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Abstract Good preconditioner is extremely important in order for the conjugate gradient
method to converge quickly. In the case of Toeplitz matrices, a number of recent studies
were made to relate approximation of functions to good preconditioners. In this paper,
we present a new result relating the quality of the Toeplitz preconditioner C' for the
matrix T to the Chebyshev norm ||(f — ¢g)/f|lcc, where f and g are the generating
functions for T" and C|, respectively. In particular, the construction of band-Toeplitz
preconditioners becomes a linear minimax approximation problem. The case when f has
zeros (but non-negative) is especially interesting and the corresponding approximation
problem becomes contrained. We show how the Remez algorithm can be modified to
handle the constraints. Numerical experiments confirming the theoretical results will be
presented.

Keywords Minimax approximation, Remez algorithm, conjugate gradient, Toeplitz ma-
trix, preconditioner.

1 Introduction

In this paper we consider an application of constrained minimax approximation to finding
preconditioners for symmetric Toeplitz systems generated by a 2w-periodic function.



First, some background material for the sake of completeness. A n-by-n symmetric
Toeplitz marix T,,,

to t1 o tp—1
t to  cr tno
T, = . . ) " , (constant along diagonals),
th—1 -+ 1 to

is said to be generated by a 2m-periodic function f if
1 (7 .
tk:—/ f(z)e ke, kE=0,1,...,n—1,
27 J_,

we concentrate in the case where f is even, real-valued, and nonnegative, corresponding
to T;, being real, symmetric, and nonnegative definite.

Toeplitz systems of the form T,z = b occur in a variety of applications, especially
in signal processing and control theory. Moreover, in a number of situations, the gener-
ating function f is known. Examples are the kernels of the Wiener-Hopf equations (see
Gohberg and Fel’dman [7, p. 82]), the spectral density functions in stationary stochastic
process (see Grenander and Szego [9, p. 171]), and the point-spread functions in image
deblurring (see Oppenheim [11, p. 200]).

Although direct methods for solving T,z = b with effort of the order of n? [14] or
even order nlog?n [1] exists, rather strong conditions are required to guarantee stabil-
ity [2]. Thus, recently, Strang proposed using the conjugate gradient (CG) method [12]
to solve success in solving T,z = b by CG in order nlogn work: First, there is a way to
perform matrix-vector product 7}, - y in order nlogn operations. Second, Strang found
a “preconditioning marix” S, which is circulant, such that the eigenvalue spectrum of
ST, clusters around 1 and that solving systems of the form S,a = b requires little
work — in this case, order nlogn. For an overview of CG and preconditioning, see [8].

Since Strang’s work, a number of different circulant preconditioners are proposed
and studied (see [3, 4, 5] and the references therein). All these circulant preconditioners
assume the generating function f be strictly positive, f > 0, and experiments confirm
that none of them gives fast convergence when f has zero(s) in [—m, 7].

In this paper, we design band-Toeplitz preconditioner C, via the polynomial minimax
approximation

f(z) —p(z)
f@)
When f > 0, our band-Toeplitz preconditioners lead to the same convergence rate as

those circulant ones can offer; but when f has isolated zeros, say, f(z1) = f(z2) = 0, our

preconditioners still prevail to yield fast convergence. In the latter case, we formulate
our minimax approximation as a constrained problem:

f(z) —p(x)
f(z)

min max
P T

min max

subject to p(z;) =0, j = 1,2,...,number of zeros.
P x




The rest of the paper is organized as follows. Section 2 reviews the basic theory
of generating functions and Toeplitz system that leads naturally to the constructing
preconditioners based on polynomial approximations. A spectral analysis of the pre-
conditioned system in terms of the minimax norm of the approximation problem is also
presented. Section 3 presents a Simplex/Remez algorithm that finds the constrained or
unconstrained minimax polynomial that defines our preconditioner. Section 4 presents
some numerical experiments that confirm our analysis.

2 Generating Functions and Preconditioners

Let the n-by-n Toeplitz marix T;, be generated by f, even, real-valued, and nonegative.
We also assume f to be continuous. We list several important facts below. Proofs can
be found in Grenander and Szeg6 [9].

1. Let f([—m,7]) = [fmin, fmax]- Then the set of eigenvalues A(T},) of T}, satisfies

)\(Tn) g [fmina fmax]-i

Moreover,
Amin(Th) = fmin  and  Amax(Th) = fmax as n — oo.
2. Given any vector u = [ug,u1,...,u, 1]’ € R",
Ty = - ' nilu etk 2f(I)dI
n=or ] 2 k

Using the second fact, the first can be strengthened. If fiin < fmax, then A(T},) C
(fmin, fmax) for all finite n. The proof is relatively simple. It suffices to note that,
provided fmin < fmax, then for any n, and any u € R satisfying v’ v = 1,

fmin < UTTnU < fmax-

Thus, as long as f > 0, T,, is positive definite for all finite n.
Because T, is so much determined by f, and that a polynomial generating function

-1
pi(z) = Z b|k|eik$ =bg+ 2(by cosx + by cos2x + -+ + bj_1 cos(l — 1)x)
k=—(1—1)

corresponds to band-Toeplitz matrices, one would expect polynomials p; that approxi-
mates f, pe ~ f would give rise to reasonable preconditioners for 7,,. The next two
theorems confirm this idea.



