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Suggested Solution to Assignment 5

Exercise 5.1

2. (a)

Am = 2

∫ 1

0
x2 sinmπx dx = −2

x2

mπ
cosmπx

∣∣∣1
0

+

∫ 1

0

4x

mπ
cosmπx dx

=
2(−1)m+1

mπ
+

4(−1)m − 4

m3π3
.

(b)

Am = 2

∫ 1

0
x2 cosmπxdx = 2

x2

mπ
sinmπx

∣∣∣1
0
−
∫ 1

0

4x

mπ
sinmπxdx = (−1)m

4

m2π2
. �

4. To find the Fourier series of the function f(x) = | sinx|, we first note that this is an even function so that
it has a cos-series. If we integrate from 0 to π and multiply the result by 2, we can take the function sinx
instead of | sinx| so that

a0 =
2

π

∫ π

0
sinxdx =

4

π
.

an =
2

π

∫ π

0
sinx cosnxdx =

{
4

(1−n2)π
n even

0 n odd
.

Hence, we have

f(x) =
2

π
− 4

π
(
cos 2x

22 − 1
+

cos 4x

42 − 1
+

cos 6x

62 − 1
+ · · · ).

Substituting x = 0 and x = π
2 , we have

∞∑
n=1

1

4n2 − 1
=

1

2
.

∞∑
n=1

(−1)n

4n2 − 1
=

1

2
− π

4
. �

5. (a) From Page.109, we have

x =
∞∑
m=1

(−1)m+1 2l

mπ
sin

mπx

l
.

Integration of both sides gives

x2

2
= c+

∞∑
m=1

(−1)m
2l2

m2π2
cos

mπx

l
.

The constant of the integration is the missing coefficient

c =
A0

2
=

1

l

∫ l

0

x2

2
dx =

l2

6
.

(b) By setting x = 0 gives

0 =
l2

6
+

∞∑
m=1

(−1)m
2l2

m2π2
,

or
π2

12
=

∞∑
m=1

(−1)m+1

m2
. �

1



MATH 4220 (2017-18) partial diferential equations CUHK

8. The key point in the problem above is to solve the following PDE problem.

ut − uxx = 0, u(x, 0) = φ(x), u(0, t) = u(l, t) = 0,

φ(x) =

{
3x
2 , 0 < x < 2

3 ,

3− 3x, 2
3 < x < 1

.

Through a standard procedure of separation variable method, we obtain

u(x, t) =
∑

ane
−n2π2t sinnπx,

where an = 2
∫ 1
0 φ(x) sinnπxdx = 9

n2π2 sin 2πn
3 , so the solution T = u(x, t) + x. �

9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition
is

u(x, t) =
1

2
(A0 +B0t) +

∞∑
n=1

(An cosnct+Bn sinnct) cosnx,

where

φ(x) =
1

2
A0 +

∞∑
n=1

An cosnx, ψ(x) =
1

2
B0 +

∞∑
n=1

ncBn cosnx.

By further calculation, we have B0 = 1, B2 = 1
4c and the other coefficients are all zero. Hence, the solution

is

u(x, t) =
1

2
t+

sin 2ct cos 2x

4c
. �

Exercise 5.2

2. Suppose α = p/q, where p, q are co-prime to each other. Then is is not difficult to see that S = 2qπ is a
period of the function. Suppose 2qπ = mT , where T is the minimal period. Then

cosx+ cosαx = cos(x+ T ) + cos(αx+ αT ).

Let x = 0, we have the above equality holds iff q/m, p/m are both integers. Therefore, m = 1. Hence, we
finish the problem. �

5. Let am = 2
l

∫ l
0 φ(x) sin mπx

l . Then we have

φ(x) =

∞∑
m=1

am sin
mπx

l
. �

8. (a) If f is even, f(−x) = f(x). Differentiating both sides gives −f ′(−x) = f ′(x), so f ′(−x) = −f ′(x),
showing f ′ is odd. If f is odd, f(−x) = −f(x). Differentiating both sides gives −f ′(−x) = −f ′(x),
so f ′(−x) = f ′(x), showing f ′ is even.

