
Electronic Transactions on Numerical Analysis.
Volume 2, pp. 44-56, March 1994.
Copyright © 1994, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

DISPLACEMENT PRECONDITIONER FOR TOEPLITZ LEAST

SQUARES ITERATIONS �

RAYMOND H� CHAN y � JAMES G� NAGY z � AND ROBERT J� PLEMMONS x

Abstract� We consider the solution of least squares problems min jjb � Axjj� by the precon�
ditioned conjugate gradient �PCG� method� for m � n complex Toeplitz matrices A of rank n� A
circulant preconditioner C is derived using the T� Chan optimal preconditioner for n � n matrices
using the displacement representation of A�A� This allows the fast Fourier transform �FFT� to
be used throughout the computations� for high numerical e�ciency� Of course A�A need never be
formed explicitly� Displacement�based preconditioners have also been shown to be very e	ective in
linear estimation and adaptive 
ltering� For Toeplitz matrices A that are generated by ���periodic
continuous complex�valued functions without any zeros� we prove that the singular values of the
preconditioned matrix AC�� are clustered around �� for su�ciently large n� We show that if the
condition number of A is of O�n��� � � 
� then the least squares conjugate gradient method con�
verges in at most O�� logn��� steps� Since each iteration requires only O�m logn� operations using
the FFT� it follows that the total complexity of the algorithm is then only O��m log� n�m logn��
Conditions for superlinear convergence are given and numerical examples are provided illustrating
the e	ectiveness of our methods�

Key words� circulant preconditioner� conjugate gradient�displacement representation� fast
Fourier transform �FFT�� Toeplitz operator�

AMS subject classi�cations� ��F�
� ��F���

�� Introduction� An m � n matrix A is called a Toeplitz matrix if its entries
are constant along each diagonal� i�e��

A � �aj�k� � �aj�k���j�m��� ��k�n�� �

Least squares problems

min
x
jjb�Axjj������	

in which A is an m� n Toeplitz matrix�m � n� occur in a variety of applications� es

pecially in signal and image processing� Since these problems arise in many important
areas where there is need for computing solutions in near �real time�� considerable
e
ort has been devoted to developing fast algorithms for the solution of ����	� Most
of this work has focused on direct methods� such as the fast QR factorization algo

rithms of Bojanczyk� Brent and de Hoog ���� Chun and Kailath ����� Cybenko ���� and
Sweet ����� The stability properties of these algorithms are not well understood� see
Bunch ��� for nonsingular Toeplitz systems� and Luk and Qiao for direct orthogonal
factorization for least squares problems ����� Almost all fast orthogonal factorization
methods involve the square of the condition number of the data matrix in their error
analyses ����� Advantages and disadvantages of direct versus iterative methods for
symmetric positive de�nite systems are described in detail in Linzer ���� ����
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Here we consider the use of iterative methods� such as preconditioned conjugate
gradients �PCG	 for the solution of ����	� Although the classical PCG algorithm
applies only to Hermitian positive de�nite systems of equations� extensions to non

Hermitian� inde�nite and least squares problems exist� cf� Freund� Golub and Nachti

gal ����� In particular� one can apply the classical PCG method to the factored form
of the normal equations

A��b� Ax	 � ��

as in the PCGLS algorithm� cf� Bj�orck ���� Here A� denotes the conjugate transpose�
For completeness� we list the PCGLS algorithm here�

Algorithm PCG for Least Squares� Let x��� be an initial approximation to
Tx � b� and let C be a given preconditioner� This algorithm computes the least
squares solution� x� to Tx � b�
r��� � b� Tx���

