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Linear Algebra II
Solution to Homework 11

Sec. 6.5

2 Q: For each of the following matrices A, find an orthogonal or unitary matrix P and a
diagonal matrix D such that P*AP = D.

()
605 °5")

NN O
N O N
S NN

e )
[a—y [a—

Sol: (c¢) The characteristic polynomial of A is
2—-t)5—1t)—(3—3)(3+3i)=t*—Tt —8=(t—8)(t+1).

Hence, —1,8 are all the eigenvalues of A. Note that for any scalars a, b,

3 <1_+21 1_—1 1> <Z> _ <3 16% 3:33i> (Z) = (A—28I) <Z> =0

if and only if b = (1 + i)a. In particular, u = (1,1 + 4) is an eigenvector of A
corresponding to eigenvalue 8.

Jull = 1T+ (1 + )T+ 9 = V3.

On the other hand, for any scalars a, b,

(0 ) ) wen() -

if and only if @ = (i — 1)b. In particular, v = (i — 1,1) is an eigenvector of A
corresponding to eigenvalue —1.

loll = /G- DG = 1) +1T = V3.



Then

is a unitary matrix and

is a diagonal matrix such that P*AP = D.

The characteristic polynomial of A is
det | 2 —t 2| =(A-1)(2+1)>2

Hence, 4,1 are all the eigenvalues of A. It is clear that v = (1,1, 1) is an eigenvector
of A corresponding to eigenvalue 4.

Jul = V12 + 12 +12 = V/3.

Note that for any scalars a, b, c,
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if and only if a + b+ ¢ = 0. Then we see that v = (1,—1,0) is an eigenvector
of A corresponding to eigenvalue 1. We would like to find a further eigenvector
w = (a/,¥,) of A corresponding to 1 such that (v,w) =0, i.e. a’ —b = 0. Then
we see that w = (1,1, —2) is such a eigenvector.

ol| = /124 (=1)2 + 02 = V2.
Jw| = /12 +12 + (-2)2 = V6.

Then
1 L L
1 V2 V6
pP=—|1 -+ L
Bl 8
1 0 ~7
is a unitary matrix and
4 0 O
D=0 -2 0
0 0 -2

is a diagonal matrix such that P*AP = D.



(e) The characteristic polynomial of A is

2—t 1 1 2—t 1 1 4—t 1 1
det | 1 2—t 1 |=det|t—1 1—-t 0 |=det| 0 1—¢
12—t t—1 0 1—t 0 0 1-t
=(4—-t)(1 -1t

Hence, 4,1 are all the eigenvalues of A. It is clear that u = (1,1, 1) is an eigenvector
of A corresponding to eigenvalue 4.

Jul| = V12412 +12 = V3.

Note that for any scalars a, b, c,

1 1 a a
11 1] |(bsl=A-D(b] =0
1 1 c c

if and only if a + b+ ¢ = 0. Then we see that v = (1,—1,0) is an eigenvector
of A corresponding to eigenvalue 1. We would like to find a further eigenvector
w = (a/,V,c) of A corresponding to 1 such that (v,w) =0, i.e. ' =V = 0. Then
we see that w = (1,1, —2) is such a eigenvector.

loll = V124 (=1)? +0° = V2.
lwl| = /12 + 12 + (—2)2 = V6.

Then
1 L 1
1 V2 V6
P=—|1 & X
V3 2
1 0 ~7

is a unitary matrix and
4 0 0
D=10 10
0 01
is a diagonal matrix such that P*AP = D.

6 Q: Let V be the inner product space of complex-valued continuous functions on [0,1] with

(frg) = /f

Let h € V, and define T : V — V by T(f) = hf. Prove that T is a unitary operator if
and only if |h(t)| =1for 0 <t < 1.

the inner product

Sol: If T is unitary, we must have

0=|T(HI” - ||f||2 Jo IBRIf12dt = [y |f[de
= Jo (1= 1hP2) |y Pat
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Sol:

Sol:

Sol:

1
for all f € V. Pick f = (1—|h[*)2 and get 1 — |h|?> = 0 and so |h| = 1. Conversely, if
|h| = 1, we have

1 1
T 2_ 2: h2 Qd_ 2d
IO = I1£] /0||f\ ’ /Olfl ’
1
:/O (1—|hy2)|f|2dt:0

and so T is unitary.