Theorem 1 Let f and g be generating functions for T, and Cp, n = 1,2,..., respec-
tively. If
Hf—gH def f(z) —g(z)
— = max |——F5F—=
folle  ael=mml|  fl2)

then the eigenvalues N(C;'Ty,) of C; Ty, satisfy

—h<1,

ANCy'Tn) C[1/(1+h),1/(1 = h)).
Proof By the assumptions,
fx)(1—h)<g(z) < flx)(1+h) for all x € [—m, 7],

and g > 0. Thus, from previous discussions, we have T}, and C, positive definite for all
n=12,3,....
Now, for a fixed n, consider any u € R".

(1—h)u! Thu < u' Chu=—

Because C,, is positive definite,
u' Chu < (1 + h)u! T,u for all u

implies
wxafﬂngg”%v> 1

Ty 2157 for all v.

v
Consequently,
Amin (C 2T, O 2) > 1/(1+ h).

Observe that
Amin(C;1/2TnC;1/2) = )\min(C»;lTn)
and we have

1
Amin 71Tn > —.
(Co Tn) 2 1+h

Similar arguments show

1
1—h’
and the theorem is proved. |

)\max(crlen) S

Theorem 2 Suppose f and g are both even and that f,g > 0. If |(f —9)/gllcc = h < 1,
with (f —g)(zy) =h- f(zy) and (f — g)(z—) = —h- f(z_) for some zy,x_. Then

_ 1 _ 1
Amln(cn 1Tn) — H—h and /\maX(Cn 1Tn) — ﬁ as n — Q.



Proof Given any & > 0, we will show that Amax(Cy, 1T;,) will be within O(e) to 12 for
n sufficiently large.
Consider z4 > 0, g(z+) = (1 — h) f(zy). By continuity, there is 6 > 0 such that

g(x) <(I—h+e¢e)f(z) for|lz—azi] <4
Now, define a continuous function 1 on [0, 7] such that 0 <7 <1, n(z4) = 1, and that
n(z) =0 for |x —x4| > 0.

Extend 7 to [—m, 7] by n(—z) = n(z). Thus, n is a generating function for Toeplitz
matrices A,, such that
Amax(Am) > 1 asm — co.

Hence, there exists a large enough n and a vector n € R" such that

2
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o Z upe®®| n(z)dz >1—e¢,
T k=0
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1 r |n—1 2
ik
— Z uge’ dz = 1.
27 J_, o
Because of the property of 1, we have
1 o |n—1 . 1 n—1 ' 2
o Zuke’lm n(z)de = 7 upe®®| p(z)de > 1 —«.
= =0 R R
Since n < 1, we also have
1 n—1 2 1 n—1 2
oy upe™| dx > 2—/ Zuke”m n(x)de > 1 —¢.
T J|z—aq]<o k=0 TJ < k=0
Thus
1 n—1 A 2
— upe™®| dr < e.
27 lz—z 4[>0 |1

Denote the maximum and minimum of g by gmax and gmin, respectively. We can now
relate uX' Cpu to uI'T,u:

L 2
1 (™5 :
u'Chu = — upe™®| g(z)dz
2 |_,
k=0
1 n—1 2
< = ukezkx 9(T) + € * gmax
27 Jyg—ay|<s |15
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1 n—1 -
< — upe®®| (1 — h+¢e)f(z)dz + egmax
27 Jig—ay|<s |15
1 r |n—1 . 2
< — Z upe®®| (1 —h +¢) f(x)dz + egmax
2 J_, P
< ul'Thyu-(1—h+¢€) + cgmax.

Thus,

uTTnu 1 € Gmax

uTChu = 1—h+4+¢e  gmin
Therefore, Amax(C,, 'Tn) — 1/(1—h) as n — oo. The proof for Apin(C,, ' Ty) — 1/(1+h)
is similar. 1

3 A Simplex/Remez Algorithm

The previous section suggests that if we wish to use symmetric band-Toeplitz matrices
with the first row of the form [bg, b1,...b;_1,0,...,0], we should seek to solve the following
minimax approximation problem,

f(z) — pi(x)
f(z)

min max

bOabla'“>bl—l Ie[fﬂ-ﬂr] ’

where
pi(x) = by +2(bycosz + ...+ b_qcos(l —1)x).