p��� � s��� � C��T �r���

�� � ks���k��
for k � �� �� �� � � �

q�k� � TC��p�k�

�k � �k�kq�k�k��
x�k��� � x�k� � �kC

��p�k�

r�k��� � r�k� � �kq
�k�

s�k��� � C��T �r�k���

�k�� � ks�k���k��
�k � �k����k
p�k��� � s�k��� � �kp

�k�

The convergence rate of the PCGLS algorithm depends on the spectrum of the
preconditioned matrix AC��� where C is an n�n nonsingular preconditioner matrix�
Speci�cally� if the singular values ofAC�� are clustered around � then convergence will
be rapid� cf� Axelsson and Barker ���� The cost per iteration of PCGLS is dominated
by matrix vector multiplies with A and A�� and by linear system solves with C as a
coe�cient matrix� If A is an m � n Toeplitz matrix� then matrix vector multiplies
with A and A� can be accomplished in O�m logn	 operations using the fast Fourier
transform �FFT	� Therefore� to make the PCGLS algorithm an e�cient method for
solving Toeplitz least squares problems� we must be able to construct a preconditioner
matrix C such that �i	 the singular values of AC�� are clustered around �� and �ii	
the linear system with a coe�cient matrix C can be easily solved� The construction
of a preconditioner with these properties has been successfully done by the authors
for an important class of Toeplitz matrices� arising in least squares problems� through
the use of circulant approximations ����

An n� n circulant matrix is a Toeplitz matrix that satis�es the additional prop

erty that each column �row	 is a circular shift of the previous column �row	� That is�
the entries of C satisfy cn�j � c�j � An important property of circulant matrices is
that they can be inverted in O�n logn	 operations using the FFT� cf� Davis ����� The
circulant preconditioner described in ��� was obtained by partitioning the overdeter

mined matrixA into n�n submatrices� approximating the submatrices with circulant
matrices� and then combining these to obtain a circulant approximation to A�A�

In this paper we describe how to obtain an e
ecient circulant preconditioner for
the solution of ����	 by using the displacement structure of A�A� without explicitely
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formingA�A� An alternate displacement�based approach for the square case of A has
been studied by Freund and Huckle �����

In Section � we review some de�nitions and results on displacement representa

tions of Toeplitz matrices� The development of a circulant preconditioner for overde

termined Toeplitz matrices based on the displacement representation of A�A is intro

duced in Section �� Displacement�based preconditioners have been shown to be very
e
ective also in linear estimation and in adaptive �ltering ����� Additionally� Section
� contains a detailed theoretical convergence analysis of the displacement precondi

tioner� In Section � some numerical results are reported� including comparisons with
a block
based preconditioning scheme suggested in ����

�� Displacement Structure� In this section we brie�y review relevant de�ni

tions and results on displacement structure representation of a matrix� We introduce
the n � n lower shift matrix Z� whose entries are zero everywhere except for ��s on
the �rst subdiagonal� The displacement operator r is de�ned by

rA � A � ZAZ��

where rA is called the displacement of A� cf� Chun and Kailath ����� Let L�w	 denote
the n�n lower triangular Toeplitz matrix with �rst column the vector w� Using these
de�nitions� the following lemma can be proved �����

Lemma ���� An arbitrary n� n matrix A can be written in the form

A �

�X
i��

L�ui	L
��vi	�

where � � rank�rA	 and ui and vi are n�vectors�
The sum given in Lemma ��� above is called the displacement representation of

the given matrix A and the scalar � is called the displacement rank of A� Square
Toeplitz matrices and close to Toeplitz matrices have small displacement rank �����
For example� if A is a Hermitian Toeplitz matrix� then

A � L�x�	L�x�	
� � L�x�	L�x�	

��

where

x� � �
�

�
�a� � �	� a�� � � � � an�����

To see this� we observe that x� � x� � e�� where e� � ��� �� � � � � ���� Hence

x�x
�
� � x�x

�
� � e�x

�
� � x�e

�
� � e�e

�
� �

�
������

a� a� a� � � � an��
a�
a� �
���

an��

�
������
� rA�

If A is an m � n� m � n� Toeplitz matrix� then A�A is in general not a Toeplitz
matrix� However the following well
known lemma indicates that A�A does have a
small displacement rank� � � �� and provides a useful displacement representation for
it�
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Lemma ���� Let A be an m � n Toeplitz matrix� Then a displacement represen�
tation of A�A is

A�A � L�x�	L�x�	
� � L�x�	L�x�	

� � L�y�	L�y�	
� � L�y�	L�y�	

��

where

x� � A�Ae��jjAe�jj� x� � ZZ�x��

y� � ��� a��� a��� � � � � a��n�� and y� � ��� am��� am��� � � � � am�n�����

Proof� See ����� Lemma ��
Observe that L�x�	 � L�x�	 � jjAe�jjI and� therefore�

L�x�	L�x�	
� � L�x�	L�x�	

� � jjAe�jjL�x�	 � jjAe�jjL�x�	� � jjAe�jj�I � T�

where T is the Hermitian Toeplitz matrix with �rst column A�Ae�� Thus� A�A can
be expressed in the form