: Prove that if T' is a unitary operator on a finite-dimensional inner product space V, then

T has a unitary square root; that is, there exists a unitary operator U such that T = UZ2.

By the Corollary 2 after Theorem 6.18 , we may find an orthonormal basis 8 such that

N O - 0
0 A

Ts=| ™
: .0
0 -~ 0 M\,

Also, since the eigenvalue \; has its absolute value 1, we may find some number p; such
that u? = \; and |u;| = 1. Denote

o 0 - 0
D 0 2
: .0
0 0 p

to be an unitary operator. Now pick U to be the matrix whose matrix representation
with respect to 8 is D. Thus U is unitary and U? = T.

: Let A be an n x n real symmetric or complex normal matrix. Prove that

n
det(A) = [\
i=1
where the \; ’s are the (not necessarily distinct) eigenvalues of A.

By Theorem 6.19 and Theorem 6.20 we know that A may be diagonalized as P*AP = D.
Here D is a diagonal matrix whose diagonal entries consist of all eigenvalues. Now we

have
n

det(A) = det (PDP*) = det(D) = [ [ A
i=1

: Suppose that A and B are diagonalizable matrices. Prove or disprove that A is similar

to B if and only if A and B are unitarily equivalent.

The necessity is false. For example, the two matrices < (1) _01 ) and

10N (1 1\ /1 -1\/11
00/ \o01 0 0 0 1
are similar. But they are not unitary since one is symmetric but the other is not.
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Sec. 6.6

2 Q:

Sol:

Sol:

Sol:

Let V=R2 W = span({(1,2)}), and 3 be the standard ordered basis for V. Compute
[T], where T is the orthogonal projection of V.on W. Do the same for V = R? and
W = span({(1,0,1)}).

We could calculate the projection of (1,0) and (0, 1):

(1,0).(L2) | ) Ly

1,22
nd (0.1),(1,2) >
mapE =502

respectively by Theorem 6.6, So we have

1/1 2
Tls =5 ( 2 4 ) '
On the other hand, we may do the same on (1,0,0), (0,1,0), and (1,0,0) with respect to
the new subspace W = span({(1,0,1)}). First we compute

<(17010)7(17071)> _ l O
1(1,0,1)]] VS T2
((0,1,0),(1,0,1)) _ 0
1(1,0,1)]|? e e
and (0,0, 1), (1,0, 1)) |
) 9 ) ) ) (1’0, 1) — 7(1707 1)‘
1(1,0,1)]| 2
Hence the matrix would be
1 1 01
T)g = 3 0 0O
1 01

: Let W be a finite-dimensional subspace of an inner product space V. Show that if T is

the orthogonal projection of V on W, then I — T is the orthogonal projection of V' on
W

Fix v € V. Then 3 unique w € W and unique u € W+ such that v = w+u. As T
is the orthogonal projection of V on W, w = T'(v) and thus u = v —w = (I — T)(v).
Therefore, I — T is a projection of V on W+ along W = (W+)+, which implies that
I — T is the orthogonal projection of V on W+,

: Let T' be a normal operator on a finite-dimensional inner product space. Prove that if

T is a projection, then T is also an orthogonal projection.

Let V' be the domain of the operator 7. Fix u € N(T') and w € R(T"). We claim that
(u,v) = 0. If either u or w is the zero vector, then we are done. Now suppose u # 0 and
w# 0. As T(u) = 0 and T'(w) = w, u is indeed an eigenvector of T' corresponding to
the eigenvalue 0, while w is an eigenvector of T' corresponding to the eigenvalue 1. By
Theorem 6.15, (u,w) = 0. Therefore, N(T") and R(T") are orthogonal, whence T is an
orthogonal projection.



7 Q: Let T be a normal operator on a finite-dimensional complex inner product space V. Use
the spectral decomposition \iT1 + AoT5 + - - - + AT of T' to prove the following results.

(a) If g is a polynomial, then

(b) If T™ = Ty for some n, then T = Tj.

(c¢) Let U be alinear operator on V. Then U commutes with 7" if and only if U commutes
with each T;.

) There exists a normal operator U on V such that U? = T.

) T is invertible if and only if \; #0 for 1 <i < k.

) T is a projection if and only if every eigenvalue of T is 1 or 0.
) T'= —T~ if and only if every A; is an imaginary number.

