MATH1050BC/1058 Assignment 1 (Answers and selected solution)

1. Solution.

Let
$$\omega = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
.

$$\begin{aligned} \text{(a)} & \quad \text{i. } \omega = \cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}). \\ & \quad \text{ii. } \omega^2 = \cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}) = \frac{1}{2} + \frac{\sqrt{3}}{2}i. \\ & \quad \omega^3 = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = i. \\ & \quad \omega^5 = \cos(\frac{5\pi}{6}) + i\sin(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2} + \frac{1}{2}i. \\ & \quad \omega^6 = \cos(\pi) + i\sin(\pi) = -1. \\ & \quad \omega^{11} = \cos(\frac{11\pi}{6}) + i\sin(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} - \frac{1}{2}i. \\ & \quad \omega^{12} = \cos(2\pi) + i\sin(2\pi) = 1. \end{aligned}$$

(b) (Note that $\omega^{1050}, \omega^{1051}, \omega^{1052}, \cdots, \omega^{2229+1050}, \omega^{2230+1050}$ form a geometric progression with initial term ω^{1050} and with common ratio ω .)

$$\sum_{k=0}^{2230} \omega^{k+1050} = \omega^{1050} \cdot \sum_{k=0}^{2230} \omega^k$$

$$= \omega^{1050} \cdot \frac{1 - \omega^{2231}}{1 - \omega}$$

$$= \omega^6 \cdot \frac{1 - \omega^{11}}{1 - \omega}$$

$$= \omega^6 \cdot \frac{\omega \cdot \omega^{-1} - \omega^{12} \cdot \omega^{-1}}{1 - \omega}$$

$$= \omega^5 \cdot \frac{\omega - 1}{1 - \omega}$$

$$= -\omega^5 = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

2. Solution.

Let α, β, γ be complex numbers. Suppose $|\alpha|=3, \, |\beta|=\frac{1}{4}$ and $|\gamma|=5.$

(a)
$$\left| \frac{i \cdot \alpha^3 \cdot \overline{\beta} \cdot \overline{\gamma^3}}{\overline{\alpha} \cdot \beta^2 \cdot \gamma^2} \right| = \frac{|i| \cdot |\alpha|^3 \cdot |\beta| \cdot |\gamma|^3}{|\alpha| \cdot |\beta|^2 \cdot |\gamma|^2} = \frac{1 \cdot 3^3 \cdot (1/4) \cdot 5^3}{3 \cdot (1/4)^2 \cdot 5^2} = 180.$$

(b) It is further supposed that $\text{Re}(\alpha) = 2$, $\text{Im}(\frac{1}{\beta^2}) = 14$, and $\text{Re}(i\gamma^3) = 100$.

$$\mathrm{i.}\ |\mathrm{Im}(\alpha)|^2 = \sqrt{|\alpha|^2 - (\mathrm{Re}(\alpha))^2} = \sqrt{3^2 - 2^2} = \sqrt{5}.$$

$$\text{ii. } \left| \text{Re}(\frac{1}{\beta^2}) \right| = \sqrt{\left| \frac{1}{\beta^2} \right|^2 - \left(\text{Im}(\frac{1}{\beta^2}) \right)^2} = \sqrt{\frac{1}{|\beta|^4} - \left(\text{Im}(\frac{1}{\beta^2}) \right)^2} = \sqrt{4^4 - 14^2} = 2\sqrt{15}.$$

iii. Note that
$$\frac{\overline{\gamma}^2}{\gamma} = \frac{\overline{\gamma}^3}{\gamma \overline{\gamma}} = \frac{\overline{\gamma}^3}{|\gamma|^2} = \frac{\overline{\gamma}^3}{25}$$
.

Also note that $i\gamma^3 = \text{Re}(i\gamma^3) + i\text{Im}(i\gamma^3)$. Then $\gamma^3 = \text{Im}(i\gamma^3) - i\text{Re}(i\gamma^3)$. (The real and imaginary parts of $i\gamma^3$ are $\text{Im}(i\gamma^3)$, $-\text{Re}(i\gamma^3)$ respectively.)

