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Abstract

In this paper, we consider tomographic reconstruction for axially symmetric objects from
a single radiograph formed by fan-beam X-rays. All contemporary methods are based on the
assumption that the density is piecewise constant or linear. From a practical viewpoint, this
is quite a restrictive approximation. The method we propose is based on high-order total
variation regularization. Its main advantage is to reduce the staircase effect while keeping sharp
edges and enable the recovery of smoothly varying regions. The optimization problem is solved
using the augmented Lagrangian method which has been recently applied in image processing.
Furthermore, we use a one-dimensional (1D) technique for fan-beam X-rays to approximate
2D tomographic reconstruction for cone-beam X-rays. For the 2D problem, we treat the cone
beam as fan beam located at parallel planes perpendicular to the symmetric axis. Then the
density of the whole object is recovered layer by layer. Numerical results in 1D show that
the proposed method has improved the preservation of edge location and the accuracy of the
density level when compared with several other contemporary methods. The 2D numerical tests
show that cylindrical symmetric objects can be recovered rather accurately by our high-order
regularization model.

Key words: Tomography, Radiograph, Abel inversion, High-order total variation, Augmented
Lagrangian method,

1 Introduction

The X-ray tomography has been widely applied in many areas, including medicine, optics, material
science, astronomy, and geophysics. Another important application of X-ray tomography is in
nuclear physics. In this paper, we focus on the problem of tomographic reconstruction for flash
X-ray radiography. The purpose here is to characterize the state of matter subjected to powerful
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shocks under the effect of explosives. By tomographic reconstruction we aim to recover the object
density.

In our experimental setting, the object is assumed axially symmetric. Only a single radiograph
is taken with a radiographic axis perpendicular to the symmetric axis of the object. The diagram
for the experiment is depicted on Figure 1(a) where the symmetric axis of the object is defined as
the z-axis. The X-ray source is placed sufficiently far from the object compared to its size, so that
the X-rays can be assumed to be parallel on different layers. The object density is reconstructed
layer by layer independently. In each layer, i.e. for each constant z, we consider that the X-rays
form a fan-beam shape, see Figure 1(b). The transmitted radiation is measured by a detector lying
on a plane x = x0. Each cross section of the object is projected onto a line of the detector plane.

S

Symmetric

S

R

r

OL
1

L
2

(a)

z = z
j

z = 0

axis

(b)

P
i

P
1

a(y)

l

Figure 1: Illustration to the tomographic experiments in (a) 2D and (b) 1D.

In flash radiography, a very high photon energy is emitted so that it passes through the object.
The X-ray energy is attenuated after absorption by the object. The absorption depends on the
nature, density, and thickness of the materials contained in the object. The logarithm of the
attenuation is regarded proportional to the integral of the density function of the object along the
X-ray beam path. For the tomographic reconstruction we will assume that the integral value of
density function is known. In each cross section, the density function is one dimensional, denoted
by ρ(r, z). The integral

∫

ρ(r, z)dl along each line through the object is given by the radiograph
intensity d(y, z). For simplicity, in the following part we will use d(y) and ρ(r) to respectively
represent the radiograph intensity and object density for any cross section for each fixed z. The
relationship between r, l and a(y) reads

l2 = r2 − a(y)2,

where a(y) is the distance from the center of the cross section to the corresponding X-ray. Intro-
ducing the latter equation into d(y) =

∫

ρ(r)dl yields

d(y) = 2

∫ R

|a(y)|

rρ(r)
√

r2 − a(y)2
dr, (1.1)

which is the Abel transform of ρ. Let us remind that the Abel transform is the 1D version of the
usual Radon transform.

Solving ρ(r) from (1.1) amounts to invert the Abel transform. In practice, there are a number of
difficulties to address the Abel transform based tomography. First, (1.1) is a simplified description
of a very nonlinear experimental process where all the measurements are subject to noise. Second,
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the inverse problem is ill-posed. It makes the corresponding discrete Abel transform very ill-
conditioned. In the discrete setting, we formulate the Abel transform as a matrix A ∈ R

m×n and
the object radial density values as ρ ∈ R

n. Hence (1.1) is then discretized as

d = Aρ, (1.2)

where d ∈ R
m. Here, m is a fixed number determined by the projection data projection. And n is

independently chosed according to the discretization of ρ. Usually, we set n is bigger than m.
In order to take into account the degradations occurring during the data production, we consider

in what follows the general observation model given by

d = KAρ+ n, (1.3)

where n is a vector denoting the noise and K presents the blurring that may be produced in the
process of radiographing.

In the literature, Hanson [14] has applied the Bayesian approaches to the tomographic re-
construction problem. Based on the work by Tikhonov in [25] and Rudin-Osher-Fatemi in [24],
researchers have proposed a number of regularization methods [3, 4, 1, 2] for the Abel inversion.
All these methods can be formulated as solving a minimization problem of the form:

min
ρ

{

µR(ρ) +
1

2
‖KAρ− d‖22

}

, (1.4)

where R(ρ) is a regularization functional based on Total-Variation (TV). Abraham et al. [1] has
applied Chambolle’s dual method [7] to solve the minimization problem in (1.4) for binary axial
symmetric objects. In [4], the authors have proposed an adaptive TV method where the TV
regularization is used to identify the locations of the suspected density discontinuities, and the H1

regularization [4] acts on the data set apart from these locations. These existing methods focus
on Abel inversion with noise removal for parallel X-ray beams and pay more attention to recover
piecewise constant or at most linear density [4].

Unlike the pre-existing methods [3, 4, 2, 1], we focus on the tomographic reconstruction of 1D
piecewise smooth objects involving sharp edges, radiographed by fan-beam X-rays. Our method is
based on solving the regularized minimization problem of the form (1.4) where the regularization
term R is designed to tackles the recovery of piecewise smooth objects involving edges. This
constitutes the main novelty of our approach.

