
Some Topics in Multidimensional Conservation Laws

§1.1 Introduction

∂tu + div F (u) = S(u, x , t)
t ∈ R+

1 , x ∈ Ω ⊂ Rm, u ∈ Rn, F = (F , (u), · · · ,Fm(u)), Fi (u) ∈ Rn (1.1)

(1.1) is a system of first order quasilinear equations. It is called a
system of balance laws.

u: density vector, F (u): flux vector, S(u; x , t): external forcing. In
the case without external forces,

∂tu +∇ · F (u) = 0∫
Ω u(x , t)dx = const.

which is called a system of conservation laws.



Example: Compressible Euler System ∂tρ+ div(ρu) = 0 conservation of mass
∂t(ρu) + div(ρu ⊗ u + pI ) = 0 conservation of momentum
∂t(ρE ) + div(ρuE + pu) = 0 conservation of energy

(1.2)

ρ(x , t): density, u(x , t): velocity vector, p: pressure, E : total

energy, E = e + 1
2 |u|

2, e: internal energy, |u|2
2 : kinetic energy

Equation of states: T : temperature, S : entropy

TdS = de − p/ρ2dρ

In particular, for ideal polytropic fluids (with R = 1)

e(ρ, p) =
p

ρ(γ − 1)
=

T

γ − 1
e

s
γ−1 ργ = P = pρ−γ



Definition 1.1 Set Aj(u) = ∇Fj(u), n × n matrix, and let
w ∈ Rn \ {0} be any given direction. (1.1) is said to be hyperbolic
in the direction w , if

n∑
j=1

wjAj(u)

has n real eigenvalues

λ1(w , u) ≤ λ2(w , u) ≤ · · · ≤ λn(w , u)

with a complete right eigenvectors

r1(w , u), r2(w , u), · · · , rn(w , u)

If (1.1) is hyperbolic in all directions, then (1.1) is said to be
hyperbolic.



Example: The compressible Euler system (1.2) is always hyperbolic
∀w ∈ Rn \ {0}.

Sound wave family λ±(u,w) = u · w ± c |w |, where

c =
√
γ(pρ ) =

√
∂ρP(ρ, s): sound speed.

Entropy wave family λ0(u,w) = u · w

(Vorticity wave family)



Definition 1.2 A bounded, measurable function u is called a weak
solution of (1.1) iff∫∫

{φtu +∇φ · F (u)φs}dxdt = 0 ∀φ ∈ c∞0

in 1-D without external force:∫
R

∫ t

0
(∂tφu + ∂xφF (u))dxdt = 0

[u] = u(x(t)+, t)− u(x(t)−, t)
[F (u)] = F (u(x(t)+, t))− F (u(x(t)−, t))



x(t)

Then
ẋ(t)[u] = [F (u)]

Rankine-Hugeniet condition



§1.2 Friedrichs Theory for Symmetric Hyperbolic Systems

Consider

∂tu +
m∑
j=1

Aj ∂xj u = 0, t > 0, x ∈ Rm (1.3)

u ∈ Rn, Aj : n × n smooth matrix.

Definition 1.3 System (1.3) is said to be symmetrizable, if ∃
smooth positive definite matrix Ã0, such that

(1) Ã0 > 0, Ã∗0 = Ã0

(2) Ãj = Ã0Aj is symmetric, i.e. Ã∗j = Ãj , j = 1, · · ·m

(3) Ã0 ∂tu +
∑m

j=1 Ãj ∂xj u = 0



Remark 1.1 If a system is symmetrizable, then it must be
hyperbolic, i.e. for any w ∈ Rm \ {0}, A = A(w) =

∑m
j=1 wj Aj

has n real eigenvalues

λ1(w) ≤ λ2(w) ≤ · · ·λn(w)

with a full set of right eigenvector

r1(w), r2(w), · · · , rn(w)
A(w)νi (w) = λi (w)ri (w), i = 1, · · · , n

Let the corresponding left eigenvector lk(w) be normalized so that

l∗k (w)A(w) = λk(w)l tk(w), l∗k (w)νj(w) = δkj



Example: Consider the 3-D compressible Euler System
Dtρ+ ρ div u = 0
ρDtu + ρ∇T + T∇ρ = 0
DtT + (γ − 1)T div u = 0

Dt = ∂t + u · ∇ material derivate.

If we linearize the system around any non-vacuum state, e.g.
(ρ0, 0,T0), then the linearized system is symmetrizable.

Ã0(ρ0, 0,T0) =


ρ−1

0 T0 0 0
0 ρ0I3 0

0 0
ρ0T−1

0

γ − 1





Energy Principle: Consider the Cauthy problem
m∑
j=0

Ãj ∂xj u + B(x , t)u = F , x0 = t

u(x0 = 0, x1, · · · , xm) = u0(x1, · · · , xm) = u0(x)

(1.4)

Assumptions:

(1) A = (Ã0, Ã1, · · · , Ãm) and B are smooth, F is also smooth.

(2) Ãj is symmetric, and Ã0 is positive definite.

E (t) = (Ã0u, u)

(w , υ) =

∫
Ω

w(x) · υ(x)dx =
n∑

j=1

∫
Ω

wj(x)υj(x)dx

||w ||0 = (w ,w)
1
2



Theorem 1.1 ∃ uniform constant c = c(Ã0) > 0, such that for
any smooth solution u(x , t), the following stability estimate holds

max
0≤t≤T

||u(t)||0 ≤ c−1 exp

(
1

2
c−1

∣∣∣div Ã + B + B∗
∣∣∣
L∞

T

)(
||u0||0 +

∫ T

0
||F (t)||0dt

)
(1.5)

here div Ã = ∂tÃ0 +
∑m

j=1 ∂xj Aj .

Remark 1.2 This simple energy principle guarantees the
well-posedness theory for such a linear system (Friedrichs).



Proof of (1.5)

d

dt
E (t) =

d

dt
(Ã0u, u) = (Ã0u, ∂tu) + (Ã0 ∂tu, u) + (∂tÃ0u, u)

= 2(Ã0 ∂tu, u) + (∂tÃ0u, u)

= 2(u, Ã0 ∂tu) + (∂tÃ0u, u)

= −2

u,
m∑
j=1

Ãj ∂xj u

− 2(u,Bu) + 2(u,F ) + (∂tÃ0u, u)

∂xj < u, Ãju > = < ∂xj u, Ãju > + < u, Ãj ∂xj u > + < u, ∂xj Ãju >

= 2 < u, Ãj ∂xj u > + < u, ∂xj Ãju >



so,

2(u, Ãj ∂xj u) = −(u, ∂xj Ãju) (with suitably B.C .)

Thus

d

dt
E (t) = (u, div Ãu)− 2(u,Bu) + 2(u,F )

= (u, (div Ã− (B + B∗))u) + 2(u,F )
c(u, u) ≤ E (t) ≤ c−1(u, u)

Then (1.3) is a consequence of Gronwall’s inequality.



§1.3 Local Smooth Solutions for the Cauchy problem in
Hs(Rm)

Consider
∂tu +∇x · F (u) = S(u, x , t)

 ∂tu +
m∑
j=1

∂xj Fj(u) = S(u, x , t)

u(x , t = 0) = u0(x)

(1.6)

F (u) = (F1(u), · · · ,Fm(u)) smooth over D domain in Rn.

Let D1 be a bounded open subset of D, D1 ⊂⊂ D ⇔ D̄1 ⊂ D,

u0(x) ∈ D̄1 (1.7)



Question: If u0 ∈ Hs(Rm), S(u0, x , t) ∈ Hs , s > m
2 + 1. Then can

we find u(x , t) ∈ C 1([0,T ]× Rm)?

Definition 1.4 The system (1.6) is said to be admit a convex
entropy extension if ∃ a convex entropy η(u) with corresponding
entropy flux q(u) = (q1(u), · · · , qm(u)) such that for all smooth
solutions u(x , t) to the system (1.6).

∂t η(u) +∇x · q(u) = ∇η(u) · S(u, x , t)

i.e.
∇u qj(u) = ∇u η(u) · ∇uFj(u), j = 1, · · · ,m



Remark 1.3 If the system in (1.3) admits a convex entropy
extension, then it is symmetrizable. In term of entropy variable,
U = ∇η(u), the system (1.6) is symmetric.

For smooth solution, the system (1.6) is equivalent to

∂tu +
m∑
j=1

Aj(u)∂xj u = S(u, x , t)

Aj(u) = ∇u Fj(u), j = 1, · · · ,m; n × n matrix

So instead of considering (1.1), we will consider the following
Cauchy problem A0(u) ∂tu +

m∑
j=1

Aj(u) ∂xj u = S(u, x , t)

u(x , t = 0) = u0(x)

(1.8)



where Ã = (A0,A1, · · · ,Am) satisfies the property that

A0 > 0, A∗j = Aj , j = 0, 1, · · · ,m (1.9)

Notations:

Hs(Rm) =

u ∈ L2(Rm), such that ||u||2s =

∫
Rm

∑
|α|≤s

|Dαu(x)|2 dx <∞


C([0,T ); Hs(Rm)) =

{
u(x , t); u(·, t) ∈ Hs , |||u|||s,T = max

0≤t≤T
||u(·, t)||s <∞

}



So the basic well-posedness theory is the

Theorem 1.2 Assume that

(1) (1.8) is symmetric, (1.9) holds.

(2) u0 ∈ Hs , s > m
2 + 1, u0(x) ∈ D̄1 ⊂⊂ D, ∀x .

Then

(i) ∃T = T (||u0||s ,D1) such that the Cauchy problem (1.8) has
a unique classical solution u(x , t) ∈ C 1([0,T ]× Rm). With
the properties that

u(x , t) ∈ D̄2 ⊂ D, ∀(x , t) ∈ Rm × [0,T ]

u(x , t) ∈ C ([0,T ],Hs) ∩ C 1([0,T ],Hs−1) (1.10)



(ii) (Continuation principle) Let T ∗ be the maximal time of
existence of regular solution as in (i). Suppose T∗ < +∞.
Then, either

limt→T∗ (|Du(·, t)|L∞ + |∂tu(·, t)|L∞) = +∞

(shock formation)
(1.11)

or for any compact subset k ⊂⊂ D, then u(·, t) escapes from
k as t → T−∗ (shell singularity).



Remark 1.4 There are two approaches. One is by T. Kato, ARMA
(1952) p.181-205. Another one is due to P. Lax, elementary
iteration scheme.

Proposition 1.1 Under the same assumptions in Theorem 1.2,
there exists a unique classical solution u(x , t) ∈ C 1(Rm × [0,T ])
to the problem (1.8) such that

u ∈ L∞([0,T ]; Hs(Rm)) ∩ Cw ([0,T ]; Hs(Rm)) ∩ Lip([0,T ]; Hs−1) (1.12)

Remark 1.5 Cw ([0,T ]; Hs(Rm)) means continuous in time with
values in Hs by weak topology, i.e. u ∈ Cw ([0,T ]; Hs)⇔ [u(s), ϕ]
is continuous on [0,T ] for any given ϕ ∈ H−s .



Proof of Proposition 1.1: The uniqueness is a simple
consequence of the energy principle, so we omit it. We will
concentrate on the existence and regularity.

Let Jε(x) be a Friedrichs mollifier, i.e. Jε(x) = ε−mj( xε ),
j ∈ C∞0 (Rm) supp j ⊂ B1(0),

∫
Rm j(x)dx = 1, j ≥ 0.

∀u ∈ Hs(Rm),

Jεu(x) = Jε ∗ u(x) =

∫
Rm

Jε(x − y)u(y)dy ,

Jεu ∈ Hs(Rm) ∩ C∞

Facts:
(1) ||Jεu − u||s → 0 as ε→ 0+.
(2) ||Jεu− u||0 ≤ Ĉε||u||1, ε ≤ ε0, Ĉ is a generic positive constant.



Step 1: Preparation of Initial data

 

Setting

εk = 2−kε0, uk
0 = Jεk u0, k = 0, 1, 2, · · · (1.13)

ε0 is a suitably small positive constant defined later.

u0 ∈ D̄1 ⊂ D

Thus one can choose another compact subset D2 such that

D̄1 ⊂⊂ D2, D̄2 ⊂⊂ D (1.14)



Claim: One can choose R and ε0 such that

D
D

D
1

2

(a) ||u − u0
0 ||s ≤ R ⇒ u ∈ D̄2 (1.15)

(b) ||u0 − uk
0 ||s ≤ C

R

4
, k = 0, 1, 2, 3, · · · (1.16)

here C (≤ 1) such that



CI ≤ A0(u) ≤ C−1I , ∀u ∈ D̄2 (1.17)

By sobolev’s imbedding’s theorem, |f |L∞ ≤ Cs ||f ||s .

||u − u0||s ≤ ||u − u0
0 ||s + ||u0

0 − u0||s
= ||u − u0

0 ||s + ||Jε0u0 − u0||s



Step 2: Iteration Scheme (By induction)

Set

• u0(x , t) = u0
0(x).

• suppose uj(x , t) has been defined for j = 0, 1, · · · , k , then we
define uk+1(x , t) to be the solution to the following problem A0(uk)∂tu

k+1 +
m∑
j=1

Aj(uk) ∂xj u
k+1 = S(uk , x , t)

uk+1(x , t = 0) = uk+1
0 (x)

(1.18)



By the linear theory, (1.18) has smooth classical solution
uk+1(x , t) defined on Rm × [0,Tk+1] where Tk+1 is such that

||uk+1 − u0
0 ||s,Tk+1

≤ R (1.19)

Two main tasks:

• one has to find a time interval [0,T∗] such that all uk(x , t)
can be defined Rm × [0,T∗], i.e. Tk+1 ≥ T∗, T∗ > 0,
k = 0, 1, · · · .

• uk(x , t)→ u(x , t) in appropriate topology.



Step 3: A priori estimate - boundedness in higher norm

Lemma 1.1 There exists L > 0, and T∗ > 0, independent of k,
such that for all k = −1, 0, 1, 2, · · ·

|||uk+1 − u0
0 |||s,T∗ ≤ R (1.20)

|||∂tuk+1|||s−1,T∗ ≤ L (1.21)



Proof: Set wk+1 = uk+1 − u0
0 , then A0(uk) ∂tw

k+1 +
m∑
j=1

Aj(uk)∂xj w
k+1 = Sk

wk+1(x , t = 0) = uk+1
0 (x)− u0

0(x) = wk+1
0 (x)

(1.22)

Sk = S(uk , x , t)−
m∑
j=1

Aj(uk) ∂xj u
0
0 (1.23)

Remark 1.6 The key estimate is (1.20), since the temporal
estimate (1.21) will follow from the system (1.18) with the help of
Moser-type calculus inequality.



Obviously, w 0 ≡ 0, (1.20) holds trivially.

By inductive assumption, (1.20) holds true for uk . For some T∗ to
be chosen, then uk ∈ D̄2.

So we can consider the following problem{
A0(u) ∂tw +

∑m
j=1 Aj(u) ∂xj w = S(u, x , t)

w(x , t = 0) = w0 ∈ D̄2
(1.24)

u ∈ C∞, w ∈ C∞, u ∈ D̄2

Since |||w |||s,T∗ = max0≤t≤T∗ ||w(·, t)||s , we need only to estimate
||Dαw(·, t)||2 ∀ 1 ≤ |α| ≤ s, t ∈ [0,T∗].



Set wα = DαW , |α| ≤ s. Then it follows from (1.24) that

A0 ∂twα +
m∑
j=1

Aj ∂xj wα = A0(u)Dα(A−1
0 S) + Sα = fα

Sα =
m∑
j=1

A0

[
(A−1

0 Aj)(u) ∂xj wα − Dα((A−1
0 Aj)∂xj w)

]
wα(x , t = 0) = Dαw0(x)

(1.25)



Claim: ∃C̄ = C̄ (D2, |||u|||s,T∗ ,R, s) such that ∑
1≤|α|≤s

||Sα||20

+

∑
|α|≤s

||A0Dα(A−1
0 S)||20

 ≤ C̄
(
1 + ||w ||2s

)
(1.26)

Then applying the energy inequality

Eα(t) ≤ exp

{
1

2
C−1|div A|L∞T∗

}(
E (0) +

∫ T∗

0
||fα||20 dt

)
Sum them up, then

C ||w(t)||2s ≤ exp
{

C−1|div A|L∞ T∗
}(

C̄ ||w(0)||2s +

∫ T∗

0

(
1 + ||w(t)||2s

)
ds

)



Now Grownwall inequality implies that

|||w |||s,T∗ ≤ C−1 exp
{

C̃ (1 + L)T∗
}(
||w0||s + Ĉ T∗

)
||w0||s = ||uk+1

0 − u0
0 ||s ≤ ||uk+1

0 − u0||s + ||u0
0 − u0||s ≤ C

R

4
+ C

R

4
=

CR

2

|||w |||s,T∗ ≤ exp
(

C̃ (1 + L)T∗
)(R

2
+ Ĉ T∗

)
≤ R

Note that T∗, L are independent of time.

It remains to prove the claim (1.26). To this end, we need some
elementary Moser-type calculus inequalities.



Proposition 1.2 The follow facts hold

(1) If u, υ ∈ Hs , s >
m

2
, then uυ ∈ Hs .

||uυ||Hs ≤ Cs ||u||s ||υ||Hs

(2) If u, υ ∈ Hs ∩ L∞, then u · υ ∈ Hs .

||Dα(uυ)||0 ≤ Cs (|u|L∞ ||Dsu||0 + |υ|L∞ ||Dsu||0)

for 1 ≤ |α| ≤ s

(3) u ∈ Hs , Du ∈ L∞, υ ∈ Hs−1 ∩ L∞, and |α| ≤ s.

||Dα(uυ)−uDαυ||0 ≤ Cs

(
|Du|L∞ ||Ds−1υ||0 + |υ|L∞ ||Dsu||0

)



(4) Assume that G (u) is a smooth function on a domain D, and
furthermore, u is a continuous function of (x , t) such that
u(x , t) ∈ D̄1 ⊂⊂ D and u ∈ Hs ∩ L∞. Then for s ≥ 1,

||DsG (u)||0 ≤ Cs

∣∣∣∣∂G

∂u

∣∣∣∣
s−1,D̄1

||Dsu||0∣∣∣∣∂G

∂u

∣∣∣∣
s−1,D̄1

is C s−1(D̄1)-norm

Remark 1.7 Proposition 1.2 is called Moser-type calculus
inequalities on Sobolev spaces, which are the consequences of the
well-known Gagliardo-Nirenberge inequality:

For any u ∈ Hs(Rm) ∩ L∞(Rm), |D iu|
L2 s

i
≤ Cs |u|

1− i
s

L∞ ||Dsu||
i
s
0 ,

0 ≤ i ≤ s.



Proof of the Claim: ∀α, 1 ≤ |α| ≤ s.

||A0(u) Dα(A−1
0 (u)S)||20 ≤ C−1 ||Dα(A−1

0 (u) S(u)||20
≤ Ĉ ||u||2s ≤ C̄

∑
1≤|α|≤S

||Sα||20

≤
∑

1≤|α|≤S

||A0(u)
[
(A−1

0 Aj)(u)Dα ∂xj w − Dα(A−1
0 Aj ∂xj w)

]
||20

≤ C−1
(
||D(A−1

0 Aj)||L∞ ||Ds−1 ∂xj w ||0 + |∂xj w |L∞ ||Ds(A−1
0 Aj)||0

)2

≤ C ||w ||2s



Step 4: Convergence of uk(x , t) (Contraction in lower norm
estimate)

Idea: We need to find a norm || · || such that

||uk − u|| → 0 as k → +∞
and Aj(uk)→ Aj(u) j = 0, 1, 2, · · · ,m

∇uk+1 → ∇u as k →∞

Lemma 1.2 (Contraction in Lower-norm) ∃T∗∗ ∈ (0,T∗] and a
sequence {βk} such that

|||uk+1 − uk |||0,T∗∗ ≤ α |||uk − uk−1|||0,T∗∗ + |βk |

with α < 1,
∞∑
k=0

|βk | < +∞.



Proof of Lemma 1.2: Note that uk+1 − uk satisfies A0(uk) ∂t(uk+1 − uk) +
m∑
j=1

Aj(uk) ∂xj (uk+1 − uk) = gk

(uk+1 − uk)(x , t = 0) = uk+1
0 − uk

0

gk = S(uk , x , t)− S(uk−1, x , t)−
m∑
j=0

(Aj(uk)− Aj(uk−1)) ∂xj u
k

Then the standard energy estimate

|||uk+1 − uk |||0,T ≤ C−1 exp{C̃ T}{||uk+1
0 − uk

0 ||0 + T |||uk − uk−1|||0,T}
||uk

0 − u0||0 ≤ C · εk ||u0||1 εk = ε02−k



It follows from Lemma 1.2 that

∃u ∈ C ([0,T∗∗], L
2(Rm))

such that
|||uk − u|||0,T∗∗ → 0 as k →∞

Combining Lemma 1.1 with Lemma 1.2,

|||uk |||s,T∗∗ + |||∂tuk |||s−1,T∗∗ ≤ Ĉ

uk ∈ D̄2

Furthermore, u ∈ L∞([0,T∗∗]; Hs).



It follows from interpolation inequality

||w ||s′ ≤ C ||w ||1−
s′
s

0 ||w ||
s′
s
s

that
uk → u in C ([0,T ); HS ′)

m

2
+ 1 ≤ s ′ < s

and
u ∈ C 0([0,T∗∗]× Rm)

and
u ∈ C ([0,T∗∗]; C 1(Rm))



∂tu
k → ∂tu in C ([0,T∗∗]; C (Rm)) by using the equation, and

immediately
u ∈ C 1([0,T∗∗]× Rm)

Therefore u is a classical solution to the Cauchy problem.

We need to show

u ∈ Cw ([0,T∗∗]; Hs(Rm)) ∩ Lip([0,T∗∗],H
s−1(Rm))

i.e. for ∀ϕ ∈ (Hs(Rm))′ = H−s(Rm)

〈u(t), ϕ〉 is continuous on [0,T∗∗]



Note the following facts,

(1) H−s
′

is dense in H−s , s ′ < s.

(2) Since uk → u in C ([0,T∗∗]; Hs′(Rm)), 〈uk , ϕ̃〉 converges
uniformly on [0,T∗∗] for any ϕ ∈ H−s

′
.

(3) |||uk |||s,T∗∗ ≤ R + ||u0
0 ||s .

Then (1), (2), (3) implies that 〈uk(t), ϕ〉 converges uniformly to

〈u(t), ϕ〉 on [0,T∗∗]

Therefore 〈u(t), ϕ〉 is continuous on [0,T∗∗].

〈uk(t), ϕ〉 − 〈u(t), ϕ〉
= 〈uk(t), ϕ̂〉 − 〈u(t), ϕ̂〉+ 〈uk(t), ϕ− ϕ̂〉+ 〈u(t), ϕ− ϕ̂〉

This finishes the proof of Proposition 1.1.



Proposition 1.3 Let u be the classical solution in Proposition 1.1
satisfying

u(x , t) ∈ D̄2

and

u ∈ Cw ([0,T∗∗]; Hs(Rm)) ∩ Lip([0,T∗∗]; Hs−1(Rm))

Then

u ∈ C ([0,T∗∗]; Hs(Rm)) ∩ C 1([0,T∗∗]; Hs−1(Rm)) (1.27)



Proof: Weak implies strong by using the equations and the energy
estimate.

It suffices to show that

||u0||2s,A0(0) ≥ limt→0+ ||u(t)||2s,A0(0) = limt→0+ ||u(t)||s,A0(t)

where

||u||2s,A0(t) =
∑
|α|≤s

∫
Rm

< Dαu,A0(u) Dαu > dx



Recall that
u(x , t) ∈ D2 ⊂⊂ D

CI ≤ A0(u(x , t)) ≤ C−1I , 0 < C < 1

so
C ||u(t)||2s ≤ ||u(t)||2s,A0(t) ≤ C−1||u(t)||2s

Thus || · ||s,A0(t) defines an equivalent norm on Hs .



Since A0 is smooth enough, A0(u(x , t)) ∈ C 1 where
A0(0) = A0(u0(x)).

u ∈ Cw ([0,T∗∗],H
s(Rm)),

so
u(·, t) ⇀ u0(·) as t → 0+

therefore
u(·, t)→ u0(t) strongly in Hs(Rm)

iff
||u0||s,A0(0) ≥ limt→0+ ||u(t)||s,A0(t)

thus u(·, t) is continuous from right at t = 0.



This argument applies to each t0 ∈ [0,T∗∗], so u(·, t) is continuous
from right at every t0 ∈ [0,T ]. On the other hand, the system
(1.3) is hyperbolic. So it is time-reversible, the same argument
implies u(·, t) is continuous from left at every t0 ∈ [0,T∗∗]

A0 ∂tu +
m∑
j=1

Aj ∂xj u = S(u, x , t)

Hence, u(·, t) is continuous at [0,T ].



To show (1.27), we have a lemma,

Lemma 1.3 Let u be the classical solution constructed in [0,T∗∗].
Then there exists a function f (t) ∈ L1([0,T∗∗]) such that

||u(t)||2s,A0(t) ≤ ||u0||2s,A0(0) +

∫ t

0
f (s)ds (1.28)

Let us assume Lemma 1.3 holds, then taking limits t → 0+ in
(1.28) immediately, we obtain

limt→0+ ||u(t)||2s,A0(t) ≤ ||u0||2s,A0(0)

This is nothing but (1.27).



It remains to prove Lemma 1.3. Due to the uniqueness of the
classical solution, we can assume that u(x , t) is the limit of the
approximate solution uk(x , t).

uk(x , t) ∈ C∞ ∩ Hs

with the uniform Hs -estimate in Lemma 1.1.

Set uk+1
α = Dαuk+1. Then as before,

A0(uk)∂tu
k+1
α +

m∑
j=1

Aj(uk) ∂xj u
k+1
α = Sα



where

Sα = A0(uk )Dα(A−1(uk )S(uk , x , t)) + Fα

Fα =


0
m∑
j=1

A0(uk )
[
A−1

0 (uk )Aj (u
k )∂xj uk+1

σ − Dα(A−1
0 (uk )Aj (u

k )∂xj u
k+1)

]
(k ≥ 1)

Thus the energy estimates yield

d

dt

∑
|α|≤s

∫
Rm

(Dαuk+1,A0(uk)Dαuk+1)

=

∫
Rm

∑
|α|≤s

(div ~A(uk)Dαuk+1,Dαuk+1) + 2

∫
Rm

∑
|α|≤s

(Sα,D
αuk+1)dx

(1.29)



Claim: The right hand side is in L∞([0,T∗∗])

~A = (A0,A1, · · · ,Am) (based on Lemma 1.1)

Then
d

dt

∑
|α|≤s

∫
Rm

〈Dαuk+1,A0(uk)Dαuk+1〉 ≤ f (t)

hence ∑
|α|≤s

∫
Rm

〈Dαuk+1,A0(uk)Dαuk+1〉dt

≤
∑
|α|≤s

∫
Rm

〈Dαuk+1
0 ,A0(uk)Dαuk+1

0 〉dx +

∫ t

0
f (s)ds



Taking limit k →∞,

limk→∞

∑
|α|≤s

∫
Rm

(Dαuk+1,A0(uk)Dαuk+1)dx


≤ limk→∞

∑
|α|≤s

∫
Rm

(Dαuk+1
0 ,A0(uk

0 )Dαuk+1
0 )dx +

∫ t

0
f (s)ds

= ||u0||s,A0(0) +
∫ t

0 f (s)ds

By weak convergence of uk ⇀ u in Hs , and uk → u in Hs′ ,
s ′ > m

2 + 1, we have

limk→∞

∑
|α|≤s

∫
Rm

(Dαuk+1,A0(uk)Dαuk+1)dx


≥

∑
|α|≤s

∫
Rm

(Dαu(t),A0(u(t))Dαu(t))dx



Continuation Principle A0(u) ∂tu +
m∑
j=1

Aj(u) ∂xj u = S(u, x , t)

u(x , t = 0) = u0 ∈ Hs(Rm)

where s > m
2 + 1, u ∈ D1 ⊂⊂ D2

∃T = T (S , ||u0||s) > 0

u ∈ C ([0,T ]; Hs(Rm)) ∩ C 1([0,T ]; Hs−1(Rm))

Qn: how large is T ?