A�A � T � L�y�	L�y�	
� � L�y�	L�y�	

��

where T is Hermitian and Toeplitz and the L�yi	 are lower triangular Toeplitz matri

ces�

�� Displacement Preconditioner� The idea of using circulant precondition

ers in the PCG for solving square symmetric positive de�nite Toeplitz systems of
equations was �rst proposed by Strang ����� Since then� several other circulant pre

conditioning techniques have been proposed� see for instance T� Chan ����� R� Chan
���� Tyrtyshnikov ����� Ku and Kuo ���� and Huckle ����� In particular� when A is an
n�n Toeplitz matrix� T� Chan�s circulant preconditioner �which we denote as c�A		 is
de�ned to be the optimal circulant approximation to A in the Frobenius norm� That
is� c�A	 is the circulant matrix which minimizes jjA�CjjF over all circulant matrices
C� The diagonals cj of c�A	 are given by

cj �

�
n�j
n aj �

j
naj�n� � � j 	 n�

cn�j� �n 	 j 	 ��
����	

see ���� for details�
Circulant preconditioning has also been considered for solving least squares ���

and discrete ill
posed problems ����� In ���� we constructed a circulant preconditioner
for m� n matrices A� m � n� by partitioning A into n� n submatrices

A �

�
����

A�

A�

���
Ak

�
���� �

approximating each Ai with c�Ai	� and then combining these to obtain a circulant
approximation to A�A� In this paper we take an alternate approach� Namely� we pro

pose to use circulant approximations of the factors in the displacement representation
to form a circulant approximation to A�A�
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It should be noted that in ���� as well as in our derivation below� any of the
circulant approximations for n� n Toeplitz matrices can be used to derive circulant
preconditioners for least squares problems� The T� Chan preconditioner c�A	 is de�ned
for general square matrices A� not necessarily of Toeplitz form� We note that the
operator c preserves the positive
de�niteness of A� This is stated in the following
Lemma due to Tyrtyshnikov �����

Lemma ���� If A is an n� n Hermitian matrix� then c�A	 is Hermitian� More�
over� we have


min�A	 � 
min�c�A		 � 
max�c�A		 � 
max�A	�

where 
max��	 and 
min��	 denote the largest and the smallest eigenvalues� respectively�
In particular� if A is positive de�nite� then c�A	 is also positive de�nite�

We present our derivation and analysis of the displacement preconditioner for
overdetermined least squares problems into two subsections� First we consider n� n
Hermitian Toeplitz matrices A and show that the displacement preconditioner in this
case is simply the T� Chan ���� approximation c�A	� We then use these results to
derive the displacement preconditioner for the m� n case� and we provide a detailed
convergence analysis� Our convergence analysis relies on the concept of generating
functions for Toeplitz matrices� A function f de�ned on ���� �� is said to be a
generating function of A if the diagonal entries� a�� of A are given by the Fourier
coe�cients of f � i�e�

a� �
�

��

Z �

��

f��	e�i��d�� 
 � �������� � � ��

���� Hermitian Toeplitz Case� In this subsection� we consider the case where
the matrix A is an n
by
n Hermitian Toeplitz matrix� We �rst recall that a displace

ment representation of A is given by

A � L�x�	L�x�	
� � L�x�	L�x�	

������	

where

x� � �
�

�
�a� � �	� a�� � � � � an���������	

Using ����	� we de�ne our preconditioner to be

C � c�L�x�		c�L�x�		
� � c�L�x�		c�L�x�	

�	�����	

Clearly� C is a Hermitian circulant matrix�
Lemma ���� Let A be a Hermitian Toeplitz matrix and C be the circulant approx�

imation to A de�ned in ���	
� Then C � c�A	� the optimal circulant approximation
to A�

Proof� Let

x � �
�

�
a�� a�� � � � � an�����

Then clearly A � L�x	 � L�x	�� We note also that

L�x�	 � L�x� �

�
e�	 � L�x	� �

�
L�e�	 � L�x	 � �

�
I�
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where I is the identity matrix� Thus by the linearity of the circulant operator c� we
have