Since [21], using first-order TV gives rise to locally constant solutions while second-order TV as
in [19] yields locally planar solutions without neat edges. So we focus on compound regularization
R(ρ) mixing the ℓ1 norms of the gradient and of the Laplacian of ρ. A famous achievement in this
direction being the TGV model of Bredies, Kunisch and Pock [6], we explored this regularization
but results were not convincing. The best-suited compound regularization R(ρ) for our problem is
much simpler: it is given by a linear combination of the ℓ1 norms of the gradient and of the Laplacian
of ρ. According to the theory in [21], the corresponding solutions generically involve constant and
linear shapes, as well as edges. The properties of high-order TV in keeping sharp edges and avoiding
staircase effects on the smooth part have also been discussed in [8, 19, 20]. To solve the proposed
high-order regularization problem, fast augmented Lagrangian method (ALM) is used. In addition,
we shall also apply the proposed 1D technique for fan-beam X-rays to approximate 2D tomographic
reconstruction for cone-beam X-rays. For the 2D problem, we treat the cone beam as a fan beam
at parallel planes perpendicular to the symmetric axis. Then we apply the proposed algorithm
on each layer to reconstruct the whole 2D cylindrical symmetric object. We compare our method
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with several contemporary image restoration approaches. Extensive numerical tests confirm that
our proposed high-order TV approach outperforms the concurrent methods in terms of restoration
quality and computational costs. 2D numerical experiments show clearly the successful application
of the proposed algorithm for 2D cylindrical object density reconstruction.

The rest of the paper is organized as follows: In §2, the discrete Abel transform for the fan-beam
X-rays is described in more detail. In §3, we present the high-order TV regularized Abel inversion
model and solve it with ALM. In §4, we introduce some other standard approaches that can be
adapted to solve (1.4): (i) the TV model of [24]; (ii) the 4th-order model of [20]; and (iii) the total
generalized variation model of [6]. In §5, we apply our algorithm to reconstruct piecewise smooth
density functions for 1D axially symmetric and 2D cylindrically symmetric objects. Comparisons
of our algorithm and other three standard approaches are also given in this section. We finally
summarize and give some conclusions in §6.

2 Discrete Abel Transform for Fan-beam X-rays

First, we give some details on the discretization of the Abel transform. The projection matrix A is
obtained by discretizing the Abel transform of equation (1.1). Here, we assume that the X-rays at
different layers are parallel. Hence, the projection matrix A is always the same for each layer. In
each layer, the projection matrix A is generated from fan-beam X-rays, as shown in Figure 1(b).
We want to emphasis that this simplification has been used in industries.

Without loss of generality, we use the layer z = 0 to illustrate how to formulate the projection
operator A, see Figure 1(b). Let ρ(r) be the radial density for the layer. Since the object has
finite volume, we can assume that ρ(r) = 0 when r > R. The distances from the source to the
object and the object to the detector are denoted by L1 and L2 respectively, where L1 = |SO| and
L2 = |OP1|. We consider Figure 1(b) on the rectangular coordinate system with origin O. Thus,
the detector lies at plane x = L2 and the areal density d(y) is measured at y ∈ [−H,H] , where
H > (L1 +L2) ·R/L1 to ensure that the projection data for the whole object is covered. Separate
[−H,H] into 2m − 1 uniform partitions each with step size ∆h = H/(m − 1). Considering the
symmetry of the object, we only need half of the projection data. Take d to be a vector of m
elements, with di = d(yi), for i = 1, · · · ,m. For the cross section of radius R, we subdivide [0, R]
into n uniform partitions with step size ∆r = R/n and ri = i∆r. Then ρ is a vector of n elements
with its i-th entry being ρ(ri). Hence, A is a matrix of size m × n. The (i, j)-th element of A is
equal to the length of the X-ray li lying between circles of r = rj and r = rj+1.

The Abel projection operator A is very ill-conditioned, which makes the direct Abel inversion
formula very sensitive to the noise contained in the measured data d. To overcome the sensitivities,
suitable regularization term R(ρ) can be applied, as in (1.4).

3 Our Proposed Method—High-order TV Regularization

We propose the following minimization model to find the density function:

min
ρ

{

E(ρ) = µ1‖∇ρ‖1 + µ2‖∆ρ‖1 +
1

2
‖KAρ− d‖22

}

, (3.1)

where ∆ is the discrete Laplacian operator, µ1 and µ2 are regularization constants that need to be
properly chosen. In the next section, we shall introduce some standard regularization models in
image processing. We shall modify these models to solve the Abel inversion problem and compare
(3.1) against them.

4



It is common to use gradient descent method to solve the minimization problem (3.1). Recent
research reveals that this kind of regularization problem can be solved much more efficiently using
some special iterative procedures. Split-Bregman method [13] and augmented Lagrangian methods
[28] have been experimentally proven to be some of the fastest methods in image processing.

As in [28, 26, 27], to apply the ALM to solve (3.1), we introduce two auxiliary variables v and
w into (3.1) and reformulate the problem to be the following constrained minimization problem:

min
ρ,v,w

{

µ1‖v‖1 + µ2‖w‖1 + 1
2‖KAρ − d‖22

}

s. t. v = ∇ρ, w = ∆ρ.
(3.2)

In order to solve the constrained minimization problem (3.2), we define the following augmented
Lagrangian functional

L(ρ,v,w;q1,q2) = µ1(‖v‖1 + 〈q1,v −∇ρ〉+ 1

2γ
‖v −∇ρ‖22)

+µ2(‖w‖1 + 〈q2,w −∆ρ〉+ 1

2η
‖w −∆ρ‖22) (3.3)

+
1

2
‖KAρ− d‖22,

with Lagrange multipliers q1,q2 and positive penalization constants γ, η. According to our tests,
it is enough to take γ = η = 1.

