
MATH1050BC/1058 Assignment 2 (Answers and selected solution)

1. Answer.

(a) True.
(b) False.

(c) True.
(d) False.

(e) True.
(f) False.

(g) False.
(h) False.

(i) False.
(j) False.

2. Answer.

(a) (I) Suppose x+ y > 1 and x > y

(II) (x− y)(x+ y − 1)

(III) Since
(IV) x > y

(V) x+ y − 1 > 0 and x− y > 0

(VI) (x− y)(x+ y)− (x− y) > 0

(VII) x2 − y2 > x− y

(b) (I) Let x, y ∈ R. Suppose x > 0 and y > 0.
(II) (x+ y)(x2 − xy + y2)− xy(x+ y) = (x+ y)(x2 − 2xy + y2) = (x+ y)(x− y)2

(III) x− y is (also) a real number
(IV) ≥ 0

(V) (x3 + y3)− xy(x+ y) ≥ 0

(c) (I) Suppose x2 + y2 + z2 + xy − yz − xz ≤ 0.
(II) 0

(III)
(
y2 + z2 − 2yz

)
+
(
x2 + z2 − 2xz

)
(IV) (x+ y)2 + (y − z)2 + (x− z)2

(V) (y − z)2 ≥ 0 and (x− z)2 ≥ 0

(VI) (x+ y)2 + (y − z)2 + (x− z)2

(VII) 0

(VIII) (y − z)2 = 0 and (x− z)2 = 0

(IX) x+ y = 0 and y − z = 0 and x− z = 0

(X) x = 0 and y = 0

(XI) z = 0

(d) (I) Suppose y > x > 0 and z > −y

(II) z > −y

(III) > 0

(IV) Suppose
(V) zy > zx

(VI) (x+ z)y − x(y + z)

y(y + z)
> 0

(VII) Suppose x+ z

y + z
>

x

y

(VIII) x+ z

y + z
· y(y + z) >

x

y
· y(y + z)

(IX) zy − zx = (xy + zy)− (xy + zx) > 0

(X) and
(XI) z < 0 and y − x < 0

(XII) x+ z

y + z
>

x

y
iff z > 0

3. Solution.
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(a) Let x be a real number. Suppose 2x− 3

x
≥ 1. —— (⋆)

Note that x ̸= 0 (because 3

x
is well-defined as a real number.)

Since x is a non-zero real number, x2 > 0. Then by (⋆), we have

2x3 − 3x =

(
2x− 3

x

)
· x2 =≥ 1 · x2 = x2

Therefore x(x+ 1)(2x− 3) = 2x3 − x2 − 3x ≥ 0.
Hence −1 ≤ x ≤ 0 or x ≥ 1.5.
Recall that x ̸= 0. Then −1 ≤ x < 0 or x ≥ 1.5.

(b) Let x be a real number. Suppose x2 − 1

x2 − 4
≤ −2 —— (⋆).

Note that x2 − 4 ̸= 0 (because x2 − 1

x2 − 4
is well-defined as a real number). Then x ̸= −2 and x ̸= 2.

Since x2 − 4 ≠ 0, x2 − 4 > 0.
Then, by (⋆), we have

(x2 − 1)(x2 − 4) =
x2 − 1

x2 − 4
· (x2 − 4)2 ≤ −2(x2 − 4)2.

Therefore

3(x+ 2)(x+
√
3)(x−

√
3)(x− 2) = (x2 − 4)(3x2 − 9) = (x2 − 4)[(x2 − 1) + 2(x2 − 4)] ≤ 0.

Hence −2 ≤ x ≤ −
√
3 or

√
3 ≤ x ≤ 2).

Recall that x ̸= −2 and x ̸= 2. Then −2 < x ≤ −
√
3 or

√
3 ≤ x < 2.

