Previous eg:
$$f(x,y) = x \text{Ain } y + y^2 e^{2x}$$

 $\Rightarrow f_{xy} = \cos y + 4y e^{2x} = 5yx$

$$\Rightarrow (3^{rd} nder) \quad f_{xyx} = (f_{xy})_x = 8 y e^{2x} = (f_{yx})_x = f_{yxx}$$

$$f_{xyy} = (f_{xy})_y = -Ainy + 4e^{2x} = (f_{yx})_y = f_{yxy}$$

$$\vdots \quad (E_x: other 3^{rd} ader partial derivations)$$

One can calculate similarly up to any order

Question Is it always true that $f_{xy} = f_{yx}$?

Answer: No.

Counter example:

$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

By defaition,

$$f_{xy}(0,0) = (f_x)_y(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h}$$

: we need to colculate the 1St order partial desirative $f_X(0, h)$ and $f_X(0, 0)$.

For
$$(0,t)$$
, $\int_{X}(x,y) = \frac{\partial}{\partial x}\left(\frac{xy(x^2-y^2)}{x^2+y^2}\right)$

$$=\frac{(x^{2}+y^{2})(3x^{2}y-y^{3})-\chi y(x^{2}-y^{2})(2x)}{(x^{2}+y^{2})^{2}}$$

$$\Rightarrow \int_{X}(0,t) = \frac{-t^{S}}{t^{4}} = -h$$

For
$$(0,0)$$
, $f_{\times}(0,0) = \lim_{k \to 0} \frac{f(k,0) - f(0,0)}{k}$

$$=\lim_{k\to 0}\frac{0-0}{k}=0$$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_{x}(0,h) - f_{x}(0,0)}{h}$$

$$=\lim_{h\to 0}\frac{-h-0}{h}=-1$$

Similarly,
$$f_{yx}(0,0) = 1$$
 (Ex!)
(In easy way to see this make sense: $f(x,y) = -f(y,x)$)
Hence $f_{xy}(0,0) \neq f_{yx}(0,0)$!

Question: When do we have fxy = fyx?

Thm (Clairaut's Thon / Mixed Derivatives Thry)

Let
$$f: \Omega \to \mathbb{R}$$
 ($\Omega \subset \mathbb{R}^n$, open)

If fxy & fyx exiet and are continuous on 52, then

$$f_{xy} = f_{yx} \quad \text{on } \Omega$$
.

Actually, one can prove a stronger version:

Thm Let,
$$f: \Omega \to \mathbb{R}$$
 ($\Omega \subset \mathbb{R}^n$, open)

1. $\vec{a} \in \Omega$

If , $f \times y \in f \cdot y \times f \times f \cdot y \times$

then
$$\int_{xy} (\tilde{a}) = \int_{yx} (\tilde{a})$$
.

Recall

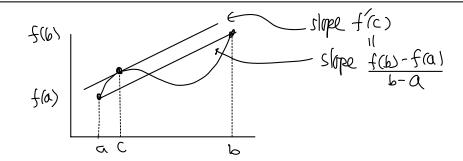
Mean Value Theorem for 1- variable Function

Let
$$f: [a,b] \rightarrow [R]$$
, continuous on $[a,b]$?

On the differentiable on (a,b) .

Then $\exists c \in (a,b)$ such that

$$\frac{f(b)-f(a)}{b-a} = f(c)$$

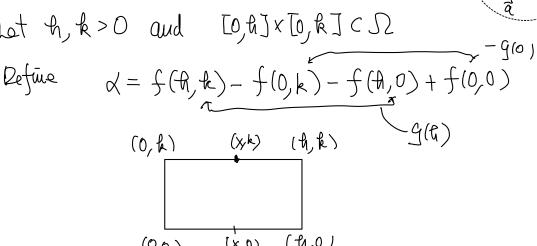


Pf of Clairant's Thm

We may assume $\vec{a} = (0,0) \in \mathbb{R}$

and need to show $f_{xy}(0,0) = f_{yx}(0,0)$.

