real number. Suppose $2x - \frac{3}{x} \ge 1$. (\star)

Note that $x \neq 0$ (because $\frac{3}{x}$ is well-defined as a real number.)

Since x is a non-zero real number, $x^2 > 0$. Then by (\star) , we have

$$2x^3 - 3x = \left(2x - \frac{3}{x}\right) \cdot x^2 = \ge 1 \cdot x^2 = x^2$$

Therefore $x(x+1)(2x-3) = 2x^3 - x^2 - 3x \ge 0$.

Hence $-1 \le x \le 0$ or $x \ge 1.5$.

Recall that $x \neq 0$. Then $-1 \leq x < 0$ or $x \geq 1.5$.

(b) Let x be a real number. Suppose $\frac{x^2-1}{x^2-4} \le -2$ (\star) .

Note that $x^2 - 4 \neq 0$ (because $\frac{x^2 - 1}{x^2 - 4}$ is well-defined as a real number). Then $x \neq -2$ and $x \neq 2$.

Since $x^2 - 4 \neq 0$, $x^2 - 4 > 0$.

Then, by (\star) , we have

$$(x^{2}-1)(x^{2}-4) = \frac{x^{2}-1}{x^{2}-4} \cdot (x^{2}-4)^{2} \le -2(x^{2}-4)^{2}.$$

Therefore

$$3(x+2)(x+\sqrt{3})(x-\sqrt{3})(x-2) = (x^2-4)(3x^2-9) = (x^2-4)[(x^2-1)+2(x^2-4)] \le 0.$$

Hence $-2 \le x \le -\sqrt{3}$ or $\sqrt{3} \le x \le 2$).

Recall that $x \neq -2$ and $x \neq 2$. Then $-2 < x \le -\sqrt{3}$ or $\sqrt{3} \le x < 2$.

(c) Let x be a real number. Suppose $|x^2 - 5x| < 6$.

Then $-6 < x^2 - 5x < 6$. ——(*)

In particular, we have $x^2 - 5x > -6$ by (\star) .

Then $(x-2)(x-3) = x^2 - 5x + 6 > 0$.

Therefore x < 2 or x > 3. $----(\star_1)$

Also by (\star) , we have $x^2 - 5x < 6$.

Then $(x+1)(x-6) = x^2 - 5x - 6 < 0$.

Therefore -1 < x < 6. $---- (\star_2)$

Now, by (\star_1) , (\star_2) (simultaneously), we have (x < 2 or x > 3) and -1 < x < 6.

Then (by Distributive Law for conjunction and disjunction), we have

$$(x < 2 \text{ and } -1 < x < 6) \text{ or } (x > 3 \text{ and } -1 < x < 6)$$

Therefore -1 < x < 2 or 3 < x < 6.

(d) Let x be a real number. Suppose $\left| \frac{3x+11}{x+2} \right| < 2$. (\star)

Note that $x \neq -2$ (because $\frac{3x+11}{x+2}$ is well-defined as a real number.)

Since $x \neq -2$, |x + 2| > 0.

By (\star) , we have

$$0 \le |3x+11| = \left| \frac{3x+11}{x+2} \right| \cdot |x+2| = \frac{|3x+11|}{|x+2|} \cdot |x+2| < 2|x+2|.$$

Then

$$(3x+11)^2 = |3x+11|^2 < (2|x+2|)^2 = 4(x+2)^2.$$

Therefore

$$5(x+3)(x+7) = [(3x+11) + 2(x+2)][(3x+11) - 2(x+2)] = (3x+11)^2 - 4(x+2)^2 < 0$$

Hence -7 < x < -3. (Note that ' $x \neq -2$ ' has been incorporated also.)

(e) Let x be a real number. Suppose |x| - 4 > 3. ——(*)

We have |x| - 4 < -3 or |x| - 4 > 3.

• (Case 1.) Suppose |x| - 4 < -3. Then |x| < 1. Therefore -1 < x < 1.

• (Case 2.) Suppose |x| - 4 > 3. Then |x| > 7. Therefore x < -7 or x > 7.

Hence, in any case, x < -7 or -1 < x < 1 or x > 7.

(f) Let x be a real number. Suppose $\frac{|x^2-3|}{(x-1)^2 \cdot \sqrt{x+2}} \le \frac{2|x|}{(x-1)^2 \cdot \sqrt{x+2}}$. (\star)

Note that $x \neq -1$ and x > -2 (because $\frac{|x^2 - 3|}{(x - 1)^2 \cdot \sqrt{x + 2}}$, $\frac{2|x|}{(x - 1)^2 \cdot \sqrt{x + 2}}$ are well-defined as real numbers.)