Let D = Rn and [0,T ] be the maximum interval of existence of
such Hs solution. Then clearly

either T = +∞, u ∈ ([0,∞); Hs(Rm))
or T < +∞, then

lim
t→T−

||u(t)||s = +∞

Since, if otherwise, limt→T− ||u(t)||s < +∞.

Then  A0 ∂tu +
m∑
j=1

Aj ∂xj u = S(u, x , t)

u(x , t = T − ε) = u|t=T−ε ∈ Hs



Sharp Continuation Principle

Proposition 1.4 Assume that

(1) u0 ∈ Hs , s > m
2 + 1, u0 ∈ D1 ⊂⊂ D.

(2) Let T be given time T > 0.

Assume that ∃ constants C1 and C2 and a fixed open set D2 such
that D1 ⊂⊂ D2 ⊂⊂ D, so that on any interval of existence of
Hs -solution in Theorem 1.2, [0,T∗], T∗ ≤ T , the following a priori
estimates hold.

(i) |div ~A|L∞ ≤ C1 on [0,T∗].

(ii) |Du|L∞ ≤ C2 on [0,T∗].

(iii) u(x , t) ∈ D̄2 ∀(x , t) ∈ Rm × [0,T∗].



Then

(a) u exists on [0,T ] such that
u ∈ C ([0,T ]; Hs(Rm)) ∩ C 1([0,T ]; Hs−1(Rm)).

(b) |||u(t)|||s,T∗ ≤ exp{(C1 + C2)CT}{||u0||s + C}, ∀T∗ ∈ [0,T ],
C is a uniform constant.

Remark 1.8 If [0,T ] is a maximal interval of existence of Hs

solution, and T < +∞, then either
limt→T− (|∂tu|L∞ + |∇u|L∞) = +∞ or u(x , t) escapes every
compact subset of D as ∈→ T−.



Remark 1.9 Assume that

(1) u0 ∈ Hs , s > m
2 + 1.

(2) u(x , t) is a classical solution to (10.11), i.e.
u ∈ C 1(Rm × [0,T ]).

Then, on the same interval [0,T ],
u ∈ C ([0,T ]; Hs(Rm)) ∩ C 1([0,T ]; Hs−1(Rm)). In particular, if

(i) u0 ∈ ∩sHs ;

(ii) u ∈ C ([0,T ]; Hs(Rm)) for some s > m
2 + 1 and u is a solution

to (1.8).

Then u ∈ C∞(Rm × [0,T ]).



Proof of Proposition 1.4: By the standard continuity argument,
it suffices to prove the a priori estimate in (b). Let u(x , t) be
classical Hs -solution to (1.8) and satisfies (i)-(iii). A0(u) ∂tu +

m∑
j=1

Aj(u) ∂xj u = S(u, x , t)

u(x , t = 0) = u0(x) ∈ D1 ⊂⊂ D

(iii) implies that
CI ≤ A0(u(x , t)) ≤ C−1I



Set uα = Dαu,

A0 ∂tu
α +

m∑
j=1

Aj ∂xj u
α = Sα

Sα = A0Dα(A−1
0 S) + Fα

Fα = −
m∑
j=1

A0(u)[Dα(A−1
0 Aj ∂xj u)− A−1

0 Aj ∂xj u
α]

Fα = 0 for α = 0



For 1 ≤ |α| ≤ s,∑
1≤|α|≤s

||Fα||0

≤
∑

1≤|α|≤s
1≤j≤m

C−1
(
|D(A−1

0 Aj)|L∞ |Ds−1 ∂xj u|0 + |∂xj u|L∞ |D
s(A−1

0 Aj)|0
)

≤ C · C2||Dsu||0∑
|α|≤s

||A0Dα(A−1
0 S)||0 ≤ C ||u||s

Then the uniform estimate in (b) follows from this and energy
principle.



Remark 1.10 This completes the local well-posedness of classical
solution to the Cauchy problem

A0(u) ∂tu +
m∑
j=1

Aj(u) ∂xj u = S

u(x , t = 0) = u0 ∈ Hs(Rm) s >
m

2
+ 1

lim|x |→∞ u(x , t) = ū



Local energy principle and finite speed of Propagation

Consider A0(x , t) ∂tu +
m∑
j=1

Aj(x , t) ∂xj u + B(x , t)u = F (x , t)

u(x , t = 0) = u0(x)

(1.30)

where

A∗j (x , t) = Aj(x , t), j = 0, 1, · · · ,m. (1.31)

CI ≤ A0(x , t) ≤ C−1I , (C ≤ 1) (1.32)



max
|w|=1
(x,t)

∣∣∣∣∣∣
m∑
j=1

〈Aj(x , t)wjV ,V 〉

∣∣∣∣∣∣ ≤ D

2C
|V |2

R =
D

2C R

t

|x|



Proposition 1.5 (Local energy principle) Let u be a classical
solution to (1.30). Then it follows that∫

|x−y |≤d
(A0u, u)(T )dx

≤
∫
|x−y |≤d+RT

(A0u0, u0)dx

+

∫ T

0

∫
|x−y |≤d+R(T−t)

|2(F , u) + (div ~Au, u) + ((B + B∗)u, u)|dxdt

Proof: By direct computation, using the symmetry of ~A

∂

∂t
(u∗A0u) +

m∑
j=1

∂xj (u∗Aju) = u∗div ~Au + u∗Bu + u∗B∗u + 2u∗F



Then integrate on the trapezoid, using the Gauss formula,

Definition 1.5 (Uniformly Local Sobolev Space)
Let u ∈ Hs

loc(Rm), then u is said to be in the uniformly local
Sobolev space Hs

ul(Rm). If

max
y∈Rm

||θd ,yu||s = |̃|u|̃|s,d < +∞ for some d

where

θd ,y = θ

(
|x − y |

d

)
θ(r) =

{
1 if r <

1

2
0 if r > 1

0 ≤ θ ≤ 1 θ ∈ C∞(R+)



Remark 1.11 |̃| · |̃|s,d are equivalent norms for Hs
ul for different d

and

|̃|u|̃|s,d1
≤ C |̃|u||s,d2

0 < d− ≤ d1, d2 ≤ d+ < +∞

Remark 1.12 In the uniform local Sobolev space Hs
ul , the local

energy principle

|̃|u|̃|0,d (T )

≤ C−1 exp

(
1

2
C−1|div ~A + (B + B∗)|L∞T

)(
|̃|u0 |̃|0,2d+RT +

∫ T

0
|̃|F |̃|0,2d+R(T−t)dt

)



Remark 1.13 If lim
|x |→+∞

u(x , t) = ū±, then u ∈ Hs
ul , (ū± may be

different).

Other interesting uniform local spaces are used to handle the cases
such that

u(x , t) = u(x1, t): planary functions,

u : periodic function.



Theorem 1.3 Assume that

(1) u0 ∈ Hs
ul(Rm), s > m

2 + 1

(2) u0 ∈ D̄1 ⊂⊂ D

Then there exists T = T (|̃|u0 |̃|s,d ,D1) such that the Cauchy

Problem (1.8) has a unique solution u ∈ C 1([0,T ]× Rm) with the
properties

(i) u(·, t) ∈ D̄2, D̄1 ⊂⊂ D2 ⊂⊂ D

(ii) u ∈ C ([0,T ]; Hs
loc(Rm)) ∩ C 1([0,T ]; Hs−1

loc (Rm))

(iii) u ∈ L∞([0,T ]; Hs
ul)



Theorem 1.4 (Continuation Principle) Assume that

(1) u0 ∈ Hs
ul(Rm), s > m

2 + 1

(2) T > 0 be given constant

(3) ∃ fixed constants M1 and M2 and a fixed open set D1 with
D̄1 ⊂ D independent of T∗ ∈ [0,T ] so that for any time
interval [0,T∗] of the local Hs

ul(Rm) solution, T∗ ≤ T , the
following a priori estimates hold

(i) |div ~A|L∞ ≤ M1, 0 ≤ t ≤ T∗

(ii) |Du|L∞ ≤ M2, 0 ≤ t ≤ T∗

(iii) u(x , t) ∈ D̄1, ∀(x , t) ∈ Rm × [0,T∗]



Then the local regular solution exists on [0,T ] with
u ∈ C ([0,T ]; Hs

loc) ∩ C 1([0,T ]; Hs−1
loc ) ∩ L∞([0,T ]; Hs

ul).
Furthermore, the local uniform energy estimate holds.

Remark 1.14 For one-dimensional theory{
∂tu + A(u) ∂xu = S(u, x , t) x ∈ R1, u ∈ Rn

u(x , t = 0) = u0(x)
(1.8)’



Theorem 1.5 Assume that

(1) u0 ∈ C 1(R1) such that

||u0||C1 = |u0|L∞ + |u′0|L∞ < +∞

(2) u0 ∈ D̄1 ⊂⊂ D

Then there exists T = T (D̄1, ||u0||C1) > 0 such that there exists a
unique solution to (1.8)

′
on R1 × [0,T ]. Furthermore, let T∗ be

the maximal length of the time interval [0,T∗] of the existence of
classical solution and T∗ < +∞. Then

either limt→T∗ |∂xu(·, t)|L∞ = +∞
or u(x , t) runs out of any compact subset of D as t → T∗−

(Proof by characteristic method)



§2 Blow-up of Smooth Solutions and Formation of Shock
Waves

∂tu +
m∑
j=1

∂xj Fj(u) = 0

u(x , t = 0) = u0(x)

u0 ∈ Hs
ul(Rm), s >

m

2
+ 1

First, we have a local solution, u ∈ C 1(Rm × [0,T ]). Then

either T = +∞, i.e., ∃ global in time regular solution

or maximal T < +∞
{

either limt→T∗ |∇xu(·t)|L∞ = +∞
or u runs out of every compact subset of D



In particular, if D = Rn, then the second case implies

lim
t→T−

|u(·, t)|L∞ = +∞

Case 1: Formation of shock waves

Case 2: Shell singularity

Main Tasks in the Theory of Hyperbolic Conservation Laws

(1) Generally, shock waves form in finite time

(2) After formation of shock wave, how to extend the “solution”
globally in time in a “unique” way

• formation of shocks for scalar equations
• formation of shocks for planar waves (One-dimensional Theory)
• formation of singularity for 3-D compressible Euler equation



§2.1 Scalar equations ∂tu +
m∑
j=1

Aj(u) ∂xj u = 0 u ∈ R1

u(x , t = 0) = u0(x)

(2.1)

where

Aj(u) =
dFj(u)

du

If m = 1,

∂tu + ∂x f (u) = 0
or ∂tu + a(u) ∂xu = 0



Its characteristic x = x(t, α) is defined to{
dx

dt
= a(u(x(t, α), t)), a(u) = f ′(u),

x(t = 0, α) = α

 

t 

x α 

for any C 1-solution u(x , t). Then

d

dt
u(x(t, α), t) = 0

u(x(t, α), t) = u0(α)⇒ characteristics are lines with constant slope!



Method 1: (Explicit formula)

In this case, a(u(x(t, α), t)) = a(u0(α))

x = α + a(u0(α))t
u(x , t) = u0(x − a(u0(α))t)

⇒ ||u(t, ·)||L∞ = ||u0||L∞

∂xu(x , t) = u′0(α)
∂α

∂x

= u′0(α)
1

1 + d
dαa(u0(α))t

If
d

dα
a(u0(α)) ≥ 0, then |∂xu(x , t)| ≤ ||u′0(α)||L∞ .

Using the equation, |∂tu|L∞ ≤ C .



|Du|L∞ ≤ M1 < +∞, so there exists global smooth solution. If the
above condition fails, then ∃α0 such that

d

dα
a(u0(α))|α=α0 < 0

Then u′0(α0) 6= 0, when

T → T∗ = − 1
d
dαa(u0(α))

< +∞

|∂xu(x , t)| =

∣∣∣∣∣ u′0(α)

1 + d
dαa(u0(α))t

∣∣∣∣∣→ +∞ as t → T∗−

In most cases, blow-up is proved by comparing some differential
inequality about a functional involving u and ∇u with a Ricatti
type equation

dy

dt
= y 2



Method 2:
a′(u)(∂tu + a(u)∂xu) = 0

Then
∂ta(u) + a(u) ∂xa(u) = 0

i.e.

∂ta(u) + ∂x

(
a(u)2

2

)
= 0

w = a(u),

∂tw + ∂x

(
1

2
w 2

)
= 0

Differentiate the above equation with respect to x ,

∂x

(
∂tw + ∂x

(
w 2

2

))
= 0

⇒
∂t(∂xw) + w ∂x(∂xw) + (∂xw)2 = 0



along the characteristic x = x(t, α)

d

dt
q(x(t), t) + q2 = 0

where q(x , t) = ∂xw(x , t).

Solving this Ricatti equation

q(x , t) =
q0

1 + tq0

|q(·, t)|L∞ <∞ iff q0 ≥ 0

q0 =
d

dα
a(u0(α))



Method 3: (Geometric)

x = x(t, α)

{
dx

dt
= a(u(x(t, α), t)) = a(u0(α))

x(t = 0, α) = α

α

If a(u0(α)) increases with respect to α, then wave expands, so
there are no singularities.



∃α0 > 0,
d

dα
a(u0(α)) < 0

∃α1 and α2, α1 < α2 such that a(u0(α1)) > a(u0(α2))
⇒ wave compression.

For the multidimensional case, consider
∂tu +

m∑
j=1

Aj(u) ∂xj u = 0, Aj(u) =
d Fj(u)

du

A(u) = (Al(u), · · · ,Am(u))
u(x , t = 0) = u0(x)

(2.2)



We define the characteristic curve through initial point
α = (α1, · · · , αm) as x = x(t, α) satisfies{

∂x

∂t
= A(u(x(t, α), t))

x(t = 0, α) = α

where u is a C 1-regular solution to (2.2).

d

dt
u(x(t, α), t) = ∂tu +

m∑
j=1

Aj(u) ∂xj u = 0

⇒ u(x(t, α), t) = u0(α)
⇒ x = α + A(u0(α))t



Method 1: (Explicit formula)

u(x , t) = u0(α) = u0(x − A(u0(α))t)

(1)
||u(·, t)||L∞ = ||u0||L∞ < +∞

(2)

∇x u(x , t) = ∇α u0(α)
∂α

∂x
.

It can be shown that (e.x.)

∇x u(x , t) =
∇α u0(α)

1 + t divαA(u0(α))
.



so

|∇x u(x , t)| =
|∇α u0(α)|

1 + t divα A(u0(α))|

If divα A(u0(α)) ≥ 0, then there will be global smooth solution.

If ∃α0, such that divα A(u0(α))|α0 < 0.

Set

T∗ = − 1

divα A(u0(α))
< +∞

as t → T∗, ||∇xu(x , t)||L∞ →∞ as t → T∗.



Method 2: (Reduced to the Ricatti equation)

∂xi


∂tu +

m∑
j=1

Aj(u) ∂xj u = 0


⇒ ∂t(∂xi u) +

m∑
j=1

Aj(u) ∂xj (∂xi u) +
m∑
j=1

A′j(u) ∂xj u ∂xi u = 0

Multiply the both sides by A′i (u), and sum up from 1 to m,

m∑
i=1

A′i (u) ∂t(∂xi u) +
m∑

i ,j=1

A′i (u) Aj(u) ∂xj (∂xi u)

+
m∑
j=1
i=1

A′j(u) A′i (u) ∂xi u ∂xj u = 0



Define q(x , t) =
m∑
i=1

A′i (u) ∂xi u = divxA(u).

∂t

(
m∑
i=1

A′i (u) ∂xi u

)
+

m∑
j=1

Aj(u) ∂xj

(
m∑
i=1

A′i (u) ∂xi u

)
 m∑

i=1

A
′′
i (u) ∂tu ∂xi u +

m∑
j=1

Aj(u)
m∑
i=1

A
′′
i (u) ∂xj u ∂xi u

+ q2 = 0

⇒ ∂tq +
m∑
j=1

Aj(u) ∂xj q + q2 = 0

⇒ dq

dt
+ q2 = 0



Therefore, q(x , t) =
q0

1 + q0t
.

divx A(u(x , t)) =
divα A(u0(α))

1 + divα A(u0(α))t

If ∃α0 such that
divα A(u0(α)) < 0,

shock must form at

T∗ = − 1

divα A(uo(α))



Theorem 2.1 Assume that u0 ∈ Hs
ul(Rm), s > m

2 + 1, then the
Cauchy problem (2.2) has a unique global regular solution iff

divα A(u0(α)) ≥ 0

Furthermore, if

min divα A(u0(α)) = m0 < 0

then shock wave must form at T∗ = − 1
m0

.

Remark 2.1 Hs
ul(Rm) can be replaced by C 1

b .



Remark 2.2 (Geometric meaning of the singularity)

Let u(x , t) be regular on Rm × [0,T ],

Lagrangian map: L : α 7→ X (α, t)

α X (α, t)

J(t, α) = det

(
∂X

∂α

)
J(t, α) measures the ration of the volume in the image to the
volume initially along the characteristic curve X (t, α)



locally compression:
d

dt
J(t, α) < 0

locally expansion:
d

dt
J(t, α) > 0

wave breaks down means infinite compression, i.e.

J(t, α)→ 0 as t → T∗ ∂X (t, α)

∂t
= A(u(x(t, α), t))

X (t = 0, α) = α

Then
d

dt
J(t, α) = (divx A(u(x(t, α), t))) J(t, α). (e, x).



If q(t, α) = divx A(u(x(t, α), t)) > 0,

wave expands ⇒ global existence of solution.

If q(t, α) < 0, wave compressive.

In particular, if q0(α0) < 0, shock must form.

Since

J(α, t) = exp

∫ t

0
q(s, α)ds

= exp

∫ t

0

q0(α)

1 + q0(α)s
ds

= 1 + q0(α)t

→ 0 as t → T∗ = − 1

q0(α)



§2.2 Plane waves and formation of shock waves

Given any direction w ∈ Rm, |w | = 1, look for special to (2.1) of
the form

u(x , t) = U(x · w , t)
ξ = x · w , u(x , t) = U(ξ, t)

∂tu +
∑

Aj ∂xj u = 0
⇒

∂tU + A(u,w) ∂ξU = 0

where

A(u,w) =
m∑
j=1

Aj(u)wj

{
∂tu + A(u,w) ∂ξu = 0, t > 0, ξ ∈ R1

u(x , t = 0) = u0(ξ)

P. Lax, F. John, L. Hörmander. So the problem becomes 1-D
theory for systems.



Thus consider  ∂tu +
m∑
j=1

∂xj Fj(u) = 0

u(x , t = 0) = u0(x)

(2.3)

u(x , t) = U(x · w , t) for a given direction w ∈ Rm, |w | = 1,
Ai (u) = ∂Fi

∂u .

Set ξ = x · w , consider{
∂tu + A(u,w) ∂ξu = 0
u(ξ, t = 0) = u0(ξ) = u0(x · w)

(2.4)

where A(u,w) =
m∑
i=1

wiAi (u),



λ1(u,w) ≤ λ2(u,w) ≤ · · · ≤ λn(u,w)
r1(u,w), r2(u,w), · · · rn(u,w)
l1(u,w), l2(u,w), · · · ln(u,w)

LR = I .

Blow-up of simple waves

Let k be fixed, 1 ≤ k ≤ n. Assume that ū0 ∈ D ⊂ Rn. Regard
rk(u) as a vector field on D. As we can look the integral curve of
rk(u) through ū0, i.e. dUk(σ)

dσ
= rk(Uk(σ))

Uk(σ = 0) = ū0

(2.5)



∃σ±, σ− < σ < σ+ such that (2.5) has a smooth solution Uk(σ),
σ ∈ (σ−, σ+).

Uk(σ) is called a k-th wave curve through ū0.

Next, solve the following initial value problem{
∂tσ + λk(Uk(σ))∂ξσ = 0 ξ ∈ R1, t > 0
σ(t = 0) = σ0(ξ) σ− < σ0(ξ) < σ+, ∀ξ ∈ R1 (2.6)

σ(ξ, t) exist locally on [0,T ], T is maximal time.

Set

U(ξ, t) = Uk(σ(ξ, t)) (2.7)



Claim: U(ξ, t) defined by (2.7), is a solution to the equation in
(2.4).

∂tU =
DUk

Dσ
∂tσ = rk(Uk)∂tσ

∂ξU = ∂ξσ rk(Uk)
∂tU + A(U)∂ξU = ∂tσ · rk(Uk) + A(Uk)rk(Uk)∂ξσ

= (∂tσ + λk(Uk)∂ξσ)rk(Uk) = 0



Definition 2.1 The Uk(σ(ξ, t)) defined by (2.7) is called a simple
wave. Recall the previous result on the formation of shocks that
(2.6) has a global smooth solution iff

d

dξ
λk(Uk(σ0(ξ))) ≥ 0

In other words, if ∃ ξ0 ∈ R1, such that

d

dξ
λk(Uk(σ0(ξ)))|ξ=ξ0 < 0 (2.8)

shock must form in finite time

d

dξ
λk(Uk(σ0(ξ))) = ∇λk ·

dUk

dσ

dσ0

dξ

= (∇λk · rk)
dσ0

dξ



Definition 2.2 (P. D. Lax) The k-th characteristic field is said to
be genuinely nonlinear at u0 ∈ D in the direction w , if

(∇λk · rk)(u0) 6= 0 (2.9)

And the k-th field is said to be linearly degenerate if

(∇λk · rk)(u) ≡ 0 ∀u ∈ Bδ(u0)



Proposition 2.1 Assuming that the system in (2.3) is not linearly
degenerate in the direction w . Then ∃ a k-simple wave which
blow-up in finite time, which is determined by

σ′0(ξ)

1 + (∂ξλk(uk(σ0(ξ))))t

Next, we discuss the blow-up results due to F. John for 1-D
systems. Consider {

∂tu + A(u) ∂ξu = 0
u(ξ, t = 0) = u0(ξ)

u0 has compact support.



Theorem 2.2 (F. John) Assume that

(i) The system in (2.4) is strictly hyperbolic and genuinely
nonlinear on Bδ(ū0).

(ii) u0 ∈ Hs
ul(R1), s > 3. u0 has compact support in the sense

that
u0 − ū0 ∈ C 2

0 (R1) supp (u0 − ū0) ⊂ [a, b]

Then there exists a θ0 = θ0(δ,A) > 0 such that if

0 < θ = (b − a)2 |u′′0 |L∞ ≤ θ0

Then the solution to (2.4) must form shocks in finite time.



Key ideas of the proof:

• Huygen’s principle
If A(u) = A0, constant matrix

λ1, · · · , λn constant

u(x , t) =
m∑
i=1

αi ri ,

• characteristic decomposition of spatial derivatives

• reduced to a Ricatti equation



Step 1: Canonical representation

Let u(ξ, t) be a C 2-smooth solution. Consider the j-th
characteristic ξ = ξj(t), i.e.

dξj
dt

= λj(u(ξj(t), t))

We denote the differentiation along the j-th characteristic as
d

dtj
,

i.e.
d

dtj
= ∂t + λj ∂ξ

Then the system (2.4) can be written as

l tj (u)
d

dtj
u = 0 j = 1, · · · , n (2.10)

(2.10) is called a canonical representation of (2.4).



Step 2: Characteristic decomposition of ∂ξu

∂ξu =
n∑

i=1

wi ri (u) (2.11)

where wi = l ti (u) ∂ξu.

John’s formula

D

Dti
wi =

n∑
k,l=1

γikl wk wl (2.12)



γikl(u) are called interaction coefficients given by

γikl = −1

2
(λk − λl) li [rk , rl ]− (∇λi · rk)δil (2.13)

[rk , rl ] = ∇rk · rl −∇rl · rk

Properties of γikl{
(1) γiii = −∇λi · ri = −1 (by normalization)
(2) γikk = 0 if i 6= k

(2.14)



Key idea:

(1) “major” term in (2.12) is γiii w 2
i = −w 2

i .

(2) (2.14) implies that no other self-interactions in (2.12), i.e. all
the other terms in (2.12) involves wj wk , j 6= k which are the
products of waves from different family.

(3) For the initial data with compact support, the approximate
Huygen’s principle applies, so waves with different speeds
eventually separate, thus wk wl must become smaller for large
time, so

d

dti
wi = γiii w 2

i + O(1)

Thus, one can obtain a Ricatti type differential inequality, Du
blow-up in finite time for wi . In order to ensure the u still remains
Bδ(0), then one has to show ||∂ξu||L1 is bounded.



Remark 2.3 In Theorem 2.2, we require that every characteristic
family is genuinely nonlinear, which does not apply to 3× 3 gas
dynamics equation since for which the entropy wave family is
always linearly degenerate.

Theorem 2.3 (JDE, 1979, T. P. Liu) Assume that

(i) The system in (2.4) is strictly hyperbolic.

(ii) Each characteristic field is either genuinely nonlinear or
linearly degenerate, ∃N ⊂ {1, 2, · · · , n}, such that λi is
genuinely nonlinear if i ∈ N, λj is linearly degenerate if
j ∈ Nc = {1, 2, · · · , n} \ N.



(iii) Linear waves never generate nonlinear waves, i.e.

γikl = 0 if i ∈ N and k , l ∈ Nc (2.15)

(iv) u0 ∈ Hs
ul(R1), s > 3, u0 − ū0 ∈ C 1(R1),

supp (u0 − ū0) ⊂ [a, b], ū0 is constant state.

Then there exists θ0 = θ0(δ,A) > 0, such that if

θ = (b − a) |u′0|L∞ ≤ θ0

0 < ε = max
i∈N
|wi (ξ)|L∞ , wi (ξ) = l ti (u0(ξ)) ∂ξ u0(ξ) (2.16)

Then any C 1-solution to problem (2.4) forms shocks in finite time.
Furthermore, if θ ≤ θ0, ε = 0, then smooth solution exists globally.



Remark 2.4 If Nc contains only one element, then (2.15) is
satisfied automatically. However, for one-dimensional gas
dynamics, only one family (entropy wave family) is linearly
degenerate. So Theorem 2.3 indeed applies to 3× 3 gas dynamics
system.

Remark 2.5 In (2.16), ε measure the strength of the initial
nonlinear waves, Theorem 2.3 implies if no nonlinear waves
initially, the global smooth solution exists. In particular, if the
system is totally linearly degenerate, i.e. N = φ. Then (2.15) is
satisfied automatically also. Theorem 2.3 implies global existence
of smooth solutions. How about the multi-d case? (Conjecture due
to Majda?)

Remark 2.6 All the results of F. John has been generalized to the
case, the characteristic fields may have inflection points, by
Hormander, Da-Tsien Li, etc.



Qn: Can one obtain the necessary and sufficient condition for
shock formation as for scalar equation without the restrictions on
size of the data?

Shock formation for systems endowed with coordinates of
Riemann invariants

Definition 2.3 A c(u) is said to be an i-Riemann invariant if

∇c(u) · ri (u) ≡ 0 ∀u ∈ D (2.17)

Consider (2.17), which is a 1-st order PDE. By the characteristic
method, one can find (n − 1) i-th Riemann invariants cj(u),
j = 1, · · · , n, j 6= i , such that

∇cj · ri = 0

and ∇cj , j 6= i , span the orthogonal complement of ri .