Therefore
$$\frac{\overline{\gamma}^3}{25} = \frac{\overline{\gamma^3}}{25} = \frac{1}{25} (\overline{\mathsf{Im}(i\gamma^3) - i\mathsf{Re}(i\gamma^3)}) = \frac{1}{25} \mathsf{Im}(i\gamma^3) + i \cdot \frac{1}{25} \mathsf{Re}(i\gamma^3).$$

$$\mathrm{Hence}\ \mathrm{Im}(\frac{\overline{\gamma}^2}{\gamma}) = \mathrm{Im}(\frac{\overline{\gamma}^3}{25}) = \frac{1}{25}\mathrm{Re}(i\gamma^3) = \frac{1}{25}\cdot 100 = 4.$$

3. Solution.

- (a) Suppose ζ, η are complex numbers. Then we say that ζ is a square root of η if $\eta = \zeta^2$.
- (b) Let r be a positive real number, and θ be a real number. Suppose $\zeta = r(\cos(\theta) + i\sin(\theta))$

There are two square roots for the number ζ .

They are: $\sqrt{r}(\cos(\theta/2) + i\sin(\theta/2))$, $-\sqrt{r}(\cos(\theta/2) + i\sin(\theta/2))$.

Alternative answer. The two square roots for ζ are: $\sqrt{r}(\cos(\theta/2) + i\sin(\theta/2))$, $\sqrt{r}(\cos(\theta/2 + \pi) + i\sin(\theta/2 + \pi))$.

- (c) Let α be a non-zero complex number. Suppose $\alpha^5/\overline{\alpha}^3=4$. Also suppose that α is neither real nor purely imaginary.
 - i. Note that $4 = |4| = |\alpha^5/\overline{\alpha}^3| = |\alpha|^5/|\overline{\alpha}|^3 = \frac{|\alpha|^5}{|\alpha|^3} = |\alpha|^2$.

Then $|\alpha|=2$.

ii. We have $4 = \alpha^5/\overline{\alpha}^3 = \frac{\alpha^8}{|\alpha|^6} = \frac{\alpha^8}{64}$. Then $\alpha^8 = 256$.

Therefore $\alpha^4 = 16$ or $\alpha^4 = -16$. Hence $\alpha^2 = 4$ or $\alpha^2 = -4$ or $\alpha^2 = 4i$ or $\alpha^2 = -4i$.

Since α is neither real nor purely imaginary, the possibilities ' $\alpha^2 = 4$ ', ' $\alpha^2 = -2$ ' are rejected.

Therefore $\alpha^2 = 4i$ or $\alpha^2 = -4i$.

• (Case 1.) Suppose $\alpha^2 = 4i$.

Note that $4i = 4(\cos(\pi/2) + i\sin(\pi/2))$.

Then $\alpha = 2(\cos(\pi/4) + i\sin(\pi/4))$ or $\alpha = -2(\cos(\pi/4) + i\sin(\pi/4))$.

• (Case 2.) Suppose $\alpha^2 = -4i$.

Note that $-4i = 4(\cos(3\pi/2) + i\sin(3\pi/2))$.

Then $\alpha = 2(\cos(3\pi/4) + i\sin(3\pi/4))$ or $\alpha = -2(\cos(3\pi/4) + i\sin(3\pi/4))$.

Hence $\alpha = \sqrt{2} + \sqrt{2}i$ or $\alpha = \sqrt{2} - \sqrt{2}i$ or $\alpha = -\sqrt{2} + \sqrt{2}i$ or $\alpha = -\sqrt{2} - \sqrt{2}i$.