C � c�L�x�		c�L�x�		
� � c�L�x�		c�L�x�		

�

� �c�L�x	 �
�

�
I	��c�L�x	 �

�

�
I	�� � �c�L�x	� �

�
I	��c�L�x	 � �

�
I	��

� c�L�x	 � L�x	�	 � c�A	�

It follows from Lemma ���� that if A is positive de�nite� then so is C � c�A	�
Using the convergence results on c�A	 presented in ���� we obtain the following result�

Corollary ���� Suppose the generating function f of a Hermitian Toeplitz
matrix A is a ���periodic continuous function� Then for all � � �� there exist integers
N and M � �� such that when n � N � at most M eigenvalues of the matrix C � A
have absolute values larger than �� If moreover f is positive� then the same property
holds for the matrix AC�� � I�

It follows easily from the above Corollary that the conjugate gradient method�
when applied to the preconditioned system AC��� converges superlinearly� see ����

���� General Rectangular Toeplitz Case� In this subsection� we let A be
an m
by
n rectangular Toeplitz matrix with m � n� Recall that the displacement
representation of A�A can be written as

A�A � T � L�y�	L�y�	
� � L�y�	L�y�	

������	

where y�� y� are given in Lemma �� and T is a Hermitian Toeplitz matrix with

Te� �

�
����

t�
t�
���

tn��

�
���� � A�Ae������	

Substituting the displacement representation ����	 for the symmetric Toeplitz
matrix T in ����	� we then have a displacement representation of A�A�

A�A � L�t�	L�t�	
� � L�t�	L�t�	

� � L�y�	L�y�	
� � L�y�	L�y�	

������	

where by ����	

t� � �
�

�
�t� � �	� t�� � � � � tn�����

Accordingly� we should de�ne our preconditioner to be

c�L�t�		c�L�t�		
� � c�L�t�		c�L�t�		

� � c�L�y�		c�L�y�		
� � c�L�y�		c�L�y�		

��

However� in Lemma��� below we show that the contribution of the last term L�y�	L�y�	
�

in ����	 is not signi�cant as far as the conjugate gradient method is concerned� and
we therefore will not approximate it by a circulant matrix� Thus our displacement
preconditioner P is de�ned as follows

P � c�L�t�		c�L�t�		
� � c�L�t�		c�L�t�		

� � c�L�y�		c�L�y�		
��
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According to Lemma ���� we see that

P � c�T 	 � c�L�y�		c�L�y�		
������	

In the following� we assume that the generating function f of A is in the Wiener
class� i�e� the diagonals of A are absolutely summable�

�X
j���

jajj � � 	������	

We note that Wiener class functions are ��
periodic continuous functions� Under the
Wiener class assumption� we will show that

P �A�A � fc�T 	� Tg� fc�L�y�		c�L�y�		� � L�y�	L�y�	
�g� L�y�	L�y�	

�

is the sum of a matrix of low rank and a matrix of small norm� For simplicity� in
the following we denote by Ui Hermitian matrices with small rank and Vi Hermitian
matrices with small norm� More precisely� given any � � �� there exist integers N and
M � �� such that when n� the size of the matrices Ui and Vi� is larger than N � the
rank of Ui is bounded by M and jjVijj� 	 ��

If the generating function of A is in the Wiener class� then so is the generating
function of T � In fact�

jjTe�jj� � jjA�Ae�jj� � jjA�jj�jjAe�jj� � �� 	�������	

According to Corollary ���� we have

c�T 	� T � U� � V�������	

Next we show that

c�L�y�		c�L�y�		
� � L�y�	L�y�	

� � U� � V�������	

The generating function of L�y�	 is given by

g��	 �
��X

j���

aje
ij������	

which is a function in the Wiener class� Equation �����	 now follows by Lemma � of
����

Lemma ����

L�y�	L�y�	
� � U	 � V	������	

Proof� Since the sequence fajg�j��� is absolutely summable� for any given �� we
can choose N � � such that