(c) Let x be a real number. Suppose |x2 − 5x| < 6.
Then −6 < x2 − 5x < 6. ——(⋆)

In particular, we have x2 − 5x > −6 by (⋆).
Then (x− 2)(x− 3) = x2 − 5x+ 6 > 0.
Therefore x < 2 or x > 3. —— (⋆1)

Also by (⋆), we have x2 − 5x < 6.
Then (x+ 1)(x− 6) = x2 − 5x− 6 < 0.
Therefore −1 < x < 6. —— (⋆2)

Now, by (⋆1), (⋆2) (simultaneously), we have (x < 2 or x > 3) and −1 < x < 6.
Then (by Distributive Law for conjunction and disjunction), we have

(x < 2 and − 1 < x < 6) or (x > 3 and − 1 < x < 6)

Therefore −1 < x < 2 or 3 < x < 6.

(d) Let x be a real number. Suppose
∣∣∣∣3x+ 11

x+ 2

∣∣∣∣ < 2. —— (⋆)

Note that x ̸= −2 (because 3x+ 11

x+ 2
is well-defined as a real number.)

Since x ̸= −2, |x+ 2| > 0.
By (⋆), we have

0 ≤ |3x+ 11| =
∣∣∣∣3x+ 11

x+ 2

∣∣∣∣ · |x+ 2| = |3x+ 11|
|x+ 2|

· |x+ 2| < 2|x+ 2|.

Then
(3x+ 11)2 = |3x+ 11|2 < (2|x+ 2|)2 = 4(x+ 2)2.

Therefore

5(x+ 3)(x+ 7) = [(3x+ 11) + 2(x+ 2)][(3x+ 11)− 2(x+ 2)] = (3x+ 11)2 − 4(x+ 2)2 < 0

Hence −7 < x < −3. (Note that ‘x ̸= −2’ has been incorporated also.)
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(e) Let x be a real number. Suppose | |x| − 4 | > 3. ——(⋆)

We have |x| − 4 < −3 or |x| − 4 > 3.

• (Case 1.) Suppoe |x| − 4 < −3. Then |x| < 1. Therefore −1 < x < 1.
• (Case 2.) Suppose |x| − 4 > 3. Then |x| > 7. Therefore x < −7 or x > 7.

Hence, in any case, x < −7 or −1 < x < 1 or x > 7.

(f) Let x be a real number. Suppose |x2 − 3|
(x− 1)2 ·

√
x+ 2

≤ 2|x|
(x− 1)2 ·

√
x+ 2

. —— (⋆)

Note that x ̸= −1 and x > −2 (because |x2 − 3|
(x− 1)2 ·

√
x+ 2

, 2|x|
(x− 1)2 ·

√
x+ 2

are well-defined as real numbers.)

Since x ̸= −1, (x− 1)2 > 0.
Since x > −2,

√
x+ 2 > 0.

By (⋆), we have

(x2 − 3)2 = |x2 − 3|2 =
|x2 − 3|

(x− 1)2 ·
√
x+ 2

· (x− 1)2 ·
√
x+ 2 ≤ 2|x|

(x− 1)2 ·
√
x+ 2

· (x− 1)2 ·
√
x+ 2 = (2|x|)2 = 4x2.

Then

(x− 3)(x+ 1)(x− 1)(x+ 3) = (x2 − 2x− 3)(x2 + 2x− 3) = [(x2 − 3)− 2x][(x2 − 3) + 2x] = (x2 − 3)2 − 4x2 ≤ 0

Then −3 ≤ x ≤ −1 or 1 ≤ x ≤ 3.
Recall that x ̸= −1 and x > −2. Then Then −2 < x ≤ −1 or 1 < x ≤ 3.

4. Solution.

(a) Let x, y be real numbers. Suppose x < y < 1.

Note that y

1− y
− x

1− x
=

y(1− x)− x(1− y)

(1− x)(1− y)
=

y − x

(1− x)(1− y)
. —— (⋆)

Since x < 1, we have 1− x > 0. Since y < 1, we have 1− y > 0.
Since x < y, we have y − x > 0.

