
J. Statist. Comput. Simul., 2003, Vol. 00, pp. 1–11

A MEMORY REDUCTION METHOD IN
PRICING AMERICAN OPTIONS

RAYMOND H. CHAN*, YONG CHENy and K. M. YEUNGz

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

(Received 16 September 2002; In final form 15 June 2003)

This paper concerns with the pricing of American options by simulation methods. In the traditional methods, in order
to determine when to exercise, we have to store the simulated asset prices at all time steps on all paths. If N time steps
and M paths are used, then the storage requirement is O(MN). In this paper, we present a simulation method for
pricing American options where the number of storage required only grows like O(M). The only additional
computational cost is that we have to generate each random number twice instead of once. For machines with
limited memory, we can now use a larger N to improve the accuracy in pricing the options.

Keywords: Option pricing; Monte Carlo method; Random number generator

1 INTRODUCTION

Pricing options by Monte Carlo simulations was first introduced in Boyle (1977). An advan-

tage of Monte Carlo simulations is that the convergence rate is independent of the number of

state variables. Path dependency can also be handled easily by Monte Carlo simulations.

However there is a general belief that Monte Carlo simulations can be used efficiently

only for European-style options. The apparent difficulties in using Monte Carlo simulations

to price American-style options come from the backward nature of the early exercise feature.

There is no way of knowing whether early exercise is optimal when a particular asset price is

reached at a given time.

The first work on pricing American-style options by Monte Carlo simulations is due to

Tilley (1993). Tilley’s algorithm is computationally inefficient because it requires the storage

of all asset prices at all simulation times for all simulated paths. Thus the total storage

requirement grows like O(MN) where M is the number of simulated paths and N is the num-

ber of time steps. The accuracy of the simulation is hence severely limited by the storage

requirement. Moreover, in Monte Carlo methods, continuous exercising is replaced by dis-

crete exercising, and that produces biases. To get higher accuracy, one can increase the num-

ber of time steps N. But then larger N means more memory.

* Corresponding author. E-mail: rchan@math.cuhk.edu.hk
y E-mail: ychen@math.cuhk.edu.hk
z E-mail: kmyeung@math.cuhk.edu.hk

ISSN 0094-9655 print; ISSN 0000-0000 online # 2003 Taylor & Francis Ltd
DOI: 10.1080=00949650310001597876Te

ch
set
Co
mp
os
iti
on
Ltd
,S
ali
sb
ur
y

Do
c:

h:
/G
AN
DB
/G
scs
/0
310
56
/g
scs
03
105
6.3
d

Ma
nu
No
.0
00
0

Pr
int
ed
:

7/
7/0
3

Pa
ge
#
:

11
pa
ge
(s)

Op
p:

Ta
sk
:

3B
2V
er
sio
n:
7.5
1f/
W
(M
ar
42
00
2)
||T
ec
hR
ef:
9.0
1/H

(M
ar
ch
20
19
97
)

The main problem of traditional Monte Carlo methods in pricing American options is

that the simulated paths are all generated in the time-increasing direction, i.e., they start

from the initial asset price S0 and march to the final time according to the given geometric

Brownian motion. Since the pricing of American options is a backward process, one has

to save all the intermediate asset prices. In this paper, we propose a simulation method

that does not require storing of all the intermediate asset prices. The storage is therefore

independent of N and grows only like O(M), where M is the number of paths. Thus the

storage is significantly reduced, and we can increase N to improve the accuracy of our

results. Our main idea is to generate the paths in the time-decreasing direction that still

follow the given geometric Brownian motion starting from S0. The only additional cost

in our method is that we have to generate each random number twice instead of once.

We will see that the resulting computational cost is at most four times of that of the tradi-

tional methods.

The remainder of this paper is organized as follows. Section 2 presents our method of

simulating the sample paths. We give a detailed discussion of our memory reduction method

in Section 3. Section 4 gives some numerical results to illustrate the effectiveness of our

method. Finally, some conclusions are given in Section 5.