4. Answer.

- (a) 2, 4+2i.
- (b) i. 5.
 - ii. 5 i.
- (c) i. 2 + 2i, 4i
 - ii. $\sqrt{2}$
 - iii. -1+i

5. Answer.

- (a) Suppose ζ, η are complex numbers. Suppose n is a positive integer. Then we say ζ is an n-th root of η if $\zeta^n = \eta$.
- i. There are exactly five quintic roots of 32i. They are:—

•
$$2(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})),$$

•
$$2(\cos(\frac{9\pi}{10}) + i\sin(\frac{9\pi}{10})),$$

•
$$2(\cos(-\frac{7\pi}{10}) + i\sin(-\frac{7\pi}{10})),$$

•
$$2(\cos(-\frac{3\pi}{10}) + i\sin(-\frac{3\pi}{10})),$$

•
$$2(\cos(\frac{\pi}{10}) + i\sin(\frac{\pi}{10})).$$

ii.
$$z = 2(\cos(\frac{\pi}{10}) + i\sin(\frac{\pi}{10}) \text{ or } z = 2(\cos(-\frac{3\pi}{10}) + i\sin(-\frac{3\pi}{10}) \text{ or } z = 2(\cos(-\frac{7\pi}{10}) + i\sin(-\frac{7\pi}{10}))$$
.

6. Solution.

(a) Suppose ζ is a complex number, and n is a positive integer. Then ζ is said to be an n-th root of unity if $\zeta^n = 1$.

(b) Let
$$\eta = \sin\left(\frac{7\pi}{30}\right) + i\cos\left(\frac{7\pi}{30}\right)$$
.

i.
$$\eta = \sin\left(\frac{7\pi}{30}\right) + i\cos\left(\frac{7\pi}{30}\right) = \cos\left(\frac{\pi}{2} - \frac{7\pi}{30}\right) + i\sin\left(\frac{\pi}{2} - \frac{7\pi}{30}\right) = \cos\left(\frac{4\pi}{15}\right) + i\sin\left(\frac{4\pi}{15}\right)$$
.

ii. We have
$$\eta^5 = \left(\cos\left(\frac{4\pi}{15}\right) + i\cos\left(\frac{4\pi}{15}\right)\right)^5 = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) \neq 1$$
. Hence η is not a 5-th root of unity. We have $\eta^{10} = \left(\cos\left(\frac{4\pi}{15}\right) + i\cos\left(\frac{4\pi}{15}\right)\right)^{10} = \cos\left(\frac{8\pi}{3}\right) + i\sin\left(\frac{8\pi}{3}\right) \neq 1$. Hence η is not a 10-th root of unity.

We have
$$\eta^{15} = \left(\cos\left(\frac{4\pi}{15}\right) + i\cos\left(\frac{4\pi}{15}\right)\right)^{15} = \cos(4\pi) + i\sin(4\pi) = 1$$
. Hence η is a 15-th root of unity. We have $\eta^{30} = \left(\cos\left(\frac{4\pi}{15}\right) + i\cos\left(\frac{4\pi}{15}\right)\right)^{30} = \cos(8\pi) + i\sin(8\pi) = 1$. Hence η is a 30-th root of unity.

iii. The 8-th root of
$$\eta$$
 with smallest positive argument is $\cos\left(\frac{\pi}{30}\right) + i\sin\left(\frac{\pi}{30}\right)$.

The 8-th roots of η with argument strictly between $-\frac{\pi}{3}$ and $\frac{\pi}{3}$ are:—

$$\cos\left(-\frac{13\pi}{60}\right) + i\sin\left(-\frac{13\pi}{60}\right), \cos\left(\frac{\pi}{30}\right) + i\sin\left(\frac{\pi}{30}\right), \cos\left(\frac{17\pi}{60}\right) + i\sin\left(\frac{17\pi}{60}\right).$$

7. Solution.

Let θ be a real number. Write $\omega = \cos(\theta) + i\sin(\theta)$.

(a) Suppose m is a positive integer.