Since 1− x > 0 and 1− y > 0 and y − x > 0, we have y − x

(1− x)(1− y)
> 0.

Then by (⋆), we have y

1− y
− x

1− x
> 0.

Therefore x

1− x
<

y

1− y
.

(b) Argument with the help of the previous part.
Let x, y be real numbers. Suppose 0 < x < y < 1.

By (♯), we have x

1− x
<

y

1− y
. —— (†)

By assumption, we have x > 0. Then by (†) also, we have x2

1− x
= x · x

1− x
< x · y

1− y
. —— (‡)

By assumption, we have 0 < y < 1. Then y

1− y
> 0.

Therefore by (‡) also, we have x · y

1− y
< y · y

1− y
=

y2

1− y
.

We now have x2

1− x
< x · y

1− y
and x · y

1− y
<

y2

1− y
.

Then x2

1− x
<

y2

1− y
.

Direct argument.
Let x, y be real numbers. Suppose 0 < x < y < 1.

Note that y2

1− y
− x2

1− x
=

y2(1− x)− x2(1− y)

(1− x)(1− y)
= · · · · · · · · · = (y − x)[1− (1− x)(1− y)]

(1− x)(1− y)
. —— (⋆)

Since 0 < x < 1, we have 0 < 1− x < 1. Since 0 < y < 1, we have 0 < 1− y < 1.
Now we have 0 < 1− x < 1 and 0 < 1− y < 1. Then 0 < (1− x)(1− y) < 1. Therefore 1− (1− x)(1− y) > 0.
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Since x < y, we have y − x > 0.

Since 1− x > 0 and 1− y > 0 and y − x > 0 and 1− (1− x)(1− y) > 0, we have (y − x)[1− (1− x)(1− y)]

(1− x)(1− y)
> 0.

Then by (⋆), we have y2

1− y
− x2

1− x
> 0.

Therefore x2

1− x
<

y2

1− y
.

5. Solution.

(a) Let x be a real number. Suppose x > 0.
Note that

√
x+ 2,

√
x+ 1,

√
x are well-defined and (

√
x+ 2)2 = x+ 2, (

√
x+ 1)2 = x+ 1 and (

√
x)2 = x.

We have
√
x+ 2 +

√
x+ 1 > 2

√
x+ 1 > 0. Therefore

√
x+ 2−

√
x+ 1 =

(
√
x+ 2−

√
x+ 1)(

√
x+ 2 +

√
x+ 1)√

x+ 2 +
√
x+ 1

=
(x+ 2)− (x+ 1)√
x+ 2 +

√
x+ 1

=
1√

x+ 2 +
√
x+ 1

<
1√

x+ 1 +
√
x+ 1

=
1

2
√
x+ 1

We also have 0 <
√
x+ 1 +

√
x < 2

√
x+ 1. Then

√
x+ 1−

√
x =

(
√
x+ 1−

√
x)(

√
x+ 1 +

√
x)√

x+ 1 +
√
x

=
(x+ 1)− x√
x+ 1 +

√
x

=
1√

x+ 1 +
√
x

>
1√

x+ 1 +
√
x+ 1

=
1

2
√
x+ 1

Hence
√
x+ 2−

√
x+ 1 <

1

2
√
x+ 1

<
√
x+ 1−

√
x.

(b) Let k be an integer amongst 10, 11, 12, · · · , 10000.

We have 2(
√
k + 1−

√
k) <

1√
k
< 2(

√
k −

√
k − 1).

Then

2(
√
10001−

√
10) =

10000∑
k=10

2(
√
k + 1−

√
k) <

10000∑
k=10

1√
k
<

10000∑
k=10

2(
√
k −

√
k − 1) = 2(

√
10000−

√
9)

Note that 2(
√
10000−

√
9) = 2(100− 3) = 194.

Also note that 2(
√
10001−

√
10) > 2(

√
10000−

√
3.32) = 2(100− 3.3) = 193.4 > 193.

