
MATH 1510 Chapter 4

4.1 First principle
Consider the graph of the function f(x) = x2 What is the slope of the tangent at
the point (1, 1)?

A good starting point would be to approximate it by secant lines:

Secant line with Slope

(2, f(2))
f(2)− f(1)

2− 1
= 3

(1.5, f(1.5))
f(1.5)− f(1)

1.5− 1
= 2.5

(1.1, f(1.1))
f(1.1)− f(1)

1.1− 1
= 2.1

(0.9, f(0.9))
f(0.9)− f(1)

0.9− 1
= 1.9

Secant Lines

Hence, slope of the tangent of y = f(x) at (1, f(1)) should be:

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

(1 + h)2 − 1

h
= 2
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(The secant lines in Figure 4.1 correspond to h with values 1, 0.5, 0.1, −0.1.)

Definition 4.1. The derivative of a function f(x) at a point x = a is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a

Open in browser

Example 4.2. Find f ′(a) if f(x) = x2.

4.2 Differentiability
We say that a function f(x) is differentiable at a point x = a if the limit

lim
h→0

f(a+ h)− f(a)

h

exists. If so, such limit is denoted by f ′(a) or
dy

dx

∣∣∣∣
a

.

Like limit, we also have one-sided derivatives:

Definition 4.3. • Left hand derivative

Lf ′(a) = lim
h→0−

f(a+ h)− f(a)

h

• Right hand derivative

Rf ′(a) = lim
h→0+

f(a+ h)− f(a)

h

Geometrically, they may be viewed as the slopes of the tangents on the left
and right, respectively:
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Proposition 4.4. A function f is differentiable at a if and only if Lf ′(a), Rf ′(a)
both exist and are equal.

If so, then:

f ′(a) = Lf ′(a) = Rf ′(a) = slope of the tangent at a.

Proof of Proposition 4.4. By definitions and the corresponding properties of one-
sided limits.

Definition 4.5. • We say that f(x) is differentiable on (a, b) if f(x) is differ-
entiable at c for any c ∈ (a, b).

• We say that f(x) is differentiable on [a, b) if f(x) is differentiable on (a, b)
and at a, in the sense that Rf ′(a) exists.

• We say that f(x) is differentiable on (a, b] if f(x) is differentiable on (a, b)
and at b, in the sense that Lf ′(b) exists.

• We say that f(x) is differentiable on [a, b] if f(x) is differentiable on (a, b)
and at both a, b.

Example 4.6. For the function:

f(x) = |x|,

we have:

Lf ′(0) = lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

−h

h
= −1

Rf ′(0) = lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0−

h

h
= 1

Therefore, the function is not differentiable at 0.
(One can show that f(x) is differentiable on (−∞, 0) ∪ (0,+∞).)

Example 4.7. Is the function:

f(x) =

{
x3 if x < 0

x2 if x ≥ 0

differentiable at 0?

It’s tempting to say that Rf ′(0) = 0 for the function f(x) = x2 because
f ′(x) = 2x. But in general we cannot assume that:

L′f(a) = lim
x→a−

f ′(x) or R′f(a) = lim
x→a+

f ′(x).
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Consider the function:

f(x) =

{
x2 sin

(
1
x

)
if x ̸= 0

0 if x = 0

Then, Rf ′(0) = 0, but limx→0+ f ′(x) DNE.
Differentiability is stronger than continuity:

Theorem 4.8. If a function f is differentiable at a, and it is continuous at a.

(The converse does not hold in general: f(x) = |x| is continuous at 0, but not
differentiable at 0)

Proof of Theorem 4.8. Since g(x) = x− a is continuous over R,

lim
x→a

(f(x)− f(a))= lim
x→a

f(x)− f(a)

x− a
(x− a)

= f ′(a)g(a)

= 0

=⇒ lim
x→a

f(x)= f(a).

4.3 Derivative function and basic rules
By considering the slopes of the tangents at different points (assuming differen-
tiability), we can consider the derivative of a function f(x) as a function:

f ′ : x 7→ f ′(x) = lim
h→0

f(x+ h)− f(x)

h

The domain of f ′ consists of those elements in the domain of f where f is differ-
entiable.