It is known that one of the saddle points of the augmented Lagrangian functional corresponds to
the minimizers of the constrained minimization problem (3.2) [28, 26, 27]. The following algorithm
is often used to find the saddle points of augmented Lagrangian functionals:

Algorithm 1:

1. Initialize v0 = 0,w0 = 0,q0
1 = 0,q0

2 = 0;

2. For k = 0, 1, 2, · · · :

(a) Update (ρk+1,vk+1,wk+1) by solving the following minimization problem with Lagrange
multipliers qk

1 ,q
k
2 , i.e.

(ρk+1,vk+1,wk+1) = arg min
ρ,v,w

L(ρ,v,w;qk
1 ,q

k
2); (3.4)

(b) Update Lagrange multipliers qk+1
1 and qk+1

2 by

qk+1
1 = qk

1 +
1

γ
(vk+1 −∇ρ

k+1), and qk+1
2 = qk

2 +
1

η
(wk+1 −∆ρ

k+1). (3.5)

Since the variables in (3.4) is coupled together, it is very difficult to solve this minimization
problem exactly. It is common to use an alternating minimization strategy to find approximate
minimizers. In the following part, we separate problem (3.4) into three sub-problems and give
details on how to apply an alternative minimization approach to find the approximate minimizers.

To find an approximate minimizer for (3.4), the following three sub-problems shall be solved
sequentially once in each iteration.
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• ρ-subproblem: Given v,w,

min
ρ

{

µ1〈qk
1 ,−∇ρ〉+ µ1

2γ
‖v −∇ρ‖22 + µ2〈qk

2 ,−∆ρ〉+ µ2

2η
‖w −∆ρ‖22 +

1

2
‖KAρ − d‖22

}

.(3.6)

• v-subproblem: Given ρ,w,

min
v

{

‖v‖1 + 〈qk
1 ,v −∇ρ〉+ 1

2γ
‖v −∇ρ‖22

}

. (3.7)

• w-subproblem: Given ρ,v,

min
w

{

‖w‖1 + 〈qk
2 ,w −∆ρ〉+ 1

2η
‖w −∆ρ‖22

}

. (3.8)

Next, we shall show that the three subproblems either have explicit solutions or can be solved by
inexpensive numerical solvers.

3.1 Solving the ρ-subproblem

Notice that ρ-sub problem is quadratic in ρ. To find the solution of (3.6), we just need to take the
derivative of its energy functional with respect to ρ and solve the following linear system

µ1div · qk
1 +

µ1

γ
div · (v −∇ρ)− µ2∆ · qk

2 +
µ2

η
∆ · (∆ρ−w) +A⊤K⊤(KAρ− d) = 0, (3.9)

where div denotes the divergence operator. In our simulations, this linear system is solved by a
direct solver.

3.2 Solving the v-subproblem

Subproblem (3.7) is equivalent to

min
v

{

γ‖v‖1 +
1

2
‖v − (∇ρ− γqk

1)‖22
}

.

This subproblem has a closed-form solution which is given by the soft thresholding

v = Tγ(∇ρ− γqk
1), (3.10)

where the i-th entry vi = Tγ(∇iρ− γqk1,i) and Tγ is defined by

Tγ(x) = argmin
y

{γ|y|+ 1

2
|y − x|2} = sign(x)max(|x| − γ, 0), for x ∈ R, γ > 0. (3.11)

See [11].
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3.3 Solving the w-subproblem

Similar to the v-subproblem, the w-subproblem is equivalent to

min
w

{

η‖w‖1 +
1

2
‖w − (∆ρ− ηqk

2)‖22
}

.

It has a closed-form solution given by

w = Tη(∆ρ− ηqk
2). (3.12)

Combining the above results together, (3.4) is solved by the alternating minimization approach:

Algorithm 2: Alternating minimization approach for solving (3.4)

1. Initialize ρ
k,0 = ρ

k, vk,0 = vk,wk,0 = w0;

2. For l = 0, 1, 2, · · · , L− 1 :

(a) Update ρ
k,l+1 by solving (3.9), i.e.

(

−µ1

γ
div · ∇+

µ2

η
∆ ·∆+A⊤K⊤K⊤A

)

ρ = A⊤K⊤d− µ1

γ
div ·

(

vk,l + γqk
1

)

+
µ2

η
∆ ·

(

wk,l + ηqk
2

)

;

(b) Update vk,l+1 using (3.10) for ρ = ρ
k,l+1;

(c) Update wk,l+1 using (3.12) for ρ = ρ
k,l+1;

3. ρ
k+1 = ρ

k,L,vk+1 = vk,L,wk+1 = wk,L.

We can see that the cost per iteration for the above scheme is very cheap. Numerical tests will
also show that the total number of iterations needed to reach convergence is also very low.

4 Other Possible Regularization Techniques

In this section, we adapt several other popular contemporary methods in image restoration to solve
Abel inversion problem (1.4). Augmented Lagrangian methods and corresponding schemes will
also be derived for these regularization methods without going into much detail. In the numerical
section, we will compare our model with these regularizers.