Therefore 193 <

10000∑
k=10

1√
k
< 194.

6. Solution.
Suppose x, y are real numbers.
We have

(x2 + y2)3 − (x3 + y3)2 = (x6 + 3x4y2 + 3x2y4 + y6)− (x6 + 2x3y3 + y6)

= x2y2(3x2 + 3y2 − 2xy)

= x2y2[2x2 + 2y2 + (x− y)2] ——(†)

Since x, y are real numbers, (x− y)2 ≥ 0.

Note that x2 ≥ 0 and y2 ≥ 0.
Then x2y2[2x2 + 2y2 + (x− y)2] ≥ 0.
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Therefore, by (†), we have (x2 + y2)3 − (x3 + y3)2 ≥ 0.

Hence (x2 + y2)3 ≥ (x3 + y3)2.

We now verify that (x2 + y2)3 = (x3 + y3)2 iff x = 0 or y = 0:—

• Suppose x = 0 or y = 0.
∗ Suppose x = 0. Then (x2 + y2)3 = y6 = (x3 + y3)2.
∗ Suppose y = 0. Then (x2 + y2)3 = x6 = (x3 + y3)2.

• Suppose (x2 + y2)3 = (x3 + y3)2. Then, by (†), we have x2y2[2x2 + 2y2 + (x− y)2] = 0.
Therefore x = 0 or y = 0 or 2x2 + 2y2 + (x− y)2 = 0.
If 2x2 + 2y2 + (x− y)2 = 0 then x = y = x− y = 0.
Hence x = 0 or y = 0.

7. Solution.
Let m,n be positive integers. Let x be a positive real number. Suppose m > n.
We have (

xm +
1

xm

)
−
(
xn +

1

xn

)
= (xm − xn)− xm − xn

xm+n
=

(xm − xn)(xm+n − 1)

xm+n
.

Note that xm+n > 0. We verify that (xm − xn)(xm+n − 1) ≥ 0:

• (Case 1). Suppose 0 < x < 1. Then 0 < xm−n < 1 and xn > 0.
Therefore xm − xn = (xm−n − 1)xn < 0. Hence xm − xn < 0.
Also 0 < xm+n < 1. Then xm+n − 1 < 0.
It follows that (xm − xn)(xm+n − 1) > 0.

• (Case 2). Suppose x ≥ 1. Then xm−n ≥ 1 and xn > 0.
Therefore xm − xn = (xm−n − 1) · xn > 0. Hence xm − xn ≥ 0.
Also xm+n ≥ 1. Then xm+n − 1 ≥ 0.
It follows that (xm − xn)(xm+n − 1) ≥ 0.

Therefore, in any case, (xm − xn)(xm+n − 1) ≥ 0.

It follows that
(
xm +

1

xm

)
−
(
xn +

1

xn

)
=

(xm − xn)(xm+n − 1)

xm+n
≥ 0. Hence xm +

1

xm
≥ xn +

1

xn
.

• Suppose x = 1. Then xm +
1

xm
= 2 = xn +

1

xn
.

• Suppose xm +
1

xm
= xn +

1

xn
. Then

0 =

(
xm +

1

xm

)
−
(
xn +

1

xn

)
=

(xm − xn)(xm+n − 1)

xm+n
.

Therefore xm = xn or xm+n = 1.
∗ (Case 1). Suppose xm = xn. Then xm−n = 1. Since m > n, we have m− n > 0. Since x > 0, we have x = 1.
∗ (Case 2). Suppose xm+n = 1. Note that m+ n > 0. Since x > 0, we have x = 1.

Hence, in any case, we have x = 1.

8. Solution.

(a) Suppose u, v are positive real numbers.
√
u,

√
v,
√
uv are well-defined, and u = (

√
u)2, v = (

√
v)2,

√
uv =

√
u
√
v.

√
u−

√
v is well-defined as a real number. Then (

√
u−

√
v)2 ≥ 0.