X
j�N

jajj 	 ��
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Partition L�y�	 as RN �SN � where the �rst N columns of RN are the �rst N columns
of L�y�	 with the remaining columns zero vectors� Then RN is a matrix of rank N
and

jjSN jj� �
m��X

j�m�n�N��

jajj �
m��X

j�N��

jajj 	 ��

Thus

L�y�	L�y�	
� � �RN � SN 	�RN � SN 	� � U	 � V	�

where

rank U	 � rank�RNS
�
N � SNR

�
N �RNR

�
N 	 � �N

and

jjV	jj� � jjSNS�N jj� � ���

Combining �����	� �����	 and �����	� we see that

P � A�A � c�T 	� T � c�L�y�		c�L�y�		
� � L�y�	L�y�	

� � L�y�	L�y�	
������	

� U
 � V
�

Next we demonstrate that

P���A�A	� I � U� � V��

and we �rst show that jjP jj� and jjP��jj� are uniformly bounded� We begin with the
bound for jjP jj��

Lemma ���� Let the generating function of the m�n Toeplitz matrix A be in the
Wiener class� i�e� ����
 holds� Then jjP jj� � ��� for all n�

Proof� By ����	 and Lemma ����

jjP jj� � jjc�T 	jj�� jjc�L�y�		c�L�y�		�jj� � jjT jj�� jjc�L�y�		jj���

It follows from �����	 that

jjT jj� � jjT jj� � �jjTe�jj� � ����

On the other hand� using equation ��	 in ���� we have

jjc�L�y�		jj� � �jjgjj��

where g is the generating function of L�y�	 given in �����	� Thus

jjc�L�y�		jj� � �jj
��X

j���

aje
ij�jj� � ���
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In order to show that jjP��jj� is uniformly bounded� we need the additional
condition that

min
�������


jf��	j � � � �������	

Lemma ���� Let B be a square Toeplitz matrix with generating function in the
Wiener class� Then

lim
n��

kc�B	c�B	� � c�BB�	k� � ��

Proof� The proof of the Lemma for Hermitian B is given in ���� The case where
B is not Hermitian but square can be proved similarly�

Lemma ��	� Let the generating function f of A be a Wiener class function that
satis�es ����

� Then jjP��jj� is uniformly bounded for n su�ciently large�

Proof� Since the generating function g of L�y�	 is in the Wiener class� it follows
from Lemma ���� that given any � � ��

c�L�y�		c�L�y�		
� � c�L�y�	L�y�	

�	 � V��

where jjV�jj� 	 �� provided that the size n of the matrix is su�ciently large� Hence

P � c�T 	 � c�L�y�		c�L�y�		
� � c�T 	 � c�L�y�	L�y�	

�	 � V�

� c�T � L�y�	L�y�	
�	 � V� � c�A�A � L�y�	L�y�	

�	 � V��

where the last equality follows from ����	� Write A �

	
A�

A�



where A� is the n
by
n

submatrix of A� The matrices A and A� have the same generating function f and
A�A � A��A� �A��A��

Since f by assumption is in the Wiener class it follows from Lemma ��� that�

c�A��A�	 � c�A�	
�c�A�	 � V��

where jjV�jj� � � if n is su�ciently large� Thus

P � c�A�A � L�y�	L�y�	
�	 � V�

� c�A��A� � A��A� � L�y�	L�y�	
�	 � V�

� c�A�	
�c�A�	 � c�A��A� � L�y�	L�y�	

�	 � V� � V�������	

Observe that

f
min�c�A�	
�c�A�	�g�� � jj�c�A�	

�c�A�	�
��jj� � jjc�A�	

��jj�� � �jj�
f
jj���

where the last inequality follows from equation ���	 of ���� Thus by �����	�


min �c�A�	
�c�A�	� � ��

�
�

Since A��A� � L�y�	L�y�	� is a positive semi
de�nite matrix� c�A��A� � L�y�	L�y�	�	
is also a positive semi
de�nite matrix� Thus we conclude from �����	 that


minfPg � 
min�c�A�	
�c�A�	�� jjV�jj� � jjV�jj� � ��

�
� ���
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The Lemma follows by observing that � is chosen arbitrarily and � depends only on
f and not on n�

By combining �����	� Lemmas ��� and ���� we see that if the generating function
f of the m� n Toeplitz matrix A is a Wiener class function with no zeros on ���� ���
then

P���A�A	 � I � U � V�

where U is a low rank matrix and V is a small norm matrix� Thus the spectrum of
the preconditioned matrix is clustered around one�

Theorem ��
� Let the generating function f of the m�n Toeplitz matrix A be a
Wiener class function with no zeros on ���� ��� Then for all � � �� there exist N � �
and M � �� such that for all n � N � at most M eigenvalues of the matrix