Since $x \neq -1$, $(x-1)^2 > 0$.

Since x > -2, $\sqrt{x+2} > 0$.

By (\star) , we have

$$(x^2-3)^2 = |x^2-3|^2 = \frac{|x^2-3|}{(x-1)^2 \cdot \sqrt{x+2}} \cdot (x-1)^2 \cdot \sqrt{x+2} \le \frac{2|x|}{(x-1)^2 \cdot \sqrt{x+2}} \cdot (x-1)^2 \cdot \sqrt{x+2} = (2|x|)^2 = 4x^2.$$

Then

$$(x-3)(x+1)(x-1)(x+3) = (x^2-2x-3)(x^2+2x-3) = [(x^2-3)-2x][(x^2-3)+2x] = (x^2-3)^2 - 4x^2 \le 0$$

Then $-3 \le x \le -1$ or $1 \le x \le 3$.

Recall that $x \neq -1$ and x > -2. Then Then $-2 < x \leq -1$ or $1 < x \leq 3$.

4. Solution.

(a) Let x, y be real numbers. Suppose x < y < 1.

Note that
$$\frac{y}{1-y} - \frac{x}{1-x} = \frac{y(1-x) - x(1-y)}{(1-x)(1-y)} = \frac{y-x}{(1-x)(1-y)}$$
. $---- (\star)$

Since x < 1, we have 1 - x > 0. Since y < 1, we have 1 - y > 0

Since x < y, we have y - x > 0.

Since
$$1 - x > 0$$
 and $1 - y > 0$ and $y - x > 0$, we have $\frac{y - x}{(1 - x)(1 - y)} > 0$.

Then by (\star) , we have $\frac{y}{1-y} - \frac{x}{1-x} > 0$.

Therefore $\frac{x}{1-x} < \frac{y}{1-y}$.

(b) Argument with the help of the previous part.

Let x, y be real numbers. Suppose 0 < x < y < 1.

By
$$(\sharp)$$
, we have $\frac{x}{1-x} < \frac{y}{1-y}$. $-- (\dagger)$

By assumption, we have x > 0. Then by (†) also, we have $\frac{x^2}{1-x} = x \cdot \frac{x}{1-x} < x \cdot \frac{y}{1-y}$. (‡)

By assumption, we have 0 < y < 1. Then $\frac{y}{1-y} > 0$.

Therefore by (‡) also, we have $x \cdot \frac{y}{1-y} < y \cdot \frac{y}{1-y} = \frac{y^2}{1-y}$.

We now have $\frac{x^2}{1-x} < x \cdot \frac{y}{1-y}$ and $x \cdot \frac{y}{1-y} < \frac{y^2}{1-y}$.

Then
$$\frac{x^2}{1-x} < \frac{y^2}{1-y}$$
.

Direct argument.

Let x, y be real numbers. Suppose 0 < x < y < 1.

Note that
$$\frac{y^2}{1-y} - \frac{x^2}{1-x} = \frac{y^2(1-x) - x^2(1-y)}{(1-x)(1-y)} = \dots = \frac{(y-x)[1-(1-x)(1-y)]}{(1-x)(1-y)}.$$
 (*)

Since 0 < x < 1, we have 0 < 1 - x < 1. Since 0 < y < 1, we have 0 < 1 - y < 1.

Now we have 0 < 1 - x < 1 and 0 < 1 - y < 1. Then 0 < (1 - x)(1 - y) < 1. Therefore 1 - (1 - x)(1 - y) > 0.

Since x < y, we have y - x > 0.

Since
$$1-x>0$$
 and $1-y>0$ and $y-x>0$ and $1-(1-x)(1-y)>0$, we have $\frac{(y-x)[1-(1-x)(1-y)]}{(1-x)(1-y)}>0$.

Then by (\star) , we have $\frac{y^2}{1-y} - \frac{x^2}{1-x} > 0$.

Therefore $\frac{x^2}{1-x} < \frac{y^2}{1-y}$.

5. Solution.

(a) Let x be a real number. Suppose x > 0.