Definition 2.4 The system

∂tu + A(u) ∂ξu = 0 (2.18)

is said to be endowed with a coordinate system of Riemann
invariants, if ∃ n scalar valued function c1(u), · · · , cn(u) such that
cj(u) is an i-th Riemann invariant for (2.18) for all j 6= i ,
i , j = 1, · · · , n, and ∇ci (u), i = 1, · · · , n are linearly independent.

Proposition 2.2 The functions (c1(u), · · · , cn(u)) form a
coordinate system of Riemann invariants of (2.18) iff

∇ci (u) · rj(u) =

{
0 i 6= j
6= 0 i = j

(2.19)

Since (2.19) ⇒ ∇ci (u)//li (u), therefore

(∇c1(u), · · · ,∇cn(u))T = L(u)



Remark 2.7 ∇ci (u) must be a left eigenvector of A(u) associated
with λi .

Recall the canonical form of (2.18)

li (u)(∂tu + λi ∂ξu) = 0, i = 1, · · · , n (2.20)

Now assume that (2.18) is endowed with a coordinate system of
Riemann invariants

c(u) = (c1(u), · · · , cn(u))

Then
li (u) = ∇ci (u)



Then go back to (2.20)

0 = li (u)(∂tu + λi (u) ∂ξu) = ∇ci (u)(∂tu + λi (u) ∂ξu)
= ∂t ci (u) + λi (u) ∂ξ ci (u)

∂t ci + λi (c) ∂ξ ci = 0 i = 1, 2, · · · , n (2.21)

Thus
Remark 2.8 In the case n = 2, this can be done always. However,
in general, for n ≥ 3, the system to determine the invariants is
over-determined, thus may have no solutions, see J. Smoller’s
book.



Proposition 2.3 Assume that (2.18) is endowed with a coordinate
of Riemann invariants c(u) = (c1(u), · · · , cn(u)). Then

(1) Its canonical form is given by (2.21), which is diagonal system.

(2) For any i , i = 1, · · · , n, ci (u) is constant along an i-th
characteristic associated with any smooth solution.

In particular, for any smooth solution u(x , t)

||c(u(·, t))||L∞ = ||c(u0)||L∞ (2.22)

In the rest of this section, we always assume that (2.18) is
endowed with a coordinate of Riemann invariants
c(u) = (c1(u), · · · , cn(u)), which can be normalized so that

∇ci (u) · rj(u) = δij (2.23)



Proposition 2.4 Assume that (2.18) is endowed with a coordinate
system of Riemann invariants such that (2.23) hold. Then

(i) [rj , rk ] = ∇rj · rk −∇rk · rj = 0 ∀j , k (2.24)

(ii) r tj ∇2ci rk = −∇ci · ∇rj rk = 0 i 6= j 6= k 6= i (2.25)

(iii)
∂gjk
∂ci

=
∂gji
∂ck

i 6= j 6= k 6= i (2.26)

gkj = 1
λk−λj

∂λk
∂cj

(2.27)



Proof of Proposition 2.4: Recall that u 7→ c(u) is a
differomorphism, and

Du

Dc

Dc

Du
= I ⇔ Dc

Du

Du

Dc
= I

Then it follows from (2.23) that

Du

Dc
= R(u) = (r1(u), · · · , rn(u)),

Dc

Du
≡ L(u)

i.e.
∂u

∂ci
= ri (u)

Thus for any smooth function φ,

∂φ

∂ci
= ∇uφ · ri (u) = ∇uφ · ri (u) (2.28)



Step 1: since
∇ci (u) · rj(u) = δij ,

so
0 = ∇(∇ci (u) · rj(u))rk = r tj ∇2 ci rk +∇ci · ∇rj rk

so

∇ci∇rj rk = −r tj ∇2 ci rk ∀ i , j , k = 1, · · · , n (2.29)

∇ci∇rk rj = −r tk ∇2 ci rj ∀ i , j , k = 1, · · · , n

∇ci [rj , rk ] = 0 ⇔ [rj , rk ] = 0

since it is true for all i .

By (2.28), this is equivalently

∂rj
∂ck

=
∂rk
∂cj



Step 2:

Arj = λj rj
∇(Arj)rk = ∇(λj rj)rk = ∇λj rk rj + λj∇rj rk

Ark = λk rk
∇(Ark)rj = ∇(λk rk)rj = ∇λk rj rk + λk∇k rj

r tj ∇Ark + A∇rj rk = ∇λj rk rj + λj∇rj rk
r tk ∇Arj + A∇rk rj = ∇λk rj rk + λk∇rk rj

Since A = ∇F , so ∇A is symmetric. Taking the difference, we have



A[rj , rk ] = (∇λj rk)rj − (∇λk rj)rk + λj ∇rj rk − λk ∇rk rj

(∇λj rk)rj − (∇λk rj)rk = λk ∇rk rj − λj ∇rj rk
= (λk − λj)∇rj rk

(2.30)

This implies that ∇rj rk is a linear combination of rj and rk if
j 6= k . Now for i 6= j , i 6= k, j 6= k

∇ci ∇rj rk =
∇λj rk
λk − λj

∇ci rj −
∇λk rj
λk − λj

∇ci rk

= 0
(2.31)

Then (2.25) follows from (2.29) and (2.31).



Step 3: By (2.30),

∂rj
∂ck

=

∂λj
∂ck

λk − λj
rj −

∂λk
∂cj

λk − λj
rk

i.e.

−
∂rj
∂ck

= gjk rj + gkj rk , j , k = 1, · · · , n, j 6= k (2.32)

Differentiate the equality with respect to ci ,

−
∂2 rj
∂ck ∂ci

=
∂gjk
∂ci

rj + gjk
∂rj
∂ci

+ gkj
∂rk
∂ci

+
∂gkj
∂ci

rk



Substitute (2.32) into this formula,

−
∂2 rj
∂ck ∂ci

=
∂gjk
∂ci

rj − gjk(gji rj + gij ri )− gkj(gki rk + gik ri ) +
∂gkj
∂ci

rk

By the symmetry of i and k ,

−
∂2 rj
∂ci ∂ck

=
∂gji
∂ck

rj − gji (gjk rj + gkj rk)− gij(gik ri + gki rk) +
∂gij
∂ck

ri

This implies(
∂gjk
∂ci
−
∂gji
∂ck

)
rj + rk( ) + ri ( ) = 0

so
∂gjk
∂ci

=
∂gji
∂ck



Theorem 2.4 Assume that

(i) (2.18) is endowed with a coordinate system of Riemann
invariants c(u) = (c1(u), · · · , cn(u)).

(ii) (2.18) is strictly hyperbolic.

(iii) ∃ i ∈ {1, · · · , n} such that the i-th family is genuinely
nonlinear

∇λi ri 6= 0

(
∂λi
∂ci
6= 0

)
(iv) u0 ∈ Hs

ul(R1), s ≥ 3 and ∃ ξ0 ∈ R1 such that

d ci (u0(ξ0))

dξ

∂λi
∂ci

< 0,
∂λi
∂ci

= ∇λi (u0(ξ0)) · ri (u0(ξ0)) (2.33)

Then the smooth solution forms a shock in finite time.



Proof of Theorem 2.4:

Step 1: By (2.22) in Proposition 2.3, ||c(u(·, t))||L∞ = ||c(u0)||L∞ ,
so there are no shell singularities.

Step 2: To estimate ∂ξu. Set

∂ξu =
n∑

i=1

wi ri , wi = li · ∂ξu = ∇ci (u) ∂ξu (2.34)

so

wi = ∂ξ ci (2.35)

d

dt
wi = ∂t wi + λi ∂ξ wi =

∑
γijk wk wj (2.36)



and

γijk = −1

2
(λj − λk)li [rj , rk ]− (∇λi · rj)δik

= −∂λi
∂cj

δik

d

dt
wi =

∑
j ,k

(
−∂λi
∂cj

δik

)
wk wj

=
∑
j

(
−∂λi
∂cj

wi wj

)

= −∂λi
∂ci

w 2
i −

∑
j 6=i

∂λi
∂cj

wj

wi

(2.37)



Step 3: Find an integration factor for (2.37)

d

dt
Φ(u)

= Φ′(u)
du

dt
(In fact, Φ′(u) = ∇Φ(u))

= Φ′(u)

(
∂u

∂t
+ λi ∂ξu

)

∂tu = −A∂ξu = −A
∑
j

wj rj = −
∑
j

wj λj rj

Therefore,

d

dt
Φ(u) = Φ′(u)

−∑
j

λj wj rj + λi
∑
j

wj rj


= Φ′(u)

∑
j 6=i

(λi − λj)wj rj



Thus for any smooth function Φ(u),

d

dt

(
eΦ(u)wi

)
=

d

dt
eΦ(u)wi + eΦ(u) d

dt
wi

= eΦ(u) d

dt
wi + eΦ(u)Φ′(u)

∑
j 6=i

(λi − λj)wj rj wi

= eΦ(u)

−∑ ∂λi
∂cj

wi wj +∇Φ(u)
∑
j 6=i

(λi − λj)wi wj rj


= eΦ(u)

−∂λi∂ci
w 2
i −

∑
j 6=i

(
∂λi
∂cj
−∇Φ(u)rj(λi − λj)

)
wi wj


= eΦ(u)

−∂λi∂ci
w 2
i −

∑
j 6=i

(
∂λi
∂cj
− ∂Φ

∂cj
(λi − λj)

)
wi wj





Claim: One can choose an integral factor Φ(u) such that

∂Φ

∂cj
=

∂λi
∂cj

λi − λj
j 6= i (2.38)

Assume that the claim (2.38) holds

d

dt

(
eΦ(u)wi

)
= −∂λi

∂ci
e−Φ(u)

(
eΦ(u)wi

)2

Claim is followed from (2.26) and (2.27).



§2.3 Formation of Singularities for the Compressible Euler
System

Consider 
∂tρ+ div (ρu) = 0
∂t(ρu) + div (ρu ⊗ u) +∇p = 0
∂(ρS) + div (ρSu) = 0

(2.39)

We will treat only polytropic gases,

p = Aργ es A > 0 constants, γ > 1

ρ: density, u ∈ R3: velocity, p: pressure, S : entropy, x ∈ R3, with
initial data:

(ρ, u,S)(x , t = 0) = (ρ0, u0, S0)(x) (2.40)



with
(ρ0, u0, S0)(x) = (ρ̄, 0, S̄), x ≥ R

ρ̄ > 0, S̄ are constants, ρ0(x) ≥ 0, ∀ x ∈ R3.

Recall that for any w ∈ S2, the characteristic speeds for (2.39) are
given by u · w , u · w ± c,

c2 = pρ =
∂p

∂ρ

Define

c̄2 =
∂p

∂ρ
(S̄ , ρ̄) = Aγρ̄γ−1 e S̄

Define
D(t) = {x ∈ R3| |x | > R + c̄t}



Then

Proposition 2.5 Let (ρ, u,S) be the C 1-solution to the Cauchy
problem (2.39) and (2.40). Then

(ρ, u, S)(x , t) = (ρ̄, 0, S̄) in D(t)

Proof of Proposition 2.5: Since the maximal speed of nonconstant
state is c̄, therefore, the conclusion follows by local energy
principle.

First result concerns the “blow-up” of the solution, whose initial
radial momentum is “large” enough.

Define

m(t) =

∫
R3

(ρ(x , t)− ρ̄)dx

it is called excessive mass.



η(t) =

∫
R3

(
ρ(x , t)es/γ − ρ̄e s̄/γ

)
dx

F (t) =

∫
R3

(x · u) ρ(x , t)dx

Theorem 2.5 Assume that (ρ, u, S) is a C 1-smooth solution to
the Cauchy problem (2.39) and (2.40) on R3 × [0,T ], T > 0.
Furthermore, {

m(0) ≥ 0, η(0) ≥ 0,

F (0) >
16

3R4
π c̄ ·max ρ0(x)

(2.41)

Then the life span of the solution is finite.



Proof of Theorem 2.5:

Step 1: m(t) = m(0), η(t) = η(0).

d

dt
m(t) =

∫
R3

∂

∂t
(ρ(x , t)− ρ̄)dx = −

∫
R3

div (ρu)dx

= −
∫
D(t)c

div (ρu)dx = 0

Since u|∂D(t)c = 0.

d

dt
η(t) =

∫
R3

∂

∂t

(
ρes/γ

)
dx =

∫
R3

∂

∂t
ρes/γ + ρ

1

γ
∂tS es/γdx

= −
∫
R3

div (ρu)es/γ − ρ

γ
u · ∇S es/γdx

= −
∫
R3

div (ρu · es/γ)dx

= 0



Step 2:

d

dt
F (t) =

∫
R3

∂

∂t
((x · u)ρ)dx

=

∫
R3

x · (ρu)tdx = −
∫
R3

x(div (ρu ⊗ u) +∇p)dx ,

−
∫
R3

x · div(ρu ⊗ u)dx

= −
3∑

i=1

∫
R3

xi

(
3∑

j=1

∂xj (ρuj ui )

)
dx

= −
3∑

i,j=1

∫
R3

xi ∂xj (ρuj ui )dx =
3∑

i,j=1

∫
R3

∂xi
∂xj

ρui ujdx

=

∫
R3

ρ|u|2dx ,

−
∫
R3

x · ∇p dx = −
∫
R3

x · ∇(p − p̄)dx

=

∫
R3

(div x)(p − p̄)dx = 3

∫
R3

(p − p̄)dx

d

dt
F (t) =

∫
R3

p|u|2dx + 3

∫
R3

(p − p̄)dx (2.42)



Step 3: Set B(t) = Dc(t).∫
B(t)

p(x , t)dx =

∫
B(t)

Aργ eSdx = A

∫
B(t)

(
ρeS/γ

)γ
dt

≥ A

(∫
B(t)

1 dx

)1−γ (∫
B(t)

ρeS/γ dx

)γ
= A(vol (B(t)))1−γ

(∫
B(t)

ρeS/ν − ρ̄e S̄/νdx +

∫
B(t)

ρ̄e S̄/νdx

)γ
= A(vol(B(t)))1−γ

(
η(t) +

∫
B(t)

ρ̄e S̄/γdx

)γ
= A(vol(B(t)))1−γ

(
η(0) + ρ̄e S̄/γvol(B(t))

)γ
≥ A(vol(B(t)))1−γ

(
ρ̄e S̄/γ vol(B(t))

)γ
= Aρ̄γ e S̄ vol(B(t)) = p̄ vol(B(t)) =

∫
B(t)

p̄ dx



so ∫
B(t)

(p − p̄)dx ≥ 0

i.e. ∫
R3

(p − p̄)dx ≥ 0 (2.43)

Combining (2.42) and (2.43) yields

d

dt
F (t) ≥

∫
R3

ρ|u|2dx (2.44)



Step 4:

F 2(t) =

(∫
R3

(x · u) ρ(x , t)dx

)2

=

(∫
B(t)

(x · u) ρ(x , t)dx

)2

≤

(∫
B(t)

ρ|x |2dx

)(∫
B(t)

ρ|u|2dx

)

=

(∫
B(t)

ρ|x |2dx

)(∫
R3

ρ|u|2dx

)

This, together with (2.44), implies,

d

dt
F (t) ≥

(∫
B(t)

ρ|x |2 dx

)−1

F 2(t) (2.45)



∫
B(t)

ρ|x |2 dx ≤ (R + c̄t)2

∫
B(t)

ρ dx

= (R + c̄t)2

(∫
B(t)

(ρ− ρ̄)dx + ρ̄ vol (B(t))

)
= (R + c̄t)2(m(0) + ρ̄ vol (B(t)))

= (R + c̄t)2

(∫
B(t)

ρ0(x)dx −
∫
B(t)

ρ̄ dx + ρ̄ vol (B(t))

)
≤ (R + c̄t)2 max ρ0 vol (B(t))

≤ 4

3
π(R + c̄t)5 max ρ0

i.e. (∫
B(t)

ρ|x |2dx

)−1

≥
(

4

3
π(R + c̄t)5 max ρ0

)−1

(2.46)



(2.45) and (2.46) will yield,

d

dt
F (t) ≥

(
4

3
π(R + c̄t)5 max ρ0

)−1

F 2(t)

so ∫ T

0

F ′(t)

F 2(t)
dt ≥

(
4

3
π max ρ0

)−1 ∫ T

0
(R + c̄t)−5dt

and

F−1(0) ≥ F−1(0)−F−1(t) ≥
(

16c̄

3
π max ρ0

)−1

(R−4−(R+cT )−4)

R−4 − (R + c̄T )−4 ≤
16c̄

3 π max ρ0

F (0)

0 < R−4 −
16c̄

3 π max ρ0

F (0)
≤ (R + cT )−4



The second result concerns the singularity formation without the
“Largeness” requirement.

q0(ν) =

∫
|x |>ν

|x |−1 (|x | − ν)2 (ρ0(x)− ρ̄)dx (2.47)

q1(ν) =

∫
|x |>ν

|x |−3 (|x |2 − ν2)(x · u0)ρ0 dx (2.48)



Theorem 2.6 Suppose that ∃ constants R0 and R such that

(i) q0(ν) > 0, q1(ν) ≥ 0, R0 < ν < R (2.49)

(ii) S0(x) ≥ S̄ (2.50)

Then life span of any C 1-smooth solution must be finite.

Remark 2.9 The argument to prove Theorem 2.6 depends crucially
on the Riemann function of the wave operator � = ∂2

t − c̄2∆.

We need an elementary lemma.



Lemma 2.1 Assume that there exist a positive constants c , a, k
and k1(0 < k1 ≤ k

2 ), and let F (t) be any C 2-smooth function with

F (0) = F ′(0) = 0

such that

F
′′

(t) ≥ c
[
(t + k)3 log

(
t+k
k

)]−1
F 2(t), t ≥ k1 (2.51)

F
′′

(t) > 0 ∀ t > 0 (2.52)

F ′(t) ≥ 1
2 a log

(
t+k
k

)
, t ≥ 0 (2.53)

F (t) ≥ ca(t + k) log
(
t+k
k

)
, t ≥ k1 (2.54)

Then the life span of F (t) is finite.



Proof of Lemma 2.1:

Step 1: (2.51) and (2.54) imply

F
′′

(t) ≥ c

[
(t + k)3 log

(
t + k

k

)]−1

c2 a2(t + k)2 log2 t + k

k
, t ≥ k1

≥ c3 a2(t + k)−1 log
t + k

k

Consequently, (e, x)

F (t) ≥ c3 a2(t + k)

(
log

t + k

k

)2

, t ≥ k2 = 2k > k1 (2.55)



Substituting this into (2.51) yields,

F
′′

(t) ≥ c

[
(t + k)3 log

(
t + k

k

)]−1

F 2(t)

≥ c4 a2(t + k)−2 log

(
t + k

k

)
F (t)

Set µ(t) = c4 a2(t + k)−2 log
t + k

k
. Then

F
′′

(t) ≥ µ(t) F (t) (2.56)

Multiply F ′(t) on both sides of (2.56) to get,

F ′(t) F
′′

(t) ≥ µF ′(t) F (t), t ≥ k2 (2.57)



Now for any k3 ≥ k2, t ≥ k3,

∫ t

k3

F
′′

(t)F ′(t)dt ≥
∫ t

k3

µF ′(t)F ds

1

2
(F ′(t))2 −

1

2
(F ′(k3))2 ≥

1

2

∫ t

k3

µ
dF 2

ds

=
1

2
µ(t)F 2(t)−

µ(k3)

2
F 2(k3)−

1

2

∫ t

k3

µ′ F 2 ds

(F ′(t))2 ≥ (F ′(k3))2 + µ(t)F 2(t)− µ(k3)F 2(k3)−
∫ t

k3

µ′ F 2ds

(2.58)

Since

µ′(t) = c4 a2

(
−2(t + k)−3 log

t + k

k
+ (t + k)−2 1

t + k

)
= c4 a2

(
1− 2 log

k + t

k

)
(t + k)−3 < 0 (t ≥ 2k)



Therefore,

(F ′(t))2 ≥ µ(t) F 2(t) + (F ′(k3))2 − µ(k3) F 2(k3) (2.59)

Step 2: Since F ′(t) is increasing, due to (2.52), for 0 < t1 < t2.

F ′(t1) ≤ F (t2)−F (t1)
t2−t1

≤ F ′(t2) (2.60)

F (k3) ≤ F ′(k3)k3 (2.61)

Now, we choose k3 such that

1 ≤ k2
3 µ(k3) = k2

3 c4 a2(k3 + k)−2 log

(
k3 + k

k

)
(2.62)

it suffices to choose

k3 ∼ 0
(

e
1

c4 a2

)
(2.63)



Then

(F ′(t))2 ≥ (F ′(k3))2 +

∫ t

k3

µ(s)(F 2(s))′ds

≥ (F ′(k3))2 + (k2
3 µ(k3))−1

∫ t

k3

µ(s)(F 2(s))′ds

= (F ′(k3))2 + (k2
3 µ(k3))−1 [µ(t) F 2(t)− µ(k3) F 2(k3)]

−(k2
3 µ(k3))−1

∫ t

k3

µ′(s) F 2(s) ds

≥ µ(t)

µ(k3) k2
3

F 2(t) + (F ′(k3))2 − 1

k2
3

F 2(k3)

≥ µ(t)

k2
3 µ(k3)

F 2(s)

µ(t)

k2
3 µ(k3)

=
c4 a2

k2
3 µ(k3)

(t + k)−2 log

(
t + k

k

)



Immediately,

F ′(t) ≥ c2 a(t + k)−1

(
log

(
t + k

k

))1/2

F (t) (take k2
3 µ(k3) = 1) t ≥ k3 (2.64)

so

log
F (t)

F (k3)
≥ ca

[(
log

t + k

k

)3/2

−
(

log
k3 + k

k

)3/2
]

≥ ca

(
log

t + k

k
− log

k3 + k

k

)3/2

≥ ca

(
log

t + k

k3 + k

)3/2



Now, choose c > 0 large enough so that t ≥ k4 = c̃ k2
3 .

log
F (t)

F (k3)
≥ 8 log

t + k

k
(2.65)

Note that (2.65) requires that

ca

(
log

c̃ k2
3 + k

k3 + k

)1/2

≥ c0

This can be guaranteed by (2.63). Thus by (2.55)

F (t) ≥ F (k3)

(
t + k

k

)8

t ≥ k4

≥ ca2(k3 + k)

(
log

k3 + k

k

)2

k−8(t + k)8

≥ ca2(t + k)8 t ≥ k4



i.e.

F (t) ≥ ca2(t + k)8 t ≥ k4 (2.66)

It follows from (2.66) and (2.51) that

F
′′

(t) ≥ ca(F (t))3/2 t ≥ k4 (2.67)

Multiply F ′(t) on the both sides of (2.67) to get

(F ′(t))2 ≥ ca
[
(F (t))5/2 − (F (k4))5/2

]



On the other hand,

F (t) ≥ F (k4) + F ′(k4)(t − k4)

F (k4) ≤ k4 F ′(k4)

F (t) ≥ F ′(k4)(t − k4) ≥ F ′(k4)
t − k4

k4

F 5/2(t)− F 5/2(k4) =
1

2
F 5/2(t) +

1

2
F 5/2(t)− F 5/2(k4)

≥ 1

2
F 5/2(t) + (F ′(k4))5/2

[(
t − k4

k4

)5/2
1

2
− k

5/2
4

]

Now if k5 ≥ 3k4, then if t ≥ k5,

F ′(t) ≥ ca
1
2 F

5
4 (t)



Proof of Theorem 2.6: In the following, we will assume γ = 2,
the general case can be handled by obvious modifications, so let
(ρ, u, s) be any C 1-smooth solution to the Cauchy problem. We
will construct a functional F (t) in terms of (ρ, u, s) so that F (t)
satisfies all the conditions in Lemma 2.1.

Step 1: Construct a 2-variable function as

Q(ν, t) =

∫
|x |>ν

w(x , ν)(ρ(x , t)− ρ̄)dx (2.68)

where

w(x , ν) = |x |−1 (|x | − ν)2 (2.69)



Note that
ρ(x , t) = ρ̄ for all |x | > R + c̄t

so Q(ν, t) is well-defined and at least C 1.

Step 2:

Claim: Q ∈ C 2, and

�Q = ∂2
t Q − c̄2 ∂2

ν Q ≥ G (ν, t) (2.70)

G (ν, t) = ∂2
ν G̃ (ν, t)

G̃ (ν, t) =

∫
|x |>ν

w(x , ν)(p − p̄ − c̄2(ρ− ρ̄))dx
(2.71)



Proof of the claim:

∂t Q(ν, t) =

∫
|x |>ν

w(x , ν) ∂tρ(x , t)dx

= −
∫
|x |>ν

w(x , ν) div (ρu)dx

=

∫
|x |>ν

∇xw(x , ν) · (ρu)dx

Thus ∂t Q(ν, t) is a C 1-function,

∂2
t Q(ν, t) =

∫
|x |>ν

∂t(ρu) · ∇x w(x , ν)dx

= −
∫
|x |>ν

div (ρu ⊗ u) +∇p) · ∇x w(x , ν)dx

= −
∫
|x |>ν

∂xi w · ∂xj (ρ ui uj) + ∂xi (p − p̄) ∂xi w(x , ν)dx



Note that

∇w = |x |−3 (|x |2 − ν2)x ∇w ||x |=ν = 0
supp u ⊂ BR+c̄t , supp (p − p̄) ⊂ BR+c̄t

so

∂2
t Q(ν, t) =

3∑
i,j=1

∫
|x|>ν

∂2w

∂xi ∂xj
ρ ui uj dx +

∫
|x|>ν

∆w(p − p̄)dx (2.72)

∂2
t Q = I1(ν, t) + I2(ν, t) (2.73)



Note that

∂2 w

∂xi ∂xj
=
|x |2 − ν2

|x |3
δij − 3

|x |2 − ν2

|x |5
xi xj + 2

xi xj
|x |3

I1(ν, t) =

∫
|x|>ν

|x |2 − ν2

|x |3
ρ|u|2 dx − 3

∫
|x|>ν

|x |2 − ν2

|x |5
ρ(x · u)2dx

+2

∫
|x|>ν

ρ(x · u)2

|x |3
dx

= 2ν2

∫
|x|>ν

ρ
(x · u)2

|x |5
dx +

∫
|x|>ν

|x |2 − ν2

|x |3
ρ

(
|u|2 − (x · u)2

|x |2

)
dx



Therefore,

I1(ν, t) ≥ 2ν2

∫
|x |>ν

ρ
(x · u)2

|x |5
dx (2.74)

Note that

∆w =
2

|x |

Therefore,

I2(ν, t) =

∫
|x |>ν

∆w(p − p̄)dx = 2

∫
|x |>ν

|x |−1(p − p̄)dx



On the other hand,

∂ν w(x , ν) = 2|x |−1 (ν − |x |)

∂2
ν w(x , ν) =

2

|x |
= ∆xw

I2(ν, t) =

∫
|x |>ν

∂2
ν w(p − p̄)dx ≡ ∂

∂ν2

∫
|x |>ν

w(p − p̄)

∂2
t Q = I1(ν, t) + I2(ν, t) ≥ I2(ν, t)

= ∂2
ν

∫
|x|>ν

w · (p − p̄)dx

= ∂2
ν

∫
|x|>ν

w · (p − p̄ − c̄2(ρ− ρ̄))dx + ∂2
ν

∫
|x|>ν

w · c̄2(ρ− ρ̄)dx

= G (ν, t) + c̄2 ∂2
ν Q(ν, t)

This verifies the claim.



Next, we check the initial condition for Q.

Q(ν, t = 0) =

∫
|x |>ν

w(x , ν)(ρ0(x)− ρ̄)dx = q0(ν)

∂t Q(ν, t = 0) =

∫
|x|>ν

ρ0 u0·∇w dx =

∫
|x|>ν

ρ0 u0

(
|x |2 − ν2

|x |3
x

)
dx = q1(ν)

G (ν, t) =

∫
|x |>ν

2|x |−1 (p − p̄ − c̄2(ρ− ρ̄))dx (2.75)

Thus, applying the one dimensional D’ Alembertian formula for

� = ∂2
t − c̄2 ∂2

ν

we obtain for ν > R0 + c̄t.