P���A�A	� I

have absolute values larger than ��
Proof� The proof is similar to the proof of Theorem � in ����
From Theorem �� we have the desired clustering result� namely� if the generating

function f of the m � n Toeplitz matrix A is a Wiener class function with no zeros
on ���� ��� then the singular values of the preconditioned matrix AP���� are clustered
around ��

It can also be shown� in a manner similar to the derivation in x� of ���� that
if the condition number of A is of O�n		� � � �� then the least squares conjugate
gradient method converges in at most O�� logn � �	 steps� Since each iteration
requires O�m logn	 operations using the FFT� it follows that the total complexity of
the algorithm is only O��m log� n�m logn	�

When � � �� i�e�� ��A	 � O��	� the number of iterations required for convergence
is of O��	� Hence the complexity of the algorithm reduces to O�m logn	� for su�

ciently large n� We remark that� in this case� one can show that the method converges
superlinearly for the preconditioned least squares problem due to the clustering of the
singular values for su�ciently large n �See ��� for details	� In contrast� the method
converges just linearly for the non
preconditioned case� as is illustrated by numerical
examples in the next section�

�� Numerical Results� In this section we illustrate the e
ectiveness of the dis

placement preconditioner on some numerical examples� For each example we use the
vector of all ones as the right hand side and the zero vector as the initial guess� The
stopping criteria is jjs�j�jj��jjs���jj� 	 ����� where s�j� is the normal equations residual
after j iterations and is a by
product of the PCGLS computations� All computations
were performed using Matlab ��� on an IBM RS �����

Throughout this section we denote a Toeplitz matrix with �rst column c and �rst
row r as Toep�c� r	� We present the number of iterations needed to converge using
no preconditioner� the displacement preconditioner� and the preconditioner based on
partitioning T as discussed in ���� We denote these by �no prec�� �disp prec� and
�part prec�� respectively�

The matrix in the �rst three examples satisfy the conditions of Theorem �� We
use T�Toep�c� r	 as the coe�cient matrix� where c and r are given as follows�

Example ��

c�k	 � ��k�� k � �� �� � � ��m
r�k	 � ��k�� k � �� �� � � �� n�
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Example ��

c�k	 � e��
��k
�

� k � �� �� � � � �m

r�k	 � e��
��k
�

� k � �� �� � � � � n

Example ��

c�k	 � ��
p
k� k � �� �� � � ��m

r�k	 � ��
p
k� k � �� �� � � �� n

Convergence results for these examples are reported in Table �� Observe that the num

ber of iterations needed for convergence for the preconditioned systems is essentially
independent of the sizes of the matrices�

Table ���

Numbers of iterations for Examples �� � and ��

n m

�� ��
�� ��
�� ���
��� ���
��� ���

Example ��
no prec disp prec part prec

�� � �
�� � �
�� � �
�� � �
�� � �

Example ��
no prec disp prec part prec

�� �� ��
�� �� ��
�� �� ��
��� �� �
��� �� �

n m

�� ���
�� ���
�� ���
�� ����
�� ����

Example ��
no prec disp prec part prec

�� � �
�� � �
�� � �
�� � �
�� � �

Example �� In this example we consider a convolution matrix� which is a �

dimensional horizontal blurring function used in signal processing ���� T �Toep�c� r	
is de�ned by

c�k	 � ����w� �	� k � �� �� � � � � w
c�k	 � � k � w � �� w� �� � � � �m � n �w � �
r��	 � c��	
r�k	 � �� k � �� �� � � � � n

The convergence results for this example are shown in Table ��

These numerical results illustrate that the displacement preconditioner can sig

ni�cantly reduce the number of iterations needed for convergence of PCGLS for some
examples� Moreover� as in Example �� the displacement preconditioner scheme given
here can be preferable to the partitioning approach to constructing circulant precon

ditioners discussed in ���� However� we consider the main contribution in this paper to
be the introduction of yet another preconditioner for possible use in solving Toeplitz
least square problems� The choice of a �best	 preconditioner is undoubtedly problem
dependent�
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Table ���

Numbers of iterations for Example ��

n m no prec disp prec part prec

�� �� � � �
�� �� �� � �
�� �� �� � �
��� ��� �� � �
��� ��� ��� � �
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