Note that $\sqrt{x+2}$, $\sqrt{x+1}$, \sqrt{x} are well-defined and $(\sqrt{x+2})^2 = x+2$, $(\sqrt{x+1})^2 = x+1$ and $(\sqrt{x})^2 = x$. We have $\sqrt{x+2} + \sqrt{x+1} > 2\sqrt{x+1} > 0$. Therefore

$$\sqrt{x+2} - \sqrt{x+1} = \frac{(\sqrt{x+2} - \sqrt{x+1})(\sqrt{x+2} + \sqrt{x+1})}{\sqrt{x+2} + \sqrt{x+1}} = \frac{(x+2) - (x+1)}{\sqrt{x+2} + \sqrt{x+1}}$$

$$= \frac{1}{\sqrt{x+2} + \sqrt{x+1}}$$

$$< \frac{1}{\sqrt{x+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}}$$

We also have $0 < \sqrt{x+1} + \sqrt{x} < 2\sqrt{x+1}$. Then

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{(x+1) - x}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

$$> \frac{1}{\sqrt{x+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}}$$

Hence
$$\sqrt{x+2} - \sqrt{x+1} < \frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x}$$
.

(b) Let k be an integer amongst $10, 11, 12, \dots, 10000$.

We have $2(\sqrt{k+1} - \sqrt{k}) < \frac{1}{\sqrt{k}} < 2(\sqrt{k} - \sqrt{k-1})$.

Then

$$2(\sqrt{10001} - \sqrt{10}) = \sum_{k=10}^{10000} 2(\sqrt{k+1} - \sqrt{k}) < \sum_{k=10}^{10000} \frac{1}{\sqrt{k}} < \sum_{k=10}^{10000} 2(\sqrt{k} - \sqrt{k-1}) = 2(\sqrt{10000} - \sqrt{9})$$

Note that $2(\sqrt{10000} - \sqrt{9}) = 2(100 - 3) = 194$.

Also note that $2(\sqrt{10001} - \sqrt{10}) > 2(\sqrt{10000} - \sqrt{3.3^2}) = 2(100 - 3.3) = 193.4 > 193.4$

Therefore $193 < \sum_{k=10}^{10000} \frac{1}{\sqrt{k}} < 194$.

6. Solution.

Suppose x, y are real numbers.

We have

$$(x^{2} + y^{2})^{3} - (x^{3} + y^{3})^{2} = (x^{6} + 3x^{4}y^{2} + 3x^{2}y^{4} + y^{6}) - (x^{6} + 2x^{3}y^{3} + y^{6})$$

$$= x^{2}y^{2}(3x^{2} + 3y^{2} - 2xy)$$

$$= x^{2}y^{2}[2x^{2} + 2y^{2} + (x - y)^{2}] - (\dagger)$$

Since x, y are real numbers, $(x - y)^2 \ge 0$.

Note that $x^2 \ge 0$ and $y^2 \ge 0$.

Then $x^2y^2[2x^2 + 2y^2 + (x - y)^2] \ge 0$.

Therefore, by (†), we have $(x^2 + y^2)^3 - (x^3 + y^3)^2 \ge 0$.

Hence $(x^2 + y^2)^3 > (x^3 + y^3)^2$.

We now verify that $(x^2 + y^2)^3 = (x^3 + y^3)^2$ iff x = 0 or y = 0:—

- Suppose x = 0 or y = 0.
 - * Suppose x = 0. Then $(x^2 + y^2)^3 = y^6 = (x^3 + y^3)^2$.
 - * Suppose y = 0. Then $(x^2 + y^2)^3 = x^6 = (x^3 + y^3)^2$.
- Suppose $(x^2 + y^2)^3 = (x^3 + y^3)^2$. Then, by (†), we have $x^2y^2[2x^2 + 2y^2 + (x y)^2] = 0$.

Therefore x = 0 or y = 0 or $2x^2 + 2y^2 + (x - y)^2 = 0$.

If
$$2x^2 + 2y^2 + (x - y)^2 = 0$$
 then $x = y = x - y = 0$.

Hence x = 0 or y = 0.

7. Solution.

Let m, n be positive integers. Let x be a positive real number. Suppose m > n.

We have

$$\left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = (x^m - x^n) - \frac{x^m - x^n}{x^{m+n}} = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}}.$$

Note that $x^{m+n} > 0$. We verify that $(x^m - x^n)(x^{m+n} - 1) \ge 0$:

• (Case 1). Suppose 0 < x < 1. Then $0 < x^{m-n} < 1$ and $x^n > 0$.

Therefore $x^m - x^n = (x^{m-n} - 1)x^n < 0$. Hence $x^m - x^n < 0$.

Also $0 < x^{m+n} < 1$. Then $x^{m+n} - 1 < 0$.

It follows that $(x^m - x^n)(x^{m+n} - 1) > 0$.