Q(ν, t) = Q0(ν, t) +
1

2c̄

∫ t

0

∫ ν+c̄(t−τ)

ν−c̄(t−τ)
�Q(y , τ)dy dτ (2.76)

Q0(ν, t) =
1

2

{
q0(ν + c̄t) + q0(ν − c̄t) +

1

c̄

∫ ν+c̄t

ν−c̄t
q1(y)dy

}
(2.77)

Then

Q(ν, t) ≥ Q0(ν, t) +
1

2c̄

∫ t

0

∫ ν+c̄(t−τ)

ν−c̄(t−τ)
G (y , τ)dy dτ



Step 3: Set

F (t) =

∫ t

0

(t − τ)

∫ R+c̄τ

R0+c̄τ

ν−1 Q(ν, τ)dr dτ

=

∫ t

0

(t − τ)

∫ R+c̄τ

R0+c̄τ

ν−1

∫
ν<|x|≤R+c̄τ

w(x , ν)(ρ− ρ̄)dx dr dτ

(2.78)

Obviously, F (t) ∈ C 2.

F ′(t) =

∫ t

0

∫ R+c̄τ

R0+c̄t

ν−1

∫
|x|>ν

w(x , ν)(ρ(x , τ)− ρ̄)dx dν dτ (2.79)

Look at (2.50), s0(x) ≥ s̄, x ∈ R3. For any smooth solution,

∂ts + u · ∇s = 0



Along particle path,
dx

dt
= u

s(x(t), t) = s0(x(0)), so

s(ν, t) ≥ s̄ ∀ x , t

p(ρ, s) = Aργ es , so p(ρ, s) ≥ p(ρ, s̄)

p − p̄ − c̄2(ρ− ρ̄) = Aes ρ2 − Aρ̄2 e s̄ − 2Aρ̄ e s̄(ρ− ρ̄)
≥ Ae s̄ ρ2 − 2Aρ̄2 e s̄ − 2Aρ̄ e s̄(ρ− ρ̄)
= Ae s̄(ρ2 − ρ̄2 − 2ρρ̄+ 2ρ̄2)
= Ae s̄(ρ− ρ̄)2



G (ν, t) =

∫
|x |>ν

|x |−1(p − p̄ − c̄2(ρ− ρ̄))dx

≥ Ae s̄
∫
|x |>ν

|x |−1(ρ− ρ̄)2dx ≥ 0

so
Q(ν, t) ≥ Q0(ν, t) > 0

This implies

F (0) = F ′(0) = 0, and F ′(t) > 0, ∀ t > 0

Therefore
F (t) > 0 for t > 0



Now let us compute F
′′

(t),

F
′′

(t) =

∫ R+c̄t

R0+c̄t

ν−1 Q(ν, t)dν

≥
∫ R+c̄t

R0+c̄t

ν−1 Q0(ν, t)dν +
1

2c̄

∫ R+c̄t

R0+c̄t

∫ t

0

∫ ν+c̄(t−τ)

ν−c̄(t−τ)

ν−1 G(y , τ)dy dτ dν

= J1(t) + J2(t)

J1(t) =

∫ R+c̄t

R0+c̄t

ν−1 Q0(ν, t)dν ≥ 1

2

∫ R+c̄t

R0+c̄t

ν−1 q0(ν − c̄t)dν

≥ 1

2

∫ R+c̄t

R0+c̄t

(R + c̄t)−1 q0(ν − c̄t)dν

=
B0

2
(R + c̄t)−1

where one has used (2.49) and

B0 =

∫ R

R0

q0(ν)dν > 0



Estimate of J2:

J2(t) =
1

2c̄

∫ R+c̄t

R0+c̄t

∫ t

0

∫ ν+c̄(t−τ)

ν−c̄(t−τ)
ν−1 G (y , τ)dy dτ dν

Note that
supp G (y , τ) = {y ≤ R + c̄τ}

Then changing of order the integration in J2(t), we can get that

for t ≥ R1 =
1

2c̄
(R − R0) > 0.

J2(t) =
1

2c̄

∫ t

0

∫ R+c̄τ

R0+c̄τ
G (y , τ)

∫ min{R+c̄t,y+c̄(t−τ)}

max{c̄t+R0,y−c̄(t−τ)}
ν−1dν dy dτ



∆1 =

∫ min{R+c̄t,y+c̄(t−τ)}

max{c̄t+R0,y−c̄(t−τ)}
ν−1dy

≥ (R + ct)−1 (min{R + c̄t, y + c̄(t − τ)} −max{R0 + c̄t, y − c̄(t − τ)})

Note that y ≤ R + c̄τ , then

R + c̄t = R + c̄(t − τ) + c̄τ ≥ y + c̄(t − τ)

so
min{R + c̄t, y + c̄(t − τ)} = y + c̄(t − τ)

Thus,

∆1 ≥ (R + c̄t)−1 min{2c̄(t − τ), y − c̄τ − R0}



Case 1: min{2c̄(t − τ), y − c̄τ − R0} = y − c̄τ − R0

Since
c̄(t − τ)

c̄t + R
< 1, y − c̄τ − R0 ≤ R − R0

∆1 ≥ (R + c̄t)−1 · 1 · (y − c̄τ − R0) · 1

≥ c̄(t − τ)

(R + c̄t)2

(y − c̄τ − R0)2

R − R0

=
c̄

R − R0
(R + c̄t)−2 (t − τ) (y − c̄τ − R0)2



Case 2: min{2c̄(t − τ), y − c̄τ − R0} = 2c̄(t − τ)

∆1 ≥ (R + c̄t)−1 2c̄(t − τ)

≥ 2c̄(R + c̄t)−1 R

R + c̄t
(t − τ)

(
y − c̄τ − R0

R − R0

)2

=
2R

(R − R0)2
c̄(R + c̄t)−2 (t − τ) (y − c̄τ − R0)2

In summary, we have shown that ∃C0(R0,R) = C0, such that

∆1 ≥ C0 c̄(R + c̄t)−2 (t − τ) (y − c̄τ − R0)2

Therefore, for t ≥ R1, we have



J2(t) ≥ C0 c̄

2c̄

∫ t

0

∫ R+c̄τ

R0+c̄τ

(t − τ)(R + c̄t)−2 (y − c̄τ − R0)2 G (y , τ)dy dτ

=
C0

2
(R + c̄t)−2

∫ t

0

∫ R+c̄τ

R0+c̄τ

(t − τ) (y − c̄τ − R0)2 G (y , τ)dy dτ

Recall that
G (y , τ) = ∂2

y G̃ (y , τ)

G̃ (y , τ) =

∫
|x |>y

w(x , y)(p − p̄ − c̄2(ρ− ρ̄))dx

so

J2(t) ≥ C0(R + c̄t)−2

∫ t

0

∫ R+c̄τ

R0+c̄τ

(t − τ) G̃(y , τ)dy dτ

≥ C0(R + c̄t)−2

(∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
|x|>y

(t − τ)w(x , y)(ρ− ρ̄)2dx dy dτ

)
c̄2

ρ̄

= C0
c̄2

ρ̄
(R + c̄t)−2 J3(t)



where

J3(t) =

∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
|x |>y

(t − τ) w(x , y)(ρ− ρ̄)2dx dy dτ

F 2(t) =

{∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
|x |>ν

ν−1(t − τ) w(x , ν)(ρ− ρ̄)dx dν dτ

}2

≤
∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
|x |>ν

(t − τ) w(x , ν)(ρ− ρ̄)2dx dν dτ

·

(∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
R+c̄τ>|x |>ν

ν−2 w(x , ν)(t − τ) dx dν dτ

)
= J3(t) J4(t)



J4(t) =

∫ t

0

∫ R+c̄τ

R0+c̄τ

∫
R+c̄τ>|x|>y

y−2 w(x , y)(t − τ) dx dy dτ

= 4π

∫ t

0

(t − τ)

∫ R+c̄τ

R0+c̄τ

y−2

∫ R+c̄τ

y

|x |−1(|x | − y)2 |x |2 d |x | dy dτ

≤ C0

∫ t

0

∫ R+c̄τ

R0+c̄τ

(t − τ) y−2 (R + c̄τ)(R + c̄τ − y)2 dy dτ

≤ C0 c̄2(R + c̄t) log
R + c̄t

R

Therefore

J3(t) ≥ (J4(t))−1 F 2(t)

≥ C0 c̄2(R + c̄t)−1

(
log

R + c̄t

R

)−1

F 2(t)



so

F
′′

(t) ≥ J1(t) + J2(t) > J2(t) ≥ C0
c̄2

ρ̄
(R + c̄t)−2 J3(t)

≥ C 2
0

c̄4

ρ̄
(R + c̄t)−3

(
log

R + c̄t

R

)−1

F 2(t)

Since

J2(t) ≥ 0 F
′′

(t) ≥ J1(t) ≥ B0(R + c̄t)−1 ∀ t > 0
F ′(0) = 0

F ′(t) ≥
∫ t

0
J ′1(t)dt = c̄−1 B0 log

(
R + c̄t

R

)
∀ t > 0

F (0) = 0, so

F (t) =

∫ t

0
F ′(τ)dτ ≥ C0 c̄−2 B0(R + c̄t) log

R + c̄t

R
, ∀ t > t1



§2.4 Summary of current progress on development of
singularities for the compressible Euler equations and related
equations

I. Shock formation of radial symmetric Euler equations, see

I Alinhac, S., Blowup for Nonlinear Hyperbolic Equations,
Boston, Birkhaüser, 1995.

I Alinhac, S., The null condition for quasi-linear wave equations
in two space dimensions, Invent. Math., 145, No. 3, 597-618
(2001).

II. Christodoulou’s shock formation theory (A breakthrough in
M-D)

I Consider 3D isentropic and irrotational compressible Euler
equations

curl ~u = 0⇒ potential function ϕ

I Short pulse initial data: (r =
√

x2
1 + x2

2 + x2
3 ).



φ|t=1 = δ2−εφ0(
r − 1

δ
,w), ∂tφ|t=1 = δ1−εφ1(

r − 1

δ
,w) (2.80)

3 (∂t + ∂r )kΩl∂qφ|t=1 = 0δ2−|q|−ε0 , 0 ≤ k ≤ N (2.81)

Ω = x j∂i − x i∂j in the derivative on S2.

Remark 1 The short pulse data of the form (2.80) and (2.81) was
first introduced by Christodoulou with the following properties:

I suitable class of “large” symmetric data;

I the smallness restrictions are imposed initially on the
variations along angular directions and along the “good”
direction tangent to the outgoing light cone surface {t = r};

I the largeness is kept at least for the second order “bad”
directional derivatives ∂t − ∂r ;

I such a short pulse data provides a useful framework to study
effectively the blow-up of smooth solutions to M-D hyperbolic
equations by the corresponding knowledge for 1-D problems.



Remark 2 For 3-D isentropic and irrotational compressible Euler
equations with the short pulse initial data, Christodoulou obtained
a complete geometric description of the maximal classical
development, which yields a detailed analysis of the behavior of the
solution at the boundary of the domain of the maximal classical
solution, including a comprehensive description of the geometry of
the characteristic surfaces. Indeed, Christodoulou developed a
geometric-energy method to study this problem, which enables him
to study the evolution of the “inverse foliation density” µ, which
measures the compression of the outgoing characteristic surfaces,
and show the formation of shocks for the isentropic irrotational
3-D Euler equations with short pulse initial data. In particular,
Christodoulou proved the µ is positive in the region of smooth and
approaches to zero near the blowup surface (or curve). These can
be found in the following references:



Demetrios Christodoulou, The formation of shocks in
3-Dimensional Fluids, Vol. 9, European Mathematical Society,
2007.

Demetrios Christodoulou and Shuang Miao, Compressible Flow and
Euler Equations, Vol. 9, International Press Somerville, MA, 2014.

S. Klainerman, I. Rodnianski, On the formation of trapped
surfaces, Acta, 208(2), 211-333 (2012).



Remark 3 Following the basic framework of Christodoulou,
Miao-Yu proved the shock formation of the 3D quasi-linear wave
equation:

−(1 + 3G ”(0)(∂t u)2)∂2
t u + ∆u = 0, t > −2

(u, ∂t u)|t=−2 = (δ
3
2 u0(

r − 2

δ
,w), δ

1
2 u1(

r − 2

δ
,w)), 0 < δ � 1,G ”(0) 6= 0

(u0, u1)(s,w) ∈ L∞0 ((0, 1]× S2)

They have shown that the shock forms before t = −1 and it forms
due to the compression of incoming characteristics. It is noted that
the null condition is not satisfied!

Shuang Miao & Pin Yu, On the formation of shocks for quasilinear
wave equation, Invent. of Math., 207(0), 697-831, 2017.



Remark 4 Following the framework of Christodoulou, in a serious
works, Speck-Luk studied the shock formation of the general
compressible Euler equations in both 2D and 3D without the
assumption of irrotation. First, for 2D case, they study
plane-symmetric initial data with short-pulse perturbations. For
such an initial data, they showed the shock formation mechanism
that the first order derivatives of u and ρ blow up while u and ρ
remains bounded near the shock. Then, they generalize this to the
3D case. Precisely, they regard the 1D Euler equations for a simple
small-amplitude solution as a plane-symmetric solution in 3D.
They perturbed this solution in (x2, x3) directions as a nearly
plane-symmetric initial data for the 3D isentropic Euler equations.
They proved that the shock formation mechanism is stable under
small and compactly supported perturbations with non-trivial
vorticity and provided a precise description of the first singularity.
See the follow references:



Jonathan Luk & Jared Speck, Shock formation in solutions to the
2d compressible Euler equations in the presence of non-zero
vorticity, Invent. Math., 214(1), 1-169, 2018.

Jonathan Luk & Jared Speck, The stability of simple plane-
symmetric shock formation for 3D compressible Euler flows with
vorticity and entropy, arXiv e-print, arXiv:2017.03426, July 2021.



Remark 5 In the presence of damping, the momentum equation in
the compressible Euler equations becomes
∂t(ρ~u) + div(ρ~u ⊗ ~u) +∇p = −aρu, a > 0. Then the damping
may prevent the shock formation for small data, yet for large data,
shock still may form in finite time, see:

Thomas Sideris, Becca Thomases, and Dehua Wang, Long time
behavior of solutions to the 3D compressible Euler equations with
damping, CPDE, 28(3-4), 795-816, 2003 (blowup, no information
for shocks).

Zhendong Chen, Formation of slighted shock for the 3D
compressible Euler equations with time dependent damping, Ph.D
Thesis, CUHK, 2022.



Remark 6 Geometric blow-up for the Burger’s equation
Consider the Cauchy problem:{

∂tv + v∂x v = 0
v(x , t = 0) = f0(x) = v0(x)

(∗1)

For any given smooth solution to (∗1), v(x , t), one defines the
Eikonal equation{

Lu := (∂t + v∂x)u = 0
u(x , t = 0) = x

(∗2)

(∗2) has a smooth solution u. In the new coordinate system (t, u),
then

L = ∂t |(t,u).

Then the equation in (∗1) becomes Lv = 0, which yields that

v(t, u) = v0(u) = f (u) (∗3)

Fact: If v0 = f is smooth, then v(t, u), together with its
derivatives, will remain smooth in (t, u) coordinates!!



Definition Define the inverse foliation function µ to be the
Jacobian of the coordinates transformation

(t, u)→ (t, x), µ = det(
∂(t, x)

∂(t, u)
) = (det(

∂(t, u)

∂(t, x)
))−1

i.e. µ = 1
∂x u

.
Then shock forms ⇔ µ(t, x)→ 0+.

Evolution equation for the inverse foliation density function:{
Lµ = µ∂x v = ∂v

∂u = f ′(u)
µ(x , 0) = 1

(∗4)

⇒ µ(t, u) = µ(0, u) + f ′(u)t
= 1 + f ′(u)t

so µ→ 0←→ t → T ∗ = − 1
f ′(u) . (∗5)

Qn: How to generalize such an approach to the M-D Euler system?



III. Shock formation by using modulated self-similar variables

Very recently, Buckmaster-Shkoller-Vicol had obtained several
significant results on finite time shock formation for the M-D
compressible Euler equations by using modulated self-similar
variables.

First, for 2D isentropic Euler equations under azimuthal symmetry
with smooth initial data of finite energy and non-trivial vorticity,
they were able to obtain point shock formation in finite time, with
explicit computable blow-up time and location. And furthermore,
it is shown that the solution near the shock is of cusp type; see:

T-S-V, Formation of shocks for 2D isentropic compressible Euler,
arXiv e-prints, arXiv:1907.03784, July 2019.



Second, they have generalized the 2D results to the 3D isentropic
Euler equations for the ideal gases without any symmetry
assumptions, besides the similar results as for 2D, they have shown
the precise direction of blow-up and the geometric structure of the
tangent surface of the shock profile, and also obtained the
homogeneous Sobolev bounds for the fluid variables, see:

T-S-V, Formation of point shocks for 3D compressible Euler,
arXiv:1912.04429, December 2019.

Third, they extend the previous results to the full Euler equations
by studying the evolution and creation of the vorticity and have
shown that the vorticity remains bounded up to shock formation,
see:

T-S-V, Shock formation and vorticity creation for 3D Euler,
arXiv:2006.14789, June 2020.



Remark 7 It is important to note that the point shock in the works
of T-S-V is stable, i.e., for any smooth small generic perturbations
of the given initial data, the corresponding Euler system has a
smooth solution which blows up in a small neighborhood of the
original shocks time and location. This is achieved due to the fact
that the solutions approach the background solution near the
shock exponentially with respect to the self-similar variables (the
solutions of the various self-similar Burgers equation). However,
Buckmaster and Iyer showed the existence of an open set of initial
data that leads to an unstable shock, see:

Tristan Buckmaster, Sameer Iyer, Formation of unstable shocks for
the 2D isentropic compressible Euler, Comm. Math. Phys.,
389(1), 197-271, 2022.

The major difference here from T-S-V theory is the set of
background solutions for the self-similar variables.



Remark 8 The rough idea of the method of self-similar
coordinates. To study the behavior near singularity of the solution
to the following nonlinear heat equation

∂t u−∆ u−|u|p−1 u = 0, p > 1, (x , t) ∈ Rn×(−1, 0) (∗6)

and using the scaling property of (∗6) (if u solves (∗6), then so

does uλ := λ
2

p−1 u(λλ, λ2t)). Giga-Kohn (CPAM, 38(3), 297-319,
1985) proposed the following self-similar transformation

y = e
1
2
s x , s = −ln(−t), w(y , s) = e

− 1
2(p−1)

s
u(x , t) (∗7).

which changes (∗6) to

∂s w −∆w +
1

2
y · ∇y w +

1

p − 1
w − |w |p−1 w = 0 (∗8).



Based on the analysis of (∗8), they were able to show the
asymptotic behavior of u near the blow-up point (0, 0). Later on,
such an approach has been applied to various equations, such as

I Schödinger equation, by Frank Merle, etc. (Ann. Math. (2),
161(1): 157-222, 2001)

I Prandtl’ equation, Charles Collot, Masmoudi, etc.
(arXiv:1808.05967, 2018) (2D)

I Transverse Burgers equations, Charles Collot, Musmoudi, etc.
(arXiv:1803.07826, 2018)

I Semilinear Wave Equation, Merle-Zang (CMP, 333,
1529-1562, 2015)

I Incompressible Euler, ...



The method of self-similar variables can provide certain precise
information about the singularity of a given system by adding
modulation variables to enforce orthogonal conditions and track
the position of the singularity. For the compressible Euler
equations, the background solutions are based on the self-similar
Burger’s equation. For general discussion, see:

Jens Eggers and Marco A Fontelos, The role of self-similarity in
singularities of partial differential equations, Nonlinearity,
22(1):R1-R44, Dec 2008.



Remark 9 Formation of shocks for Burgers equation using the
method of self-similar coordinates.

Consider {
∂t v + v ∂x v = 0
v(x , t = −1) = v0(x) = f (x)

(∗9)

Assume that f (0) = 0, min f ′(x) = f ′(0) = 1. Then by the
characteristic method, (∗9) has a smooth solution which forms a
shock at T∗ = 0 at x∗ = 0 with ∂x u(0, t)→ −∞ as t → 0−.

Qn 1: Is there a singularity before t = 0 and whether ∂x u is the
first quantity which blows up or not, more importantly

Qn 2: How does the solution behave near the singularity?



Self-similar coordinates: s = −ln(−t), y = xe
3
2
s (∗10)

and introduce the corresponding unknown

u(x , t) = e−
s
2 U(y , s) (∗11)

Then (∗9)⇒

(∂s −
1

2
)U + (

3

2
y + U)∂y U = 0 (∗12)

Fact 1 In general, the self-similar transformation should be

s = −ln(τ(t)−t), y = (x−ξ(t))eα s , u(x , t) = e−βs U(y , s) (∗13)

with the parameters τ(t) and ξ(t) representing the time and
location of the shock respectively. Here since the blow-up point is
(0, 0), so one can take τ(t) = 0, ξ(t) = 0. Then (∗9)⇒

(∂s − β)U + [αy + U]e(α−β−1)s ∂y U = 0 (∗14)



To guarantee the global in s existence of solution to (∗14), one sets

α− β − 1 = 0 (∗15)

To get the stability of the shock, (i.e. the solution of (∗9)
approaches exponentially to the solution of the self-similar Burger’s
equation in self-similar variable s), one chooses

β =
1

2
(∗16)

Note that the Jacobian of the self-similar transformation is given by

∂(y , s)

∂(x , t)
=

∣∣∣∣∣ e
3
2
s , 3

2 yes

0, es

∣∣∣∣∣ = e
5
2
s =

1

(−t)
5
2

(∗17)

Hence, the self-similar transformation degenerates as t → 0−.



Fact 2 It can be shown that (∗12) admits a global smooth solution
on [0,∞). Thus the only possibility of singularity formation is the
transformation between the Cartesian coordinates and the
self-similar coordinates becomes degenerated.

Fact 3 (∗12) can be solved by characteristic method. Indeed,
consider

d∇
ds

= U(∇, s) +
3

2
∇, ∇(0) = y0 (∗18)

Then (∗12) and (∗18)⇒ U(y(s), s) = e
s
2 U0(y0)

e−
3s
2 y(s) = y0 + (1− e−s)U0(y0)

⇒ U can be solved implicitly as

U(y , s) = e
s
2 U0(e−

3
2
s y − e

s
2 (1− e−1)U).



In order to define U globally, it suffices to require

1 + (1− e−s)U ′0 6= 0 (∗19)

which can be guaranteed by assumptions on the initial data.

Furthermore, it follows from (∗12) that

U(0, s) = 0, ∂y U(0, s) = −1 for all s.

Fact 4 One can show that

lim
s→∞

|U(y , s)− Ū(y)| = 0 ∀ y ∈ R1. (∗20)

where Ū is the solution to the following self-similar Burger’s
equation:



−1

2
Ū + (

3

2
y + Ū)∂y Ū = 0 (∗21)

which can be solved globally.

Hence, ∂x u blows up only at (0, 0), i.e.

lim
t→0−

∂x u(0, t) = lim
t→0−

es ∂y U(0, s) = lim
t→0
−1

t
= −∞ (∗22)

and all other quantities are bounded, and

lim
t→0+

|u(x , t)− (−t)
1
2 Ū(

x

(−t)
3
2

)| = 0 ∀ x ∈ R1 (∗23)



Fact 5 The geometric structure of the shock front

Consider the surface Γ : (x , t, u(x , t)) in R3,

Normal vector N of Γ : N = J−1(−∂x u,−∂t u, 1),

Gauss curvature K of Γ : K = −u4
x

(1+u2
t +u2

x )2 ,

where J =
√

1 + u2
t + u2

x .

Initially, N0 = 1√
2

(1, 0, 1), K0 = −1
4 .



Consider the evolution of N, K in the self-similar coordinates at
y = 0

N = 1√
1+e2s U2

y +es U2 U2
y

(−es Uy ,−e
s
2 UUy , 1)|y=0

K = − 1
(1+e−2s U−2

y +e−s U2)2
|y=0

Then, as s → +∞(t → 0−), since Uy (0, s)→ −1,
U(0, s)→ Ū(0) = 0, it holds that

N → (−1, 0, 0), K → −1.

Thus, at the shock formation point, the normal N(t) of the shock
front becomes horizontal at shock point.

Qn; Can one do the similar theory for the M-D Euler equations?



Initial Boundary Value Problem
∂tu + A∂xu = 0, t > 0, x > 0
u(x = 0, t) = b(t), x = 0
u(x , t = 0) = u0(x)

A

(
1 0
0 −1

)
, u =

(
u1

u2

)

{
∂t u1 + ∂x u1 = 0
∂t u2 − ∂x u2 = 0

t

x



u1(x , t) = f (x − t) = u01(x − t)
u2(x , t) = g(x + t) = u02(x + t)

t

x

u1(0, t) = u01(−t) = b1(t), t > 0 (b1 should be given)
u2(0, t) = u02(t) = b2(t) can not generally given boundary condition



1. Strictly dissipative boundary condition
∂tu + A1 ∂xu + A2 ∂yu = 0
Bu = g x = 0
u(x , t = 0) = u0(x)

∃A0 such that A0 ≥ δI , δ > 0, A0 A1, A0 A2 symmetric.
Or in a more general form, consider

∂tu + An ∂xnu +
n−1∑
j=1

Aj ∂xj u = f , Ω (2.80)

Mu = g , on ∂Ω (2.81)
u|t=0 = u0 (2.82)

Aj , j = 1, · · · , n are smooth m ×m matrices.



(2.80) is symmetrizable, i.e. ∃A0 > 0 such that

Ãj = A0 Aj symmetric, j = 1, · · · , n
Ω = {x ∈ Rn; xn > 0}
∂Ω = {xn = 0} M is a smooth matrix

Assume that ∂Ω is non-characteristics, i.e.,

det An 6= 0 on ∂Ω

∃ p such that

λ1 < · · · < λp−1 < λp < 0 < λp+1 < · · · < λm (2.83)

where λi is the i-th eigenvalue of An with corresponding
eigenvectors νi

(An − λi I )νi = 0



Rm = ⊕ ker(λi I − An)

= E + ⊕ E−

E + = ⊕j>p ker(λj I − An), E− = ⊕j≤p ker(λj I − An)

Clearly, dim E + = m − p, dim E− = p.
∀ u ∈ Rm, u = u+ ⊕ u− where u+ ∈ E +, u− ∈ E−

Mu = Mu+ + Mu− = g (2.84)

Definition 2.1 The matrix M is said to be strictly dissipative if

(i) M+ = M|E+ is invertible on ∂Ω, so that (2.81) (or (2.84))
can be rewritten as

u+ + (M+)−1 Mu− = (M+)−1g ⇒ u+ − su− = g̃ (2.85)

so here S = −(M+)−1M is a matrix ((n − p)× p).



(ii) For any vector u satisfying (2.84), it holds that

−(u, Ãnu) ≥ δ|u|2 − δ−1|g |2 (2.86)

for some δ > 0. Or equivalently, the quadratic form

Q(u−) = −
((

Su−
u−

)
, Ãn

(
Su−
u−

))

is positive definite.



Uniform stability estimate: Define a space-time norm || · ||0,η,T as
follows

||u||20,η,T =

∫ T

0

∫
xn=0
|u(x ′, 0, t)|2 e−2ηt dx ′ dt+∫ T

0

∫
Rn

+

e−2ηt |u(x ′, xn, t)|2 dx dt

(2.87)

η > 0 is large, x ′ = (x1, · · · , xn−1), x = (x ′, xn).