2 THE SIMULATION METHOD

In traditional simulation methods for pricing options, the simulated paths are generated in

the forward direction, i.e. follow the direction of the time. The main idea of our method is

to generate the simulated paths in the backward (i.e. time-decreasing) direction. In this sec-

tion, we first recall how forward paths are generated. Then we introduce our method of

generating backward simulated paths. These paths still follow the given geometric

Brownian motion. For simplicity, we will use the MATLAB language to illustrate how the

codes are to be written. The corresponding codes for FORTRAN 90 are given in the

Appendix.

As usual, we let the asset price S follow a geometric Brownian motion

dS

S
¼ r dt þ s dX (1)

with drift r and variance s in the risk-neutral world. By Ito’s Lemma, we have

S(t þ dt) ¼ S(t)e(r�(1=2)s2) dtþs dX ¼ S(t)e(r�(1=2)s2) dtþse
ffiffiffi
dt

p

, (2)

where e is a standard normal random variable, see for instance Kwok (1998, p. 225). In the

path simulation, we divide the time horizon into N time steps with each having the length

Dt ¼
T � t0

N
,

where t0 is the current time and T is the final time. Thus the time horizon is discretized as

t0 < t1 < � � � < tN ¼ T . Let the asset price at time t0 be S(t0) ¼ S0.

2 R. H. CHAN et al.

2.1 The Forward Paths

By (2), we can simulate a path as follows:

Si :¼ S(ti) ¼ S(ti�1 þ Dt)

¼ S(ti�1)e(r�(1=2)s2)Dtþs
ffiffiffiffiffiffi
Dtei

p

¼ Si�1e
(r�(1=2)s2)Dtþs

ffiffiffiffiffiffi
Dtei

p

, i ¼ 1, 2, . . . , N , (3)

where e1, e2, . . . , eN are independent identically distributed standard normal random numbers.

We will call such a path S0 ! S1 ! � � � ! Sn a forward path since it is generated in the

time-increasing direction.

To generate a forward path in the computer, we need to generate N random numbers. Most

computer languages already have built-in functions to generate them. (In MATLAB, it is

‘‘randn’’.) Moreover, by using the concept of a seed, one has the flexibility to change or

fix the sequence of random numbers each time they are generated. For example, in

MATLAB, the commands

randn (’seed’,d);

e¼ randn;

give a different random number e each time the seed d is changed, but give the same random

number if d is fixed.

Notice that from (3), the intermediate asset prices can be written as

Si ¼ S0e
i(r�(1=2)s2)Dtþs

ffiffiffiffi
Dt

p
(e1þe2þ���þei), i ¼ 1, 2, . . . , N : (4)

2.2 The Backward Paths

The evaluation of American-style options is a backward process starting from the expiry date

T back to the current time t0. It is thus natural to ask if we can generate a path in the time-

decreasing direction which still follows the geometric Brownian motion (1) starting from S0.

The answer is yes. Given S0, define

S1 ¼ S0e
(r�(1=2)s2)Dtþs

ffiffiffiffi
Dt

p
eN ,

..

. ..
.

Si ¼ S0e
i(r�(1=2)s2)Dtþs

ffiffiffiffi
Dt

p
(eNþeN�1þ���þeN�iþ1),

..

. ..
.

SN ¼ S0e
N (r�(1=2)s2)Dtþs

ffiffiffiffi
Dt

p
(eNþeN�1þ���þe1):

(5)

Here e1, e2, . . . , eN are independent identically distributed standard normal random numbers.

Comparing (4) with (5), and notice that eN , eN�1, . . . , e1 are also independent identically

distributed standard normal random numbers, the sequence S0, S1, . . . , SN therefore still

represents a path that follows the geometric Brownian motion (1) starting from S0. From

(5), we can write

Si ¼ f (i, oi), i ¼ 1, 2, . . . , N , (6)

where f is a fixed function depending only on the parameters S0, s, r, and Dt, and

oi ¼ eN þ eN�1 þ � � � þ eN�iþ1.

A MEMORY REDUCTION METHOD 3

In this setting, it is easy to generate the path S0 ! SN in the backward direction, i.e. from

SN to S0. Again, we use MATLAB commands to illustrate this. To emphasize that we need not

store the intermediate values SN , . . . , Si, . . . , S1, we drop the subscript i in the MATLAB codes.