Therefore u+ v = (
√
u)2 + (

√
v)2 = (

√
u−

√
v)2 + 2

√
u
√
v ≥ 2

√
u
√
v = 2

√
uv.

Hence u+ v

2
≥

√
uv.
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(b) Suppose a, b, c, d are positive real numbers.
Then a+ b ≥ 2

√
ab.

Also, c+ d ≥ 2
√
cd.

Note that
√
ab,

√
cd are also positive real numbers. Then

√
ab+

√
cd

2
≥

√√
ab
√
cd.

Therefore,

a+ b+ c+ d

4
=

1

2

(
a+ b

2
+

c+ d

2

)
≥

√
ab+

√
cd

2
=

√
(
√
ab) · (

√
cd) =

√√
abcd =

4
√
abcd.

(c) Suppose r, s, t are positive real numbers. Define u =
r + s+ t

3
. Note that u is also a positive real number.

We have r + s+ t+ u

4
≥ 4

√
rstu.

Note that r + s+ t+ u

4
=

r + s+ t+ (r + s+ t)/3

4
=

r + s+ t

3
= u.

Then u =
r + s+ t+ u

4
≥ 4

√
rstu =

4
√
rst · 4

√
u.

Note that u > 0, and 4
√
u > 0. Then

(
4
√
u
)3 ≥ 4

√
rst.

Therefore r + s+ t

3
= u =

[
3

√(
4
√
u
)3]4 ≥

(
3

√
4
√
rst

)4

=
(

12
√
rst

)4

=
3
√
rst.

9. (a) Answer.
Suppose u, v are real numbers. Then |u+ v| ≤ |u|+ |v|. Moreover, equality holds iff uv ≥ 0.

(b) Answer.
i. Suppose κ, λ are complex numbers. Then we say κ is a non-negative scalar multiple of λ if there exists a

non-negative real number c such that κ = cλ.
ii. Suppose ζ, η be complex numbers. Then |ζ + η| ≤ |ζ|+ |η|. Moreover, equality holds iff at least one of ζ, η is a

non-negative scalar multiple of the other.
(c) Solution.

i. Let x, a, b be real numbers. Suppose b > 0, and |x− a| < b. —— (⋆)

We have

|x2 − a2| = |(x− a)(x+ a)| = |(x− a)[(x− a) + 2a]| = |x− a| · |(x− a) + 2a|
≤ |x− a|(|x− a|+ |2a|) (by Triangle Inequality)
= |x− a|(|x− a|+ 2|a|)
< b(b+ 2|a|) (by (⋆)

ii. Let x, a, b be real numbers. Suppose b > 0, and |x− a| < b. —— (⋆)

We have

|x3 − a3| = |[(x− a) + a]3 − a3| = |(x− a)3 + 3a(x− a)2 + 3a2(x− a)|

≤ |(x− a)3|+ |3a(x− a)2|+ |3a2(x− a)| (by Triangle Inequality)
= |x− a|3 + 3|a| · |x− a|2 + 3a2 · |x− a|

< b3 + 3|a|b2 + 3a2b = b(b2 + 3|a|b+ 3a2) (by (⋆)

iii. Let ζ, α, β, γ be complex numbers. Suppose |ζ + 2iα| ≤ 1, |ζ − β/2| ≤ 1, |ζ − 4γ| ≤ 3. —— (⋆)

Then

|2ζ − 2iα− β + 4γ| = |(ζ − 2iα) + (2ζ − β) + (−ζ + 4γ)|
≤ |ζ − 2iα|+ |2ζ − β|+ | − ζ + 4γ| (by Triangle Inequality)

= |(ζ − 2iα)|+ |2(ζ − β/2)|+ | − (ζ − 4γ)|

= |ζ + 2iα|+ 2|ζ − β/2|+ |ζ − 4γ|
≤ 1 + 2 · 1 + 3 = 6 (by (⋆))
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iv. Let ζ be a complex number. Suppose 0 < |ζ| < 1.
Note that 1− |ζ| > 0. —— (⋆1)