(b) If f is even, consider
∫
f(−x)dx =

∫
f(x)dx. Via substitution, u = −x, we have −

∫
f(u)du =∫

f(x)dx. So if ignoring te constant of integration, F (−x) = −F (x), showing F is odd, where F
is an antiderivative of f .Similarly, for f odd, we have

∫
f(−x)dx = −f(x)dx, so F (−x) = F (x),

showing F is even. �

10. (a) If φ is continuos on (0, l), φodd is continuous on (−l, l) if and only if lim
x→0+

φ(x) = 0.

(b) If φ(x) is differentiable on (0, l), φodd is differentiable on (−l, l) if and only if lim
x→0+

φ′(x) exists, since

φ′odd is an even function, so the only thing to avoid is an infinite discontinuity at x = 0.
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(c) If φ is continuos on (0, l), φeven is continuous on (−l, l) if and only if lim
x→0+

φ(x) exists, since the only

thing to avoid is an infinite discontinuity at x = 0.

(d) If φ(x) is differentiable on (0, l), φeven is differentiable on (−l, l) if and only if lim
x→0+

φ′(x) = 0 , since

φ′even is an odd function. �

Exercise 5.3

3. Since X(0) = 0, by the odd extension x(−x) = −X(x) for −l < x < 0, then X satisfies X ′′ + λX = 0 ,
X ′(−l) = X ′(l) = 0. Hence,

λ = [(n+
1

2
)π]2/l2, Xn(x) = sin[(n+

1

2
)πx/l], n = 0, 1, 2, . . .

Thus we botain the general formula to this equation

u(x, t) =
∞∑
n=0

[An cos
(n+ 1

2)πct

l
+Bn sin

(n+ 1
2)πct

l
] sin

(n+ 1
2)πx

l
.

By the boundry condition, we obtained that Bn are all zero, while An = 2
l

∫ l
0 sin

(n+ 1
2
)πx

l · x dx =

(−1)n 2l
(n+ 1

2
)2π2 .

5(a). Let u(x, t) = X(x)T (t), then
−X ′′(x) = λX(x),

X(0) = 0, X ′(l) = 0.

By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence,
there are only positive eigenvalues.
Let λ = β2, β > 0, then we have

X(x) = A cosβx+B sinβx.

Hence the bounndary condtions imply

A = 0, Bβ cosβl = 0.

β =
(n+ 1

2)π

l
, n = 0, 1, 2, . . .

So the eigenfunctions are

Xn(x) = sin
(n+ 1

2)πx

l
, n = 0, 1, 2, . . . �

6. Let X ′(x) = λX(x), λ ∈ C, then
X(x) = eλx.

By the boundary condition X(0) = X(1), we have

eλ = 1.

Hence,
λn = 2nπi, Xn(x) = e2nπxi, n ∈ Z.

Since, if m 6= n, ∫ 1

0
Xn(x)Xm(x)dx =

∫ 1

0
e2(n−m)πxidx = 0.

Therefore, the eigenfunctions are orthogonal on the interval (0, 1). �
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8. If
X ′1(a)− aaX1(a) = X ′2(a)− aaX2(a) = 0,

and
X ′1(b) + abX1(b) = X ′2(b) + abX2(b) = 0,

then

(−X ′1X2 +X1X
′
2)|ba = −X ′1(b)X2(b) +X1(b)X

′
2(b) +X ′1(a)X2(a)−X1(a)X ′2(a)

= abX1(b)X2(b)−X1(b)abX2(b) + aaX1(a)X2(a)−X1(a)aaX2(a) = 0. �

9. For j = 1, 2, suppose that

Xj(b) = αXj(a) + βX ′j(a)

X ′j(b) = γXj(a) + δX ′j(a).

Then,

(X ′1X2 −X1X
′
2)|ba = X ′1(b)X2(b)−X1(b)X

′
2(b)−X ′1(a)X2(a) +X1(a)X ′2(a)

= [γX1(a) + δX ′1(a)][αX2(a) + βX ′2(a)]

− [αX1(a) + βX ′1(a)][γX2(a) + δX ′2(a)]−X ′1(a)X2(a) +X1(a)X ′2(a)

= (αδ − βγ − 1)X ′1(a)X2(a) + (1 + βγ − αδ)X1(a)X ′2(a)

= (αδ − βγ − 1)(X1X2)
′|x=a.