ALGORITHM 1

1. Initialization:

(a) Set the seed of the path to any given positive integer, say d.

randn (’seed’, d);

(b) Generate the random numbers {ei}Ni¼1 and compute their sum oN .

omega¼ 0;

for i ¼ 1:N,

omega¼ omegaþ randn;

end;

(c) Compute the asset price SN at the expiry date T using (6).

S ¼ f (N, omega);

2. For i ¼ N , . . . , 1, generate Si�1 from Si:

(a) Set the seed to d.

randn (’seed’, d);

(b) Extract eN�iþ1 and compute oi�1 ¼ oi � eN�iþ1.

omega¼ omega7 randn;

(c) Compute Si�1 by using (6).

S ¼ f (i � 1, omega);

(d) Extract the new seed and set it to d (see the explanation below).

d¼ randn (’seed’);

We note that the most important step in the whole algorithm is Step 2(d). It is a command

that extracts the seed corresponding to the next random number in the sequence {ei}Ni¼1. With

the command, we can generate ei without having to generate the whole sequence

e1, e2, . . . , ei�1. In essense, we generate e1, e2, . . . , ei as follows:

d ¼ d1 ! e1 ! d2 ! e2 ! � � � ! ei�1 ! di ! ei, (7)

where di is the current seed corresponding to ei�1 and is obtained from Step 2(d). We remark

that there is also such a command to compute the current seed in FORTRAN 90, see Appendix.

We will call the path generated by our method a backward path, as it is generated in the time-

decreasing direction.

Figure 1 shows a forward path with its associated backward path. Figure 2 shows 10 for-

ward paths and 10 backward paths. Since both forward and backward paths follow the same

geometric Brownian motion (1), we can use either one to price options. The advantage of

using backward paths is that the direction of the paths is the same as the direction of pricing

the options, and hence storage can be reduced as we will see in the next section.

We emphasize again that in Algorithm 1, we do not need to store the whole random num-

ber sequence {ei}Ni¼1 or the intermediate asset prices {Si}
N
i¼1. All we need is to store the

current seed d, the sum omega (¼oi), and the current asset price S(¼Si). Thus the total

storage is 3 variables per path.

Regarding the computational cost, we need to generate each ei twice: one in Step 1(b) and

one in Step 2(b). For this, a total of 4N calls involving ‘‘randn’’ is needed in Steps 1(b), 2(a),

4 R. H. CHAN et al.

2(b), and 2(d). To see the timing of these function calls, we tried on our Pentium II PC one

million calls of

omega ¼ omega þ randn, randn(’seed’, i) and d ¼ randn(’seed’):

They require 25.23, 25.19 and 24.88 CPU seconds respectively. Thus the cost of all four

steps are roughly the same.

Recall that in generating a forward path, we need to generate N random numbers (see (3)),

a cost comparable to Step 1(b). Thus the computational cost of generating a backward path is

at most four times that of a forward path. It is an overestimate as we have not counted the cost

of computing Si in (3) and (5). In Table I, we give the CPU times in generating M paths where

each path has N time steps. We see that the cost of generating a backward path is about 3.3

times of that of a forward path.

We end this section by pointing out that like the generation of forward paths, the backward

path generation is well-adapted to parallel computations. There is no communication between

the paths when they are generated. Moreover, the method can be applied to any pseudo ran-

dom number generators (including those in Quasi Monte Carlo methods) provided that the

generators have the following properties: (i) the same pseudo random number sequence

{ei}Ni¼1 can be generated if the seed d is fixed, and (ii) we can generate eiþ1 using ei only,

and there is no need to store d and all the preceding random numbers {ej}i�1
j¼1 (see (7)).

FIGURE 1 A forward path (solid) and its associated backward path (dash).

FIGURE 2 Simulations of forward paths (left) and backward paths (right).

A MEMORY REDUCTION METHOD 5

3 THE MEMORY REDUCTION METHOD

In this section, we present our memory reduction method. It is a method that can reduce the

memory requirement of simulation methods for pricing American options. The main idea is

to replace the forward path simulation in a given method by the backward path simulation.