4.1 TV Regularization

The TV regularization model [24] has been successfully and widely applied to various problems in
image processing. Its success relies on the remarkable ability of TV-norm in preserving edges and
suppressing noise. The TV regularization methods for Abel inversion has been studied in [3, 4, 1, 2],
Here we state the TV regularization method for the convenience of the comparison. We consider

min
ρ

{

µ1‖∇ρ‖1 +
1

2
‖KAρ− d‖22

}

. (4.1)
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Many efficient methods have been proposed to solve (4.1) recently. For example, the very
popular forward-backward splitting algorithm [10] combined with the Chambolle’s TV denoising
method [7], ALM [13, 28]. Here, we apply the ALM to solve (4.1). We introduce one auxiliary
variable v into (4.1). Then (4.1) is equivalent to the following constrained minimization problem:

min
ρ,v

{µ1‖v‖1 +
1

2
‖KAρ − d‖22} s.t. v = ∇ρ. (4.2)

In order to solve (4.2), we define the following augmented Lagrangian functional

L1(ρ,v;q1) = µ1(‖v‖1 + 〈q1,v −∇ρ〉+ 1

2γ
‖v −∇ρ‖22) +

1

2
‖KAρ− d‖22, (4.3)

with Lagrange multiplier q1 and positive constant γ. In our experiments, we always take γ = 1.
The corresponding algorithm for finding the saddle point of this functional is the same algorithm
by setting µ2 = 0 in Algorithm 1.

4.2 The LLT Model

In [19], Lysaker, Lundervold and Tai proposed a second-order method for image noise removal. For
a given noisy image u0 in R

n, the problem they considered is min
u

{

µ2R(u) + 1
2‖u− u0‖22

}

, where

R(u) =

∫

√

√

√

√

n
∑

i,j=1

(

∂2u

∂xi∂xj

)2

dx =

∫

|D2u|dx, with D2u =

(

∂2u

∂xi∂xj

)n

i,j=1

. (4.4)

We apply the approach to the Abel inversion and consider

min
ρ

{

µ2R(ρ) +
1

2
‖KAρ− d‖22

}

. (4.5)

In [26], ALM has been introduced for this kind of problems where an auxiliary variable is
introduced into (4.5). In the discrete setting, the equivalent constrained problem is:

min
ρ,w

{µ2‖w‖+ 1

2
‖KAρ− d‖22}, s.t. w = D2

ρ (4.6)

where the differential operator D2 is to be replaced by its discrete counter part. We define the
following augmented Lagrangian functional

L2(ρ,w;q2) = µ2(‖w‖1 + 〈q2,w −D2
ρ〉+ 1

2η
‖w −D2

ρ‖22) +
1

2
‖KAρ− d‖22, (4.7)

where q2 is the Lagrange multiplier and η is a positive parameter which is always taken to be 1
in all our tests. For 1D problems, we have D2 = ∆, the discrete Laplacian, and the corresponding
algorithm for finding the saddle point of (4.7) is then an algorithm by setting µ1 = 0 in Algorithm
1.

4.3 TGV Regularization

Total generalized variation (TGV) was proposed in [6] and is defined by

TGVk
ν(u) = sup

{
∫

Ω
u divkvdx | v ∈ Ck

c (Ω,Sym
k(Rd)), ‖divl∞v‖ ≤ νl, l = 0, · · · , k − 1

}

. (4.8)
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Here Symk(Rd) denotes the space of symmetric tensors of order k, Ck
c (Ω,Sym

k(Rd)) = {ξ ∈
Ck(Ω̄,Symk(Rd)) | supp ξ ⊂⊂ Ω}, and ν = (ν0, ν1, · · · , νk−1) is a fixed positive parameter set.
If k = 1, ν0 = 1, TGVk

ν coincides with TV. As k > 1, TGVk
ν involves higher order derivatives,

which is referred as total generalized bounded variation semi-norm. Comparing with TV, the high-
order TGV has a novel property in avoiding the staircasing effect for reconstructing the affine and
even smooth images. In [6], the authors solved

min
u

{

TGV2
ν(u) +

1

2
‖u− u0‖22

}

. (4.9)

as an example to illustrate the high quality of TGV in image denoising. There, primal-dual al-
gorithm is developed to solve (4.9) and the idea is later adopted to solve an MRI reconstruction
problem in [17].

To introduce the dual algorithm, we begin from the dual form of the total variation

TV(u) = sup
v

{

∫

Ω
u div vdx | v ∈ C1

c (Ω,C
n), ‖v‖∞ ≤ 1

}

, (4.10)

whose supremum is attained at v = −∇u/|∇u|. This is the special case of (4.8) with ν0 = 1 and
k = 1. When k = 2, TGV2

ν can be represented as

TGV2
ν(u) = min

v

{

ν1

∫

Ω
|∇u− v| dx+ ν0

∫

Ω
|E(v)| dx

}

, (4.11)

where E(v) = 1
2(∇v +∇v⊤) denotes the symmetrized derivative [6, 17].

Here we adopt the same primal-dual approach to solve the TGV regularized Abel inversion:

min
ρ

{

TGV2
ν(ρ) +

1

2
‖KAρ − b‖22

}

. (4.12)

Introducing (4.11) into (4.12), then minimization problem (4.12) becomes

min
ρ,v

{

ν1‖∇ρ− v‖1 + ν0‖E(v)‖1 +
1

2
‖KAρ− b‖22

}

. (4.13)

Minimization problem (4.13) is then solved by a convex-concave saddle-point approach based on
the duality principles:

min
ρ,v

max
p∈P,q∈Q,r∈Rn

{

〈∇ρ− v,p〉 + 〈E(v),q〉 + 〈KAρ− b, r〉 − 1

2
‖r‖22

}

, (4.14)

where P = {p ∈ R
n | ‖p‖∞ ≤ ν1}, Q = {q ∈ R

n | ‖q‖∞ ≤ ν0}, and r ∈ R
n is the dual variable with

respect to the data-fitting term. We denote the Euclidean projectors onto the convex sets P,Q by
projP (p̃), projQ(q̃) respectively. The projections can be easily computed by pointwise operations:

projP (p̃) =
p̃

max(1, |p̃|
ν1
)
, projQ(q̃) =

q̃

max(1, |q̃|
ν0
)
.