• (Case 2). Suppose $x \ge 1$. Then $x^{m-n} \ge 1$ and $x^n > 0$.

Therefore $x^m - x^n = (x^{m-n} - 1) \cdot x^n > 0$. Hence $x^m - x^n > 0$.

Also $x^{m+n} \ge 1$. Then $x^{m+n} - 1 \ge 0$.

It follows that $(x^m - x^n)(x^{m+n} - 1) \ge 0$.

Therefore, in any case, $(x^m - x^n)(x^{m+n} - 1) \ge 0$.

It follows that $\left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}} \ge 0$. Hence $x^m + \frac{1}{x^m} \ge x^n + \frac{1}{x^n}$.

- Suppose x = 1. Then $x^m + \frac{1}{x^m} = 2 = x^n + \frac{1}{x^n}$.
- Suppose $x^m + \frac{1}{x^m} = x^n + \frac{1}{x^n}$. Then

$$0 = \left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}}.$$

Therefore $x^m = x^n$ or $x^{m+n} = 1$.

- * (Case 1). Suppose $x^m = x^n$. Then $x^{m-n} = 1$. Since m > n, we have m n > 0. Since x > 0, we have x = 1.
- * (Case 2). Suppose $x^{m+n} = 1$. Note that m + n > 0. Since x > 0, we have x = 1.

Hence, in any case, we have x = 1.

8. Solution.

(a) Suppose u, v are positive real numbers.

 $\sqrt{u}, \sqrt{v}, \sqrt{uv}$ are well-defined, and $u = (\sqrt{u})^2, v = (\sqrt{v})^2, \sqrt{uv} = \sqrt{u}\sqrt{v}$.

 $\sqrt{u} - \sqrt{v}$ is well-defined as a real number. Then $(\sqrt{u} - \sqrt{v})^2 \ge 0$.

Therefore $u + v = (\sqrt{u})^2 + (\sqrt{v})^2 = (\sqrt{u} - \sqrt{v})^2 + 2\sqrt{u}\sqrt{v} \ge 2\sqrt{u}\sqrt{v} = 2\sqrt{u}v$.

Hence $\frac{u+v}{2} \ge \sqrt{uv}$.

(b) Suppose a, b, c, d are positive real numbers.

Then $a+b \ge 2\sqrt{ab}$.

Also, $c + d \ge 2\sqrt{cd}$.

Note that \sqrt{ab}, \sqrt{cd} are also positive real numbers. Then $\frac{\sqrt{ab} + \sqrt{cd}}{2} \ge \sqrt{\sqrt{ab}\sqrt{cd}}$.

Therefore,

$$\frac{a+b+c+d}{4} = \frac{1}{2} \left(\frac{a+b}{2} + \frac{c+d}{2} \right) \ge \frac{\sqrt{ab} + \sqrt{cd}}{2} = \sqrt{(\sqrt{ab}) \cdot (\sqrt{cd})} = \sqrt{\sqrt{abcd}} = \sqrt[4]{abcd}.$$

(c) Suppose r, s, t are positive real numbers. Define $u = \frac{r+s+t}{3}$. Note that u is also a positive real number.

We have
$$\frac{r+s+t+u}{4} \ge \sqrt[4]{rstu}$$
.

Note that
$$\frac{r+s+t+u}{4} = \frac{r+s+t+(r+s+t)/3}{4} = \frac{r+s+t}{3} = u$$
.

Then
$$u = \frac{r+s+t+u}{4} \ge \sqrt[4]{rstu} = \sqrt[4]{rst} \cdot \sqrt[4]{u}$$
.

Note that u > 0, and $\sqrt[4]{u} > 0$. Then $(\sqrt[4]{u})^3 \ge \sqrt[4]{rst}$.

Therefore
$$\frac{r+s+t}{3} = u = \left[\sqrt[3]{\left(\sqrt[4]{u}\right)^3}\right]^4 \ge \left(\sqrt[3]{\sqrt[4]{rst}}\right)^4 = \left(\sqrt[12]{rst}\right)^4 = \sqrt[3]{rst}$$
.

9. (a) **Answer.**

Suppose u, v are real numbers. Then $|u+v| \leq |u| + |v|$. Moreover, equality holds iff $uv \geq 0$.

(b) Answer.

- i. Suppose κ, λ are complex numbers. Then we say κ is a non-negative scalar multiple of λ if there exists a non-negative real number c such that $\kappa = c\lambda$.
- ii. Suppose ζ, η be complex numbers. Then $|\zeta + \eta| \le |\zeta| + |\eta|$. Moreover, equality holds iff at least one of ζ, η is a non-negative scalar multiple of the other.