For simplicity, we explain our method by using the simple but powerful method given in

Longstaff and Schwartz (2001).

At the final exercise date, the optimal exercise strategy for an American option is to exer-

cise the option if it is in the money. Prior to the final date, however, the optimal strategy is to

compare the immediate exercise value with the expected cash flow from continuing, and then

exercise if immediate exercise is more valuable. Thus, the key to optimally exercising an

American option is to identify the conditional expected value of continuation. In Longstaff

and Schwartz (2001), the cross-sectional information in the simulated paths is used to iden-

tify the conditional expectation function. This is done by regressing the cash flows from con-

tinuation on a set of basis functions depending on the current asset prices. The fitted function

from this regression is an efficient unbiased estimate of the conditional expectation function,

and by which, one can estimate an optimal stopping rule for the option.

The Longstaff–Schwartz method uses the forward paths and hence requires the storage of

all the intermediate asset prices on every path. Thus the storage requirement is O(NM), where

M is the number of paths, and N is the number of time steps. Moreover, like other methods

for pricing American options, the method has biases, and it is difficult to obtain high accu-

racy without using large M and N. But by replacing the forward paths with our backward

paths, we now show that we can reduce the memory requirement to 7M.

As in Longstaff and Schwartz (2001), we illustrate our method by using a numerical exam-

ple. Consider an American put option on a share of non-dividend-paying stock. The strike

price E and the underlying asset price S0 are both equal to $10, the riskless rate r is 0.1,

the volatility s is 0.4, and the time to expiration T is 0.5 year. We set the number of time

step N ¼ 5, i.e. the option is exercisable at time i ¼ 1, 2, 3, 4 and 5. We illustrate the algo-

rithm by using ten paths, i.e. M ¼ 10.

ALGORITHM 2

1. Initialization:

(a) Using Step 1 of Algorithm 1 in Section 2, compute S(j) (¼S5(j)) and omega(j)

(¼o5(j)) for each path j, 1 � j � M . The seed d(j) for each path j can be set arbi-

trarily. For example, we can set d(1) to be the internal seed of the computer, and d(j),

2 � j � M , to be the current seed corresponding to the last random number of the

previous path, i.e. d(j) ¼ dNþ1(j � 1) in (7).

TABLE I CPU Time in Seconds for Generating Backward=Forward
Paths.

N

M 10 100 1000

100 0.11=0.05 1.10=0.38 11.20=3.46
1000 1.21=0.39 11.37=3.46 112.55=34.22

10,000 12.58=3.79 113.69=34.55 1139.65=342.95

6 R. H. CHAN et al.

(b) Compute the cash flow P5(j) ¼ max{E � S5(j), 0} for each path j. It is the cash flow

realized by the option holder conditional on not exercising the option before the final

expiration date i ¼ 5.

Path j S5(j) P5(j)¼max{E7 S5(j), 0}

1 9.21246571 0.78753429
2 12.96684106 0.00000000
3 8.74786037 1.25213963
4 10.00266689 0.00000000
5 14.02305154 0.00000000
6 8.30637541 1.69362459
7 11.05985986 0.00000000
8 9.73994528 0.26005472
9 9.55956729 0.44043271

10 8.40500787 1.59499213

2. Backward time-marching to i ¼ 4:

(a) Using Step 2 in Algorithm 1, backward time-marching omega(j), S(j), and d(j) to time

i ¼ 4 for each path j. Notice that the variables omega(j), S(j), and d(j) will overwrite

themselves. For example, memory location of S5(j) will be overwritten by S4(j).

(b) Compute if the option is in the money.

Path j S4(j) max{E7 S4(j), 0}

1 9.16327983 0.83672017
2 13.45449187 0.00000000
3 8.99170659 1.00829341
4 10.13840157 0.00000000
5 12.80505684 0.00000000
6 8.36260832 1.63739168
7 9.91977944 0.08022056
8 9.73050211 0.26949789
9 11.42108139 0.00000000

10 9.30440362 0.69559638

(c) If the option is in the money, decide whether to exercise it immediately or to continue

to hold it until the next exercisable time, i.e. hold on till i ¼ 5. There are six paths

(j ¼ 1, 3, 6, 7, 8, 10) for which the option is in the money. Let X be the vector

containing these asset prices S4(j), and Y be the vector containing the cash flows

received at time i ¼ 5, but discounted back to i ¼ 4, i.e. Y (j) ¼ rP5(j), where r is the

discounted factor given by r ¼ e�rDt ¼ 0:99004983374917.