In addition, we denote

projσ2 (r̃) = arg min
r∈Rn

{‖r− r̃‖22
2σ

+
1

2
‖r‖22

}

=
r̃

1 + σ
.
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The following primal-dual algorithm will be used for solving the TGV regularized Abel inversion
(4.14). For more details on the derivation and analysis of this algorithm, the interested readers can
refer to [6]:

Algorithm 3:

1. Initialize ρ
0, ρ̂ = 0,v0, v̂0 = 0,p0 = 0,q0 = 0, r0 = 0, choose step size τ, σ;

2. Repeat until {ρk} converges:
pk+1 = projP (p

k + σ(∇ρ̂
k − v̂k));

qk+1 = projQ(q
k + σE(v̂k));

rk+1 = proxσ2 (r
k + σ(KAρ̂k − b));

ρ
k+1
old = ρ

k;
ρ
k+1 = ρ

k + τ(div1p
k+1 −A⊤K⊤rk+1);

ρ̂
k+1 = 2ρk+1 − ρ

k+1
old ;

vk+1
old = vk;

vk+1 = vk + τ(pk+1 + div2q
k+1);

v̂k+1 = 2vk+1 − vk+1
old ;

where div1 is divergence operator of ∇ and div2 is divergence operator of E. The convergence of the
algorithm is guaranteed provided that στ < (9+

√
8)−1. In our experiment, we take σ = τ = 1/16.

5 Numerical Results

In this section, we apply all the compared methods to tomography reconstruction. We will also use
the 1D techniques to the 2D problems. The regularization parameters µ, µ1, µ2, ν0, ν1 are chosen
by trial and error. Their values are given in the subfigures of Figure 2 – 7.

5.1 Numerical tests in 1D

In this section, we show the numerical results of the proposed algorithm on the tomography recon-
struction for some 1D objects.

To simulate the possible phenomenon which could happen in real applications, we construct
two objects with function ρ(r) consisting of constant, linear and curve parts. See Figures 2 and
5. In the first three tests, the blur is not considered. In these examples, R,L1, L2 of Figure 1(b)
are taken to be 5cm, 349cm and 449cm respectively. From the numerical tests, we find that 280
partitions for the radius r and 512 measuring points for d are enough. More partitions increase
more computational cost, but no much improvement for the reconstructions. See Figure 4 of 560
partitions for comparition. Taking 280 partitions, ρ is a vector of n = 280 elements and d of
m = 256 elements. Figures 2 and 3 show the reconstruction results for different noise levels for
the first example. Figure 5 shows the reconstruction result for the second example. Inspecting the
recovered results and the computational costs produced by TV, LLT, TGV, and high-order TV
regularization methods, the high-order TV is the most competitive.

In Figure 2, we take the noise variance to be 1% of the maximum noiseless projection data. In
Figure 3, we take the noise variance to be 1.5%. The reconstruction results are shown in Figure
2(c)–2(f), and Figure 3(c)–3(f) respectively. Figure 2(c) and 3(c) show that TV regularization based
reconstruction is severely affected by the “staircase” effect at the linear and curvilinear parts, while
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the high-order TV regularization model can reduce the staircase effect, meanwhile preserves the
edges and the density level, cf. Figure 2(d)–2(f) and 3(d)–3(f).

The density function in Figure 4 is the same to that in Figure 2 and 3 but with 560 partitions
for radius and 1024 measuring points for d. Therefore, in this example, ρ is a vector of n = 560
elements and d of m = 512 elements. The noise variance here is taken to be 1.5% of the maximum
noiseless projection data.

Figure 5 shows the reconstruction results on another piecewise smooth density function. Here,
we take the noise variance to be 1.5% of the maximum noiseless projection data. The reconstruction
results are shown in Figure 5(c)–5(f). As in Figures 2 and 3, the high-order TV regularization
method is the most competitive among all the compared methods, cf. Figure 5(f).

Next, we consider the density reconstruction from the blurred and noisy areal density. The
blurring matrix K is generated by the MATLAB command: fspecial(’Gaussian’, [7,1], 1).
The reconstruction results are shown in Figure 6.

From Figure 2 – 6, we can have an “eyeball” impression of the reconstruction quality by different
methods. The reconstructions by the TV regularized model are polluted by “staircases”, while LLT,
TGV and high-order TV models reduce the staircase phenomenon and meanwhile keeps the sharp
edges. To show the quantitative comparison, we list the signal-to-noise ratio (SNR) in Table 1.
SNR has been used in [27], which is defined by

SNR =: 10 log10
‖u−M(u)‖22
‖û− u‖22

(dB).

Here u and û denote the original signal and the restored signal respectively, and M(u) is the mean
gray-level value of the original signal. The largest SNR values are in italic. Amongst all the results,
the high-order TV produces the largest SNR values.

To see the details of the density reconstruction, we show several slices of the recovered functions
by different algorithms. In Figure 8, left column is for layer 256, which corresponds to the cross
section z = 0. Middle column is for layer 200, and right column for layer 100. From Figure 8, we
see that reconstruction by high-order TV shows the best restoration in view of the edge reservation
and density value accuracy. The 2D image restoration is evaluated by its SNR value. We have
compared the SNR values in Table 1.

Figure TV LLT TGV High-order TV

2 20.4211 23.5092 23.5245 25 .0431

3 19.3409 20.8442 20.6134 23 .8263

4 19.5428 22.8945 22.2193 23 .9042

5 18.3551 19.5241 19.5255 21 .8096

6 19.7328 17.2194 20.3809 21 .5414

7 22.5398 22.5345 22.3205 22 .9822

Table 1: Comparisons of SNR of the reconstruction results by TV, LLT, TGV, and high-order TV
regularization (our method) methods for examples shown in Figures 2–7. The largest SNR values
are in italic.