We call f ′(x) the derivative of f(x). It is also denoted by:

dy

dx
,

d

dx
f(x), Dxf(x)

Example 4.9. Find f ′(x) if f(x) = sin x.

Proposition 4.10. • If f , g are differentiable at a, then: f ± g, f · g and
f

g
(if

g(a) ̸= 0) are all differentiable at a.
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• If f is differentiable at a and g is differentiable at f(a), then g ◦ f is differ-
entiable at a

(Some elementary functions are not differentiable at some points in their do-
mains, e.g., the domain of x

1
3 is R, but it’s not differentiable at 0.)

Theorem 4.11. For any differentiable functions f, g and constants a, b ∈ R,

• (Linearity):

(af(x) + bg(x))′ = af ′(x) + bg′(x)

• Product Rule:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

• Quotient Rule: (
f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

g(x)2

if g(x) ̸= 0.

• Chain Rule:

d

dx
(g ◦ f)(x) = g′(f(x)) · f ′(x)

Proof of Theorem 4.11. See Proposition 3 in Appendix 2.
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4.4 Derivatives of elementary functions
Theorem 4.12 (Power Rule). For any constant a ∈ R,

d

dx
(a) = 0,

d

dx
(x) = 1,

d

dx
(xa) = axa−1

Proof of Power Rule. If a is a positive integer, then:

d

dx
xa = lim

h→0

(x+ h)a − xa

h
(Let t = x+ h)

= lim
t→x

ta − xa

t− x

= lim
t→x

(t− x)(ta−1 + ta−2x+ · · ·+ txa−2 + xa−1)

t− x

= lim
t→x

(ta−1 + ta−2x+ · · ·+ txa−2 + xa−1)

= axa−1

If a is a negative integer, then xa =
1

x−a
, and the theorem follows from an appli-

cation of the qoutient rule.
If a is any real number, then for x > 0 we have:

xa = ea lnx.

Hence:

d

dx
(xa) =

d

dx
(ea lnx)

= ea lnx · a
x

(by the Chain Rule.)

= xa · a
x

= axa−1

(For derivatives of ex, lnx, see Propositions 4, 5 in Appendix 3)

Example 4.13. Find the derivative of:

•

f(x) = 3
√
x+

1

x
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•

f(x) =
x2 + 1

x+ 1

•

f(x) =
√
x2 − 1

Theorem 4.14 (Derivatives of Trigonometric Functions).

d

dx
(sinx) = cos x

d

dx
(cosx) = − sinx

d

dx
(tanx) = sec2 x

d

dx
(secx) = secx tanx

d

dx
(cscx) = − cscx cotx

d

dx
(cotx) = − csc2 x

Proof of Derivatives of Trigonometric Functions. (Sketch) The fact that:

d

dx
(sinx) = cos x

was handled in Example Example 4.9 . The derivative of cosx can be found by
considering

cosx = sin
(π
2
− x

)
The other four formulas can then be easily derived.

Theorem 4.15 (Derivatives of Exponential and Logarithmic Functions).

d

dx
(ex) = ex

d

dx
(ax) = (ln a)ax

d

dx
(lnx) =

1

x
d

dx
(loga x) =

1

(ln a)x

Proof of Derivatives of Exponential and Logarithmic Functions. (Sketch) For deriva-
tives of ex, lnx, see Propositions 4, 5 in Appendix 3. The derivatives of ax and
loga x can be derived easily from the facts that

ax = ex ln aand loga x =
lnx

ln a
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Example 4.16. Find the derivative of:

•

f(x) = sec x tanx

•

f(x) = log2(e
x + sinx)

•

f(x) = (x2 + 1)x

•

f(x) =


lnx if x ≥ 1

cos
(
πx
2

)
if 0 < x < 1

1− x2 if x ≤ 0

4.5 Implicit differentiation
Consider the equation

x2 + y2 = 2.