(c) Solution.

i. Let x, a, b be real numbers. Suppose b > 0, and |x - a| < b. ——— (\star) We have

$$|x^2 - a^2|$$
 = $|(x - a)(x + a)| = |(x - a)[(x - a) + 2a]| = |x - a| \cdot |(x - a) + 2a|$
 $\leq |x - a|(|x - a| + |2a|)$ (by Triangle Inequality)
= $|x - a|(|x - a| + 2|a|)$
 $\leq b(b + 2|a|)$ (by (\star)

ii. Let x, a, b be real numbers. Suppose b > 0, and |x - a| < b. —— (\star) We have

$$|x^{3} - a^{3}| = |[(x - a) + a]^{3} - a^{3}| = |(x - a)^{3} + 3a(x - a)^{2} + 3a^{2}(x - a)|$$

$$\leq |(x - a)^{3}| + |3a(x - a)^{2}| + |3a^{2}(x - a)| \text{ (by Triangle Inequality)}$$

$$= |x - a|^{3} + 3|a| \cdot |x - a|^{2} + 3a^{2} \cdot |x - a|$$

$$< b^{3} + 3|a|b^{2} + 3a^{2}b = b(b^{2} + 3|a|b + 3a^{2}) \text{ (by } (\star)$$

iii. Let $\zeta, \alpha, \beta, \gamma$ be complex numbers. Suppose $|\overline{\zeta} + 2i\alpha| \le 1$, $|\zeta - \beta/2| \le 1$, $|\zeta - 4\gamma| \le 3$. —— (*) Then

6

$$|2\zeta - 2i\overline{\alpha} - \beta + 4\gamma| = |(\zeta - 2i\overline{\alpha}) + (2\zeta - \beta) + (-\zeta + 4\gamma)|$$

$$\leq |\zeta - 2i\overline{\alpha}| + |2\zeta - \beta| + |-\zeta + 4\gamma| \text{ (by Triangle Inequality)}$$

$$= |\overline{(\zeta - 2i\overline{\alpha})}| + |2(\zeta - \beta/2)| + |-(\zeta - 4\gamma)|$$

$$= |\overline{\zeta} + 2i\alpha| + 2|\zeta - \beta/2| + |\zeta - 4\gamma|$$

$$\leq 1 + 2 \cdot 1 + 3 = 6 \text{ (by } (\star))$$

iv. Let ζ be a complex number. Suppose $0 < |\zeta| < 1$.

Note that
$$1 - |\zeta| > 0$$
. —— (\star_1)

Also note that
$$|\zeta|^{1050} > 0$$
. —— (\star_2)

Further note that
$$0 < |\zeta|^{3011} < 1$$
. Then $0 < 1 - |\zeta|^{3011} < 1$. —— (*3)

We have

$$\begin{vmatrix} \sum_{k=1050}^{4060} \zeta^k \\ | & \leq \sum_{k=1050}^{4060} |\zeta^k| \text{ (by Triangle Inequality)} \end{vmatrix}$$

$$= \sum_{k=1050}^{4060} |\zeta|^k$$

$$= |\zeta|^{1050} \cdot \sum_{k=0}^{3010} |\zeta|^k$$

$$= |\zeta|^{1050} \cdot \frac{1 - |\zeta|^{3011}}{1 - |\zeta|}$$

$$< \frac{|\zeta|^{1050}}{1 - |\zeta|} \text{ (by } (\star_1), (\star_2), (\star_3))$$

v. Let α be a complex number and n be a positive integer. Suppose $|\alpha| > 5$.

(Note that $\alpha \neq 0$. So $\frac{1}{\alpha}$ is well-defined as a complex number. Also note that $\alpha \neq 5$. So $\frac{1}{\alpha - 5}, \frac{1}{1 - 5/\alpha}$ are well-defined as complex numbers.)

We have

$$\sum_{k=0}^{n} \frac{5^{k}}{\alpha^{k}} = \sum_{k=0}^{n} \left(\frac{5}{\alpha}\right)^{k} = \frac{1 - (5/\alpha)^{n+1}}{1 - 5/\alpha} = \frac{1 - 5^{n+1}/\alpha^{n+1}}{1 - 5/\alpha}.$$

Then
$$\sum_{k=0}^{n} \frac{5^k}{\alpha^k} - \frac{\alpha}{\alpha - 5} = \sum_{k=0}^{n} \frac{5^k}{\alpha^k} - \frac{1}{1 - 5/\alpha} = -\frac{5^{n+1}/\alpha^{n+1}}{1 - 5/\alpha} = -\frac{5^{n+1}}{\alpha^n(\alpha - 5)}$$
.