Note that:—

•
$$\omega \overline{\omega} = 1$$
. (\sharp_1)

•
$$\omega + \overline{\omega} = 2 \operatorname{Re}(\omega) = 2 \cos(\theta)$$
. (\sharp_2)

•
$$\omega^{\ell} + \overline{\omega}^{\ell} = 2 \text{Re}(\omega^{\ell})$$
 for each positive integer ℓ . —— (\sharp_3)

Also note that $\binom{2m}{k} = \binom{2m}{2m-k}$ for each integer k between 0 and m. —— (\natural)

We have

$$2^{2m}\cos^{2m}(\theta) = (2\cos(\theta))^{2m} = (\omega + \overline{\omega})^{2m} \quad (\text{by } (\sharp_2))$$

$$= \omega^{2m} + \binom{2m}{1}\omega^{2m-2}\overline{\omega} + \binom{2m}{2}\omega^{2m-2}\overline{\omega}^2 + \dots + \binom{2m}{k}\omega^{2m-k}\overline{\omega}^k + \dots$$

$$+ \binom{2m}{m-1}\omega^{m+1}\overline{\omega}^{m-1} + \binom{2m}{m}\omega^{m}\overline{\omega}^m + \binom{2m}{m+1}\omega^{m-1}\overline{\omega}^{m+1} + \dots$$

$$+ \binom{2m}{2m-k}\omega^{k}\overline{\omega}^{2m-k} + \dots + \binom{2m}{2m-2}\omega^{2}\overline{\omega}^{2m-2} + \binom{2m}{2m-1}\omega^{2m-1} + \overline{\omega}^{2m} \quad (\text{by Binomial Theorem})$$

$$= (\omega^{2m} + \overline{\omega}^{2m}) + \binom{2m}{1}(\omega^{2m-2} + \overline{\omega}^{2m-2}) + \binom{2m}{2}(\omega^{2m-4} + \overline{\omega}^{2m-4}) + \dots$$

$$+ \binom{2m}{k}(\omega^{2m-2k} + \overline{\omega}^{2m-2k}) + \dots + \binom{2m}{m-1}(\omega^2 + \overline{\omega}^2) + \binom{2m}{m} \quad (\text{by } (\sharp_1), (\sharp))$$

$$= 2\text{Re}(\omega^{2m}) + \binom{2m}{1}\cdot 2\text{Re}(\omega^{2m-2}) + \binom{2m}{2}\cdot 2\text{Re}(\omega^{2m-4}) + \dots + \binom{2m}{m-1}\cdot 2\text{Re}(\omega^2) + \binom{2m}{m} \quad (\text{by } (\sharp_3))$$

(b) By De Moivre's Theorem, for each positive integer n, $\omega^n = \cos(n\theta) + i\sin(n\theta)$. Then $\text{Re}(\omega^n) = \cos(n\theta)$. By the result in the previous part,

$$\begin{split} & 2^{10}\cos^{10}(\theta) \\ &= & 2\mathrm{Re}(\omega^{10}) + \left(\begin{array}{c} 10 \\ 1 \end{array}\right) \cdot 2\mathrm{Re}(\omega^{8}) + \left(\begin{array}{c} 10 \\ 2 \end{array}\right) \cdot 2\mathrm{Re}(\omega^{6}) + \left(\begin{array}{c} 10 \\ 3 \end{array}\right) \cdot 2\mathrm{Re}(\omega^{4}) + \left(\begin{array}{c} 10 \\ 4 \end{array}\right) \cdot 2\mathrm{Re}(\omega^{2}) + \left(\begin{array}{c} 10 \\ 5 \end{array}\right) \\ &= & 2\cos(10\theta) + 10 \cdot 2\cos(8\theta) + 45 \cdot 2\cos(6\theta) + 120 \cdot 2\cos(4\theta) + 210 \cdot 2\cos(2\theta) + 252 \end{split}$$

Hence

$$\cos^{10}(\theta) = \frac{1}{512}\cos(10\theta) + \frac{5}{256}\cos(8\theta) + \frac{45}{512}\cos(6\theta) + \frac{15}{64}\cos(4\theta) + \frac{105}{256}\cos(2\theta) + \frac{63}{256}\cos(2\theta) + \frac{10}{256}\cos(2\theta) +$$

8. Solution.

(a) Suppose ζ, η are complex numbers. Write $a = \mathsf{Re}(\zeta), b = \mathsf{Im}(\zeta), c = \mathsf{Re}(\eta), d = \mathsf{Im}(\eta)$.

Note that $\zeta \eta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i$.