Also note that |ζ|1050 > 0. —— (⋆2)

Further note that 0 < |ζ|3011 < 1. Then 0 < 1− |ζ|3011 < 1. —— (⋆3)

We have ∣∣∣∣∣
4060∑

k=1050

ζk

∣∣∣∣∣ ≤
4060∑

k=1050

∣∣ζk∣∣ (by Triangle Inequality)

=

4060∑
k=1050

|ζ|k

= |ζ|1050 ·
3010∑
k=0

|ζ|k

= |ζ|1050 · 1− |ζ|3011

1− |ζ|

<
|ζ|1050

1− |ζ|
(by (⋆1), (⋆2), (⋆3))

v. Let α be a complex number and n be a positive integer. Suppose |α| > 5.

(Note that α ̸= 0. So 1

α
is well-defined as a complex number. Also note that α ̸= 5. So 1

α− 5
,

1

1− 5/α
are

well-defined as complex numbers.)
We have

n∑
k=0

5k

αk
=

n∑
k=0

(
5

α

)k

=
1− (5/α)n+1

1− 5/α
=

1− 5n+1/αn+1

1− 5/α
.

Then
n∑

k=0

5k

αk
− α

α− 5
=

n∑
k=0

5k

αk
− 1

1− 5/α
= −5n+1/αn+1

1− 5/α
= − 5n+1

αn(α− 5)
.

By assumption, |α| > 5. Then by the Triangle Inequality, we have |α− 5| ≥ |α| − 5 > 0. —— (⋆)

Therefore ∣∣∣∣∣
n∑

k=0

5k

αk
− α

α− 5

∣∣∣∣∣ =

∣∣∣∣− 5n+1

αn(α− 5)

∣∣∣∣
=

5n+1

|α|n|α− 5|

≤ 5n+1

|α|n(|α| − 5)
(by (⋆))

10. Solution.

(a) Suppose n is an integer greater than 2.

Note that for each integer k between 2 and n, we have 0 <
1

n
< 1, 0 <

2

n
< 1, ..., 0 <

k − 1

n
< 1.

Then, for the same k, the inequalities below hold:—

0 <

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− k − 1

n

)
< 1. ——(†)
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Then (
1 +

2

n

)n

=

n∑
j=0

(
n
j

)
·
(
2

n

)j

= 1 + n · 2
n
+

n∑
j=2

n(n− 1)(n− 2) · ... · (n− j + 1)

j!
· 2

j

nj

= 3 +

n∑
j=2

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− j − 1

n

)
· 2

j

j!

≤ 1 +
2

1!
+

n∑
j=2

1 · 2
j

j!
——(†)

=

n∑
j=0

2j

j!

(b) Suppose n is an integer greater than 2.

Note that
(
1 +

2

n

)n

> 0, and
(
1 +

2

n+ 1

)n+1

> 0.

We have (
1 +

2

n+ 1

)n+1

(
1 +

2

n

)n =


(
1 +

2

n+ 1

)
(
1 +

2

n

)

n

·
(
1 +

2

n+ 1

)
=

[
n(n+ 3)

(n+ 1)(n+ 2)

]n
·
(
1 +

2

n+ 1

)

=

[
1− 2

(n+ 1)(n+ 2)

]n
·
(
1 +

2

n+ 1

)
——(‡1)

Note that −1 <
2

(n+ 1)(n+ 2)
< 0.