How to find the slope of the tangent at the point (1, 1)?
Method 1

y =
√
2− x2 (upper half)

y′ = −x(2− x2)−
1
2

y′(1) = −1

So, the slope of the tangent is −1.
What if we can’t solve for y?
Method 2
Consider y as a (differentiable) function of x : y = y(x):

x2 + y(x)2 = 2

d

dx
(x2 + y(x)2) =

d

dx
(2)

2x+ 2y(x)
d

dx
y(x) = 0 (by the Chain rule)

2x+ 2y(x)y′(x) = 0
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Therefore, y′ = −x

y
and

y′(1) = −1

1
= −1

This is what we called implicit differentiation.

Example 4.17. • Express y′ in terms of x, y if:

y3 + 7y = x3

• Find
dy

dx

∣∣∣∣
(0,1)

if:

y sinx = ln y + x

Theorem 4.18. Suppose f−1 exists for a function f around a point a, f(a) = b
and f, f−1 are differentiable at a, b respectively. Then

(f−1)′(b) =
1

f ′(a)

Proof of Theorem 4.18. See Theorem 8 in Appendix 2.

By the above rules, we can differentiate any complicated functions as long as
we know the derivatives of the elementary functions.

Theorem 4.19 (Derivatives of Inverse Trigonometric Functions).

d

dx
(arcsinx) =

1√
1− x2

d

dx
(arccosx) = − 1√

1− x2

d

dx
(arctanx) =

1

1 + x2

d

dx
(arcsecx) =

1

x
√
x2 − 1

d

dx
(arccscx) = − 1

x
√
x2 − 1

d

dx
(arccotx) = − 1

1 + x2
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Proof of Derivatives of Inverse Trigonometric Functions.

y = arcsinx

sin y = x

cos y =
dx

dy
dy

dx
=

1

cos y
=

1√
1− x2

Other formulas can be proved similarly.

4.6 Logarithmic differentiation
There is a trick called logarithmic differentiation that can sometimes simplify the
process of differentiation.

Example 4.20. Find the derivative of

y = e5x sin 2x cosx

Let’s take "ln" on both sides and use the properties of logarithm to simplify the
expression:

ln y = 5x+ ln(sin 2x) + ln(cos x)

Then we differentiate both sides with respect to x :

d

dx
(ln y) =

d

dx
(5x+ ln(sin 2x) + ln(cos x))

1

y
y′ = 5 +

2 cos 2x

sin 2x
+

− sinx

cosx

Hence,

y′ = y(5 + 2 cot 2x− tanx) = e5x sin 2x cosx(5 + 2 cot 2x− tanx)

Remark. One can also solve this problem by applying the product rule for three
terms:

(f · g · h)′ = f ′ · g · h+ f · g′ · h+ f · g · h′

Example 4.21. Find the derivative of

y = xx + sinx
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Applying "ln " directly will not help this time. So, instead, we handle the two
terms on the right separately:

y1 = xx

ln y1 = x lnx

d

dx
(ln y1) =

d

dx
(x lnx)

1

y1
y′1 = lnx+ 1

y′1 = xx(lnx+ 1)

y2 = sinx =⇒ y′2 = cosx

Hence,

y′ = y′1 + y′2 = xx(lnx+ 1) + cos x

Remark. One can also rewrite the expression as:

xx + sinx = ex lnx + sinx

and differentiate it directly.

Example 4.22. Find the derivative of:

•

y =

√
(x+ 1)(x+ 2)

(x− 1)(x− 2)

•

y = (cosx)sinx

4.7 Higher Order Derivatives
We can differentiate a function more than once (assuming differentiability):

d2y

dx2
=

d

dx

(
dy

dx

)
= y′′ = D2

xy

For any non-negative integer n,

dny

dxn
= y(n) = Dn

xy
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Remark. By convention,
d0y

dx0
= y(0) = y

Example 4.23. Find y(n) if y = sinx. Notice that

y(0) = sinx

y(1) = cosx

y(2) = − sinx

y(3) = − cosx

and y(4) = sinx = y(0). That is, it repeats every four times. Therefore,

y(n) =


sinx if n = 4m

cosx if n = 4m+ 1

− sinx if n = 4m+ 2

− cosx if n = 4m+ 3

for any non-negative integer m.

Example 4.24. Find
dy

dx

∣∣∣∣
(1,0)

and
d2y

dx2

∣∣∣∣
(1,0)

if

y3 + y = x3 − x
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