Then $\overline{\zeta\eta} = \overline{(ac-bd) + (ad+bc)i} = (ac-bd) - (ad+bc)i$ by the definition of complex conjugate.

We also have $\overline{\zeta} = a - bi$, $\overline{\eta} = c - di$ by the definition of complex conjugate.

Then $\overline{\zeta} \cdot \overline{\eta} = (a - bi) \cdot (c - di) = [ac + (-b)(-d)] + [a(-d) + (-b)d]i = (ac + bd) - (ad + bc)i$. Hence $\overline{\zeta} \overline{\eta} = \overline{\zeta} \cdot \overline{\eta}$. (b) Suppose κ, λ are complex numbers.

Then by (1), we have

$$|\kappa\lambda|^2 = (\kappa\lambda)(\overline{\kappa\lambda})$$

$$= (\kappa\lambda)(\overline{\kappa\lambda}) \text{ (by (\sharp))}$$

$$= (\kappa\overline{\kappa})(\lambda\overline{\lambda})$$

$$= |\kappa|^2 \cdot |\lambda|^2$$

$$= (|\kappa| \cdot |\lambda|)^2 - (\dagger)$$

By definition of modulus, $|\kappa\lambda|$ is a non-negative real number.

Also by definition of modulus, $|\kappa|, |\lambda|$ are non-negative real numbers. Then $|\kappa| \cdot |\lambda|$ is a non-negative real number.

Therefore by (\dagger) , $|\kappa\lambda| = |\kappa| \cdot |\lambda|$.

(c) Let σ, τ be complex numbers. Suppose $\tau \neq 0$.

By $(\natural \natural)$, $\overline{\tau} \neq 0$ and $|\tau| \neq 0$.

We have

$$\overline{\left(\frac{\sigma}{\tau}\right)} \cdot \overline{\tau} = \overline{\left(\frac{\sigma}{\tau} \cdot \tau\right)} \quad \text{(by (\sharp))}$$

Since $\overline{\tau} \neq 0$, we have $\overline{\left(\frac{\sigma}{\tau}\right)} = \overline{\sigma}/\overline{\tau}$.

We have

$$\left| \frac{\sigma}{\tau} \right| \cdot |\tau| = \left| \frac{\sigma}{\tau} \cdot \tau \right| \quad \text{(by (b))}$$
$$= |\sigma|$$

Since $|\tau| \neq 0$, we have $\left| \frac{\sigma}{\tau} \right| = \frac{|\sigma|}{|\tau|}$.

9. (a) **Answer.**

(I)
$$(z+w)(\bar{z}+\bar{w}) = z\bar{z} + w\bar{w} + z\bar{w} + \bar{z}w = |z|^2 + |w|^2 + z\bar{w} + \bar{z}w$$

(II)
$$|z|^2 + |-w|^2 + z\overline{(-w)} + \bar{z}(-w) = |z|^2 + |w|^2 - z\bar{w} - \bar{z}w$$

(III)
$$2|z|^2 + 2|w|^2 + z\bar{w} + \bar{z}w - z\bar{w} - \bar{z}w = 2|z|^2 + 2|w|^2$$

(b) Answer.

(I) r, s, t are complex numbers

(II)
$$2|r-s|^2 + 2|r-t|^2 - |(r-s) - (r-t)|^2$$

(III)
$$2|s-t|^2 + 2|r-s|^2 - |t-r|^2$$

(IV)
$$|2t - r - s|^2 = 2|t - r|^2 + 2|s - t|^2 - |r - s|^2$$

(V)
$$3(|s-t|^2 + |t-r|^2 + |r-s|^2)$$

(c) Solution.

Let ζ, α, β be complex numbers. Suppose $\zeta^2 = \alpha^2 + \beta^2$.

By the Parallelogramic Identity, we have $|\zeta + \alpha|^2 + |\zeta - \alpha|^2 = 2|\zeta|^2 + 2|\alpha|^2$.