Path j X¼ S4(j) Y¼rP5(j)

1 9.16327983 0.77969819288627
3 8.99170659 1.23968063251225
6 8.36260832 1.67677274376300
7 9.91977944 0.00000000000000
8 9.73050211 0.25746713230169

10 9.30440362 1.57912169313773

(d) Use the least squares approach in Longstaff and Schwartz (2001) to estimate the

expected cash flow from continuing to hold the option conditional on the asset

A MEMORY REDUCTION METHOD 7

price S4(j). More precisely, regress Y on 1, X , and X 2. The resulting conditional

expectation function is

E[Y jX] ¼ �41:89780752481383 þ 10:47643636927008X � 0:63030372995672X 2:

(e) Using the function E[Y jX], compute the value of immediate exercising and the value

from continuation at time i ¼ 4.

Path j X¼ S4(j)
Exercising

max{E7 S4(j), 0}
Continuation
E[Y|S4(j)]

1 9.16327983 0.83672017 1.17681838738995
3 8.99170659 1.00829341 1.34268154790032
6 8.36260832 1.63739168 1.63335832189242
7 9.91977944 0.08022056 0.00296772591145
8 9.73050211 0.26949789 0.36433778097917

10 9.30440362 0.69559638 1.01257663052763

(f) From the table, decide whether to exercise the option immediately (j ¼ 6, 7) or

continue to hold it (j ¼ 1, 3, 8, 10). Then determine the current cash flow C4(j)

conditional on not exercising prior to the time i ¼ 4, i.e.

C4(j) ¼
max{E � S4(j), 0}, max{E � S4(j), 0} � E[Y jS4(j)],

0, otherwise:

�

Because the option can be exercised only one time during its life, non-zero cash flow

appears at most one time for each path. So, the cash flows P5(6) and P5(7) are reset to

zero. See the table below.

(g) Finally, compute the present value of the cash flow P4(j) at time i ¼ 4 for all paths. It

is given by P4(j) ¼ C4(j) þ rP5(j).

Path j C4(j) P5(j) P4(j)¼C4(j)þrP5(j)

1 0.00000000 0.78753429 0.77969819288627
2 0.00000000 0.00000000 0.00000000000000
3 0.00000000 1.25213963 1.23968063251225
4 0.00000000 0.00000000 0.00000000000000
5 0.00000000 0.00000000 0.00000000000000
6 1.63739168 0.00000000 1.63739168000000
7 0.08022056 0.00000000 0.08022056000000
8 0.00000000 0.26005472 0.25746713230169
9 0.00000000 0.44043271 0.43605033131320

10 0.00000000 1.59499213 1.57912169313773

(h) Go back to Step 2(a) and backward time-marching to i ¼ 3 etc.

In essense, given Siþ1(j) and Piþ1(j), the algorithm first computes Si(j) using Step 2 in

Algorithm 1. Then it computes E[Y jX] by regressing rPiþ1(j) on Si(j). With E[Y jX], it com-

putes the current cash flow Ci(j), and finally the present value of the cash flow

Pi(j) ¼ Ci(j) þ rPiþ1(j).

8 R. H. CHAN et al.

To complete the numerical example, we give P3(j), P2(j) and C1(j) in the following table.

Path j P3(j) P2(j) C1(j)

1 0.6934161465 0.6865165406 0.0000000000
2 0.0000000000 0.0000000000 1.2827721948
3 0.0000000000 0.0000000000 1.8900363784
4 0.0000000000 0.0000000000 0.1908549358
5 0.0000000000 0.0000000000 0.7185000764
6 1.6210993631 1.6049691550 0.0000000000
7 0.0794223516 0.0786320860 0.0000000000
8 1.0048647352 0.9948661640 0.0000000000
9 0.4317115566 0.4274159549 0.0000000000

10 1.0857774653 1.0749737990 0.0000000000

From the table, we can compute the present value of the cash flow at i ¼ 1:

P1(j) ¼ C1(j) þ rP2(j). Since we do not exercise at i ¼ 0, the option can now be valued

by averaging the present value of the cash flow at time 0 on all paths, i.e. by averaging

P0(j) ¼ rP1(j) on all paths j. For this example, it will be $0:8813.