Then, by Bernoulli’s Inequality, we have[
1− 2

(n+ 1)(n+ 2)

]n
> 1− 2n

(n+ 1)(n+ 2)
——(‡1)

Since 1 +
2

n+ 1
> 0, we have by (‡1), (‡2),

(
1 +

2

n+ 1

)n+1

(
1 +

2

n

)n =

[
1− 2

(n+ 1)(n+ 2)

]n
·
(
1 +

2

n+ 1

)

>

[
1− 2n

(n+ 1)(n+ 2)

](
1 +

2

n+ 1

)
= 1 +

2

n+ 1
− 2n

(n+ 1)(n+ 2)
− 4n

(n+ 1)2(n+ 2)

= 1 +
2(n+ 1)(n+ 2)− 2n(n+ 1)− 4n

(n+ 1)2(n+ 2)
= 1 +

4

(n+ 1)2(n+ 2)
> 1

Recall that
(
1 +

2

n

)n

> 0. Then
(
1 +

2

n

)n

<

(
1 +

2

n+ 1

)n+1

.

11. Answer.

(a) (I) Suppose
(II) t4 − s4 = (t2 − s2)(t2 + s2) = (t− s)(t+ s)(t2 + s2)

(III) s < t

(IV) s ≥ 0 and
(V) s+ t > 0

(VI) t2 > 0

(VII) s ≥ 0

(VIII) t2 + s2 > 0
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(IX) f(t)− f(s) > 0

(X) f is strictly increasing on [0,+∞)

(b) (I) Suppose f is strictly decreasing on R.
(II) Pick any s, t ∈ R. Suppose s < t.
(III) g(s)− g(t) = (f(s)− 2s3)− (f(t)− 2t3) = (f(s)− f(t)) + 2(t− s)(t2 + st+ s2)

(IV) Since f is strictly decreasing and s < t

(V) t2 + st+ s2

(VI) 0

(VII) f(s)− f(t) + 2(t− s)(t2 + st+ s2) > 0

(VIII) g(s) > g(t)

12. Solution.

(a) Denote by P (n) the proposition below:—

1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
≤ 2

√
n− 1.

• [We verify P (1).]
We have 1 ≤ 1 = 2

√
1− 1. Hence P (1) is true.

• [We verify the statement ‘for any positive integer k, if P (k) is true then P (k + 1) is true’.]
Let k be a positive integer. Suppose P (k) is true.

Then (2
√
k − 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k

)
≥ 0.

We deduce that P (k + 1) is true:
We have

(2
√
k + 1− 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

)
= (2

√
k + 1− 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

)
= 2(

√
k + 1−

√
k)− 1√

k + 1
+ (2

√
k − 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k

)
≥ 2(

√
k + 1−

√
k)− 1√

k + 1
(by P (k))

=
2

√
k + 1 +

√
k
− 1√

k + 1

=

√
k + 1−

√
k

(
√
k + 1 +

√
k)
√
k + 1

=
1

(
√
k + 1 +

√
k)2

√
k + 1

≥ 0

Then 1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

≤ 2
√
k + 1− 1. Hence P (k + 1) is true .

By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

(b) Denote by P (n) the proposition (3n)!

(n!)3
>

27n

9n
.

• [We verify P (1).]

We have (3 · 1)!
(1!)3

= 6 > 3 =
271

9 · 1
.

• [We verify the statement ‘for any positive integer k, if P (k) is true then P (k + 1) is true’.]
Let k be a positive integer. Suppose P (k) is true.

Then (3k)!

(k!)3
· 9k

27k
> 1. ——(♯)

We deduce that P (k + 1) is true:—
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[3(k + 1)]!

[(k + 1)!]3
· 9(k + 1)

27k+1
=

(3k + 3)(3k + 2)(3k + 1)

(k + 1)3
· (3k)!
(k!)3

· 9k

27k
· k + 1

27k

=
(3k)!

(k!)3
· 9k

27k
· (k + 2/3)(k + 1/3)

(k + 1)k

> 1 · (k + 2/3)(k + 1/3)

(k + 1)k
(by (♯))

=
k2 + k + 2/9

k2 + k
= 1 +

2

9k2 + 9k

> 1 (because 2

9k2 + 9k
> 0)

(Note that 27k+1 > 0 and 9(k + 1) > 0.) Then [3(k + 1)]!