5.2 Numerical tests in 2D

In this section, we apply the TV, LLT, TGV, and high-order TV regularizers to the tomographic
reconstruction for general cylindrically symmetric objects (2D) from a single radiograph. The
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Figure 2: Abel inversion for piecewise smooth object. The object density is defined at 280 radial
positions and composed of piecewise smooth and piecewise constant functions. The areal density
is corrupted with Gaussian noise at level 1% of maximum of the noiseless projection data, shown
in (b). In subfigures (c)–(f), green line presents true density, while blue presents the recovered
density. The reconstruction by TV is staircase in linear and curvilinear part. Other methods
provide acceptable reconstructions, as shown in (d)–(f). Among them, our method (high-order TV
regularizer) (f) is the most competitive considering reconstruction effect and computational cost.

radiograph is taken by cone-beam X-rays. To do tomographic reconstruction, we approximate the
cone-beam by fan-beam lying in different parallel planes perpendicular to the symmetry axis of the
object. As discussed in Section 1, each object layer is recovered by solving our proposed model,
and it is a 1D tomography problem. The whole density is reconstructed layer by layer. Here, we
use the same projection operator A (at layer z = 0) to reconstruct the density function for all the
layers.

We simulate a spherical object. Its density profile passing through the symmetric axis is shown
in Figure 7(a), which is a piecewise smooth function of radius r. The radiograph of the object is
7(b) which is an image is of size 512×512. It is contaminated by Gaussian noise. The noise variance
is taken to be 1.5% of the maximum of noiseless projection data for each layer. In the process of
density reconstruction, the regularization parameters are identical in different layers, which have
been listed in Figure 7. Figure 7(c)–7(f) show the reconstruction results by TV, LLT, TGV, and
high-order TV models. The SNR values of the reconstructions have been listed in Table 1. We see
that the high-order TV regularizers reaches the highest SNR value.
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Figure 3: Abel inversion for different noise level. The object density is defined at 280 radial
positions. It is the same function as in Figure 2. The areal density is corrupted with Gaussian
noise at level 1.5% of maximum of the noiseless projection data. From subfigures (c)–(f), green
line corresponds to true density, while blue the recovered density, we give different reconstructions
by TV, LLT, TGV and our model. For high noise level, our method keeps the most competitive
resconstruction.

To see the details of the density reconstruction, we show several slices of the recovered functions
by different algorithms. In Figure 8, left column is for layer 256, which corresponds to the cross
section z = 0. Middle column is for layer 200, and right column for layer 100. From Figure 8, we
see that reconstruction by high-order TV shows the best restoration in view of the edge reservation
and density value accuracy. The 2D image restoration is evaluated by its SNR value. We have
compared the SNR values in Table 1.

6 Conclusion

In this paper, we concentrate on the tomographic reconstruction technique for axially symmetric
objects from a single radiograph formed by fan-beam X-rays. To deal with the ill-posedness of Abel
inversion, we apply the high-order TV regularization method based on its good property in reducing
staircase effect and meanwhile keeping sharp edges. Fast ALM is applied to solve the high-order
TV regularization model. We compare three other models in terms of CPU time costs, SNR values
as well as feature reconstruction. Numerical results show that high-order TV improves well density
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Figure 4: Abel inversion by using more projection data. For the same object of Figure 3, we divide
the object radius by 560 partitions. The areal density is recorded at 512 points. It is corrupted
by Gaussian noise at level 1.5% of maximum of the noiseless projection data. Similar to Figures
2 and 3, in subfigures (c)–(f), green is the true value and blue is the recovered, we see that the
reconstruction quality is improved a little by using more projection points and subdividing radius.
Meanwhile, the computational cost increases a lot.

level preservation comparing to the other potentially good methods. To recover any cylindrical
symmetric object (2D) radiographed by a cone beam X-rays, the high-order TV regularization
method is applied layer by layer. Numerical results show that our method is efficient for 2D object
tomographic reconstruction.

APPENDIX

In this appendix, we adapt the convergence theory in [27] to prove the convergence of Algorithm 1
with L → ∞ and L = 1 in Algorithm 2 respectively. Based on the theory in convex analysis [15],
problem (3.1) has minimizers, and especially has a unique minimizer if KA is column full-rank. In
addition, we have a similar result as Theorem 4.1 in [27].

Proposition ρ
∗ is a solution of (3.1), if and only if there exists (ρ∗,v∗,w∗;q∗

1,q
∗
2) being a saddle

point of (3.2).

The proof can be easily obtained referring from Theorem 4.1 of [27]. In this section, we mainly
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Figure 5: Abel inversion for different object. The object density is defined at 280 radial positions
and mixed by piecewise smooth and piecewise constant functions. The areal density is corrupted
with Gaussian noise at level 1.5% of maximum of the noiseless projection data. From subfigures
(c)–(f), we show different reconstructions by TV, LLT, TGV and our model. We get the same
impression that our proposed model is the most efficient.

adapts the proof for Theorem 4.2 and Theorem 4.3 in [27] to discuss the convergence of Algorithm
1 with L → ∞ and L = 1.

Theorem 1 Assume (ρ∗,v∗,w∗;q∗
1,q

∗
2) be a saddle-point of L(ρ,v,w;q1,q2). Suppose that the

minimization problem (3.4) is exactly solved in each iteration, i.e. L → ∞ in Algorithm 2. Then
the sequence (ρk,vk,wk;qk

1 ,q
k
2) satisfies



























lim
k→∞

µ1‖vk‖1 + µ2‖wk‖1 + 1
2‖KAρk − d‖22 = E(ρ∗),

lim
k→∞

‖vk −∇ρ
k‖2 = 0,

lim
k→∞

‖wk −∆ρ
k‖2 = 0,

lim
k→∞

‖KA(ρk − ρ
∗)‖2 = 0.