) Note that 70 =1 =% T;. vj e Z+,

k k
szz---Z)\il---)\ijTil“' Z Z)\ c 1 1122511i3"'5i1ijTil

i1=1  ij= i1=1 =1

Write g(t) = ant™ + - - - + a1t + ag, where ayg, ...,a, € C. Then

k k k
g(T) :anT”—i—‘---l—alT—i-agI:anZ)\?ﬂ-—l—~~alz)\iTi—|—a02Ti
=1 = =
k k
= (an X!+ ar ki +a0)T; = Y g(\)T;
=1 =1

(b) Suppose T™ = Ty for some n. Then Zle ATy = Tp. It implies that A} = -+ =
Ap =0, whence Ay = --- = A\ = 0. Therefore, T' = Tj,.

(¢) (=) Since T, U commute, a T-invariant subspace of V' is also U-invariant. Fixv € V.
Vi € {1,...,k}, we have

TiU(v) + (T = (i = NT)U(v) = TU(v) = UT'(v) = UTi(v) + U(T — (X = 1)Ti)(v)

and therefore T;U (v) = UT;(v).
(<) We have

UTl'=MUTy + -+ A\ UT, = \\ThWU + -+ N, U =TU.

(d) Vi € {1,...,k}, choose p; € C such that u? = \;. Define U = Ty + - - - + T By
Gram-Schmidt Orthogonalization Process and Theorem 6.16, U is normal. Using
the result of (a), U? = 3Ty + -+ p3 T = MTh + - + MT = T.



10

Sol:

(¢) (=) In particular, N(T) = {0}. Then 0 is not an eigenvalue of T', whence \; # 0 for
1< <Ek.
(«<=) It means that 0 is not an eigenvalue of T'. So if v € N(T'), then T'(v) = 0 = 0-v,
forcing that v = 0. 7' is then one-to-one. As V is finite-dimensional, T is also onto.
Then T is invertible.

(f) (=) Suppose A € C is an eigenvalue of 7. Then Jv € V such that v # 0 and
T(v) = M. As T is a projection, \v = T'(v) = T?(v) = A\v, whence A(\ — 1)v = 0.
As v # 0, A\(A — 1) = 0, whence either A =1 or A = 0.
(<) Case (1): Suppose 1 is an eigenvalue of T. Then without loss of generality we
can assume A\; = 1 and A; =0 for any 1 < i < k. Then T' =T} is a projection.
Case (2): Suppose 1 is not eigenvalue of 7. Then without loss of generality we can
assume A; = 0 for any 1 < ¢ < k and hence T is the zero transformation, which is a
projection as well.

(2) (=) Fixi € {1,...,k}. Fix v; with v; # 0 and T'(v;) = A\jv;. Then T*(v;) = A\jv;. We
have \jv; = T(v;) = —T*(v;) = —\v;. But v; # 0. Thus, \; = —);. It means that
A; is an imaginary number.
(<) Fix v € V. Then vy, ...,vx € V such that T'(v;) = \jv; Vi € {1,....,k} and
v=uv1 + -+ vg. We have

~T*(v) = =T*(v1) — - = T"(vg) = —A1v1 — -+ — Mg = A\v1 + - - + Mo = T(v).

Therefore, T' = —T*.

: Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional

complex inner product space V such that TU = UT. Prove that there exists an or-
thonormal basis for V' consisting of vectors that are eigenvectors of both T' and U.

Let A1, ..., A be all the distinct eigenvalues of T'. Vi € {1, ..., k}, let Ej, be the eigenspace
of T corresponding to the eigenvalue \;. By Theorem 6.16, we have an orthogonal
decomposition

V =Ey @-- ®Ey,.

Fix ¢ € {1,...,k}. Since TU = UT, E,, is U-invariant. Note that E}, is the eigenspace of
T* corresponding to eigenvalue \;. We also have T*U* = (UT)* = (TU)* = U*T* and
thus E), is also U*-invariant. Then by Exercise 7 in Sec. 6.4, Ug, is normal because U
is normal. By Theorem 6.16, 3 orthonormal basis {vj;, ..., Vin, } of ZUEA_ for Ey, such that
Vii, ..., Vin, are eigenvectors of UEM' Then '

ﬁ — {Ulla <oy Ulngy -5 VEL, '-~7Uknk}

is an orthonormal basis for V' such that Vi € {1,...,k}, Vj € {1,...,n;}, v is an eigen-
vector of both U and T.