[(k + 1)!]3
>

27k+1

9(k + 1)
.

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

13. (a) Solution.
Suppose A,B, a, b are real numbers.
Then (A2+a2)(B2+b2)−(AB+ab)2 = A2B2+a2b2+A2b2+B2a2−A2B2−a2b2−2ABab = A2b2+B2a2−2ABab =

(Ab−Ba)2.
Sine A,B, a, b are real numbers, Ab−Ba is a real number. Then (Ab−Ba)2 ≥ 0.
Therefore (A2 + a2)(B2 + b2)− (AB + ab)2 ≥ 0.
Hence (A2 +B2)(a2 + b2) ≥ (Aa+Bb)2.

(b) Answer.

(I) If a1, a2, · · · , an, b1, b2, · · · , bn are non-negative real numbers, then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

Alternative answer.

Suppose a1, a2, · · · , an, b1, b2, · · · , bn are non-negative real numbers. Then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

Unacceptable (because they are wrong).
• For any integer n greater than 1, if a1, a2, · · · , an, b1, b2, · · · , bn are non-negative real numbers, then n∑

j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

•

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

(II) For any integer k greater than 1, if P (k) is true then P (k + 1) is true.
(III) Let k be an integer greater than 1. Suppose P (k) is true.
(IV) Suppose a1, a2, · · · , ak, ak+1, b1, b2, · · · , bk, bk+1 are non-negative real numbers.

(V) By P (2), we have

k+1∑
j=1

aj
2

k+1∑
j=1

bj
2

 =
(
A2 + ak+1

2
)(
B2 + bk+1

2
)
≥ (AB + ak+1bk+1)

2. ——(†1)

By P (k), we have A2B2 =

 k∑
j=1

aj
2

 k∑
j=1

bj
2

 ≥

 k∑
j=1

ajbj

2

= C2.

Since A,B,C are non-negative real numbers, we have AB ≥ C.

Then AB + ak+1bk+1 ≥ C + ak+1bk+1 =

k+1∑
j=1

ajbj ≥ 0.

Therefore (AB + ak+1bk+1)
2 ≥

k+1∑
j=1

ajbj

2

. ——(†2)
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Hence by (†1), (†2), we have

k+1∑
j=1

aj
2

k+1∑
j=1

bj
2

 ≥ (AB + ak+1bk+1)
2 ≥

k+1∑
j=1

ajbj

2

.

(VI) By the Principle of Mathematical Induction, P (n) is true for any integer n greater than 1.

(c) Solution.
Suppose m is a positive integer.

For each j = 1, 2, · · · ,m,m+ 1, · · · , 2m− 1, 2m, define aj =
1

j
, and bj =

1

2m− j + 1
.

Note that aj = b2m−j .

So
2m∑
j=1

aj
2 =

2m∑
j=1

bj
2 =

2m∑
j=1

1

j2
. —— (†)

Also,

2m∑
j=1

ajbj =

m∑
j=1

ajbj +

2m∑
j=m+1

ajbj = 2

m∑
j=1

ajbj

= 2

[
1

1 · 2m
+

1

2(2m− 1)
+

1

3(2m− 2)
+ · · ·+ 1

k(2m− k + 1)
+ · · ·+ 1

m(m+ 1)

]
——(‡)

Note that a1, a2, · · · , am, am+1, · · · , a2m−1, a2m, b1, b2, · · · , bm, bm+1, · · · , b2m−1, b2m are non-negative real numbers.
We have {

2

[
1

1 · 2m
+

1

2(2m− 1)
+

1

3(2m− 2)
+ · · ·+ 1

k(2m− k + 1)
+ · · ·+ 1

m(m+ 1)

]}2

=

 2m∑
j=1

ajbj

2

(by (‡))

≤

 2m∑
j=1

aj
2

 2m∑
j=1

bj
2

 (by (♯))

=

 2m∑
j=1

1

j2

2

(by (†))

11