Let us now calculate the memory requirement of our method. Let the time to expiration be

divided into N time steps, and M paths are taken. In traditional methods such as the

Longstaff–Schwartz method where forward paths are used, at least MN memory are needed

to store Si(j) for i ¼ 1, . . . , N and j ¼ 1, . . . , M . (In fact, in Longstaff and Schwartz (2001),

instead of computing Pi(j), all current cash flows Ci(j) are stored. Hence the memory

requirement is 2MN .) However, in our method, we just need to store 7 vectors with M entries:

d(j), oi(j), Si(j), Pi(j), X , Y , and Ci�1(j), for j ¼ 1, . . . , M. All these vectors can be over-

written by themselves at the next time step, i.e. at time i� 1. Thus the memory requirement

is independent on N and grows only like 7M .

Regarding the computational cost, we see that the additional cost in our method is the gen-

eration of the backward paths in Step 2(a) of Algorithm 2. As seen in Section 2, this is at

most four times the cost of generating the forward paths. Therefore, the computational

cost of our memory reduction method is at most four times that of the Longstaff–

Schwartz method. Again it is an overestimate as we have not counted the cost of all other

computations in the algorithm, such as Steps 2(b)–(g). The timing should even be more

favorable for our method if M and N are so large that out-of-core memory has to be used

in storing the intermediate asset prices in the traditional methods.

4 NUMERICAL RESULTS

In this section, we test our memory reduction method on an example given in Wilmott et al.

(1998, p. 176). It is an American put option with strike price E ¼ $10, the riskless rate

r ¼ 0:1, the volatility s ¼ 0:4, and the expiration date T ¼ 6 months. We emphasize that

since the forward and backward paths both satisfy the same geometric Brownian motion

(1), the results obtained by our method should statistically be the same as those obtained

by the method given in Longstaff and Schwartz (2001). However, here we would like to illus-

trate that with less stringent requirement on the memory, our method can provide better accu-

racy. All our computations were done by FORTRAN 90 on a SGI Origin 3200 machine with 16

Gigabyte RAM.

Again we use M and N to denote the number of paths and the number of time steps respec-

tively. In pricing American options by simulations, there are two causes for the errors: (a) the

A MEMORY REDUCTION METHOD 9

number of sample paths M is finite, and (b) continuous exercisable strategy is replaced by

discrete one, i.e. N is finite. To improve the accuracy, we can increase either M or N.

Tables II and III show the effect on the erorrs by increasing M when N is fixed. In the tables,

the data under the column ‘‘CNM’’ are results computed by the Crank–Nicolson method and

are given in Wilmott et al. (1998, p. 176). Those under ‘‘Value’’ are the values obtained by one

trial of our method for the given M and N . The results under the ‘‘Mean’’ and ‘‘STD’’ are the

means and standard deviations obtained after 100 trials. The final column ‘‘Error’’ is the dif-

ference between ‘‘CNM’’ and the ‘‘Mean’’. We note that when M increases, the standard

deviations decrease for all S0 but the errors do not decrease for some S0, especially for

those close to E. Thus increasing M is not very efficient in this case.

Next we compare Table III with Table IV to see the effect on the errors by increasing N

when M is fixed. When N changes from 10 (Tab. IV) to 100 (Tab. III), we see that the errors

decrease rapidly for all S0, even though the standard deviations do not decrease by much.

These results indicate that in order to reduce the errors, it is worthwhile to increase N

TABLE II Memory Reduction Method with M¼ 104 and N¼ 100.