By assumption, $|\alpha| > 5$. Then by the Triangle Inequality, we have $|\alpha - 5| \ge |\alpha| - 5 > 0$. (\star) Therefore

$$\begin{vmatrix} \sum_{k=0}^{n} \frac{5^{k}}{\alpha^{k}} - \frac{\alpha}{\alpha - 5} \end{vmatrix} = \begin{vmatrix} -\frac{5^{n+1}}{\alpha^{n}(\alpha - 5)} \end{vmatrix}$$
$$= \frac{5^{n+1}}{|\alpha|^{n}|\alpha - 5|}$$
$$\leq \frac{5^{n+1}}{|\alpha|^{n}(|\alpha| - 5)} \quad \text{(by } (\star))$$

10. Solution.

(a) Suppose n is an integer greater than 2.

Note that for each integer k between 2 and n, we have $0 < \frac{1}{n} < 1$, $0 < \frac{2}{n} < 1$, ..., $0 < \frac{k-1}{n} < 1$.

Then, for the same k, the inequalities below hold:—

$$0 < \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) < 1. \quad ----(\dagger)$$

7

Then

(b) Suppose n is an integer greater than 2.

Note that
$$\left(1 + \frac{2}{n}\right)^n > 0$$
, and $\left(1 + \frac{2}{n+1}\right)^{n+1} > 0$.

We have

$$\frac{\left(1 + \frac{2}{n+1}\right)^{n+1}}{\left(1 + \frac{2}{n}\right)^{n}} = \left[\frac{\left(1 + \frac{2}{n+1}\right)}{\left(1 + \frac{2}{n}\right)}\right]^{n} \cdot \left(1 + \frac{2}{n+1}\right) = \left[\frac{n(n+3)}{(n+1)(n+2)}\right]^{n} \cdot \left(1 + \frac{2}{n+1}\right)$$

$$= \left[1 - \frac{2}{(n+1)(n+2)}\right]^{n} \cdot \left(1 + \frac{2}{n+1}\right) \quad ----(\ddagger 1)$$

Note that $-1 < \frac{2}{(n+1)(n+2)} < 0$.

Then, by Bernoulli's Inequality, we have

$$\left[1 - \frac{2}{(n+1)(n+2)}\right]^n > 1 - \frac{2n}{(n+1)(n+2)} \quad ----(\ddagger_1)$$

Since $1 + \frac{2}{n+1} > 0$, we have by $(\ddagger_1), (\ddagger_2)$,

$$\frac{\left(1 + \frac{2}{n+1}\right)^{n+1}}{\left(1 + \frac{2}{n}\right)^n} = \left[1 - \frac{2}{(n+1)(n+2)}\right]^n \cdot \left(1 + \frac{2}{n+1}\right)$$

$$> \left[1 - \frac{2n}{(n+1)(n+2)}\right] \left(1 + \frac{2}{n+1}\right) = 1 + \frac{2}{n+1} - \frac{2n}{(n+1)(n+2)} - \frac{4n}{(n+1)^2(n+2)}$$

$$= 1 + \frac{2(n+1)(n+2) - 2n(n+1) - 4n}{(n+1)^2(n+2)} = 1 + \frac{4}{(n+1)^2(n+2)} > 1$$

Recall that $\left(1+\frac{2}{n}\right)^n > 0$. Then $\left(1+\frac{2}{n}\right)^n < \left(1+\frac{2}{n+1}\right)^{n+1}$.

11. Answer.

(a) (I) Suppose

(II)
$$t^4 - s^4 = (t^2 - s^2)(t^2 + s^2) = (t - s)(t + s)(t^2 + s^2)$$

(III) s < t

(IV) $s \ge 0$ and

(V)
$$s + t > 0$$

(VI)
$$t^2 > 0$$

(VII)
$$s \ge 0$$

(VIII)
$$t^2 + s^2 > 0$$

(IX)
$$f(t) - f(s) > 0$$

(X) f is strictly increasing on $[0, +\infty)$

(b) (I) Suppose f is strictly decreasing on \mathbb{R} .

(II) Pick any $s, t \in \mathbb{R}$. Suppose s < t.