Proposition 2.1 Under the assumptions (2.83), (2.85) and (2.86),
∃C and η0 > 0 such that for any smooth solution to IBVP
(2.80)-(2.82), it holds that

||u||20,η,T ≤ C

(
1

η

∫ T

0

∫
Rn

+

e−2ηt |f |2 dxdt +

∫ T

0

∫
xn=0

e−2ηt |g |2 dx ′dt

)
(2.88)

(u0 ≡ 0) for η ≥ η0.



Proof of Proposition 2.1: ∀ η > 0, set υ = e−ηt u.
Step 1:

A0 ∂tυ + ηA0υ + Ãn ∂xnυ +
n−1∑
j=1

Ãj ∂xjυ = e−ηt A0f

Mυ = e−ηt g
υ|t=0 = 0

(2.89)

Step 2: Energy estimate

(υ,A0 ∂tυ) =
1

2
(∂t(υ,A0υ)− (υ, ∂t A0υ))

(υ, Ãn ∂xnυ) =
1

2
(∂xn(υ,Anυ)− (υ, ∂xn Anυ))υ, n−1∑

j=1

Ãj ∂xjυ

 =
1

2

n−1∑
j=1

∂xj (υ, Ãjυ)−
n−1∑
j=1

(υ, ∂xj Ãjυ)





∫
Rn

+

(υ,A0υ)dx + 2η

∫ T

0

∫
Rn

+

(υ,A0υ)dx dt −
∫ T

0

∫
xn=0

(υ, Ãnυ)dx ′ dt

−
∫ T

0

∫
Rn

+

υ,
∂t A0 + ∂xn Ãn +

n−1∑
j=1

∂xj Ãj

 υ

 dx dt

=

∫ T

0

∫
Rn

+

(υ, e−ηt A0f )dx dt

To derive the stability estimate, it suffices to estimate

−
∫ T

0

∫
xn=0

(υ, Ãnυ)dx ′ dt

By definition of dissipative boundary condition∫ T

0

∫
{xn=0}

−(υ, Ãnυ)dx ′ dt ≥ δ
∫ T

0

∫
xn=0

|υ|2dx ′ dt−δ−1

∫ T

0

∫
xn=0

e−2ηt |g |2



Remark 2.1 Strictly dissipative boundary conditions are sufficient
conditions for (2.88), which implies well-posedness theory.

Is this a necessary condition for (2.88)?

2. Kreiss Theory (Uniform Lopatinski Stability Condition)
Duff. G. F. D. Hyperbolic Differential Equations and Waves,
in “Boundary Value Problems for Evolution PDEs”

For simplicity, Aj , j = 0, 1, · · · , n are constant matrices, M is
a constant matrix.
Set s = iξ + η. Reη > 0 fixed. Define

û(ξ′, xn, s) =

∫ +∞

0

∫
Rn−1

e−st−iξ
′x ′ u(x ′, xn, t)dx ′ dt (2.90)

x ′ = (x1, · · · , xn−1), ξ′ = (ξ1, · · · , ξn−1), u0 = 0



Take the Laplace Fourier transform of (2.80) and (2.81)

sû(ξ′, xn, s) + An ∂xn û +

n−1∑
j=1

Aj iξj

 û = f̂ (2.91)

Mû(ξ′, xn = 0, s) = ĝ(ξ′, s) (2.92)

u(x , t) ≡ 0 t ≤ 0 (2.93)

∂xn û(ξ′, xn, s) = A(ξ′, s) û (ξ′, xn, s) + A−1
n f̂ (2.94)

where

A(ξ′, s) = −A−1
n

sI + i
n−1∑
j=1

ξj Aj

 (2.95)



The corresponding homogeneous equation

∂xn û(ξ′, xn, s) = A(ξ′, s) û (ξ′, xn, s) (2.96)

û(ξ′, xn = 0, s) = W (ξ′, s) (2.97)

The general solutions are

û(ξ′, xn, s) = exnA(ξ′,s) W (ξ′, s) (2.98)

For any given (ξ′, s) with Res > 0, we only look for solutions of
the form (2.98) which decays as xn → +∞.

Let kj(ξ
′, s) be the eigenvalues of A, i.e.

det

(
sI + i

n−1∑
l=1

ξl Al + An kj

)
= 0 (2.99)

kj has multiplicity mj , 1 ≤ j ≤ l .



l∑
j=1

mj = m

Cm = ⊕ ker(kj I − Aj(ξ
′, s))mj (2.100)

w =
l∑

j=1

wj , wj ∈ ker(kj I − Aj(ξ
′, s))mj (2.101)

Then

û(ξ′, xn, s) =
l∑

j=1

exn kj exn(A(ξ′,s)−kj I ) wj

=
l∑

j=1

exn kj

mj−1∑
q=0

xq
n

q!
(A(ξ′j , s)− kj I )q

wj

(2.102)

Re kj(ξ
′, s) < 0 (û ∈ L2(xn > 0)) (2.103)



We now set E +(ξ′, s) to be subspace of Cm defined to be the
boundary value at xn = 0 of all the solution of the form (2.102)
with kj satisfying (2.99) and (2.103).

Then, clearly,

E +(ξ′, s) = ⊕Re kj<0 ker(kj I − A(ξ′, s))mj (2.104)

dim E +(ξ′, s) =
∑

Re kj<0

mj

In fact

dim E +(ξ′, s) = m − p (2.105)

(Indeed, if ξ′ = 0, kj(0, s) = − s

λj
. In general, it follows from

continuity and hyperbolicity.)



Then the uniform stability requires that the boundary matrix M is
uniformly invertible on E +(ξ′, s), i.e. set

B+(ξ′, s) , M|E+(ξ′,s) (2.106)

Then we require that B+(ξ′, s) is uniformly invertible on E +(ξ′, s)
for (ξ′, s), Res > 0 on |ξ|2 + |s|2 = 1.

Definition 2.2 The boundary condition (2.81) is said to satisfy the
uniform Lopatinski condition if ∃ fixed constant δ > 0, such that

min
|ξ′|2+|s|2=1

Re s>0

|B+(ξ′, s)U+|2 ≥ δ|U+|2 ∀U+ ∈ E +(ξ′, s)(2.107)



Remark 2.2 Condition (2.107) reflects the stability of the IBVP
(2.80)-(2.81). If (2.107) is not satisfied for some (ξ′, s) with
Res > 0, |ξ′|2 + |s|2 = 1, ∃ û+ ∈ E +(ξ′, s), non-trivial, such that

û+(ξ′, xn, s) =

m−p∑
j=1

cj pj(x) wj exn kj

pj(x) =

mj−1∑
α=0

xαn
α!

(A(ξ′, s)− kj I )α

(2.108)

Mû(ξ′, 0, s) = 0 (2.109)



For all λ > 0, defines

uλ(x , t) = eλ(st+ix ′ξ′) û+ (ξ′, λxn, s)λ1/2

uλ solves (2.80), (2.81), (2.82) with f = 0, g = 0 with

u0 = uλ(x , 0) = e iξ
′x ′ û+ (ξ′, λxn, s)λ1/2 (2.110)

Proposition 2.2 The solution of the IBVP (2.80), (2.81), (2.82)
satisfies the uniform stability estimate (2.88) iff the boundary
condition (2.81) satisfies the uniform Lopatinski condition (2.107).

Proof of Proposition 2.2: See H. O. Kreiss, CPAM, Vol. 23,
(1970), 277-298.

Remark 2.3 All the conclusions go to the variable coefficients
problem.



3. Admissible boundary conditions
Consider general boundary value problem

n∑
i=1

Ai ∂xi u + cu = f , x ∈ Ω ⊆ Rn (2.111)

Bu = g on ∂Ω (2.112)

u ∈ Rm, Ai (1 ≤ i ≤ n) are smooth m ×m matrices.
Ai : symmetric; c : smooth matrix; B: smooth d ×m matrix

Definition 2.3 The first order system (2.111) is said to be positive
if

c + ct −
n∑

i=1

∂xi Ai > 0

We would like to study the admissible boundary condition for such
a positive system.



Definition 2.4 (Admissible boundary condition) The boundary
condition (2.112) is said to be admissible for (2.111) if Π = ker B
is a maximal nonegative subspace of the quadratic form u ·βu, here

β =
n∑

i=1

ni Ai

~n = (n1, · · · , nn) is the outer normal of ∂Ω, i.e.

u · βu ≥ 0 ∀ u ∈ Π

and for any subspace Π′ ⊃ Π, such that u · βu ≥ 0 for u ∈ Π′, then
Π′ = Π.



Proposition 2.3 Let the symmetric system (2.111) be positive and
the boundary condition (2.112) is admissible. Assume further,
Ai ∈ c1(Ω̄), c ∈ c(Ω̄), B ∈ c2(∂Ω), ∂Ω is uniformly characteristic
or non-characteristics and ∂Ω is piecewise c2 with finitely many
angle points. Then the problem (2.111) and (2.112) has a unique
L2-solution provided f ∈ L2(Ω).

Remark 2.4 The key is to establish the global L2-estimate∫ ∫
Ω
|u|2dx ≤ c

(∫ ∫
Ω
|f |2dx +

∫
∂Ω
|g |2ds

)
Sketch of the proof of Proposition 2.3: Let u be smooth solution
(2.111)-(2.112). Then it follows from (2.111)

n∑
i=1

ut Ai ∂xi u + utcu = ut f



Thus

n∑
i=1

∂xi (ut Aiu) + ut

(
c + ct −

n∑
i=1

∂xi Ai

)
u = 2ut f

Since there exists δ > 0 such that∫
Ω

ut

(
c + ct −

n∑
i=1

∂xi Ai

)
u dx ≥ δ

∫
Ω
|u|2

and ∫
Ω

n∑
i=1

∂xi (ut Aiu)dx =

∫
∂Ω

ut βu ds, β =
n∑

i=1

Ai ni

therefore,

δ

2

∫
Ω
|u|2dx +

∫
∂Ω

ut βu dx ≤ 2

δ

∫
|f |2dx



To handle the integral ∫
∂Ω

ut βu ds

we need to use admissibility of the boundary condition

Rm = Π⊕ Π⊥

u = uI ⊕ uII , uI ∈ Π = ker B, u2 ∈ Π⊥

Bu = BuI + BuII = BuII = g

Define B2 = B|Π⊥ . Then B2 is invertible.

uII = B−1
2 g ⇒ |uII |2 ≤ c |g |2

∫
∂Ω

ut βu ds =

∫
∂Ω

(uI + uII )
t β(uI + uII )ds

=

∫
∂Ω

ut
I βuI ds +

∫
∂Ω

ut
I βuII ds +

∫
∂Ω

ut
IIβuI ds

∫
∂Ω

ut
II βuII ds



Assume that uII 6= 0. Recall that Π is a maximal nonnegative for
the quadratic form ut βu, thus

uI ± uII ∈/Π, uII 6= 0

so

0 >

∫
∂Ω

(uI ± uII )
t β(uI ± uII )

=

∫
∂Ω

ut
I βuI ±

∫
∂Ω

ut
I βuII +

∫
∂Ω

ut
IIβuI

∫
∂Ω

ut
II βuII

≥ ±
∫
∂Ω

ut
I βuII ±

∫
∂Ω

ut
IIβuI +

∫
∂Ω

ut
II βuII ds

Therefore,∣∣∣∣∫
∂Ω

ut
I βuII +

∫
∂Ω

ut
IIβuI

∣∣∣∣ ≤ ∣∣∣∣∫
∂Ω

ut
II βuII ds

∣∣∣∣ ≤ c

∫
∂Ω
|g |2ds

∫
∂Ω

ut βu ds > −c

∫
∂Ω
|g |2ds



Hence,
δ

2

∫
Ω
|u|2dx ≤ 2

δ

∫
Ω
|f |2dx + c

∫
∂Ω
|g |2ds

Example 1: Consider the second order elliptic equation

n∑
i ,j=1

∂i (aij ∂j u) = f u ∈ Ω (2.113)

(aij) is smooth symmetric, positive definite.
Set

G = (gij) = A−1 = (aij)
−1

u0 = u, ui =
n∑

j=1

aij ∂j u0,

 u1
...

un

 = A∇u0

∇u0 = A−1

 u1
...

un

 = G

 u1
...

un

 , i.e. ∂i u0 = gij uj



Let

U =


u0

u1
...

un



−

n∑
i=1

∂i ui + f = 0

−∂i u0 +
n∑

j=1

gij uj = 0, i = 1, · · · , n
(2.113)’

n∑
i=1

Ãi ∂xi U + C̃ U = F (2.114)

where i + 1



Ãi =



0 · · · · · · 0 −1 0 · · · 0

.

.

.

.

.

. 0 · · · · · · 0

.

.

.

.

.

.

.

.

.

.

.

.
0 · · · · · · 0 0 · · · · · · 0
−1 0 · · · · · · 0 · · · · · · 0
0 · · · · · · · · · · · · · · · · · · 0

.

.

.

.

.

.
0 · · · · · · · · · · · · · · · · · · 0



C̃ =



0 · · · · · · 0

.

.

.

.

.

. gij
0

 F =



−f
0
·
·
·
·
0


i + 1

Note that (2.114) is a symmetric system, but not positive.

Rewrite (2.113)’
−

n∑
i=1

∂i ui −
n∑

i=1

pi ∂i u0 +
n∑

i ,j=1

pi gij uj = −f

−∂i u0 +
n∑

j=1

gij uj = 0, i = 1, · · · , n
(2.115)



Write (2.115) in matrix form,

n∑
i=1

Ai ∂xi u + CU = F

i + 1

Ai =



−pi 0 · · · 0 −1 0 · · · 0
0

.

.

.
0
−1 0
0

.

.

.
0


C =



0
∑

pi gi1 · · ·
∑

pi gin

.

.

.

.

.

. gij
0


i + 1

we can choose pi such that c + ct −
n∑

i=1

∂xi Ai > 0. Indeed, direct

computations yield



c + ct −
n∑

i=1

∂xi Ai =



n∑
i=1

∂xi pi

n∑
i=1

pi gi1 · · · · · ·
n∑

i=1

pi gin

n∑
i=1

pi gi1

... gij + gji
n∑

i=1

pi gin


For any small given ε > 0, take pi = εxi , cj =

n∑
i=1

xi gij , so

c + ct −
n∑

i=1

∂xi Ai =


εn εc1 εc2 · · · · · · εcn
εc1

.

.

. gij + gji
εcn

 > 0 for ε small enough (e.x.)



For any bounded domain Ω, then the system (2.115) is positive.
Next,

β =
n∑

i=1

ni Ai =


−ε

n∑
i=1

ni xi −n1 · · · −nn

−n1
... 0
−nn



ut βu =
1

4

(
u0 − u0ε

n∑
i=1

ni xi − 2
n∑

i=1

ni ui

)2

−1

4

(
u0 − u0ε

n∑
i=1

ni xi + 2
n∑

i=1

ni ui

)2



0 ≤ ut βu = −u0

(
εu0

n∑
i=1

ni xi + 2
n∑

i=1

ni ui

)
u0 = u|∂Ω = 0 is admissible

Furthermore,

n∑
i=1

ni ui =
n∑

i ,j=1

aij ni ∂j u0 =
∂u0

∂ν
(sub-normal derivative of u0)

then the boundary condition

∂u

∂ν
=
λ0

2
u λ0 ≤ 0

is admissible.



Example 2: Consider isentropic Euler equation ∂tρ+ div (ρ~u) = 0

∂t~u + (~u · ∇)~u +
∇p(ρ)

ρ
= 0

~u · n = 0 is admissible.



§3 Discontinuous Solutions ∂tu +
m∑
j=1

∂xj Fj(u) = 0 u ∈ Rn

u(x , t = 0) = u0(x)

(3.1)

Question: How to extend the solution after singularity formation?
u ∈ L1

loc(Rm × R+
+) such that∫ ∫
u ∂tϕ+

m∑
j=1

Fj(u) ∂xjϕ dx dt = 0 (3.2)

for ∀ϕ ∈ C∞0 (Rm × R+
+).

Remark: The general well-posedness of initial value (or IBVP) for
MD (3.1) is a challenge in the field of nonlinear PDEs. Thus one
will focus on special solutions.



Let us first look at piecewise smooth solution.

Fact: Let u(x , t) be a piecewise smooth function which jumps
across a hypersurface S whose space-time normal is given by
(nt , n1, · · · , nm). Furthermore, u(x , t) satisfies the equation (3.1)
away from S . Then u(x , t) is a weak solution to (3.1) (i.e. (3.2)
holds) iff that the R − H conditions hold.

nt [u] +
m∑
j=1

nj [Fj(u)] = 0 on S (3.3)

here [A] means the jump of A across S .



§3.1 Shock Front Solutions

u(x , t) is piecewise C 1 with jumps across a C 2-hypersurface S(t)
in the space-time, such that u(x , t) satisfies (3.1) away from S(t),
and across S(t), the Rankine-Hugoniot conditions (3.3) are
satisfied.

The hypersurface separate x − t space into two parts G±, let
n = (nt , n1, · · · , nn) be the space-time normal of S(t). Then
R − H conditions are

nt [u] +
m∑
j=1

nj [Fj(u)] = 0

where [A] means jump of A across S(t). Furthermore, we assume
that S(t) is non-characteristic for (3.1).



Remark 3.1 In the case m = 1, it is an interesting problem, but
not essential, since we do have the Glimm theory which gives more
general weak solutions in the space BV . However, it is essential in
M − D. This is the only available general weak solution.

§3.2 Admissible Discontinuous Initial Data
Shock front initial data: which are special piecewise smooth data
u0(x) for (3.1) with the following properties:

(1) ∃ smooth hypersurface M0 in Rm, which is parameterized by
α. Let n(α) = (n1(α), · · · , nm(α)) be the unit normal of M0

(in the case M0 is compact, then n is taken to be out normal,
and if M0 = {x | xm = ϕ(x ′), x ′ = (x1, · · · , xm−1)}, n is
pointed to positive xm direction). So that

u0(x) =

{
u+

0 (x) x ∈ Ω+

u−0 (x) x ∈ Ω−
(3.4)



(2) ∃ smooth function σ(α), α ∈ M0, such that ∀α ∈ M0

−σ(α)(u+
0 (α)− u−0 (α)) +

m∑
j=1

nj(α) (Fj(u+
0 (α))− Fj(u−0 (α))) = 0(3.5)

(3) σ(α) does not define a characteristic direction, i.e.

inf
j,∈{1,··· ,n}
α∈M0

∣∣σ(α)− λj(u±0 (α))
∣∣ > 0 (3.6)

here λj(u) is the eigenvalues of

n(α) A(u) =
m∑
j=1

nj(α) Aj(u(α)).

(4) Some order compatibility conditions must hold.



Example 1: ∂tu + ∂x

(
1

2
u2

)
+ ∂y

(
1

2
u2

)
= 0

M0 : n(α) = (n1(α), n2(α))

R − H : σ(α)[u] + n1(α)

[
1

2
u2

]
+ n2(α)

[
1

2
u2

]
= 0

σ(α) = (n1(α) + n2(α))
1

2
(u+(α) + u−(α))

σ(α)− λ(u±(α)) = (n1(α) + n2(α))

(
1

2
(u+(α) + u−(α))− u±(α)

)
To satisfy (3.6), n(α) ∦ (1,−1), so M0 can not be arbitrary.



Example 2: Compressible 2-D isentropic Euler system:

∂t

 ρ
ρu1

ρu2

+ ∂x

 ρu1

ρu2
1 + p

ρu1 u2

+ ∂y

 ρu2

ρu1 u2

ρu2
2 + p

 = 0 (3.7)

ρ > 0, p = p(ρ), p′(ρ) > 0.

Fact: For system (3.7), the conditions (3.5) and (3.6) will be
satisfied provided that

(1) u+
0 (α)− (u+

0 (α) · n(α))n(α) = u−0 (α)− (u−0 (α) · n(α))n(α)

where u =

(
u1

u2

)
.

(2) 2-component vector (ρ+
0 (α), u+

0 (α) · n(α)) must lie on the
2-shock wave curve emanating from (ρ−0 (x), u−0 (α) · n(α)) for
the one dimensional isentropic Euler system{

∂tρ+ ∂ξ(ρu) = 0
∂t(ρu) + ∂ξ(ρu2 + p) = 0



§3.3 Structural Assumptions on both the System and the
Initial Data

• Hyperbolicity: Assume that u+
0 (x) lies in the region of

hyperbolicity of (3.1), i.e. ∃C and δ such that if
|u − u±0 (x)| < δ for x ∈ Rm, then

C−1 I ≤ A0(u) ≤ CI , A0(u) is the symmetrize, (3.8)

• Regularity and R-H conditions: Assume that

(u±0 (x), σ(x)) ∈ Hs+1(M0), for some s > m
2 , and

−σ[u] + n · [F (u)] = 0 (3.9)



• Non-characteristic conditions:

Aj(u) =
∂

∂u
Fj(u), A(u) = (A1(u), · · · ,Am(u))

A(u±0 (α)) · n(α) =
m∑
j=1

nj(α) Aj(u±0 (α))

Let λ±j (α) = λj(u±0 (α)) be the eigenvalues of A(u±0 (α)) · n(α)
such that

λ±1 (α) ≤ · · · ≤ λ±n (α)

Now we assume that the jump at (3.5) (or (3.9)) are
associated with p-shock independent of M0.

λ±p−1 < λ±p < λ±p+1 (3.10)

Furthermore, Lax geometrical entropy condition are satisfied,
i.e. {

λ+
p (α) < σ(α) < λ−p (α)

λ−p−1(α) < σ(α) < λ+
p+1(α)

(3.11)



Let E +(α)(E−(α)) be the space spanned by the eigenvectors
associated with

λ+
p+1(α) ≤ · · · ≤ λ+

n (α)(λ−1 (α) ≤ · · · ≤ λ−p−1(α))

of the A(u+
0 (α))n(α) (A(u−0 (α))n(α)). Let P+(α) and P−(α) be

the smooth projections onto E +(α) and E−(α) separately, then it
is easy to verify that P±(α) ∈ Hs+1(M0) provided that
(u±0 (α), σ(α)) ∈ Hs+1(M0) for s > m−1

2 .

Define 2n × 2n matrix

Ã(α) =

[
A(u+

0 (α))n(α)− σ(α)I
−(A(u−0 (α))n(α)− σ(α)I )

]
(3.12)



Then the noncharacteristic condition (3.6) ⇔

det Ã(α) 6= 0, ∀α ∈ M0 (3.13)

Note that Ã(α) has exactly n − 1 positive eigenvalues, with P(α)
being the smooth projection onto the subspace spanned by the
eigenvectors of Ã(α) associated with positive eigenvalues.

• High order compatibility: We assume that{
For any given s, the compatibility up to s − 1
order are satisfied on M0 by (u±0 (α), σ(α)).

(3.14)

For the shock-front problem, the compatibility condition can
be described in the following way.





Let
∂j

∂nj
be the j-th order normal differentiation on M0. Then the

compatibility condition in (3.14) can be guaranteed by the following
condition:

(I − P)
∂j

∂nj

(
u+

0

u−0

)∣∣∣∣
M0

can be prescribed arbitrarily and then

P
∂j

∂nj

(
u+

0

u−0

)∣∣∣∣
M0

is uniquely determined for 1 < j ≤ s − 1.

(3.15)

Remark 3.2 It has been shown that if (u±0 (α), σ(α)) satisfies
(3.5), then the compatibility condition in (3.14) are satisfied for a
large class of initial data.



• Block structure condition (Kreiss): We consider a hyperbolic
operator

L̃ = ∂t +
m∑
j=1

Aj(y , t) ∂yj = ∂t +
m−1∑
j=1

Aj(y , t) ∂yj + Am(y , t) ∂ym(3.16)

and a perturbed family of hyperbolic operators

L̃a = ∂t +
m−1∑
j=1

(Aj(y , t) + aj(y , t)) ∂yj + (Am + am)∂ym(3.17)

and Am is invertible with k+ positive eigenvalues

Aj ∈ Hs
ul , s >

[
m + 1

2

]
+ 1

Aj = const, aj ≡ 0 |y |+ |t| > R
(3.18)



Define

S
{

(y , t, η, ξ,w)
∣∣|y |+ |t| ≤ R < +∞, Reη ≥ 0, |ξ|2 + |η|2 + |w |2 = 1

}
w = (w1, · · · ,wm−1)T , ξ, η are complex numbers.

Notations:

z = (y , t, η, ξ,w), z1 = (y , t, ξ,w)
a = (a1, a2, · · · , am)

Define symbol

Ma = −(Am + am)−1

(iξ + η)I +
m−1∑
j=1

(Aj + aj)i wj

 (3.19)



Definition 3.1 The perturbed hyperbolic operator L̃a is said to
satisfy the block structure condition if Ma has the following
property:

∀ z0 ∈ S ,∃ an invertible matrix map V (z , a) defined for
|z − z0|+ |a| < ε(z0)

V−1 Ma V =


M1

M2

. . .

Ml

 (3.20)

where M1 has the structure

M1 =

[
N11 0

0 N12

]
N11 + N∗11 ≤ −δI , N12 + N∗12 ≥ δI

(3.21)



and Mj , j ≥ 2 is νj × νj matrix with the form

Mj = i(Kj I + Cj) + Ej(η, z
1, a) (3.22)

where 

Ej(0,Z0, 0) = 0
Kj is scalar, Kj ∈ R
Cj is nilpotent matrix

Cj =


0 1
· ·
· ·
· 1

0


(3.23)



Furthermore, V is smooth.

For the shock front problem, we always assume that the block
structure assumption is satisfied at any point, u±0 (α), α ∈ M0

for the perturbed operator of the form

∂t +
m∑
j=1

Aj(u±0 (α) + v)∂xj

with a suitably small v , i .e. |v | < δ.

(3.24)

Remark 3.3 The system (3.1) is strictly hyperbolic, such as the
2-D isentropic compressible fluid (the characteristic speeds are
given u · w − c(ρ), u · w , u · w + c(ρ), for any direction w ∈ S2).
Then the block structure condition holds trivially. In this case, the
symmetrizer can be defined by using matrix projection. See the
reference H. O. Kreiss, CPAM Vol. 23 (1970), P.277-298.



Remark 3.4 In general, the block structure conditon is indeed a
constraint on the system (3.1). However, the interesting case, 3-D
compressible Euler system

∂tρ+ div (ρu) = 0
∂t(ρu) + div (ρu ⊗ u) +∇p = 0
∂t(ρE ) + div ((ρE + p)u) = 0

(3.25)

E =
|u|2

2
+ e, u = (u1, u2, u3), τ =

1

ρ
, p = p(ρ, S), T =

temperature,

de = TdS − pdτ , −∂p

∂τ
(τ,S) > 0.

A. Majda. The stability of Multi-dimensional shock fronts, AMS
Memorial No. 275, 1983.
That (3.25) has the block structure.



• Linear structural stability conditions: Another major
assumption on both the system (3.1) and the initial data
(u±0 (α), α ∈ M0) is the following linearized stability condition:

The planar shock fronts (u±(α), σ(α))
are uniformly stable for every α ∈ M0.

(3.26)

Remark 3.5 This is key assumption, which plays the major role in
the existence of multi-dimensional shock fronts. The condition
(3.26) should be a natural requirement.
For example, consider the 1-D problem

u− + εv− u+ + εv+

t

0 x



A class of initial data satisfying R − H conditions
Question:

Can we construct a class of initial data (u±0 (α), σ(α)), α ∈ M0,
such that R-H condition, (3.5), is satisfied, and
(u±0 (α), σ(α)) ∈ Hs+1(M0), s > m−1

2 ?
(3.27)

A. We first consider the 2-D isentropic compressible flow, (3.7),
and the 3-D Euler system (3.25) with the standard equation
of states. Then the initial data (u±0 (α), σ(α)), α ∈ M0, can
be constructed as follows. It is recalled that for any given
state in front of the shock, u+, and the speed σ, there exists
a unique state behind the shock u− such that

u− = U−(u+, σ)

(see that book by Smoller, or by Courant-Friedrichs). Thus
for any given smooth surface M0 and arbitrary u+(α),
σ(α) ∈ Hs+1(M0). Then
u−(α) = U−(u+(α), α), u−(α) ∈ Hs+1(M0).