Therefore, the boundary conditions are symetric if and only if αδ − βγ = 1. �

12. By the divergence theorem,

f ′g|ba =

∫ b

a
(f ′(x)g(x))′dx =

∫ b

a
f ′′(x)g(x) + f ′(x)g′(x)dx,

∫ b

a
f ′′(x)g(x)dx = −

∫ b

a
f ′(x)g′(x)dx+ f ′g|ba. �

13. Substitute f(x) = X(x) = g(x) in the Green’s first identity, we have∫ b

a
X ′′(x)X(x)dx = −

∫ b

a
X ′2(x)dx+ (X ′X)|ba ≤ 0.

Since −X ′′ = λX, so

−λ
∫ b

a
X2(x)dx ≤ 0.

Therefore, we get λ ≥ 0 since X 6≡ 0. �

Exercise 5.4

1. The partial sum is given by

Sn =
1− (−1)nx2n

1 + x2
.

(a) Obviously for any x0 fixed, Sn → 1
1+x20

. Thus it converges to 1
1+x2

pointwise.

(b) Let xn = 1− 1
n , then x2n → e−2. Thus it does not converge uniformly.
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(c) It will converge to S(x) = 1
1+x2

in the L2 sence since∫ 1

−1
|Sn − S|2dx =

∫ 1

−1

x4n

(1 + x2)2
dx

≤
∫ 1

−1
x4ndx

≤ 2

4n+ 1
→ 0 as n→∞. �

2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page
125. �

3. (a) For any fixed point x0, WLOG, we assume x0 <
1
2 . Then there is N0 such that for n > N0,

x0 <
1

2
− 1

n
,

which implies that fn(x0) ≡ 0. Thus fn(x)→ 0 pointwisely.

(b) Let xn = 1
2 −

1
n , then fn(xn) = −γn → −∞, which implies that the convergence is not uniform.

(c) By direct computation, we have∫
f2n(x)dx =

∫ 1
2

1
2
− 1

n

γ2ndx+

∫ 1
2
+ 1

n

1
2

γ2ndx =
2γ2n
n
.

For γn = n
1
3 , ∫

f2n(x)dx = 2n−
1
3 → 0 as n→∞.

(d) By the computation in (c), for γn = n,∫
f2n(x)dx = 2n→∞ as n→∞. �

4. For odd n, ∫ 1
4
+ 1

n2

1
4
− 1

n2

12dx =
2

n2
→ 0.

For even n, ∫ 3
4
+ 1

n2

3
4
− 1

n2

12dx =
2

n2
→ 0.

Thus, for any n,

‖gn(x)‖2L2 =
2

n2
→ 0 as n→∞. �

5. (a) We see that A0 = 2
3

∫ 2
1 dx = 4

3 and Am = 2
3

∫ 3
2 cos mπx3 dx = − 2

mx sin mπ
3 . So, the first four nonzero

terms are 4
3 , −

√
3
pi cos πx3 , −

√
3

2π cos 2πx
3 and

√
3

4π cos 4πx
3 .

(b) We can express φ(x) = A0
2 +

∑∞
n=1(An cos nπx3 +Bn sin nπx

3 ). by Theorem 4 of Sectiion 4, since φ(x)
and its derivative is piecewise continuous, so we get the fourier series will converge to f(x) except at
x = 1, while the value of this series at x = 1 is 1

2 .

(c) By corollary 7, we see that it converge to φ(x) in L2 sense.
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(d) Put x = 0, we see that the sine series vanish, it turns out to be that φ(0) = 2
3−
√
3
π

∑
1≤m<∞,m 6=3n

(−1)[
m
3 ]

m cos mπ03 ,

thus we obtain the sum of thee series is 2π
3
√
3
. �

6. The series is cosx =
∑∞

n=1 an sinnx. If n > 1,

an =
2

π

∫ π

0
cosx sinnxdx = − 1

π
[
cos(n+ 1)x

n+ 1
+

cos(n− 1)x

n− 1
]
∣∣∣π
0

=
2n(1 + (−1)n)

(n2 − 1)π
.

If n = 1, a1 = 0. The sum series is 0 if x = −π, 0, π. By Theorem 4 in Section 4, the sum series converges
to cosx pointwisely in 0 < x < π, and to − cosx for −π < x < 0. �

7. (a) Obviously φ(x) is odd. Thus, its full Fourier series is just the Sine Fourier series, i.e.