(III)
$$g(s) - g(t) = (f(s) - 2s^3) - (f(t) - 2t^3) = (f(s) - f(t)) + 2(t - s)(t^2 + st + s^2)$$

(IV) Since f is strictly decreasing and s < t

(V)
$$t^2 + st + s^2$$

(VII)
$$f(s) - f(t) + 2(t - s)(t^2 + st + s^2) > 0$$

(VIII)
$$q(s) > q(t)$$

12. Solution.

(a) Denote by P(n) the proposition below:—

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

• [We verify P(1).]

We have $1 \le 1 = 2\sqrt{1} - 1$. Hence P(1) is true.

• [We verify the statement 'for any positive integer k, if P(k) is true then P(k+1) is true'.] Let k be a positive integer. Suppose P(k) is true.

Then
$$(2\sqrt{k} - 1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}}\right) \ge 0.$$

We deduce that P(k+1) is true:

We have

$$(2\sqrt{k+1}-1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}\right)$$

$$= (2\sqrt{k+1}-1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}\right)$$

$$= 2(\sqrt{k+1} - \sqrt{k}) - \frac{1}{\sqrt{k+1}} + (2\sqrt{k}-1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}}\right)$$

$$\geq 2(\sqrt{k+1} - \sqrt{k}) - \frac{1}{\sqrt{k+1}} \quad \text{(by } P(k)\text{)}$$

$$= \frac{2}{\sqrt{k+1} + \sqrt{k}} - \frac{1}{\sqrt{k+1}}$$

$$= \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1} + \sqrt{k})\sqrt{k+1}} = \frac{1}{(\sqrt{k+1} + \sqrt{k})^2\sqrt{k+1}}$$

$$\geq 0$$

Then
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \le 2\sqrt{k+1} - 1$$
. Hence $P(k+1)$ is true.

By the Principle of Mathematical Induction, P(n) is true for any positive integer n.

(b) Denote by P(n) the proposition $\frac{(3n)!}{(n!)^3} > \frac{27^n}{9n}$.

• [We verify P(1).] We have $\frac{(3 \cdot 1)!}{(1!)^3} = 6 > 3 = \frac{27^1}{9 \cdot 1}$.

• [We verify the statement 'for any positive integer k, if P(k) is true then P(k+1) is true'.] Let k be a positive integer. Suppose P(k) is true.

Then
$$\frac{(3k)!}{(k!)^3} \cdot \frac{9k}{27^k} > 1$$
. ——(\sharp)

We deduce that P(k+1) is true:—

$$\begin{split} \frac{[3(k+1)]!}{[(k+1)!]^3} \cdot \frac{9(k+1)}{27^{k+1}} &= \frac{(3k+3)(3k+2)(3k+1)}{(k+1)^3} \cdot \frac{(3k)!}{(k!)^3} \cdot \frac{9k}{27^k} \cdot \frac{k+1}{27k} \\ &= \frac{(3k)!}{(k!)^3} \cdot \frac{9k}{27^k} \cdot \frac{(k+2/3)(k+1/3)}{(k+1)k} \\ &> 1 \cdot \frac{(k+2/3)(k+1/3)}{(k+1)k} \quad \text{(by (\sharp))} \\ &= \frac{k^2+k+2/9}{k^2+k} = 1 + \frac{2}{9k^2+9k} \\ &> 1 \quad \text{(because } \frac{2}{9k^2+9k} > 0 \text{)} \end{split}$$

(Note that $27^{k+1} > 0$ and 9(k+1) > 0.) Then $\frac{[3(k+1)]!}{[(k+1)!]^3} > \frac{27^{k+1}}{9(k+1)}$.

Hence P(k+1) is true.

By the Principle of Mathematical Induction, P(n) is true for any positive integer n.

13. (a) Solution.

Suppose A, B, a, b are real numbers.

Then
$$(A^2 + a^2)(B^2 + b^2) - (AB + ab)^2 = A^2B^2 + a^2b^2 + A^2b^2 + B^2a^2 - A^2B^2 - a^2b^2 - 2ABab = A^2b^2 + B^2a^2 - 2ABab = (Ab - Ba)^2$$
.

Sine A, B, a, b are real numbers, Ab - Ba is a real number. Then $(Ab - Ba)^2 \ge 0$.

Therefore $(A^2 + a^2)(B^2 + b^2) - (AB + ab)^2 \ge 0$.

Hence $(A^2 + B^2)(a^2 + b^2) \ge (Aa + Bb)^2$.

(b) Answer.