B. For the general system (3.1), then besides the Lax-entropy
condition (3.11), we further require that

λp(u,~n)is a genuinely nonlinear eigenvalue
of the matrix A~n, u ∈ V ,~n ∈ Sm−1.

(3.28)

Now, given (u±0 (α), σ(α)) ∈ Hs+1(M0), s > m−1
2 , satisfying

the condition that |σ(α)− λp(u+
0 (α), n(α))| suitably small,

∀α ∈ M0. Then there exists a unique
u−0 (α) ∈ U−(u+

0 (α), σ(α)) which satisfies the R − H
condition. Furthermore, u−0 (α) ∈ Hs+1(M0). This is due to
the construction of shock wave curves using implicit function
theorem by P. Lax.

σ(u+ − u−) = F (u+)− F (u−)



§3.4 Some Existence Results

Basic Question ⇔ Existence of classical shock front problem

Consider the n × n system of m-dimensional hyperbolic
conservation laws (3.1). Let the initial data u0 be piecewise
smooth with a shock front data (u±0 (α), σ(α)), α ∈ M0, satisfying
the R-H condition (3.5) and (3.6), and suitable compatibility
condition, with M0 being a smooth hypersurface. Find a unique
C 2-space-time hypersurface S(t) defined in x , t-space for [0,T ],
T > 0, with the space-time normal (nt , n1, · · · , nm) and
S(t = 0) = M0. Together with two unique C 1-function u+(x , t)
and u−(x , t) defined in the space-time domain G + and G−

respectively, where G± are each side of S(t), satisfying



 ∂tu
± +

m∑
j=1

∂xj Fj(u±) = 0 in G±

u±(x , t = 0) = u±0 (x) x ∈ Ω±
(3.29)

and the boundary condition

nt(u+ − u−) +
m∑
j=1

nj(Fj(u+)− Fj(u−)) = 0 (3.30)

A. Planar shock fronts
Given a w ∈ Sm−1, consider the solutions of the form
u(x , t) = U(ξ, t), ξ = w · x .

∂tu + ∂ξ F (u) = 0

u = U(ξ − σt)

The problem reduces to

σ[u] = [F (u)]



B. 1-D scalar conservation laws
∂tu + ∂x f (u) = 0 t > 0, x ∈ R1

u(x , t = 0) = u0(x) =

{
u−0 (x), x < 0
u+

0 (x), x > 0
(3.31)

M0 = {0}, σ =
f (u+

0 (0))− f (u−0 (0))

u+
0 (0)− u−0 (0)

We will assume that the Lax geometrical entropy condition is
satisfied, i.e.,

f ′(u+
0 (0)) < σ < f ′(u−0 (0)) (3.32)

t

x



Then the solution to the shock front problem can be constructed
as follows:

Step 1: Extend u+
0 (u−0 ) to x < 0 (x > 0) in a C 1-bounded way to

obtain u±0 (x), x ∈ R.

Step 2: Solve the following Cauchy problems

{
∂tu + ∂x f (u) = 0 x ∈ R1, t > 0
u(x , t = 0) = u+

0 (x) x ∈ R1{
∂tu + ∂x f (u) = 0 x ∈ R1, t > 0
u(x , t = 0) = u−0 (x) x ∈ R1

(3.33)

Let u±(x , t) be solutions to the above problems respectively.



Step 3: Solve the following initial value problem
dS(t)

dt
=

f (u+(s(t), t))− f (u−(s(t), t))

u+(s(t), t)− u−(s(t), t)
= G (s, t)

S(t = 0) = 0
(3.34)

Clearly, G (s, t) is at least C 1 on (−s, s)× [0,T0], T0 � 1.
Therefore, (11.34) has a unique C 2-smooth solution, S(t) ∈ C 2.

S ∈ C 2([0,T1]), S ′(0) = σ



Step 4: Define

u(x , t) =

{
u−(x , t) x < s(t)
u+(x , t) x > s(t)

(3.35)

Then if t ≤ T1 < T0, u(x , t) is well-defined independent of the
extension of u±0 (x).

f ′(u+(s(t), t)) < s ′(t) < f ′(u−(s(t), t))

R-H condition and Lax entropy condition and satisfied, therefore
we obtain a shock front solution.

t

x



Remark 3.6 It is clear u± ∈ C 1(x ≷ s(t))

s(t) ∈ C 2 (3.36)

C. 2-D scalar conservation law
∂tu + ∂x f1(u) + ∂y f2(u) = 0 t ≥ 0, (x , y) ∈ R2

u(x , y , t = 0) = u0(x , y) =

{
u−0 (x , y) x < 0
u+

0 (x , y) x > 0
(3.37)

M0 = {(0, y), y ∈ R1} a straight line.

u±0 (x , y) are C 1 functions for
x > 0
< 0

.

We assume that Lax entropy condition are satisfied

f ′1 (u+
0 (0, y)) < σ(y) =

f1(u+
0 (0, y))− f1(u−0 (0, y))

u+
0 (0, y)− u−0 (0, y)

< f ′1 (u−0 (0, y)) (3.38)

Then a shock-front solution can be constructed as before.



Step 1: Extend u+
0 (u−0 ) to x < 0 (x > 0) in a C 1 bounded way

such that
u±0 (x , y), x ∈ R1, y ∈ R1

Step 2: Solve the following problem{
∂tu
± + ∂x f1(u±) + ∂y f2(u±) = 0

u(x , y , t = 0) = u±0 (x , y)

to obtain the solutions u±(x , y , t).



Step 3: Look for the shock surface, x = φ(y , t), φ(y , t = 0) = 0

−∂tφ(u+(φ, y , t)− u−(φ, y , t)) + (f1(u+(φ, y , t))− f1(u−(φ, y , t)))
−∂yφ(f2(u+(φ, y , t))− f2(u−(φ, y , t))) = 0

On the boundary, x = φ(y , t)
φt(u+(φ, y , t)− u−(φ, y , t)) + φy (f2(u+(φ, y , t))− f2(u−(φ, y , t)))
−(f1(u+(φ, y , t))− f1(u−(φ, y , t))) = 0

φ(y , t = 0) = 0

(3.39)

S(t) = {(x , y , t)| x = φ(y , t)} ∈ C 1



Step 4: Define that

u(x , y , t) =

{
u−(x , y , t) x < φ(y , t)
u+(x , y , t) x > φ(y , t)

Remark 3.7 We have NOT solved the shock front problem in
general. Not like the 1-D case, we can not gain derivatives for the
solution to the first order PDE (3.39).



D. General Existence Theorem

Theorem 3.1 Assume that the system and the initial data
u±0 (x) satisfy the following conditions:

(1) The structural condition (3.8), (3.9), (3.11), (3.13), (3.24)
(block structure condition).

(2) The initial datum u−0 ∈ Hs+1(Ω−),
u0 ∈ Hs+1(Ω+ ∩ {|x | < R0}) for some fixed s > 2[m2 ] + 7.

(3) σ(α) ∈ Hs+1(M0) so that the R-H condition (3.5) is satisfied.
Meanwhile, the s − 1 order compatibility condition
(3.14)-(3.15) are satisfied.

(4) The uniform stability condition (3.26) is satisfied for every
α ∈ M0, i.e., the planar constant shock front
(u−0 (α), u+

0 (α), σ(α)) is uniformly stable (linearized) for each
α ∈ M0.



Then there exists T0 > 0, such that the classical shock front
problem has a solution on [0,T ], i.e. ∀ t ∈ [0,T ], ∃ a hypersurface
S(t) ∈ Hs+1 and a pair of smooth functions U±(x , t) defined on
G±, such that u− ∈ Hs(G−), u+ ∈ Hs(G + ∩ {|x | < R0}), where
G− is the interior of S(t) and G + is the exterior of S(t) (in the
case M0 is compact). Otherwise, G− is the left of S(t) and G + is
the right of S(t),

S(t = 0) = M0

and U±(x , t) solves (3.1) on G± respectively, and satisfy the
R − H conditions on S(t).

Remark 3.8 The conditions (1), (2), (3) are made on the
structure of the system

∂tu +
m∑
i=1

∂

∂xi
Fi (u) = 0

and the initial data. This can be satisfied by a large class of system
and initial data.



Remark 3.9 The condition (4) is a very strong condition. In many
cases, it is also necessary condition for the existence of solution to
the shock front problem. This will be discussed further in the
following section. This is the key for the whole theory.

Some corollaries of Theorem 3.1

E. The results for compressible Euler system
First, we discuss the 2-D isentropic gas dynamics system (3.7)

∂t

 ρ
ρu1

ρu2

+ ∂x1

 ρu1

ρu2
1 + p

ρu1 u2

+ ∂x2

 ρu2

ρu1 u2

ρu2
2 + p

 = 0

p = p(ρ), p′(ρ) > 0, ∀ ρ > 0.
Ideal gas, p(ρ) = Aργ , γ > 1, A > 0 constant.



Theorem 3.2 Assume that

(1) M0 is an arbitrary smooth closed curve such that

(ρ−0 , u
−
0 ) ∈ Hs(Ω−), (ρ+

0 , u
+
0 ) ∈ Hs(Ω+ ∩ {|x | < R0}), s > 10 (3.40)

(2) ∃σ(α) ∈ Hs(M0) so that (ρ±0 , u
±
0 , σ) satisfies the R-H

condition across M0 with M0 being a 3-shock satisfying Lax’s
entropy condition

u+
0 (α) · n(α) + C +(α) < σ(α) < u−0 (α) · n(α) + C−(α) (3.41)

C 2 =
dp

dρ
(ρ), C is the sound speed.

(3) Compatibility conditions up to 9-th order are satisfied.



(4) The following uniform stability condition holds:

[p(ρ)]

[ρ]
< C 2(ρ−) + (u−0 · n − σ)2 on M0 (3.42)

Then there exists a C 2-smooth hyperfaces S(t) defined on
[0,T ], with T > 0 and a C 1-piecewise smooth function
(ρ±, u±) which solves the classical shock front problem.

Remark 3.10 Define the so called local Mach number

M± =
|u± · n − σ|

c(ρ±)
(3.43)

Then the conditions (3.41) and (3.42) become

0 < M−(α) < 1 < M+(α) (3.41)’

M2
−

(
ρ−0 (α)

ρ+
0 (α)

− 1

)
< 1 (3.42)’



Remark 3.11 In the case that p(ρ) is convex, p
′′

(ρ) > 0, then
(3.42) is always satisfied. In particular, for the ideal fluids,
p(ρ) = Aργ , γ > 1, so (3.42) ((3.42)’) is satisfied. Therefore, all
the compressive shocks are stable (uniformly).

Remark 3.12 It is clear from (3.41)’ and (3.42)’ that the stability
condition (3.42) is always satisfied for suitably weak shocks

1 > M2
−

(
ρ−0 (α)

ρ+
0 (α)

− 1

)
= M2

−
ρ−0 (α)− ρ+

0 (α)

ρ+
0 (α)

Remark 3.13 It should be noted that the stability condition (3.42)
is purely multidimensional effects. Indeed, in 1-D, the Lax’s entropy
condition is sufficient for stability and existence of shock front.



Theorem 3.3 Assume that

(1) M0 = {0}, (ρ−0 , u
−
0 ) ∈ Hs

ul({x < 0}), (ρ+
0 , u

+
0 ) ∈ Hs

ul({x >
0}), s ≥ 2

(2) The initial R-H conditions are satisfied with a 2-shock
satisfying Lax entropy condition.

(3) The compatibility of order up to s − 1 are satisfied.

Then there exists a classical shock front solution.

Remark 3.14 The better results on the so called perturbed
Riemann problem have been solved by Daqian Li and Yu for the
isentropic gas dynamics.

We consider the 3-D compressible full Euler system (3.25). To
state the precise stability condition, let τ = 1

ρ



M2
− =

[p]

[τ ]

dp

dτ

∣∣∣∣
τ−

(3.44)

l = 2− M − (τ+ − τ−)

T−
Ps

∣∣∣∣
(τ−,s−)

(3.45)

where T is temperature, S is entropy, P = P(τ, s).
For ideal fluids, p = Aτ−γ es/c , γ > 1, A and γ are constants.

Theorem 3.4 Assume that
(1) M0 is a smooth compact hypersurface in R3 and the initial

data (ρ±0 , u
±
0 ,E

±
0 ) satisfying

(ρ−0 , u
−
0 , E

−
0 ) ∈ Hs (Ω−), (ρ+

0 , u
+
0 , E

+
0 ) ∈ Hs (Ω+ ∩ {|x| > R0}), s ≥ 10 (3.46)



(2) ∃σ(α) ∈ Hs(M0) such that (ρ±0 , u
±
0 ,E

±
0 , σ) satisfying the R-H

condition with a 3-shock satisfying Lax entropy condition

u+
0 · n + C (ρ+

0 , s
+
0 ) < σ < u−0 · n + C (ρ−0 , s

−
0 )

C 2(ρ, s) =
∂

∂ρ
p(ρ, s)

(3.47)

(3) The compatibility condition up to s − 1 order are satisfied.

(4) The following stability condition holds

(l − 1) + M2
−

(
1− τ+

τ−

)
> 0 ∀α ∈ M0 (3.48)

Remark 3.15 (3.48) is always satisfied in the case of ideal fluids
and in the case of weak shocks!



§3.5 Structural Stability

∂tu + ∂x

(
u2

2

)
= 0

ũ(x , t) =

{
−1 x < 0
1 x > 0

t

x0

is unstable.

For a shock, (u−, u+, s), i.e. u(x , t) =

{
u− x < st
u+ x > st

That u is good means structurally stable, i.e., lax entropy
condition, u+ < s < u−,⇔ the shock front is structurally stable!



§3.5.1 Linearization of Planar Shock Fronts

Let u be a planar shock moving in the direction w = (0, · · · , 0, 1)
so that

u(x , t) =

{
u− xm < σt
u+ xm > σt

(3.49)

where (u−, u+, σ) forms a shock, satisfying the R-H condition

σ(u+ − u−) = Fm(u+)− Fm(u−) (3.50)

The existence of the solution to (3.50) has been given by P. Lax.

∂tu +
m∑
i=1

∂xi Fi (u) = 0

u(x , t = 0) = uε0(x) =

{
u− + εv−(x) xm < 0
u+ + εv+(x) xm > 0

(3.51)

v±(x) are smooth functions with compact support in xm

(
> 0
< 0

)
.



If the planar shock is structurally stable, then we expect that
∃ u+

ε (x , t) on G± = {(x , t)| xm ≷ ψε(x ′, t), x ′ = (x1, · · · , xm−1)}
(i.e. the hypersurface is given by xm = ψε(x ′, t)).

S(t) = {(x ′, xm, t)| xm = ψ(x ′, t)} such that,
∂tu
±
ε +

m−1∑
i=1

Ai (u±ε ) ∂xi u±ε + Am(u±ε )∂xm u±ε = 0 on G±

nεt (u+
ε − u−ε ) +

m∑
j=1

nεxj (Fj(u+
ε )− Fj(u−ε ))

∣∣∣∣∣∣
xm=ψε

= 0

(3.52)

(nεt , n
ε
x1
, · · · , nεxm) is the normal of xm = ψε.

u±ε (x , t = 0) = u± + εv±(x) xm ≷ 0



To do the proper linearization, we introduce the
x̃m = xm − ψε(x ′, t)
x̃j = xj , j = 1, 2, · · · ,m − 1
t̃ = t

(3.53)

Then (3.52) changes to


∂t̃ u
±
ε +

m−1∑
j=1

Aj (u
±
ε ) ∂x̃j

u±ε +

[Am(u±ε )−
∂ψε

∂ t̃

]
−

m−1∑
j=1

Aj (u
±
ε )

∂ψ

∂x̃j

 ∂x̃m u±ε = 0, x̃m
> 0
< 0

∂t̃ψε(u+
ε − u−ε ) +

m−1∑
j=1

∂x̃j
ψε(Fj (u

+
ε )− Fj (u

−
ε ))− (Fm(u+

ε )− Fm(u−ε )) = 0, x̃m = 0

u(x̃ ′, x̃m, 0) =

{
u+ + εv+(x̃ ′, x̃m) xm > 0
u− + εv−(x̃ ′, x̃m) xm < 0



Now we assume that (u±ε , ψε) depends on ε smoothly,



du+
ε

dε

∣∣∣∣∣
ε=0

= v±(x̃, t̃),
dψε

dε

∣∣∣∣
ε=0

= φ,
∂ψε

∂t

∣∣∣∣
ε=0

= σ,
∂ψε

∂x̃j

∣∣∣∣∣
ε=0

= 0

∂t̃v
± +

m−1∑
j=1

Aj (u
±)∂x̃j

v± + (Am(u±)− σI )∂x̃m v± = 0, x̃m
> 0
<

t̃ > 0

∂t̃φ(u+ − u−) +

m−1∑
j=1

∂x̃j
φ(Fj (u

+)− Fj (u
−))

+(σI − Am(u+))v+ + (Am(u−)− σI )v− = 0, x̃m = 0

v±(x̃, t = 0) = v±(x̃), x̃m
> 0
<

(3.54)

(1) For simplicity, we drop “˜”.

(2) Using the linearity of the problem (3.54), we can write it as



∂tv
± +

m−1∑
j=1

Aj (u
±)∂xj v

± + (Am(u±)− σI )∂xm v± = F xm
>
<

0

∂tφ(u+ − u−) +

m−1∑
j=1

∂xj φ(Fj (u
+)− Fj (u

−)) + (σI − Am(u+))v+

+(Am(u−)− σI )v− = g xm = 0

v±(x′, xm, t) = 0

(3.55)



Now to define both V + and V− on the same domain xm > 0, we
need only to change xm → −xm in the system for V−

∂tV
− +

m−1∑
j=1

Aj(u
−) ∂xjV

− + (σI − Am(u−)) ∂xmV
− = F xm > 0 (3.56)

Denote by Ṽ = (V +,V−)t .

Ãj =

(
Aj(u+) 0

0 Aj(u−)

)
, 1 ≤ j ≤ m − 1

 Ãm =

(
Am(u+)− σI 0

0 −(Am(u−)− σI )

)
M̃Ṽ = −Ãm Ṽ , bj = Fj(u

+)− Fj(u
−), 1 ≤ j ≤ m − 1, b0 = u+ − u−

(3.57)

then we have

∂tṼ +
m−1∑
j=1

Ãj
∂

∂xj
Ṽ + Ãm

∂

∂xm
Ṽ = F xm > 0

B(φ, Ṽ ) = b0 ∂tφ+
m−1∑
j=1

bj ∂xjφ+ M̃Ṽ = g xm = 0

Ṽ (x , t) vanishes for all t ≤ 0

(3.58)



Definition 3.2 The planar shock front (3.49) is said to be linearly
structural stable if the problem (3.58) always has a unique solution
(Ṽ , φ) for arbitrarily given g and F (smooth enough).

In the following, we would like to quantify the Definition 3.2, we
will give a similar theory as the uniform Lopatinski condition for
conventional IBVP for hyperbolic system.
We introduce the following weighted norms

〈Ṽ 〉2s,η,T =
∑
|α|=s

∫ T

0

∫
xm=0

|η|2α1

∣∣∣Dα2
x ′ Dα3

t Ṽ
∣∣∣2 e−2ηtdx ′dt

|Ṽ |2s,η,T =
s∑

k=0

∫ +∞

0
〈Dk

xm Ṽ (·, ·, xm)〉2s−k,η,T dxm

〈Ṽ 〉s,η = 〈Ṽ 〉s,η,+∞



Example:



〈φ〉21,η,T =

∫ T

0

∫
xm=0

φ2
t +

m−1∑
j=1

|∂xj φ|
2 + η

2|φ|2
 e−2ηt x′ dt

〈Ṽ 〉20,η,T =

∫ T

0

∫
xm=0

|Ṽ |2 e−2η,t x′ dt

|Ṽ |20,η,T =

∫ +∞

0
〈Ṽ (·, ·, xm)〉20,η,T dxm =

∫ T

0

∫ +∞

0

∫
x′∈Rm−1

|Ṽ |2e−2η tdx′dxmdt

|Ṽ |20,η,∞ =

∫ +∞

0

∫
x′∈Rm−1

∫ +∞

0
|Ṽ |2 e−2ηt dxm dx′ dt

(3.59)

One may look for the solution of (3.58) satisfying the following
estimate

〈φ〉21,η,+∞ + 〈Ṽ 〉20,η,+∞ + η|Ṽ |20,η,+∞ ≤ C

(
|F |20,η
η

+ 〈g〉20,η

)
, C > 0, η > η0 > 0 (3.60)



Definition 3.3 The linearized shock front problem (3.58) is said to
be uniformly stable, if there exist uniform positive constant C and
η0 such that (3.60) holds for any solution of (3.58).

An algebraic characterization of (3.60) by main-mode analysis
Now, for any fixed s = iξ + η, Re s = η > 0, and
w = (w1,w2, · · · ,wm−1). In (3.58), take F ≡ 0, and look for
solution of the form

Ṽ =
∑
j

est+iw ·x ′+kj xm Pj(xm) Vj (3.61)

where Vj are generalized eigenvectors of the matrix

Ã−1
m

(
sI + i

∑m−1
j=1 wj Ãj

)
, Pj(xm) is a polynomial of xm, and

kj = kj(s,m) solves{
(1) det(kj Ãm + sI + iw · Ã) = 0
(2) Re kj < 0

(3.62)



Definition 3.4 We define Ẽ +(s,w) to be a subspace of C2n which
is spanned by the boundary values at xm = 0 of all solution of the
form given by (3.61), we all also define E +(s,w) to be the direct
sum of Ẽ +(s,w) and the one dimensional surface waves

φ = µest+iw ·x ′ , µ any constant

Proposition 3.1 The linearized planar shock front problem (3.58)
is uniformly stable in Definition 3.3 iff ∃ a fixed constant δ > 0, so
that

min
Re s>0

|s|2+|w|2=1

∣∣∣∣∣∣
b0s +

m−1∑
j=1

iwj bj

λ + MṼ

∣∣∣∣∣∣
2

≥ δ(|Ṽ |2 + λ
2), ∀(Ṽ , λ) ∈ E+(s,w) (3.63)



Some examples of uniform stability

A. Linear structural stability of 1-D problem

m = 1, ∂tu + ∂x f (u) = 0

In this case, the linearized problem (3.58) becomes
L̃Ṽ = ∂t Ṽ + Ãm ∂x Ṽ = F x > 0, t > 0

B̃ = b0 ∂tφ+ M̃Ṽ = b0 ∂tφ− Ãm Ṽ = g on x = 0

(Ṽ , φ) = 0, ∀ t ≤ 0

(3.64)

By the noncharacteristic condition

det(Am(u+)− σI ) 6= 0 6= det(Am(u−)− σI ) (3.65)

so (3.65) and hyperbolicity imply that ∃ p, q such that
Am(u+)− σI has exactly p positive eigenvalues



λ+
n − σ ≥ λ+

n−1 − σ ≥ · · · ≥ λ
+
n−(p−1) − σ > 0

with the corresponding eigenvectors

ν+
n , ν

+
n−1, · · · , ν

+
n−(p−1)

Am(u−)− σI has exactly q negative eigenvalues.

λ−1 − σ ≤ λ
−
2 − σ ≤ · · · ≤ λ

−
q − σ < 0

with corresponding eigenvectors

ν−1 , ν
−
2 , · · · , ν

−
q



Take F ≡ 0. All the nontrivial solutions of (3.64) are given by
V + =

n∑
j=n−(p−1)

a+
j (x − (λ+

j − σ)t)ν+
j

V− =

q∑
j=1

a−j (x + (λ−j − σ)t)ν−j

(3.66)

here a±j (s) are arbitrary function which vanish for s < 0.

Now, let us assume that the solution to (3.66) does satisfy the B.C.

g = (u+ − u−)
d

dt
φ−

n∑
j=n−p+1

(λ+
j − σ)a+

j (·) ν+
j +

q∑
j=1

(λ−j − σ)a−j νj (3.67)

Fix (x , t), then (3.67) is a linear system of n-equations with
unknowns

φ′, {a+
j }

n
j=n−p+1, {a−j }

q
j=1



Then it has a unique solution for any arbitrary given g iff

(1) 1 + p + q = n (3.68)

(2) det(u+ − u−, ν+
n−p+1, · · · , ν

+
n , ν

−
1 , · · · , ν

−
q ) 6= 0 (3.69)

By the definition of p and q, we have

λ−1 < λ−2 < · · · < λ−q < σ < λ−q+1 < · · · < λ−n

λ+
1 < λ+

2 < · · · < λ+
n−p < σ < λ+

n−p+1 < · · · < λ+
n (3.70)

Set k = q + 1, then p = n − 1− q = n − k ⇒ k = n − p, so

λk(u+) < σ < λk(u−), λk−1(u−) < σ < λk+1(u+) (3.71)

This is Lax entropy condition.



Proposition 3.2 For 1-D problem, a planar shock front is linearly
structurally stable iff

(a) Lax entropy condition is satisfied for some k ∈ {1, 2, · · · , n}.
(b) The determinant condition (3.69) is satisfied.

Remark 3.16 In case u+ − u− = ανk , then (3.69) is trivially
satisfied. However, for general system if |u+ − u−| = δ is small,
u+ − u− = Cανk + O(δ2), C 6= 0, then (b) is automatically
satisfied for small δ.



B. Scalar equations in 2-Variable

∂tu + (f1(u))x1 + (f2(u))x2 = 0 (3.72)

u(x1, x2, t) =

{
u− x2 < σt
u+ x2 > σt

(3.73)

The corresponding homogeneous linearized problem is

L̃Ṽ = ∂tṼ + Ã1 ∂x1Ṽ + Ã2 ∂x2Ṽ = 0 x2 > 0, t > 0

B(Ṽ , φ) = b0 ∂tφ+ b1 ∂x1φ+ M̃Ṽ = g x2 = 0, t > 0

here Ã1 = diag (f ′1(u+), f ′1(u−)), Ã2 = diag (f ′2(u+)− σ,
σ − f ′2(u−)), b0 = u+ − u−, b1 = f1(u+)− f1(u−),
M̃Ṽ = −(f ′2(u+)− σ)V + + (f ′2(u−)− σ)V−, s = iξ + η,
Res = η > 0, w real. We will look for the special solution of the
form (3.61) to the L̃Ṽ = 0, i.e.,

Ṽ =
∑
j

est+iwx1+kj x2 Vj (3.74)



kj solves {
det(kj Ã2 + sI + iwÃ1) = 0
Re kj < 0

(3.75)

k1 = −s + iwf ′1(u−)

f ′2(u+)− σ
, k2 = −s + iwf ′1(u+)

σ − f ′2(u−)

Re k1 > 0, Re k2 > 0

⇒ ˙̃E +
2 (s,w) = {(0, 0)t}

E +(s,w) = {(0, 0, λest+iwx1)t}

then (3.63) ⇐⇒

min
Re s>0

|s|2+|w|2=1

|s(u+ − u−) + iw(f ′1(u+)− f ′1(u−))| ≥ δ

There is no such δ > 0.



C. Uniform stability of shock front for the compressible Euler
system in 3-D

Consider the 3-D compressible Euler system (3.25). Consider a
planar shock of (3.25) moving in x3-direction.