S0 CNM Value Mean STD Error

2 8.0000 7.9954 7.9951 0.0005 0.0049
4 6.0000 5.9970 5.9949 0.0012 0.0051
6 4.0000 3.9946 3.9950 0.0019 0.0050
8 2.0951 2.1104 2.0944 0.0112 0.0007

10 0.9211 0.9167 0.9212 0.0116 �0.0001
12 0.3622 0.3679 0.3654 0.0078 �0.0032
14 0.1320 0.1356 0.1342 0.0046 �0.0022
16 0.0460 0.0410 0.0476 0.0021 �0.0016

TABLE III Memory Reduction Method with M¼ 105 and N¼ 100.

S0 CNM Value Mean STD Error

2 8.0000 7.9952 7.9950 0.0002 0.0050
4 6.0000 5.9946 5.9950 0.0003 0.0050
6 4.0000 3.9945 3.9950 0.0005 0.0050
8 2.0951 2.0902 2.0911 0.0030 0.0040

10 0.9211 0.9167 0.9183 0.0031 0.0028
12 0.3622 0.3639 0.3612 0.0023 0.0010
14 0.1320 0.1335 0.1329 0.0015 0.0001
16 0.0460 0.0474 0.0461 0.0007 �0.0001

TABLE IV Memory Reduction Method with M¼ 105 and N¼ 10.

S0 CNM Value Mean STD Error

2 8.0000 7.9509 7.9500 0.0005 0.0491
4 6.0000 5.9487 5.9500 0.0010 0.0500
6 4.0000 3.9476 3.9450 0.0017 0.0550
8 2.0951 2.0851 2.0827 0.0035 0.0124

10 0.9211 0.9185 0.9157 0.0034 0.0054
12 0.3622 0.3623 0.3595 0.0025 0.0027
14 0.1320 0.1295 0.1311 0.0015 0.0009
16 0.0460 0.0438 0.0457 0.0008 0.0003

10 R. H. CHAN et al.

than M especially if N is not large. The advantage of our method lies in the fact that we can

reduce the errors by increasing N and yet do not incur any penalty on memory.

5 CONCLUSION

We have presented a new simulation technique for pricing American-style options without

storing all the intermediate asset prices. The main idea is to simulate the paths in the

time-decreasing direction – the backward paths. We have illustrated our method by using

the Longstaff–Schwartz method to price an American put option. However, by replacing for-

ward paths with backward paths, our method can in fact be applied to other Monte Carlo

methods for other kinds of options. Moreover, as noted at the end of Section 2, our method

of generating the backward paths is well-adapted to parallel computations and can be

extended to some Quasi Monte Carlo methods too.

Acknowledgements

The research was partially supported by the Hong Kong Research Grant Council grant

CUHK4243=01P and CUHK DAG 2060220.

References

Boyle, P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4, 323–338.
Kwok, Y. (1998). Mathematical Models of Financial Derivatives. Springer–Verlag, Singapore.
Longstaff, F. and Schwartz, E. (2001). Valuing American option by simulation: A simple least squares approach.

The Review of Financial Studies, 14, 113–147.
Ross, S. (1997). Simulation, 2nd Ed. Academic Press, San Diego, CA.
Tilley, J. (1993). Valuing American options in a path-simulation model. Transactions of the Society of Actuaries, 45,

563–577.
Wilmott, P., Howison, S. and Dewynne, J. (1998). The Mathematics of Financial Derivatives. Cambridge University

Press, Cambridge.

APPENDIX

In FORTRAN 90, the commands to set the seed to d are:

call random_seed (size¼ 1)

seed(1)¼ d

call random_seed(put¼ seed(1:1))

The commands to extract the current seed d are:

call random_seed(get¼ current(1:1))

d¼ current(1)

We remark that our FORTRAN 90 only provides uniformly distributed random numbers and we

have used the Box–Muller transform to produce normal distributed random numbers, see

Ross (1997, p. 73).

A MEMORY REDUCTION METHOD 11

Journal…Statist. Comput.Simul, Article ID…GSCS 031056

TO: CORRESPONDING AUTHOR

AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR

The following queries have arisen during the typesetting of your manuscript. Please answer the queries.

 No Quries

Production Editorial Department, Taylor & Francis Ltd.
4 Park Square, Milton Park, Abingdon OX14 4RN

Telephone: +44 (0) 1235 828600
Facsimile: +44 (0) 1235 829000