(I) If $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are non-negative real numbers, then $\left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right) \ge \left(\sum_{j=1}^n a_j b_j\right)^2$.

Alternative answer.

Suppose $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are non-negative real numbers. Then $\left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right) \ge \left(\sum_{j=1}^n a_j b_j\right)^2$.

Unacceptable (because they are wrong).

• For any integer n greater than 1, if $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are non-negative real numbers, then

$$\left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right) \ge \left(\sum_{j=1}^n a_j b_j\right)^2.$$

•
$$\left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right) \ge \left(\sum_{j=1}^n a_j b_j\right)^2$$
.

- (II) For any integer k greater than 1, if P(k) is true then P(k+1) is true.
- (III) Let k be an integer greater than 1. Suppose P(k) is true.
- (IV) Suppose $a_1, a_2, \dots, a_k, a_{k+1}, b_1, b_2, \dots, b_k, b_{k+1}$ are non-negative real numbers.

(V) By
$$P(2)$$
, we have $\left(\sum_{j=1}^{k+1} a_j^2\right) \left(\sum_{j=1}^{k+1} b_j^2\right) = \left(A^2 + a_{k+1}^2\right) \left(B^2 + b_{k+1}^2\right) \ge \left(AB + a_{k+1}b_{k+1}\right)^2$. ——(†₁)

By
$$P(k)$$
, we have $A^2B^2 = \left(\sum_{j=1}^k a_j^2\right) \left(\sum_{j=1}^k b_j^2\right) \ge \left(\sum_{j=1}^k a_j b_j\right)^2 = C^2$.

Since A, B, C are non-negative real numbers, we have $AB \geq C$.

Then
$$AB + a_{k+1}b_{k+1} \ge C + a_{k+1}b_{k+1} = \sum_{j=1}^{k+1} a_j b_j \ge 0.$$

Therefore
$$(AB + a_{k+1}b_{k+1})^2 \ge \left(\sum_{j=1}^{k+1} a_j b_j\right)^2$$
. ——(†2)

Hence by
$$(\dagger_1), (\dagger_2)$$
, we have $\left(\sum_{j=1}^{k+1} a_j^2\right) \left(\sum_{j=1}^{k+1} b_j^2\right) \ge (AB + a_{k+1}b_{k+1})^2 \ge \left(\sum_{j=1}^{k+1} a_j b_j\right)^2$.

(VI) By the Principle of Mathematical Induction, P(n) is true for any integer n greater than 1.

(c) Solution.

Suppose m is a positive integer.

For each
$$j = 1, 2, \dots, m, m + 1, \dots, 2m - 1, 2m$$
, define $a_j = \frac{1}{j}$, and $b_j = \frac{1}{2m - j + 1}$.

Note that $a_j = b_{2m-j}$.

So
$$\sum_{j=1}^{2m} a_j^2 = \sum_{j=1}^{2m} b_j^2 = \sum_{j=1}^{2m} \frac{1}{j^2}$$
. (†)

Also,

$$\sum_{j=1}^{2m} a_j b_j = \sum_{j=1}^{m} a_j b_j + \sum_{j=m+1}^{2m} a_j b_j = 2 \sum_{j=1}^{m} a_j b_j$$

$$= 2 \left[\frac{1}{1 \cdot 2m} + \frac{1}{2(2m-1)} + \frac{1}{3(2m-2)} + \dots + \frac{1}{k(2m-k+1)} + \dots + \frac{1}{m(m+1)} \right] \quad ----(\ddagger)$$

Note that $a_1, a_2, \dots, a_m, a_{m+1}, \dots, a_{2m-1}, a_{2m}, b_1, b_2, \dots, b_m, b_{m+1}, \dots, b_{2m-1}, b_{2m}$ are non-negative real numbers. We have

$$\left\{ 2 \left[\frac{1}{1 \cdot 2m} + \frac{1}{2(2m-1)} + \frac{1}{3(2m-2)} + \dots + \frac{1}{k(2m-k+1)} + \dots + \frac{1}{m(m+1)} \right] \right\}^{2}$$

$$= \left(\sum_{j=1}^{2m} a_{j} b_{j} \right)^{2} \quad \text{(by (\ddagger))}$$

$$\leq \left(\sum_{j=1}^{2m} a_{j}^{2} \right) \left(\sum_{j=1}^{2m} b_{j}^{2} \right) \quad \text{(by (\sharp))}$$

$$= \left(\sum_{j=1}^{2m} \frac{1}{j^{2}} \right)^{2} \quad \text{(by (\dagger))}$$