U(x1, x2, x3, t) =

{
(u−1 , u

−
2 , u

−
3 , ρ

−, s−)t x3 < σt
(u+

1 , u
+
2 , u

+
3 , ρ

+, s+)t x3 > σt
(3.76)

satisfying the mechanical shock conditions
u−i = u+

i = ui i = 1, 2
−σ[ρ] + [ρu3] = 0

−σ[ρu3] + [ρu2
3 + p(τ, s)] = 0 τ =

1

ρ

(3.77)



and the energy jump condition

e(τ+, p+)− e(τ−, p−) +
1

2
(τ+ − τ−)(p+ + p−) = 0 (3.78)

and the entropy condition

u+
3 + c+ < σ < u−3 + c− (3.79)

M2
− =

[p]

[τ ]

dp

dτ

∣∣∣∣
(τ−,s−)

(3.44)

l = 2− M−(τ+ − τ−)

T−
Ps

∣∣∣∣
(τ−,s−)

(3.45)



Proposition 3.3 Consider the 3-D compressible Euler system
(3.25) with general equation of state p = p(τ, s) satisfying the Lax
entropy condition (3.79), then the planar shock front given by
(3.76) and (3.77) has the following stability properties

(1) The linearized problem is uniformly state iff

(l − 1) + M2
−

(
1− τ+

τ−

)
> 0 (3.80)

(2) If the Lax entropy condition (3.79) is satisfied, but (3.80) is
not, and

(l − 1) + M2
−

l
< 0 (3.81)

then it is “strongly unstable” (3-D effects).



(3) In the case that the planar shock front satisfies (3.79), but

does not satisfy (3.80). However,
(l − 1) + M2

−
l

> 0, then it

is weakly stable in the sense that the corresponding linearized
problem (3.58) with F ≡ 0 admits the following weak
estimate.

〈φ〉21,η + 〈Ṽ 〉20,η + η|Ṽ |20,η ≤ cη−2〈g〉21,η (3.82)

Remark 3.17 For ideal gas, p(ρ, s) = Aes/c ργ , γ > 1, then (3.80)
is always satisfied. This implies all the compressible shock front are
stable. Furthermore, for general equation of states, ∂ρ P(ρ, s) > 0,
then (3.80) is satisfied for weak shocks, so it is uniformly stable.



§4 Existence of Multi-dimensional Rarefaction Waves
Consider 1-dimensional case,

∂tu + ∂x f (u) = 0 (4.1)

u(x , t = 0) =

{
u−, x < 0
u+, x > 0 (4.2)

Assume that λk(u) is the k-th eigenvalue of f ′(u) with
corresponding eigenvector rk(u). Assume also that k-th family is
genuinely nonlinear in the sense that

∇λk(u) · rk(u) = 1 (4.3)

Let uk(ξ) be the solution of the ODE

d

dξ
uk(ξ) = rk(uk(ξ))

uk(ξ = λk(u−)) = u−

u

u
1

2



Then
d

dξ
λk(uk(ξ)) = 1, i.e. λk(uk(ξ)) = ξ

Then define

u(x , t) =


u−

x

t
< λk(u−)

Uk

(x

t

)
λk(u−) <

x

t
< λk(u+)

u+
x

t
> λk(u+)

t

x

is called a k-centered rarefaction wave.



Consider

∂tu + A1(u) ∂x1u + ~A2(u) · ∇x ′u = 0 (4.4)

x = (x1, x
′), x ′ = (x2, · · · , xn) ∈ Rn−1, u ∈ Rm

A1(u) : m ×m matrix, ~A2(u) · ∇x ′u =
n∑

i=2

Ai (u) ∂xi u

Assumption 1: (4.4) is symmetrizable. Let Γ be a smooth surface
in Rn, given by

Γ : x1 = ϕ0(x ′) ∈ C∞

ϕ0(0) = 0, ∇x ′ ϕ0(0) = 0

x

x1

’

Γ



u(x , t = 0) = u0(x) =

{
u+(x) x1 > ϕ0(x ′)
u−(x) x1 < ϕ0(x ′)

(4.5)

Given any vector η ∈ Rn−1, assume that the matrix

Ā(u, η) = A1(u) + ηĀ2(u) = A1(u) +
n∑

i=2

ηi Ai (u)

has a simple eigenvalue λ(u, η) with a right eigenvector r(u, η)
such that λ-field is genuinely nonlinear

∇n λ(u, η) · r(u, η) ≡ 1 (4.6)

For each fixed x ′, let η = −∇x ′ ϕ0(x ′) ≡ −ϕ′0(x ′), and solve

dh

ds
= r(h,−ϕ′0(x ′))

h(0, x ′) = u+(ϕ0(x ′), x ′)
(4.7)



Assumption 2: Assume that there exists s(x ′) < 0, s ∈ C∞ such
that

h(s(x ′), x ′) = u−(ϕ0(x ′), x ′) (4.8)

For t > 0. Define the blow up region of the interior of the
rarefaction wave

R = {(X1,X
′,T ), 0 < X1 < 1, T > 0}

(X1 =
x

t
, T = t, corresponding to 1-D case)

We are looking for a smooth function ψ(X1,X
′,T ) ∈ C 1(R̄) such

that

ψ(X1,X
′, 0) = ϕ0(X ′)

ψX1 = C (X1,X
′,T )T with C (X1,X

′,T ) > 0 in R̄
(4.9)

(In 1-D, ψ = X1T , C = 1, X1 =
x

t
, T = t, ψ(X1, t = 0) = 0)



In the physical space, the interior region of the rarefaction wave is
given by

S{(x1, x
′, t), ψ(0, x ′, t) < x1 < ψ(1, x ′, t), t > 0} (4.10)

so the map 
x1 = ψ(X1,X

′,T )
x ′ = X ′

t = T

is a bijection.

Set

V (X1,X
′,T ) = u(ψ(X1,X

′,T ),X ′,T ) on R (4.11)

Since

∂1u =
∂1V

∂1ψ
, ∂X ′u = ∂X ′V −

∂1V

∂1ψ
∂X ′ψ, ∂tu = ∂TV − ∂1V

∂1ψ
∂Tψ

L(V , ψ)V , ∂TV +
1

∂1ψ
(A1(V )−∂TψI−~A1(V )∇X ′ψ)∂X1 V +~A2(V )∇X ′V = 0



Definition 4.1 u = u(x1, x
′, t) is said to be a multi-dimensional

rarefaction wave associated to λ if

u(x1, x
′, t) =

 u1(φ−1
1 (x1, x

′, t), x ′, t) x1 < ψ(0, x ′, t)
V (ψ−1(x1, x

′, t), x ′, t) ψ(0, x ′, t) < x1 < ψ(1, x ′, t)
u2(φ−1

2 (x1, x
′, t), x ′, t) x1 > ψ(1, x ′, t)

(4.12)

where (ui , φi ) are defined on Di (here D1 = {X1 < 0},
D2 = {X1 > 1}) and (V , ψ) are defined on R, respectively, such
that

L(ui , φi )ui = 0 in Di

L(V , ψ)V = 0 in R
u1(X1,X

′, 0) = u−(X1 + φ0(X ′),X ′)
u2(X1,X

′, 0) = u+(X1 + φ0(X ′)− 1,X ′)
u1(0,X ′,T ) = V (0,X ′,T ), u2(1,X ′,T ) = V (1,X ′,T )
φ1(0,X ′,T ) = ψ(0,X ′,T ), φ2(1,X ′,T ) = ψ(1,X ′,T )

(4.13)



X’

X
1



ψ is defined through (4.9)
φ1(X1,X

′, 0) = X1 + φ0(X ′)
φ2(X1,X

′, 0) = X1 + φ0(X ′)− 1
∂Tψ(0,X ′,T ) = λ(V (0,X ′,T ); (1,−∇X ′ψ(0,X ′,T )))
∂Tψ(1,X ′,T ) = λ(V (1,X ′,T ); (1,−∇X ′ψ(1,X ′,T )))
VX1 6= 0, at T = 0, X1 = 0



Assumption 3: (k-th order compatibility condition) The given
initial data (u±, Γ = {x1 = ϕ0(x)}) is said to be k-th order
compatible if for given {∂lX u+|Γ, l ≤ k}, ∃{∂ lX u−|Γ, l ≤ k} such
that there exists C∞ functions (ũ1, φ̃1), (ũ2, φ̃2), (Ṽ , ψ̃) defined on
D1, D2, and R respectively, such that

L(ũi , φ̃i )ũi = O(tk+1) on Di

L(Ṽ , ψ̃)Ṽ = O(tk) on R

∂t ψ̃ − λ(Ṽ , (1,−∇X ′ψ̃)) = O(tk+1)

(4.14)

and the matching condition.



Theorem 4.1 (S. Alinhac) Let the assumption (4.6), (4.7), (4.14)
hold. Let s0 > 0 be a fixed number k > s0 + s for some sufficiently
large s. Assume further that u± ∈ Hk(Ω±0 ), Ω±0 = {x1 ≷ ϕ0(x ′)}.
Then ∃ a unique multi-dimensional rarefaction wave such that

1. (u1, φ1) ∈ Hs(X1 < 0), (V , ψ) ∈ Hs(R), (u2, φ2) ∈ Hs(D2)

2. Near the characteristic surfaces X1 = 0, and X1 = 1

(u1, φ1) ∈ Cβ, (u2, φ2) ∈ Cβ, β < k − s0

3. X1 = ψ(0,X ′,T ) ∈ Hs−1
(X ′,T ), ψ(1,X ′,T ) ∈ Hs−1

(X ′,T )

Sketch of the main ideas of the proof of Theorem 4.1:

1. Admissible boundary condition

2. Nash-Moser-Hörmander iteration



Sketch of Nash-Moser-Hörmander Theory
Let M be a smooth compact manifold. Fix a point u0 ∈ C∞(M).
Assume that there exists a mapping Φ(u) : C∞(M)→ C∞(M)
defined on µ-neighborhood of u0 (∃ δ > 0, such that
||u − u0||s < δ, ∀ s ≤ µ, where || · ||s is the Hölder norm). We will
made the following main assumptions on the structure of Φ:

(H1) Φ is differentiable up to second order in a neighborhood of u0
with the following estimate

||Φ
′′

(u)(V1,V2)||α
≤ C (||V1||a ||V2||a (1 + ||u||α+b) + ||V1||a ||V2||α+c + ||V1||α+c ||V2||a)

(4.15)

for some a, b, c ≥ 0, for all α ≥ 0.



(H2) In some µ′-neighborhood of u0, ∃ a linear mapping Ψ(u),
C∞(M)→ C∞(M) such that for all α ≥ 0

Φ′(u) Ψ(u) = I ,
and

||Ψ(u)V ||α ≤ C {||V ||α+λ + ||V ||λ (1 + ||u||α+d)}
(4.16)

for some λ and d .

Remark 4.5 It should be noted for m-th order PDE operator

Φ(u) = F (x , u,Du, · · · ,Dαu)|α|≤m

Then (H1) is trivial

Φ′(u)V =
∑
|α|≤m

∂F

∂uα
∂αV , uα = ∂αu

Φ
′′

(u)(V1,V2) =
∑ ∂2F

∂uα ∂uβ
∂αV1 ∂

β V2



Remark 4.6 (H2) requires both the invertibility of Φ′(u) and some
type of energy estimates for the linearized problem (in practice).
The main results can be summarized as

Theorem 4.2 (Nash-Moser-Hörmander) Let the assumptions (H1)
and (H2) hold. Assume further that

α > max{µ, µ′, d , a +
1

2
(λ+ b), λ+ b} α ∈/N

Then ∃ an (α + λ)-neighborhood of origin, W , such that for each
f ∈W ,

Φ(u) = Φ(u0) + f

has a unique solution u = u(f ) ∈ C∞(M) such that

||u(f )− u0||α ≤ C ||f ||α+λ

The proof of the Theorem 4.2 is based on a regularized version of
the classical Newton’s iteration method.



Solve the equation

F (x) = 0
y − F (x0) = F ′(x0)(x − x0)

−F (x0) = F ′(x0)(x1 − x0) ⇒ x1 − x0 = − F (x0)

F ′(x0)
y − F (x1) = F ′(x1)(x − x1)

−F (x1) = F ′(x1)(x2 − x1) ⇒ x2 = x1 −
F (x1)

F ′(x1)

xn+1 = xn −
F (xn)

F ′(xn)
F (xn+1) = F (xn+1)− (F (xn) + F ′(xn)(xn+1 − xn))

= O(|xn+1 − xn|2) = en

y

xxx
1 0



so
F (xn+1) = en, en = O(|xn+1 − xn|2)

The key issue is the compactness of {xn}

Φ(u) = Φ(u0) + f
Φ(un+1) = Φ(un) + Φ′(un)(un+1 − un) + en

Set

∆un = un+1 − un, g(un) = Φ′(un) ∆un

Φ(un+1) = Φ(un) + g(un) + en
en = Φ(un+1)− Φ(un)− Φ′(un)(un+1 − un)

g(un) = Φ′(un) ∆un = Φ′(un)(un+1 − un)

Φ(un+1) = Φ(u0) +
n∑

k=0

g(uk) +
n−1∑
k=0

ek + en, n = 0, 1, 2, · · ·



Formally, we require

n∑
k=0

g(uk) +
n−1∑
k=0

ek = f (4.17)

(4.17) can be achieved by the following procedure

g0 = f , gk = −ek−1, k = 1, 2, · · · (4.18)

g0 = f , g0 = g(u0) = Φ′(u0)(u1 − u0)
⇒ u1 = u0 + (Φ′(u0))−1f

e0 = Φ(u1)− Φ(u0)− Φ′(u0)(u1 − u0)
⇒ g1 = −e0

g1 = g(u1) = Φ′(u1)(u2 − u1)
⇒ u2 = u1 + (Φ′(u1))−1 g1

{un}, {en},
Φ(un+1) = Φ(u0) + f + en



The key issue is still the convergence of {un}.
We need a regularized Newton iteration. To regularize, we consider
a partition of unity

ψ(ξ) +
∞∑
j=0

φj(ξ) = 1, ξ ∈ Rn, φj(ξ) = φ(2−jξ)

suppψ ⊂ B(0, 1), suppφ ⊂
{

1

2
≤ |ξ| ≤ 2

}
, ψ, φ ∈ C∞0 (Rn)

u =
∞∑

j=−1

uj

ûj(ξ) = φj(ξ) û(ξ), û−1(ξ) = ψ(ξ) û(ξ)

uj(x) = ϕ(2−j D)u =

∫
u(x + 2−j y) ϕ̂(y)dy

SN u =
N∑

j=−1

uj , SN u ∈ C∞

Sn u → u if u ∈ Cγ , γ > 0



Let χ(s) be a C∞0 function, such that

suppχ ∈ (−1, 1)

χ(s) ≡ 1 |s| ≤ 1

2
χ(s) ≡ 0 |s| ≥ 1

∀ θ ≥ 1

Sθ u =
∑
p≥−1

χ

(
2p

θ

)
up

It is easy to verify that

||Sθ u||β ≤ C ||u||α if β ≤ α
||Sθ u||β ≤ Cθβ−α ||u||α if β ≥ α

||u − Sθ u||β ≤ Cθβ−α ||u||α if β ≤ α∣∣∣∣∣∣∣∣ d

dθ
Sθ u

∣∣∣∣∣∣∣∣
β

≤ Cθβ−α−1 ||u||α ∀β



Choose θ0 ≥ 1 fixed, θn =
(
θ

1/ε
0 + n

)ε
0 < ε� 1, n ≥ 1

∆k = θk+1 − θk ≈ kε−1 → 0 as k →∞

fk =
1

∆k

(
Sθk+1

− Sθk
)

f

uk+1 = uk + ∆k u̇k

(
⇔ u̇k =

1

∆k
(uk+1 − uk)

)
Vk = Sθk uk

Then

Φ(un+1)− Φ(un)
= Φ(un+1)− Φ(un)− Φ′(un) ∆n u̇n + Φ′(Vn) ∆n u̇n + (Φ′(un)− Φ′(Vn))∆n u̇n
= ∆n(gn + en) = ∆n(gn + e1

n + e2
n)



with

en = e1
n + e2

n

e2
n =

1

∆n
(Φ(un+1)− Φ(un)− Φ′(un) ∆n u̇n)

e1
n = (Φ′(un)− Φ′(Vn))u̇n

gn = Φ′(Vn)u̇n

so

Φ(un+1) = Φ(u0) +
n∑

k=1

∆k gk +
n−1∑
k=0

∆k ek + ∆n en, n = 0, 1, 2, · · · (4.19)

Define

Ek =
k−1∑
j=0

∆j ej , k = 1, 2, · · · , E0 = 0

k∑
j=0

∆j gj + Sθk Ek = Sθk f , k = 0, 1, · · · (4.20)



Claim: (4.19) and (4.20) yield a regularized approximate solution
sequence. To see that, indeed,

k = 0, ∆0 g0 + Sθ0 E0 = Sθ0 f = f0

g0 =
f0

∆0

k ≥ 1, ∆k gk + Sθk Ek − Sθk−1
Ek−1 = Sθk f − Sθk−1

f
∆k gk = −

(
Sθk − Sθk−1

)
Ek−1 − Sθk ∆k−1 ek−1 + Sθk f − Sθk−1

f

g0 =
f0

∆0
, V0 = Sθ0 u0, Φ′(V0)u̇0 = g0

⇒ u̇0 = (Φ′(V0))−1 g0

⇒ u1 = u0 + ∆0 u̇0

e2
0 =

1

∆0
(Φ(u1)− Φ(u0)− Φ′(u0) ∆0 u̇0)

e1
0 = (Φ′(u0)− Φ′(V0))u̇0

∆1 g1 = −(Sθ1 − Sθ0) E0 − Sθ1 ∆0 e0 + Sθ1 f − Sθ0 f

Φ(un+1) = Φ(u0) + Sθn f + ∆n en + (1− Sθn)En (4.21)



It follows from (4.21) that to show the Nash-Moser-Hörmander
theorem, one needs to prove that under the assumption that
||f ||λ+α is suitably small. {un} and {En} converges.

Proposition 4.4 ∀ δ > 0, α0 > α, large but fixed, it follows that

||u̇k ||s ≤ δ θs−α−1
k , s ∈ [0, α0], 0 ≤ k (4.22)

Assume (4.22), s = α− ε,

||∆k u̇k ||α−ε ≤ δ θ−ε−1
k ∆k = Cδk(−1−ε)ε kε−1

= Cδk−1−ε2

This implies that {uk} converge.

Main idea of Alinhac’s proof of M-D rarefaction wave:
How do you choose u0? This is achieved by k-th order
compatibility condition.



§5 On The Existence of Multi-dimensional Compressible
MHD Contact Discontinuities

5.1 Introduction

Contact discontinuities, together with shocks and rarefaction
waves, are basic waves for systems of hyperbolic conservation laws:

∂tU + divx (F (U)) = 0, x ∈ Rn (5.1)

Such waves are characterized as piecewise smooth solutions with a
strong characteristic discontinuity at an interface

∑
(t), which

model many two phase flows, and are free boundary problems for
(5.1): 

�⃑⃑�  
𝛀+(𝒕) 

𝛀−(𝒕) 

∑(𝒕) 

𝒙𝒏 

𝒙𝒉 = (𝒙𝟏, 𝒙𝟐) 



Compressible Euler Equations

Compressible Euler equations of gas dynamics:
∂t%+ div(%u) = 0

∂t(%u) + div(%u ⊗ u) +∇P = 0

∂t(%S) + div(%uS) = 0,

(5.2)

where P = P(%,S) = A%γeS with constants A > 0, γ > 1. Note
that (5.2) is hyperbolic if % > 0 (The prototype systems of
hyperbolic Conservation Laws).

Rankine–Hugoniot jump conditions across a discontinuity surface
Σ(t):

JjK = 0, jJunK + JPK = 0, jJuτ K = 0, jJSK = 0. (5.3)



Here j = %(un−V) is the mass transfer flux, with V normal velocity
of Σ(t), n normal vector and τ = τi , i = 1, 2, tangential vectors.

I j 6= 0, JρK 6= 0 =⇒ Shock Waves. - - - “non-characteristic”

I j = 0 =⇒ Contact Discontinuities. - - - “characteristic”
un = V, JPK = 0.

I If Juτ K 6= 0 =⇒ Tangential Discontinuities (Vortex Sheets);
I If Juτ K = 0 =⇒ Contact Discontinuities (Entropy Waves).

Ideal Compressible MHD

Ideal compressible magnetohydrodynamics (MHD) of plasmas:

∂t%+ div(%u) = 0

∂t(%u) + div(%u ⊗ u − B ⊗ B) +∇(P + 1
2 |B|

2) = 0

∂tB − curl(u × B) = 0

divB = 0

∂t(%S) + div(%uS) = 0.

(5.4)



Rankine–Hugoniot jump conditions across Σ(t):

JjK = 0, JBnK = 0, jJunK +
q

P + 1
2 |B|

2
y

= 0,

jJuτ K = BnJBτ K, j
r
Bτ
ρ

z
= BnJuτ K, jJSK = 0.

(5.5)

I j 6= 0, JρK 6= 0 =⇒ Shock Waves.

I j 6= 0, JρK = 0, Bn 6= 0 =⇒ Rotational (Alfvén)
Discontinuities.

I j = 0, Bn = 0 =⇒ Tangential Discontinuities
(Current-Vortex Sheets).

un = V, Bn = 0, JP + 1
2 |B|

2K = 0: Laboratory plasma;

I j = 0, Bn 6= 0 =⇒ Contact Discontinuities
(MHD Contact Discontinuities).

un = V, Bn 6= 0, JPK = JuK = JBK = 0: Astrophysical
plasma.



A Brief Review for the Euler Equations

Fact: Contact discontinuities for the Euler equations are subject to
both Kelvin-Helmhotz instability and Raylei-Taylor instability,
which lead to the ill-posedness of the Rayleigh-Taylor and
Kelvin-Helmholtz problems:

I Incompressible Euler: Ebin (’88)

I Compressible Euler: Guo-Tice (’11)

Vortex Sheets

V = u± · n, JPK = 0 on Σ(t). (5.6)

JuK · n = 0 in (5.6) forms an elliptic equation for the front function
when JuK · τ 6= 0 in 2D, and then the Rayleigh-Taylor instability is
absent.

I M >
√

2 in 2D.
Coulombel-Secchi (’04, ’08): isentropic;
Morando-Trebeschi (JHDE ’08), Morando-Trebeschi-T. Wang
(JDE ’19): nonisentropic.



Linear stability:

I Supersonic 2D vortex sheets: neutrally stable

I 3D vortex sheets and subsonic 2D vortex sheets: unstable,
Syrovatskij (54), Miles (58);

Fact: Surface tension has stabilizing effects on both
Kelvin-Helmholtz and Rayleigh-Taylor instabilities:

I Incompressible: Cheng-Coutand-Shkoller (CPAM ’08),
Shatah-Zeng (CPAM ’08, ARMA ’11);

I Compressible: Stevens (ARMA ’16).



Related Works of MHD: I

MHD Tangential Discontinuities (Current-Vortex Sheets)

V = u± · n, B± · n = 0,

s
P +

1

2
|B|2

{
= 0 on Σ(t). (5.7)

B± · n = 0 in (5.7) forms an elliptic equation for the front function
when B+ ∦ B− on Σ(t), and the Rayleigh-Taylor instability is
absent then.

I |B+ ×B−| > 0 on Σ(t) + Some Sufficient Stability Condition.
Chen-Y.G. Wang (ARMA ’08), Trakhinin (ARMA ’05, ’09).

I Syrovatskij Stability Criterion for the incompressible MHD:
|JuK× B+|2 + |JuK× B−|2 < 2|B+ × B−|2 on Σ(t).

Coulombel-Morando-Secchi-Trebeschi (CMP ’12): A priori
nonlinear estimate under a stronger condition;
Sun-W. Wang-Zhang (CPAM ’18): Well-posedness.

⇒ Strong stabilizing effects of tangential magnetic fields on
Kelvin-Helmholtz instability!



Related Works of MHD: II

MHD Contact Discontinuities (Entropy Waves)

V = u± · n, B+ · n = B− · n 6= 0, JPK = JuK = JBK = 0 on Σ(t). (5.8)

Some basic facts on Entropy Waves:

I Only neutrally linearly stable;

I Though no Kelvin-Holmotz instability, yet allow possibility of
the Rayleigh-Taylor instabilitgy due to nonlinear effects;

I B.Cs (5.8) contain no ellipticity for the interface function,
which leads to essential difficulties even for tangential
derivatives estimates due to the regularity of the interface.

I Nash-Mose type linear iteration scheme may lead to loss of
derivatives.



Major Goal: Can the magnetic field prevent the nonlinear
Rayleigh-Taylor instability?

Known results:

I Morando-Trakhinin-Trebeschi (JDE ’15, ARMA ’18):
Nonlinear stability in 2D under the additional
Rayleigh–Taylor sign condition; see also Trakhinin-T. Wang
(ARMA ’22): Nonlinear stability of a two-phase MHD for
which the surface tension is introduced in (5.8).

Open problems due to M-T-T:

I The existence of MHD contact discontinuities in 3D and the
question whether the Rayleigh–Taylor sign condition is
necessary for the existence were then left as two open
problems by Morando-Trakhinin-Trebeschi.

Main result of this talk:

I Wang-Xin (’23 CPAM): Well-posedness in Sobolev spaces.



In this talk, we will focus on the case:

I Ω = T2 × (−1, 1): horizontally periodic slab;

I
∑

(t) (interface) extends to infinity horizontal and lies in
between

∑
± = T2 × {±1};

I
∑
±: the upper and lower boundaries which are assumed to be

impermeable and perfectly conducting:

u · e3 = 0, E × e3 = 0 on
∑
±

with e3 = (0, 0, 1), E = u × B is the electric field;

I
∑

(0) (the initial contact discontinuity) is given which is
assumed to be non-intersecting

∑
±.



§5.2 Main Results

Lagrangian Reformulation

I Take Ω± := {x3 ≷ 0} and denote Σ := {x3 = 0}. Assume
that there is a diffeomorphism η0 : Ω± → Ω±(0) and define
the flow map{

∂tη(t, x) = u(t, η(t, x)), t > 0

η(0, x) = η0(x).
(5.9)

I Assume that η(t, ·) : Ω± → Ω±(t) is invertible and define

(ρ, v , b, s, p)(t, x) := (%, u,B, S ,P)(t, η(t, x)). (5.10)

One has ∂ts = 0, which implies s = s0. In Lagrangian
coordinates,





∂tη = v in Ω±
1
γp∂tp + divAv = 0 in Ω±

ρ∂tv +∇A(p + 1
2 |b|

2) = b · ∇Ab in Ω±

∂tb + b divAv = b · ∇Av in Ω±

divAb = 0 in Ω±

JpK = 0, JvK = 0, JbK = 0 on Σ

(η, p, v , b) |t=0= (η0, p0, v0, b0),

(5.11)

where ρ = ρ0p
− 1
γ

0 p
1
γ . Here ∂Ai := Aij∂j for A := (∇η)−T .



Expressions of ρ, p and b

I Denote J := det(∇η), one has

∂tJ = JdivAv . (5.12)

One then finds that ∂t(ρJ) = 0 and hence

ρ = ρ0J0J−1 and p = p0Jγ0 J−γ , (5.13)

and that ∂t(JATb) = 0 and hence

b = J−1J0AT
0 b0 · ∇η. (5.14)

We may refer to (5.14) as the Cauchy formula for b as its
analogue to Cauchy’s vorticity formula (Cauchy 1882) for the
Euler equations.



Proposition 5.1

(i) ∂t(JdivAb) = 0;

(ii) ∂t(b · N ) = 0, where N := JAe3 = ∂1η × ∂2η.