Let us first consider the case when f > 0. Then, the problem is equivalent to

. 1— :
bo’b{r:.l-l,lbzﬂ xerfl—a;fw]| ql(x)|
where
=1 1 2cos kz
q(zx) = bpor(z), ¢o(x) = —=, and ¢ = ——— for kK > 1.

This problem can be cast as a linear programming like problem:

Minimize h
subject to
h>s(l—q(z)) (s,2) €{-1,1} x[-m,7].
This formulation has a natural dual that can be solved by the Simplex algorithm. This
dual is

I+1

Maximize Y r(y;)-c(y;) yj = (s;5,75) € {~1,1} x [, 7]
j=1



subject to
r>0
Ar =[100 ... 07

where the column of the matrix A corresponding to (s,z) € {—1,1} x [—7, 7] is

[1s¢(x) spa(z) ... sey(z)]T.

Known theory on minimax approximation guarantees existence of a maximum ([6]).

Furthermore, the formulation above is well suited for a Simplex algorithm. In fact,
when the underlying approximating family is a Harr system, the Simplex algorithm is
exactly the 1-point exchange Remez algorithm (see [13]). For completeness sake, we
outline the algorithm.

Step 0. Initialization. Find an initial feasible basis B(0) = {ygo),y2 y- ..,yl(?r)l} such
that the basis marix A is nonsingular and that

r® =471 1100...0"
is nonnegative. Set ¢ = 1.

Step 1. Solve for Parameters. Determine R and b() = [bgi), bgi), e b[@l]T such that

01
A0 [ﬁm] =7,

Note that this step corresponds to solving for equal alternation in the Remez
algorithm because we have

1—21)’) e =0 p@ =12 1L

Step 2. Check for near optimality. Let

-1
=3 (1 -y b;")%(fg)) .
k=0

If M® and h® are close enough, stop. Otherwise, go to Step 3.
Step 3. Simplex Exchange. Apply Simplex exchange on (§,2) with B4~ to obtain

{y(Z 9 y2l)7 * yl(i)l

Increment ¢ := ¢+ 1 and go back to Step 1.



It can be shown that, given any ¢ > 0,
0< MO —p) < ¢

after a finite number of iterations ¢ (see [13] and also [10]).

Next, we consider the case when f has an isolated zero, say z. Because f > 0, we
assume that f is smooth enough that f’(z) = 0. To help the numeric algorithm, we
explicitly put in the constraints p;(z) = pj(z) = 0, that is

bo +2(bycosz+ ...+ b_qcos(l—1)z) = 0
bysinz +2bysin2z+ ...+ (I —1)sin(l— 1)z = 0
The linear programming problem can be modified in a straightforward manner.
minimize h
subject to

hZS(l—(Il(x)) (S,I) E{_171} X [_71-771-]
0>pi(2), 02>-—py2)
0> pi(2), 0= -pj(2)

The corresponding dual becomes

I+1
Maximize Zr(yj) ~c(y;)
Jj=1
subject to
r>0
Ar =[100 ... 0"

where, now, y; € —1,1 x [—m,n| (the domain), or y; corresponds to one of the four
constraints. For y; = (s,z) € —1,1 x [—m, 7] we have ¢(y;) = s as before. But for y;
corresponding to a constraint y(z) > 0, say, v(z) = —pj(z), the cost coefficient is zero
(regardless of the specific constraint) and the corresponding column of A is given by

oy o)
Oh Oby " Ob_y

Clearly, the Simplex algorithm can be handle the constrained problem.

Step 0. Initialization. Find an initial feasible basis B(®) = {ygo),yéo),...,yl(?r)l} such

that the basis marix A is nonsingular and that
r® =471 1100... 07

is nonnegative. Set 7 = 1.



Step 1. Solve for Parameters. Determine R and bl = [b(()i), bgi), e bl(i)l]T such that

o[l

Note that this step corresponds to solving for equal alternation and possibly for
constraints.

Step 2. Check for near optimality. Let

M® = max
x

-1
=3 (1 -y bff)gbk(i)) .
k=0

If all the constraints are satisfied and if M® and A() are close enough, stop.
Otherwise, go to Step 3.

-1
1= 0 g ()
k=0

Step 3. Simplex Exchange. If a particular constraint is not satisfied, apply Simplex ex-
change on B (i-1) with the violated constraint. Otherwise, apply Simplex exchange
on (8,2) with BU=1_ After the exchange, we have

BY = {y" 48,y )

Increment ¢ := ¢ + 1 and go back to Step 1.