Lat h, k>0 and [0,h]x[0,k] < \O



Let
$$g(x) = f(x, k) - f(x, 0)$$
, $0 \le x \le 4$
Then $d = g(k) - g(0)$
 $g(x) = f_x(x, k) - f_x(x, 0)$

Mean value Thm $\Rightarrow \exists f_1 \in (0, f_1)$ such that

$$\frac{g(k)-g(0)}{k} = g(k_1)$$
i.e.
$$\frac{d}{k} = f_{\times}(k_1,k_2) - f_{\times}(k_1,0)$$

 $\lambda = 4 \left[f_{\mathbf{x}}(\mathbf{A}_{1}, \mathbf{k}) - f_{\mathbf{x}}(\mathbf{A}_{1}, \mathbf{0}) \right]$

Mean Value Thin again > I & ∈ (0, k) such that $\frac{f_{\times}(h_{1},k)-f_{\times}(h_{1},0)}{k}=\left(f_{\times}\right)_{\mu}(h_{1},k_{1})$

$$f_{xy}(\hat{h}_{1}, k_{1}) = f_{yx}(\hat{h}_{2}, k_{2})$$

$$f_{zy}(\hat{h}_{1}, k_{1}) = f_{yx}(\hat{h}_{1}, k_{2})$$

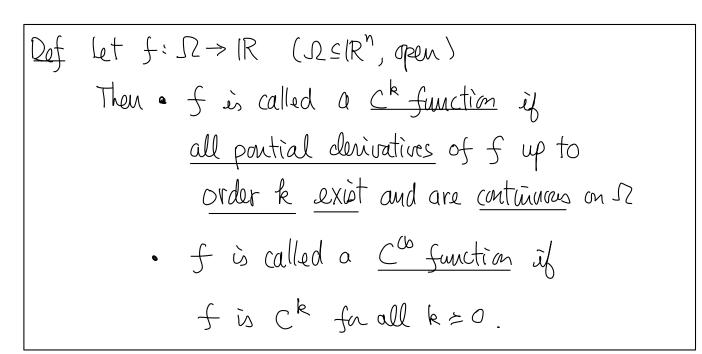
$$f_{zy}(\hat{h}_{1}, k_{1}) = f_{yx}(\hat{h}_{2}, k_{2})$$

$$f_{zy}(\hat{h}_{2}, k_{2}) = f_{zy}(\hat{h}_{2}, k_{2})$$

$$f_{zy}(\hat{h}_{2}, k_{2}) = f_{yx}(\hat{h}_{2}, k_{2})$$

$$f_{zy}(\hat{h}_{2}, k_{2}) = f_{yy}(\hat{h}_{2}, k_{2})$$

$$f_{zy}(\hat{h}_{2},$$



egs: (1) If f is continuous (0-order pointial derivative) then f is C^0 .

(2) If f is C2, then f, fx, fy, fxx, fxy=fyx, fyy exists are all cartinuous. (by Clairouts)

Polynomials, Rotional functions,

exponential, logarithm, trigonometric functions are C^{∞} function on their domains of definition.

I have their sum/clifference/product/
quotient/compositions

are C^{∞} function on their domains of definition.

explicit eg: e^{x^2-y} sin $(\frac{x}{y})$ (except y=0)

on domain of definition = IR^2 (**xaxio*)

Generalization of Clairaut's Thm

If f is Ck on on open set $SI \subseteq IR^n$, then the order of (taking) differentiation does not matter for all partial derivatives up to order k.

eg If
$$f(x,y,z)$$
 is C^3 , then
$$f_{xz} = f_{zx}, \quad f_{xyz} = f_{xzy} = f_{zxy} = f_{zyx}$$
etc.
$$= f_{yzx} = f_{yxz}$$

$$f_{xxy} = f_{xyx} = f_{yxx} \quad \text{and etc.}$$

(Mid term up to here, generalization of Clairaut's 7km)

Differentiability

if
$$f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 exists

which is equivalent to

Linear Approximation of f at the point a:

$$f(x) \approx f(\alpha) + f'(\alpha)(x-\alpha)$$

L(x) is the "best" linear function (deg < 1, poly) to approximate f(x) near a

Error | E(X) | L(x) = f(a) + f'(a)(x-a)

What does it muan by "best"?

$$\lim_{x \to 0} \left| \frac{f(x) - f(a)}{x - a} - f(a) \right|$$

Answer:
$$\lim_{x \to 0} \frac{|f(x) - L(x)|}{|x - \alpha|} = 0$$
 $\left(\lim_{x \to \alpha} \frac{|\xi(x)|}{|x - \alpha|} = 0\right)$

$$\left(\lim_{x \to a} \frac{|\xi(x)|}{|x-a|} = 0\right)$$

where f(x)-L(x) is usually referred on the "error" tem E(x) = f(x) - L(x).