Then

$$(|\zeta + \alpha| + |\zeta - \alpha|)^{2} = |\zeta + \alpha|^{2} + |\zeta - \alpha|^{2} + 2|\zeta + \alpha||\zeta - \alpha|$$

$$= 2|\zeta|^{2} + 2|\alpha|^{2} + 2|(\zeta + \alpha)(\zeta - \alpha)|$$

$$= 2|\zeta|^{2} + 2|\alpha|^{2} + 2|\beta^{2}|$$

$$= 2|\zeta|^{2} + 2|\alpha|^{2} + 2|\beta|^{2}$$

Modifying the above argument (by interchanging the roles played by α and β), we have $(|\zeta + \beta| + |\zeta - \beta|)^2 = 2|\zeta|^2 + 2|\beta|^2 + 2|\alpha|^2$.

Therefore $(|\zeta + \alpha| + |\zeta - \alpha|)^2 = (|\zeta + \beta| + |\zeta - \beta|)^2$.

Note that $|\zeta + \alpha| + |\zeta - \alpha| \ge 0$ and $|\zeta + \beta| + |\zeta - \beta| \ge 0$. Then $|\zeta + \alpha| + |\zeta - \alpha| = |\zeta + \beta| + |\zeta - \beta|$.

10. (a) **Answer.**

(I) There exists some non-zero complex number r

(II) for any
$$n \in \mathbb{N}$$
, $\frac{b_{n+1}}{b_n} = r$

(b) Answer.

(I) there exists some non-zero complex number r such that for any $n \in \mathbb{N}$, $\frac{b_{n+1}}{b_n} = r$

$$(II) \ \frac{b_1}{b_0} = r$$

(III)
$$\frac{b_m}{b_{m-1}} = r$$

$$\text{(IV) } \frac{b_1}{b_0} \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdot \ldots \cdot \frac{b_{m-1}}{b_{m-2}} \cdot \frac{b_m}{b_{m-1}} = r^m$$

$$(V) b_m = b_0 r^m$$

(c) Solution.

Let $\{a_n\}_{n=0}^{\infty}$ be a geometric progression. Suppose $k, \ell, m \in \mathbb{N}$, and $a_k = A$, $a_\ell = B$ and $a_m = C$.

By the result in the previous part, there exists some non-zero complex number r such that for any $n \in \mathbb{N}$, $a_n = a_0 r^n$.

In particular, $a_k = a_0 r^k$, $a_\ell = a_0 r^\ell$ and $a_m = a_0 r^m$.

Then

$$\begin{array}{lcl} A^{\ell-m}B^{m-k}C^{k-\ell} & = & (a_0r^k)^{\ell-m}(a_0r^\ell)^{m-k}(a_0r^m)^{k-\ell} \\ & = & a_0^{(\ell-m)+(m-k)+(k-\ell)}r^{k(\ell-m)+\ell(m-k)+m(k-\ell)} \\ & = & a_0^0r^0 = 1 \end{array}$$

11. (a) **Answer.**

(I) Suppose a, b, c are in arithmetic progression.

(III)
$$c - b = d$$

(IV)
$$b^2 - a^2 - ca + bc = (b - a)(b + a) + (b - a)c = d(a + b + c)$$

(V)
$$[(c^2 - ab) - (b^2 - ca)] = c^2 - b^2 - ab + ca = (c - b)(c + b) + (c - b)a = d(a + b + c)$$

(VI)
$$(b^2 - ca) - (a^2 - bc) = (c^2 - ab) - (b^2 - ca)$$

(b) Solution.

Let a, b, c be complex numbers. Suppose $a^2 - bc, b^2 - ca, c^2 - ab$ are in arithmetic progression. Further suppose $a + b + c \neq 0$.

By assumption, $b^2 - ca = \frac{(a^2 - bc) + (c^2 - ab)}{2}$.

Therefore $2b^2 - 2ca = a^2 + c^2 - ab - bc$.

Hence
$$0 = (a^2 - b^2) + (c^2 - b^2) + (ac - ab) + (ac - bc) = \dots = (a + c - 2b)(a + b + c)$$
.

Since $a+b+c\neq 0$, we have a+c-2b=0. Then $b=\frac{a+b}{2}$.

Therefore a, b, c are in arithmetic progression.