4 Numerical Experiments

We present experiments of preconditioning on Toeplitz matrices T;, of various sizez n
generated by five different functions. For each matrix, we use band-Toeplitz precondi-
tioners C),; of various half bandwidth /. In each iteration of the preconditioned conjugate
gradient method, we have to compute matrix vector multiplication of the form 7T,z and
solution of linear system C), ju = v. The matrix vector product T,z can be computed in
order nlogn operations by embedding 7;, into a 2n-by-2n circulant matrix and then us-
ing Fast Fourier Transform (see Strang [12]). The solution of C), ju = v can be obtained
by using efficient band solvers (see Golub and Van Loan [8] or Wright [15]). Typically,
we will decompose C),; into some triangular factors and then use backward and for-
ward solves. The cost of obtaining the triangular factors is of the order ni?, and each
subsequent solve costs order nl as the triangular factors will also be banded.

We compare the convergence rate of the band-Toeplitz preconditioner with circulant
preconditioner on five different generating functions. They are coshz, z* + 1, 1 — e“”2,
(x—1)%2(z+1)? and 2*. The first two functions are positive while the others have either a
single or double zero. The matrices T}, are formed by evaluating the Fourier coefficients
of the generating functions.



We note that when f(z) = 1 — e*IQ, its Fourier coefficients cannot be evaluated
exactly. In this case, we approximate them by

a; = L[ f(z)e %dx
T o o
2n—1
N L km _\iitkn/n—m) . _ 0.+1.+92. ...
~ m Z f( n 7'(')6 y J =Y ) )
k=0 '

where the last expression is evaluated by using the Fast Fourier Transform.

In our tests, the vector of all ones is the right hand side vector, the zero vector is the
initial guess and the stopping criterion is ||r,||2/||70||2 < 1077, where r, is the residual
vector after ¢ iterations. All computations are done by Matlab on a Sun workstation.
Tables 1-5 show the numbers of iterations required for convergence with different choices
of preconditioners. In the tables, I denotes no preconditioner is used, C' is the T.
Chan circulant preconditioner [5], and Cy,; is the band-Toeplitz preconditioner with
half-bandwidth [.

We note that for f that are positive, our preconditioner, with half-bandwidth 5,
performs at the same rate as the circulant preconditioner. In the cases where f has
zeros, our preconditioned systems still converge at a rate that is independent of the
size of the matrices. For the circulant preconditioned systems, however, the number of
iterations required grows as the size of the matrix increases.

n I|C Bn,? Bn,B Bn,4 Bn,5
16 9|6 9 7 6 )
32 || 16| 6 10 7 6 6
64 21 | 5 11 8 6 6
128 || 23 | 5 10 8 6 6
256 || 24 | 5 10 7 6 6

Table 1. Numbers of Iterations for f(x) = cosh x.

n I |C Bno | Bns | Bna | Bus

16 |10 ] 9 9 8 8 7

32 || 22| 7 16 11 8 7

64 || 37| 7| 22 12 8 7

128 | 56 | 6 | 25 12 8 7

256 || 67 | 6 | 26 12 8 7
Table 2. Numbers of Iterations for f(z) = z* + 1.

n I C Bn,Q Bn,g Bn,4 B
16 916 9 7 4
32 || 14 | 7 15
64 || 24| 8 17

128 || 42 | 10 | 17

256 || 77| 13| 17
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Table 3. Numbers of Iterations for f(z) =1 — e,

n I C Bn,3 Bn,4 B, 5 Bn,G

16 | 11 | 9 9 9 8 7

32 || 27 | 14| 13 11

64 T4 | 17| 16 11

128 || 193 | 22 | 18 11

256 || 465 | 28 | 19 11

Table 4. Numbers of Iterations for f(z) = (z — 1)%(z + 1)%.

n 1 C Bn,3 Bn,4 Bn,5 Bn,G
16 12 10 9 9 9 7
32 34 16 15 10 11 9
64 119 26 21 13 11 9
128 587 77 24 15 12 10
256 || > 1000 | 179 27 16 12 10

Table 5. Numbers of Iterations for f(z) = z*.

oo OO0 OO0 ©
ESIENIENIEN

5 Concluding Remarks

By understanding Toeplitz preconditioner from the point of view of minimax approxima-
tion of the corresponding generating functions, we can construct band-Toeplitz precondi-
tioners that offer fast convergence rate even when the matrix to be preconditioned has a
generating function with a zero. Moreover, our preconditioner with modest bandwidth is
also an excellent choice for f without zero. We emphasize that for a given f, the entries
of the preconditioners is unchanged as n increases. Thus, we need to invoke the Remez
algorithm once for each f. We note moreover that the Cholesky factors of C),; can be
used to build the Cholesky factors of C),11,;. That can reduce the cost of factorization
of the band-Toeplitz preconditioner.
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