∞∑
n=1

Bn sinnπx,

where Bn satisfies

Bn =

∫ 1

−1
φ(x) sinnπxdx =

2

nπ
.

(b) By (a), the first three nonzero terms are

2

π
sinπx,

1

π
sin 2πx,

2

3π
sin 3πx.

(c) Since ∫ 1

−1
|φ(x)|2dx = 2

∫ 1

0
(1− x)2dx ≤ 2,

it cconverges in the mean square sense according to Corollary 7.

(d) Since φ(x) is continuous on (−1, 1) except at the point x = 0. Therefore, Theorem 4 in Section 4
implies it converges pointwisely on (−1, 1) expect at x = 0.

(e) Since the series does not converge pointwise, it does not converge uniformly.

Exercise 5.6

1. (a) (Use the method of shifting the data.)
Let v(x, t) := u(x, t)− 1, then v solves

vt = vxx, vx(0, t) = v(1, t) = 0, and v(x, 0) = x2 − 1.

By the method of seperation of variables, we have

v(x, t) =

∞∑
n=0

Ane
−(n+ 1

2
)2π2t cos[(n+

1

2
)πx],

where

An = (−1)n+14(n+
1

2
)−3π−3.

Hence,

u(x, t) = 1 +
∞∑
n=0

Ane
−(n+ 1

2
)2π2t cos[(n+

1

2
)πx],

where An is as before.
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(b) 1. �

2. In the case j(t) = 0 and h(t) = et, by (10) and the initial condition un(0) = 0,

un(t) =
2nπk

(λnk + 1)l2
(et − e−λnkt).

Therefore,

u(x, t) =

∞∑
n=1

2nπk

(λnk + 1)l2
(et − e−λnkt) sin

nπx

l
. �

5. It is easy to check that
et sin 5x

1 + 25c2
solves

vtt = c2vxx + et sin 5x, and v(0, t) = v(π, t) = 0.

Using the method of shifting the data, we have

u(x, t) =
et sin 5x

1 + 25c2
+

∞∑
n=1

(An cos(nct) +Bn sin(nct)) sin(nx),

where

An = − 2

π

∫ π

0

1

1 + 25c2
sin 5x sinnx dx =

−
1

1 + 25c2
n = 5

5 otherwise
;

Bn =
2

ncπ

∫ π

0
[sin 3x− 1

1 + 25c2
sin 5x] sinnx dx

=


1
3c n = 3

− 1

5c(1 + 25c2)
n = 5

0 otherwise

.

So the formula of the solution can be simplfied as

u(x, t) =
1

3c
sin 3ct sin 3x+

1

1 + 25c2

(
et − cos 5ct− 1

5c
sin 5ct

)
sin 5x. �

8. (Expansion Method) Let

u(x, t) =

∞∑
n=1

un(t) sin
nπx

l
,

∂u

∂t
(x, t) =

∞∑
n=1

vn(t) sin
nπx

l
,

∂2u

∂x2
(x, t) =

∞∑
n=1

wn(t) sin
nπx

l
.

Then

vn(t) =
2

l

∫ l

0

∂u

∂t
sin

nπx

l
dx =

dun
dt

,

wn(t) =
2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx =

dun
dt

,

= −2

l

∫ l

0
(
nπ

l
)2u(x, t) sin

nπx

l
dx+

2

l
(ux sin

nπx

l
− nπ

l
u cos

nπx

l
)
∣∣∣l
0

= −λnun(t)− 2nπl−2(−1)nAt,

7
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where λn = (nπ/l)2. Here we used the Green’s second identity and the boundary conditions. Hence, by
the PDE ut = kuxx and the initial condition u(x, 0) = 0, we get

dun
dt

= k[−λnun(t)− 2nπl−2(−1)nAt],

un(0) = 0.

Hence,

un(t) = (−1)n+12nπl−2A[
t

λn
− 1

λ2nk
+
e−λnkt

λ2nk
].

Therefore,

u(x, t) =
∞∑
n=1

(−1)n+12nπl−2A[
t

λn
− 1

λ2nk
+
e−λnkt

λ2nk
] sin

nπx

l
,

where λn = (nπ/l)2.
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