(6.1)

Moreover, (6.1) indicates that {ρk} is a minimizing sequence of E(·). If the minimizer of E(·) is
unique , then ρ

k → ρ
∗.

Proof: Let us define ρ̄
k, v̄k, w̄k, q̄k

1 , q̄
k
2 as

ρ̄
k = ρ

k − ρ
∗, v̄k = vk − v∗, w̄k = wk −w∗, q̄k

1 = qk
1 − q∗

1, q̄
k
2 = qk

2 − q∗
2.
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Figure 6: Abel inversion for noisy and blurred projection data. The object density is defined at 280
radial positions. The areal density is corrupted by Gaussian noise and blur. The blur is generated by
the MATLAB command: fspecial(’Gaussian’, [7,1], 1). The noise level is 1.5% of maximum
of the noiseless blurred projection data. By subfigures (c)–(f), we show density reconstructions by
different methods from noisy and blurred data. Our method is efficient to recover density from the
noisy and blurred projection data.

Since (ρ∗,v∗,w∗;q∗
1,q

∗
2) is a saddle-point of L(ρ,v,w;q1,q2), we have

L(ρ∗,v∗,w∗;q1,q2) ≤ L(ρ∗,v∗,w∗;q∗
1,q

∗
2) ≤ L(ρ,v,w;q∗

1,q
∗
2), (6.2)

and
{

v∗ = ∇ρ
∗

w∗ = ∆ρ
∗.

(6.3)

This relationship, together with (3.5), indicates
{

q̄k+1
1 = q̄k

1 +
1
γ
(v̄k+1 −∇ρ̄

k+1)

q̄k+1
2 = q̄k

2 +
1
η
(w̄k+1 −∆ρ̄

k+1)
,

which is equivalent to






√

1
η
q̄k+1
1 =

√

1
η
q̄k
1 +

1
γ

√

1
η
(v̄k+1 −∇ρ̄

k+1)
√

1
γ
q̄k+1
2 =

√

1
γ
q̄k
2 +

1
η

√

1
γ
(w̄k+1 −∆ρ̄

k+1)
.

16



(a) True density profile
(b) Noisy radiography, noise variance= 1.5% (c) By TV,  µ
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Figure 7: 2D tomographic reconstructions.

It follows that
(

µ1

η
‖q̄k

1‖22 +
µ2

γ
‖q̄k

2‖22
)

−
(

µ1

η
‖q̄k+1

1 ‖22 +
µ2

γ
‖q̄k+1

2 ‖22
)

= −2µ1

ηγ
〈q̄k

1 , v̄
k+1 −∇ρ̄

k+1〉 − µ1

ηγ2
‖v̄k+1 −∇ρ̄

k+1‖22 −
2µ2

ηγ
〈q̄k

2 , w̄
k+1 −∆ρ̄

k+1〉 (6.4)

− µ2

η2γ
‖w̄k+1 −∆ρ̄

k+1‖22.

In the following, we show that the right hand side of (6.4) is no less than 0 and thus the sequence
{(

µ1

η
‖q̄k

1‖22 + µ2

γ
‖q̄k

2‖22
)}

is monotonically decreasing. From the inequality of (6.2), (ρ∗,v∗,w∗) is

characterized by

µ1〈div · q∗
1,ρ− ρ

∗〉 − µ1

γ
〈div · (∇ρ

∗ − v∗),ρ − ρ
∗〉 − µ2〈∆ · q∗

2,ρ− ρ
∗〉

+
µ2

η
〈∆ · (∆ρ

∗ −w∗),ρ − ρ
∗〉+ 〈A⊤K⊤(KAρ∗ − d,ρ− ρ

∗)〉 ≥ 0, (6.5)

‖v‖1 − ‖v∗‖1 + 〈q∗
1,v − v∗〉+ 1

γ
〈v∗ −∇ρ

∗,v − v∗〉 ≥ 0, (6.6)

‖w‖1 − ‖w∗‖1 + 〈q∗
2,w −w∗〉+ 1

η
〈w∗ −∆ρ

∗,w −w∗〉 ≥ 0. (6.7)
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Figure 8: 2D tomographic reconstruction for layer 256, 200, 100. Left column is for layer 256;
middle column is for layer 200, and right column is for layer 100.

Similarly, (ρk+1,vk+1,wk+1) is characterized by

µ1〈div · qk
1 ,ρ − ρ

k+1〉 − µ1

γ
〈div · (∇ρ

k+1 − vk+1),ρ− ρ
k+1〉 − µ2〈∆ · qk

2 ,ρ− ρ
k+1〉

+
µ2

η
〈∆ · (∆ρ

k+1 −wk+1),ρ − ρ
k+1〉+ 〈A⊤K⊤(KAρk+1 − d,ρ− ρ

k+1)〉 ≥ 0, (6.8)

‖v‖1 − ‖vk+1‖1 + 〈qk
1 ,v − vk+1〉+ 1

γ
〈vk+1 −∇ρ

k+1,v − vk+1〉 ≥ 0, (6.9)

‖w‖1 − ‖wk+1‖1 + 〈qk
2 ,w −wk+1〉+ 1

η
〈wk+1 −∆ρ

k+1,w −wk+1〉 ≥ 0, (6.10)

since (ρk+1,vk+1,wk+1) is the solution of (3.4). Take ρ = ρ
k+1 in (6.5), ρ = ρ

∗ in (6.8), v = vk+1

in (6.6), v = v∗ in (6.9), w = wk+1 in (6.7), and w = w∗ in (6.10), respectively. Taking addition
(6.5)+(6.8)+µ1[(6.6)+(6.9)]+µ2 [(6.7)+(6.10)], we have