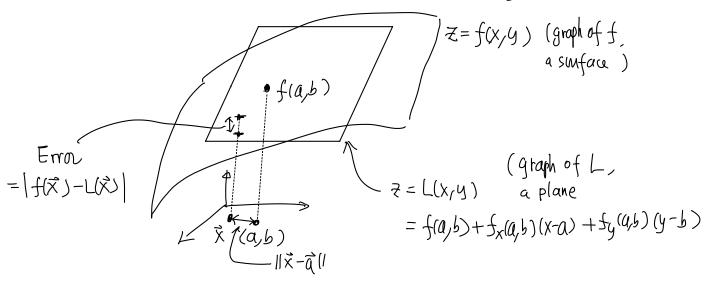
Higher dimensions analog:

linear function (deg < 1, poly)

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

and want

$$f(x,y) \simeq L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
.



Def: Let, of:
$$\Omega \to \mathbb{R}$$
, $\Omega \subseteq \mathbb{R}^n$, open $\vec{a} = (a_1, \dots, a_n) \in \Omega$

Then f es said to be differentiable at a

$$\hat{l}$$
 (1) $\frac{\partial f}{\partial x_{\hat{c}}}(\hat{a})$ exists for all $\hat{a}=1,\dots,n$

(2) In the linear approximation for $f(\vec{x})$ at \vec{a} $f(\vec{x}) = f(\vec{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\vec{a}) (x_i - a_i) + \mathcal{E}(\vec{x})$ $\underbrace{-(\vec{x})}_{L(\vec{x})} \text{ linear approx.}$ error term

the error term $\varepsilon(\hat{x})$ satisfies

$$\lim_{\vec{x} \to \vec{a}} \frac{|\mathcal{E}(\vec{x})|}{||\vec{x} - \vec{a}||} = 0$$

(A differentiable function is one which can be well approximated) by a linear function locally.

Remark:
$$L(\vec{x}) = f(\vec{a}) + \sum_{\vec{k}=1}^{n} \frac{\partial f}{\partial x_i} (\vec{a}) (x_i - a_i)$$

Slope of fin

 x_i -direction at \vec{a}

•
$$L(\vec{x})$$
 is a deg ≤ 1 polynomical
• $L(\vec{a}) = f(\vec{a})$
• $\frac{\partial L}{\partial x_i}(\vec{a}) = \frac{\partial f}{\partial x_i}(\vec{a})$ (Easy Ex!)

•
$$\frac{\partial L}{\partial x_i}(\vec{a}) = \frac{\partial f}{\partial x_i}(\vec{a})$$
 (Easy Ex!)

• The graph of $y = L(\vec{x})$ is a n-plane taugent to the graph of y = f(x) (which is a surface) at the point $\vec{X} = \vec{a}$.

$$\underline{ey} 1 : f(x,y) = x^2y$$

- (1) Show that f is differentiable at (1,2)
- (2) Approximate f(1,1,1.9) using linearization, f(1,2)(3) Find tougent plane of z=f(x,y) at (1,2,2).

Solu: (1)
$$\frac{2f}{2x} = 2xy$$
, $\frac{2f}{2y} = x^2$
 $\frac{2f}{2x}(1,2) = 4$, $\frac{2f}{2y}(1,2) = 1$

.'. The linearization at
$$(1,2)$$
 is

$$L(x,y) = f(1,2) + \frac{2}{2x}(1,2)(x-1) + \frac{2}{2y}(1,2)(y-2)$$

$$= 2 + 4(x-1) + (y-2) (= 4x + y - 2)$$

with error term
$$E(x,y) = f(x,y) - L(x,y)$$

$$= x^{2}y - [2 + 4(x-1) + (y-2)]$$

$$\lim_{(x,y) \to (1,2)} \frac{|E(x,y)|}{|(x,y) - (1,2)|}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|(x-1)^{2} + (y-2)^{2}}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|x-y-2|}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|x-y-2|}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|x-y-2|}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|x-y-2|}$$

$$\lim_{(x,y) \to (1,2)} \frac{|x^{2}y - 2 - 4(x-1) - (y-2)|}{|x-y-2|}$$

$$=\lim_{(x,y)\to(1,2)}\frac{|x^2y-2-4(x-1)-(y-2)|}{\int (x-1)^2+(y-2)^2} \qquad \left(\begin{array}{c} bt & b=x-1\\ b=y-2 \end{array}\right)$$

$$= \lim_{(h,k)\to(0,0)} \frac{|(1+h)^{2}(k+z)-2-4h-k|}{|h|^{2}+k^{2}}$$

$$= \lim_{(h,k)\to(0,0)} \frac{|h^2k + zhk + zh^2|}{\int h^2k^2 + k^2} \qquad (ut) h = hand)$$

$$=\lim_{r\to 0}\frac{\left[r^{3}\cos^{2}\theta \sin\theta+2r^{2}\cos\theta\right]}{r}$$