−µ1〈qk
1 , v̄

k+1 −∇ρ̄
k+1〉 − µ2〈q̄k

2 , w̄
k+1 −∆ρ̄

k+1〉
≥ µ1

γ
‖v̄k+1 −∇ρ̄

k+1‖22 +
µ2

η
‖w̄k+1 −∆ρ̄

k+1‖22 + ‖KAρ̄k+1‖22,
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which is equivalent to

−µ1

ηγ
〈qk

1 , v̄
k+1 −∇ρ̄

k+1〉 − µ2

ηγ
〈q̄k

2 , w̄
k+1 −∆ρ̄

k+1〉 (6.11)

≥ µ1

ηγ2
‖v̄k+1 −∇ρ̄

k+1‖22 +
µ2

η2γ
‖w̄k+1 −∆ρ̄

k+1‖22 +
1

ηγ
‖KAρ̄k+1‖22.

(6.12)

From (6.4) and (6.11), we have
(

µ1

η
‖q̄k

1‖22 +
µ2

γ
‖q̄k

2‖22
)

−
(

µ1

η
‖q̄k+1

1 ‖22 +
µ2

γ
‖q̄k+1

2 ‖22
)

≥ µ1

ηγ2
‖v̄k+1 −∇ρ̄

k+1‖22 +
µ2

η2γ
‖w̄k+1 −∆ρ̄

k+1‖22 +
1

ηγ
‖KAρ̄k+1‖22, (6.13)

which indicates






















{q̄k
1 : ∀k} and {q̄k

2 : ∀k} are bounded,
lim
k→∞

‖v̄k+1 −∇ρ̄
k+1‖2 = 0,

lim
k→∞

‖w̄k+1 −∆ρ̄
k+1‖2 = 0,

lim
k→∞

‖KAρ̄k+1‖2 = 0.

Together with (6.3) and definitions of ρ̄k, v̄k, w̄k, q̄k
1 , q̄

k
2 , we have























{qk
1 : ∀k} and {qk

2 : ∀k} are bounded,
lim
k→∞

‖vk+1 −∇ρ
k+1‖2 = 0,

lim
k→∞

‖wk+1 −∆ρ
k+1‖2 = 0,

lim
k→∞

‖KA(ρk+1 − ρ
∗)‖2 = 0.

(6.14)

On the other hand, the second inequality of (6.2) implies

µ1‖v∗‖1 + µ2‖w∗‖1 +
1

2
‖KAρ∗ − d‖22

≤ µ1‖vk+1‖1 + µ2‖wk+1‖1 + µ1〈q∗
1,v

k+1 −∇ρ
k+1〉+ µ2〈q∗

2,w
k+1 −∆ρ

k+1〉 (6.15)

+
µ1

2γ
‖vk+1 −∇ρ

k+1‖22 +
µ2

2η
‖wk+1 −∆ρ

k+1‖22 +
1

2
‖KAρk+1 − d‖22.

If we take ρ = ρ
∗ in (6.8), v = v∗ in (6.9), and w = w∗ in (6.10), we have

µ1‖v∗‖1 + µ2‖w∗‖1 +
1

2
‖KAρ∗ − d‖22

≥ µ1‖vk+1‖1 + µ2‖wk+1‖1 + µ1〈qk
1 ,v

k+1 −∇ρ
k+1〉+ µ2〈qk

2 ,w
k+1 −∆ρ

k+1〉 (6.16)

+
µ1

γ
‖vk+1 −∇ρ

k+1‖22 +
µ2

η
‖wk+1 −∆ρ

k+1‖22 +
1

2
‖KAρk+1 − d‖22.

Together with (6.14), we have

lim inf

(

µ1‖vk+1‖1 + µ2‖wk+1‖1 +
1

2
‖KAρk+1 − d‖22

)

≥ µ1‖v∗‖1 + µ2‖w∗‖1 +
1

2
‖KAρ∗ − d‖22

≥ lim sup

(

µ1‖vk+1‖1 + µ2‖wk+1‖1 +
1

2
‖KAρk+1 − d‖22

)

,
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by taking lim inf in (6.15) and lim sup in (6.16). Hence, we complete the proof of (6.1).
(6.1) implies clearly that {ρk} is a minimizing sequence of E(·). If the minimizer of E(·) is

unique, then ρ
k → ρ

∗. �

We can also adapt Theorem 4.3 in [27]to get the following theorem.

Theorem 2 Assume (ρ∗,v∗,w∗;q∗
1,q

∗
2) be a saddle-point of L(ρ,v,w;q1,q2). Suppose that the

minimization problem (3.4) is roughly solved in each iteration, i.e. L = 1 in Algorithm 2. Then
the sequence (ρk,vk,wk;qk

1 ,q
k
2) satisfies



























lim
k→∞

µ1‖vk‖1 + µ2‖wk‖1 + 1
2‖KAρk − d‖22 = E(ρ∗),

lim
k→∞

‖vk −∇ρ
k‖2 = 0,

lim
k→∞

‖wk −∆ρ
k‖2 = 0,

lim
k→∞

‖KA(ρk − ρ
∗)‖2 = 0.

(6.17)

Moreover, (6.17) indicates that {ρk} is a minimizing sequence of E(·). If the minimizer of E(·) is
unique , then ρ

k → ρ
∗.

Similar to the proof for Theorem 1, we can also adapt the proof for Theorem 4.3 of [27] to prove
Theorem 2 here. In interest readers can consult [27].
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