Proposition 5.2 Assume that Jη0K=J∂3η0K=Jp0K=Jb0K= 0 and
b0 · N0 6= 0 on Σ. Then

J∂3vK = JηK = J∂3ηK = 0 on Σ. (5.15)

Main Theorem

Let m ≥ 4 be an integer. Define the energy as

Em :=
m∑
j=0

‖(∂jtp, ∂
j
tv , ∂

j
tb)‖2

m−j + ‖η‖2
m+|η|2m. (5.16)

Denote

Mm
0 := P

(
‖(η0, p0, v0, b0, ρ0)‖2

m + |η0|2m
)
. (5.17)



Theorem (Wang-Xin ’23 CPAM)
Assume that η0 ∈ Hm(Ω±) ∩ Hm(Σ) and p0, v0, b0, ρ0 ∈ Hm(Ω±)
are given such that divA0b0 = 0 in Ω±,

Jη0K = J∂3η0K = 0 and Jb0K · N0 = 0 on Σ,
ρ0, p0, |J0| ≥ c0 > 0 in Ω± and |b0 · N0| ≥ c0 > 0 on Σ

(5.18)

and the necessary (m − 1)-th order compatibility conditions are
satisfied. Then there exist a T0 > 0 and a unique solution
(η, p, v , b) to (5.11) on the time interval [0,T0] which satisfies

Em(t) ≤M, ∀t ∈ [0,T0]. (5.19)



Remark: Our result in particular removes the assumption of the
Rayleigh–Taylor sign condition required by
Morando-Trakhinin-Trebeschi and solves the two open questions
raised by them. This shows also the strong stabilizing effect of the
transversal magnetic field on the Rayleigh–Taylor instability. The
key point here is the new boundary regularity |η|2m, which is
captured from the regularizing effect of the transversal magnetic
field.

Remark: Note that there is no loss of derivatives in our
well-posedness theory, which is in contrast to all the previous works
on the compressible MHD where the solution is constructed by
employing the Nash–Moser-type linearized iteration scheme and
thus has a loss of derivatives.



Remark: The result here holds also for the cases that
Ω = R2× (−1, 1) or Ω = R3 provided that we replace (η, p, v , b, ρ)
in (5.16) and (5.17) by (η − Id , p − p̄, v − v̄ , b − b̄, ρ− ρ̄) with
(p̄, v̄ , b̄, ρ̄) being a trivial contact-discontinuity state.

Remark: Our analysis depends crucially on the following:

I Transversality of the magnetic field across the interface;

I Cauchy formula for the magnetic field;

I an elaborate nonlinear viscous approximation.



§5.3 Key Ingredients

Typical Difficulties

I Denote q = p + 1
2 |b|

2 for the total pressure, and one has
1
γp∂tq −

1
γpb · ∂tb + divAv = 0 in Ω±

ρ∂tv +∇Aq − b · ∇Ab = 0 in Ω±

∂tb − b
γp∂tq + b

γpb · ∂tb − b · ∇Av = 0 in Ω±.

(5.20)

Set Z1 = ∂1,Z2 = ∂2,Z3 = x3∂3 and apply Zm to (5.20)
(Co-normal derivatives estimates).



I Typically, the estimate of [Zm, ∂Ai ] yields a loss of one
derivative (control of ‖Zm∇η‖0). Motivated by Alinhac (’89),
it is natural to introduce good unknowns (m is the highest
order)

Qm = Zmq − Zmη · ∇Aq, Vm = Zmv − Zmη · ∇Av ,
Bm = Zmb − Zmη · ∇Ab.

(5.21)

This leads to that, by using ∂tη = v ,

1

2

d

dt

∫
Ω±

J

(
1

γp
|Qm − b · Bm|2 + ρ|Vm|2 + |Bm|2

)
=

∫
Σ

JQmKVm · N − b · N JBmK · Vm + · · ·

= −
∫

Σ

J−1Zmη ·NJ∂3qK∂tZmη · N+b · NJ−1Zmη ·NJ∂3bK·∂tZmη + · · · .

(5.22)



New Good Unknown I (For magnetic field)

I The geometric symmetry structure of the first term in (5.22)
is crucial:

−
∫

Σ
J−1Zmη · N J∂3qK∂tZmη · N

= −1

2

d

dt

∫
Σ
J∂3qKJ−1|Zmη · N |2 + · · · .

(5.23)

However, there is no such symmetry for the second term in
(5.22), which vanishes for current-vortex sheets.

I Our way to overcome this difficulty is to make use of the
Cauchy formula (5.14) (and (5.13)) so that

b · ∇Ab ≡ ATb · ∇b = J−1J0AT
0 b0 · ∇b = ρρ−1

0 b0 · ∇A0 b, (5.24)

which allows one to introduce instead the new good
unknown

Bm = Zmb − Zmη0 · ∇A0b. (5.25)



Due to (5.25), the second term in (5.22) is changed to be∫
Σ

b0 · N0J−1
0 Zmη0 · N0J∂3bK · ∂tZmη

=
d

dt

∫
Σ

b0 · N0J−1
0 Zmη0 · N0J∂3bK · Zmη + · · · , (5.26)

and the integrand is linear in highest order derivatives!

New Good Unknown II (For the Interface regularity)

I By (5.23) and (5.26), one deduces from (5.22) that

‖Zm(p, v , b)(t)|20 .Mm
0 + |Zmη(t)|20 + t1/2P(Em(t)).

(5.27)



I Now our key point here is to use further the Cauchy formula
(5.14) in Zmb = Zm(ρρ−1

0 b0 · ∇A0η) and then introduce the
good unknown

Ξm := Zmη − Zmη0 · ∇A0η. (5.28)

These allow one to add ‖AT
0 b0 · ∇Ξm‖2

0 to LHS of (5.27).
Recall that (AT

0 b0)3 = J−1
0 b0 · N0 6= 0 near Σ, and the

boundary regularizing effect of the magnetic field is then
captured by

|Ξm|20 . ‖AT
0 b0 · ∇Ξm‖0‖Ξm‖0 + ‖Ξm‖0. (5.29)

One can then improve (5.27) to be

‖Zm(p, v , b)(t)‖2
0 + |Zmη(t)|0 ≤Mm

0 + t1/2P(Em(t)).
(5.30)

I As in Yanagisawa and Matsumura (CMP ’91), due to
b0 · N0 6= 0 near Σ, (p, v , bτ ) are non-characteristic, and the
normal derivative of the characteristic bn is estimated through
JdivAb = J0divA0b0.



Nonlinear Viscous Approximation

I Our solution to (5.11) is constructed as the inviscid limit of

∂tη = v in Ω±
1
γp∂tp + divAv = 0 in Ω±

ρ∂tv +∇A(p + 1
2 |b|

2)−ε∆Av = b · ∇Ab +Ψε,δ in Ω±

∂tb + b divAv = b · ∇Av in Ω±

JpK = 0, JvK = 0, JbK = 0, J∂3vK = 0 on Σ

(η, p, v , b) |t=0= (ηδ0 , p
δ
0 , v

δ
0 , b

δ
0)

(5.31)

with ρ = ρδ0(pδ0)−
1
γ p

1
γ , δ > 0 is the smoothing parameter.

Note that

J divAb = Jδ0 divAδ0
bδ0 in Ω±. (5.32)



I Crucially, the jump conditions in (5.31) are essentially same as
those of (5.11), but not standard for solving the two-phase
viscous MHD. Our way of getting around this difficulty is to
replace them by the following “standard” jump conditions:

JvK = 0, J∇AvKN = 0 on Σ. (5.33)

See Jang-Tice-Wang (’16) for the two-phase compressible NS.

I The crucial point is then that under the initial conditions
these two sets of jump conditions are indeed equivalent.

I The choice of corrector Ψε,δ and jump conditions in (5.31)
make it possible to derive the (ε, δ)-independent estimates
just as our a priori estimates for (5.11). To this end, we need
to introduce suitable anisotropic energy and associated
dissipations to carry out the a priori estimates. Though the
analysis is technically more involved and complicated, yet the
main ideas are similar to the a priori estimates for (5.11)
which we have outlined.



§6 Free Interface Problems for the Incompressible Inviscid
Resistive MHD

§6.1 Introduction
Aim: Consider the plasma-vacuum and plasma-plasma interface
problems in a horizontal periodic slab in R3 impressed by a uniform
non-horizontal magnetic field.
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§6.1.1 Formulation of the plasma-vacuum interface in
Eulerian coordinates.

Consider the plasma-vacuum interface problem in Ω = T2 × [−1, 1]
impressed by a uniform transversal magnetic field B̄ with B̄3 6= 0,
such that

Plasma region:

Ω−(t) = {(yh, y3) , (y1, y2, y3) ∈ T2 × R | 1 < y3 < η(t, yh)}(6.1)

Vacuum region:

Ω+(t) = {y ∈ T2 × R | η(t, yh) < y3 < 1} (6.2)



P-V interface:

Σ(t) , {y ∈ T2 × R | y3 = η(t, yh)} (6.3)

η : R+ × T2 → R is unknown; (6.4)

Upper and lower fixed boundaries are Σ± , T2 × {±1}.
In the plasma region Ω−(t), the flow is given by the incompressible,
inviscid and resistive magnetohydrodynamics equation (MHD)

∂tu + u · ∇u +∇p = curl B × B
divu = 0
∂tB = curl E , E = u × B − k curl B
divB = 0

(6.5)



where u : velocity field
B : magnetic field
p : pressure
E : the electric field of the plasma

k > 0 : the magnetic diffusion coefficient

In the vacuum region Ω+(t), the magnetic field B̂ and the electric
field Ê are assumed to satisfy the pre-Maxwell equations:{

curl B̂ = 0, divB̂ = 0 in Ω+(t)

∂tB̂ = curl Ê , divÊ = 0 in Ω+(t)
(6.6)



The free interface satisfies the kinematic boundary condition

∂tη = u · N on Σ(t) (6.7)

with N = (−∇hη, 1) , (−∂1η,−∂2η, 1) begin the upperward
normal vector of Σ(t).

Furthermore, across the Σ(t), the balance of normal stress and
classical jump conditions for the magnetic and electric fields
should be satisfied.

Balance of Normal Stress:

(pI +
1

2
|B|2I − B ⊗ B)N =

(
1

2
|B̂|2I − B̂ ⊗ B̂

)
N − σHN on Σ(t) (6.8)



with I being the 3× 3 Identity matrix, σ > 0 surface tension, H:
the mean curvature of Σ

H = divh

(
∇hη√

1 + |∇hη|2

)
.

Classical jump conditions of magnetic and electric fields:

B · N = B̂ · N , (E − Ê )×N = u · N (B − B̂) on Σ(t) (6.9)

Under the consideration that B is close to B̄ so that
B · N = B̂ · N 6= 0, then (6.7) and (6.8) are equivalent to

p = −σH, B = B̂, E ×N = Ê ×N (6.10)



(B.C.): The upper wall Σ+ is assumed to be perfectly insulating:

B̂ × e3 = B̄ × e3, Ê · e3 = 0 on Σ+; (6.11)

while the lower wall Σ− is assumed to be impermeable and
perfectly conducting:

u · e3 = 0, B · e3 = B̄ · e3, E × e3 = 0 on Σ− (6.12)

with e3 = (0, 0, 1).



(I.C.): Given initial surface Σ(0) as the graph of

η(0) = η0 : T2 → R, which yield Ω−(0) and Ω+(0). We also
specify u(0) = u0 : Ω−(0)→ R3, and B(0) = B0 : Ω−(0)→ R3.

Thus the plasma-vacuum interface problem is to look for

(u,B, p, η, B̂, Ê ) satisfying (6.5), (6.6), (6.7), (6.10), (6.11),
(6.12) and (I.C.).

Remark 6.1 Mathematically, as Ladyzenskaya-Solonnikov, one
may regard the electric field Ê in vacuum as a secondary variable.
Indeed, set

b = B − B̄, b̂ = B̂ − B̄. (6.13)



Then (6.5)-(6.7), (6.10)-(6.12) imply the following problem

∂tu + u · ∇u +∇p = curl b × (B̄ + b) Ω−(t)
divu = 0 Ω−(t)
∂tb = curl E ,E = u × (B̄ + b)− k curl b Ω−(t)
divb = 0 Ω−(t)

curlb̂ = 0, divb̂ = 0 Ω+(t)
∂tη = u · N Σ(t)

p = −σH, b = b̂ Σ(t)

b̂ × e3 = 0 Σ+

u3 = 0, b3 = 0,E × e3 = 0 Σ−
η|t=0 = η0, b|t=0 = b0, u|t=0 = u0 Ω−(0)

(6.14)

Remark 6.2 Once (6.14) is solved, then Ê can be recovered by
solving the following elliptic system,

curl Ê = ∂t b̂, divÊ = 0 in Ω+(t)

Ê ×N = E ×N on Σ(t)

Ê3 = 0 on Σ+(t)

(6.15)



Remark 6.3 Formally, the magnetic field in vacuum, b̂, can be
suppressed in (6.14) too. Indeed, b̂ can be determined by b · N on
Σ(t) through the following problem:

curl b̂ = 0, divb̂ = 0 in Ω+(t)

b̂ · N = b · N on Σ(t)

b̂ × e3 = 0 on Σ+

(6.16)

This implies that the jump condition b = b̂ on Σ(t) in (6.14) could
be regarded as a nonlocal boundary condition for b:

b ×N = Bt(b · N )×N on Σ(t) (6.17)

where Bt(b · N ) is the solution to (6.16).



§6.1.2 Physical Energy-Dissipation Law

Key fact: The classical solution to the problem (6.14) admits the
following energy identify:

1

2

d

dt

(∫
Ω−(t)

(|u|2 + |b|2)dy +

∫
Ω+(t)

|b̂|2dy

+
∫
T2 2σ(

√
1 + |∇hη|2 − 1)dyh

)
+ k

∫
Ω(t) |∇ × b|2dy = 0

(6.18)

which can be derived by using energy estimates and making use of
the structure (6.15) satisfied by the electric field Ê in vacuum.

(6.18) will be the basis of the energy method to analyze the
problem (6.14).

Remark 6.4 The fact (6.18) can also be derived by introducing
the so called virtual magnetic field in Ω−(t) as by
Ladyzenskaya-Solonnikov for the viscous an resistive MHD.



§6.1.3 Review of Literature

(1) Local well-posedness (LWP):

I There are huge amount of studies on free surface Euler
equations:

I Water waves for the irrotational Euler equations:
I Nalimov, ’74; Yosihara, ’82; Carig, ’85; ...
I S. J. Wu, ’97, ’99; Lanes, ’95; Ambrouse-Masoudi, ’05, ’09; ...

I Water waves for the general Euler equations, under Taylor sign
condition or surface tension:

I Christodoulou-Lindblad, ’00; Lindblad, ’05; Coutand-Shkoller,
’07; Shatah-Zeng, ’08; Zhang-Zhang, ’08;

I Masmoudi-Rousset, ’17; Wang-Xin, ’15.

I Vortex Sheets, with surface tension:
I Ambrosae-Masmoudi, ’03, ’07; Cheng-Coutand-Shkoller, ’08;

Shatah-Zeng, ’08, ’11.



I Compared with the pure fluids, there are only recent studies
on the free interface problems for the ideal (inviscid and
non-resistive) MHD and viscous and resistive MHD:

I Plasma-Vacuum interface problem; under the assumption:

B · N = B̂ · N ≡ 0 on Σ(t);

1. Magnetic stability condition (⇔ Non-Collinearity Condition):
|B × B̂| > 0 on Σ(t);
• Morando-Trakhinin-Trebeschi, ’14: linear problem, for
graphs;
• Sun-Wang-Zhang, ’19: Nonlinear local well-posedness, for
graphs;
• Liu-Xin, ’23: without graph assumptions.

2. Hydrodynamic stability; Taylor sign condition:
−∇(p + 1

2
|B|2 − 1

2
|B̂|2) · N > 0 on Σ(t)

• Hao-Luo, ’14: B̂ ≡ 0, a priori estimates;
• Gu-Wang, ’19: B̂ = 0, well-posedness.
• Liu-Xin, 23’: well-posedness for general surfaces.



I Plasma-Plasma interface problem (Current-Vortex sheets):
Syrovatskij stability condition:
|[u]× B+|2 + |[u]× B−|2 < 2|B+ × B−|2 on Σ(t):

I Coulombel-Morando-Secchi-Trebeschi ’12: A priori estimates
(under stronger condition), graph assumption;

I Sun-Wang-Zhang, ’18: well-posedness, graph assumption;
I Liu-Xin, ’23: without graph assumption.

I Plasma-Vacuum interface problem for viscous and resistive
MHD:

I Padula-Solonnikov, ’10; Solonnikov, ’12, ’16.

Remark 6.5 The Non-Collinearity condition and the Syrovatskij
condition show the stabilizing effects of the magnetic field on the
local well-posedness of interface problems in inviscid fluids since
either the Taylor-sign condition or non-zero surface tension is
necessary for the local well-posed of the one-phase problem, and
the non-zero surface tension is necessary for the local
well-posedness of the vortex sheets problem.



(2) Finite time singularities: Development in finite time of
splash/splat singularities for free boundary problems for some
large initial data:

=⇒ =⇒

I Inviscid flows:
Castro-Córadoba-Fefferman-Gancedo-Gómez-Serrano, ’13;
Coutand-Shkoller, ’14; Coutand, ’19.



I Viscous flows:
Castro-Córadoba-Fefferman-Gancedo-Gómez-Serrano, ’19;
Coutand-Shkoller, ’15 arXiv.

I The two-phase interface problem:
Fefferman-Ionescu-Lie, ’16; Coutand-Shkoller, ’16; Coutand,
’19.

(3) Global well-posedness:

I Irrotational Euler flows: horizontally non-periodic setting with
“small” data: Wu, ’09, ’11; Germain-Masmoudi-Shatah, ’12,
’15; Ionescu-Pusateri, ’15, ’17; Alazard-Delort, ’15;
Deng-Ionescu-Pausader-Pusateri, ’17; ...



I Navier-Stokes flows: Solonnikov, ’77, ’88; Beale, ’81, ’83;
Nishida-Teramoto-Yoshihara, ’04; Hataya, ’09; Guo-Tice, ’13;
Wang-Tice-Kim, ’14; Tan-Wang, ’14; ...

I Viscous and resistive MHD: “small” data around the zero
magnetic field:
Solonnikov-Frolova, ’13; Solonnikov, ’16;

I Viscous and non-resistive MHD:
Y. Wang, ’19; global existence plasma-plasma interface
problem around a transversal uniform magnetic field.



(4) Motivations:

I It is still open whether the free surface incompressible Euler
equations for general small initial data admits a global unique
solution or not, except the case of irrotational flows where
certain dispersive effects can be used to establish global
well-posedness. This is even so for 2D!

I Some global well-posedness of free surface problems for
“general small” initial data have been established for viscous
fluids (either Navier-Stokes, or viscous MHD). These results
rely heavily on the dissipation and regularization effects of the
viscosity for the velocity field. It is quite open for inviscid
fluids!



I In the absence of the viscosity for the velocity field, the
magnetic field may provide some stabilizing effects for the
local well-posedness of some free interface problem for the
inviscid MHD. However, there is no any global well-posedness
results for the inviscid MHD. In the free surface problems in a
horizontally slab impressed by a uniform non-horizontal
magnetic field, even the local well-posedness of either
plasma-vacuum or plasma-plasma interface problem is highly
non-trivial. In this talk, I will present some global
well-posedness results for the free interface problems for the
inviscid and resistive MHD. Note that this is a subtle and
difficult issue since the free surface is transported by the fluid
velocity, and the global existence of classical solutions to the
Cauchy problem in 2D is unknown. Our results reveal strong
stabilizing effect of the magnetic field based on an induced
damping structure for the fluid vorticity due to the resistivity
and the transversal magnetic field.



§6.2.1 Reformulation in flattening coordinates

Flattening coordinates

I The equilibrium domains:

Ω− := T2 × (−1, 0), Ω+ := T2 × (0, 1) (6.19)

and their interface

Σ := T2 × {0}. (6.20)

I The physical domains can be flattened via the mapping

Ω± 3 x 7→ (xh, ϕ(t, x) := x3 + η̄(t, x)) =: Φ(t, x) = y ∈ Ω±(t)(6.21)

where η̄ = χ(x3)Pη : χ(0) = 1, χ(±1) = 0, Pη is the
harmonic extension of η onto R3.



I Set

∂ϕi = ∂i − ∂i η̄∂ϕ3 , i = t, 1, 2, ∂ϕ3 =
1

∂3ϕ
∂3 (6.22)

(∇ϕ)i = ∂ϕi , i = 1, 2, 3, divϕ = ∇ϕ·,
curlϕ = ∇ϕ×, ∆ϕ = divϕ∇ϕ (6.23)

[b] = b̂|Σ − b|Σ (6.24)



Reformulation:

I In flattening coordinates, the Problem (6.4) is equivalent to:

∂ϕ± u + u · ∇ϕ u +∇ϕ p = curlϕ b × (B̄ + b) Ω−
divϕu = 0 Ω−
∂ϕt b = curlϕ E , E = u × (B̄ + b)− k curlϕ b Ω−
divϕ b = 0 Ω−
curlϕ b̂ = 0, divϕ b̂ = 0 Ω+

∂t η = u · N on Σ
p = −σH, [b] = 0 on Σ

b̂ × e3 = 0 on Σ+

u3 = 0, b3 = 0, E × e3 = 0 on Σ−
(u, b, η)|t=0 = (u0, b0, η0)

(6.25)



I Then the energy-dissipation law (6.18) becomes

1

2

d

dt

(∫
Ω−

(|u|2 + |b|2)dνt +

∫
Ω+

|b̂|2dνt

+

∫
T2

2σ(
√

1 + |∇hη|2 − 1)

)
+ k

∫
Ω−

|curlϕ b|2dνt = 0
(6.26)

where dνt := ∂3 ϕ dx is the volume elements.

§6.2.2 Statement of the Main Results

Assumptions on Initial Data

I Zero-average condition:∫
T2

η0 = 0 (6.27)



I 2N-th order compatibility condition for (u0, b0, η0):
divϕ0u0 = divϕb0 = 0 on Ω−; u0,3 = b0,3 = 0 on Σ−;[
∂jtb(0)

]
×N0 = 0 on Σ, ∂jtE (0)× e3 = 0 on Σ−,

j = 0, · · · , 2N − 1.

(6.28)

Remark 6.6: It can be verified easily that (6.27) implies∫
T2

η(x , t) = 0 for all t ≥ 0



Remark 6.7: The 2N-th order compatibility conditions are
necessary for local well-posedness theory in the high order regularity
contest. However, due to the non-local and nonlinear nature of the
problem (6.25), the construction of initial data satisfying the 2N-th
order compatibility conditions is highly technical and non-trivial.
We can achieve this by using the implicit function theorem.

Energy and Dissipation Functionals

I Sobolev Norm:

||f ||m := ||f ||Hm(Ω±), and |f |s := ||f ||Hs(T2), k ≥ 0, s ∈ R

Anisotropic norm:

||f ||k,l :=
∑

α∈N2,|α|≤l

||σαf ||k



I For N ≥ 4, the high-order energy is defined as

E2N =
∑2N

j=0 ||∂
j
tu||22N−j +

∑2N−1
j=0 ||∂jtb||22N−j+1 + ||∂2N

t b||20
+
∑2N−1

j=0 ||∂jt b̂||22N−j+1 + ||∂2N
t b̂||20 +

∑2N−1
j=0 ||∂tp||22N−j

+
∑2N−1

j=0 |∂jtη|22N−j+ 3
2

+ |∂2N
t η|21 + |∂2N+1

t η|2− 1
2

.

(6.29)

Remark 6.8: One of the key parts in proving the global
well-posedness of (6.25) is to show that E2N(t) for N ≥ 8 is
bounded for all t ≥ 0. To this end, one needs to derive a
sufficiently fast time-decay of certain lower-order Sobolev norms of
the solution, which will be achieved by some dissipation estimates.



I Dissipation functional: For N + 4 ≤ n ≤ 2N,

Dn :=
n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j +
n∑

j=0

||∂jtb||21,n−j

+
n∑

j=0

||∂jt b̂||2n−j+1 +
n−2∑
j=0

||∂jtp||2n−j−1

+
n−2∑
j=0

|∂jtη|2n−j+1/2 + |∂n−1
t η|21 + |∂nt η|20

(6.30)

I Note that the dissipation functional D2N cannot control E2N .
Furthermore, in the derivation of the dissipation estimates for
Dn, the following lower-order energy functional is involved:



En := ||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n

+
n−1∑
j=1

||∂jtb||2n−j+1 + ||∂nt b||20 + ||b̂||2n

+
n−1∑
j=1

||∂jt b̂||2n−j+1 + ||∂nt b̂||20 +
n−1∑
j=0

||∂jtp||2n−j

+
n−1∑
j=0

|∂jtη|2n−j+3/2 + |∂nt η|21 + |∂n+1
t η|2−1/2

(6.31)

In fact, it is En that would decay, but not En.



Main Results:
Theorem 6.1 (Wang-Xin CMP 2021): Let k > 0, B̄3 6= 0,
σ > 0, and N ≥ 8 (an integer) be fixed. Assume that the initial
(u0, b0, η0) is given such that

(i) u0 ∈ H2N(Ω−), b0 ∈ H2N+1(Ω−), η0 ∈ H2N+ 3
2 (Σ),

E2N(0) < +∞
(ii) (6.27) and (6.28) are satisfied.

Then ∃ universal constant ε0 > 0 such that if E2N(0) ≤ ε0, then ∃|
global solution (u, p, η, b, b̂) to the plasma-vacuum interface
problem (6.25). Moreover, for all t ≥ 0, it holds that

E2N(t) +

∫ t

0
D2N(s)ds ≤ cE2N(0) (6.32)

and



N−5∑
j=1

(1 + t)N−5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds ≤ cE2N(0)

(6.33)

Remark 6.9: The theorem implies in particular that√
EN+4(t) ≤ c(1 + t)−

N−5
2 , which is integrable in time for N ≥ 8.

This decay result can be regarded as “almost exponential” decay
rate. Since η is such that the mapping Φ(t, ·), defined in (6.21), is
a diffeomorphism for each t ≥ 0, one may change coordinates to
y ∈ Ω±(t) to obtain a global in time decay solution to (6.14).



Remark 6.10: The theorem provides the first results for the global
well-posedness of free surface problems without viscosity for the
general incomperessible rotational flows. This is due to the strong
coupling between the fluid and the diffusive transversal magnetic
field. In contrast to the earlier works on the local well-posedness of
free inteface problems for ideal MHD, where the tangential
magnetic field play the important role, here the global
well-posedness depends crucially on the transversally of the
magnetic field. Indeed, our analysis fails for the case B̄ being
horizontal. For example, for B = B̂ = B̄ = e1 = (1, 0, 0). Take
u1 ≡ 0, ⇒ 2D Euler!



Remark 6.11: The surface tension is important for the theory here
(σ > 0). Indeed, to solve (6.25) with the desired regularities of b

(and b̂) in (6.29), even locally in time, one needs η ∈ H2N+ 1
2 due

to the magnetic diffusion term curlϕ curlϕ. In the case σ = 0, it
seems that only H2N regularity for η is available. Hence σ > 0 is
necessary here even for local well-posedness! This is different from
the viscous case where the viscosity has a regularizing effect of 1

2
order for η and so σ > 0 is unnecessary!



Remark 6.12: It should be noted even the local well-posedness of
the interface problem (6.25) is unknown and non-trivial, which is
of independent interests. Indeed, note that it is difficult to apply
the ideas for previous local well-posedness of interface problems for
ideal MHD (see Gu-Wang, Morando-Trakhinin-Trebeschi, etc.)
where the parallelness of the magnetic field to the interface is
important! Even though the magnetic diffusion has a regularizing
effect for the magnetic field, one of the main difficulties in
constructing solutions to (6.25) lies in solving the magnetic system
due to the non-local boundary conditions for the magnetic field.
For the viscous and resistive MHD, Padula-Solonnikov solved the
magnetic system in the framework of full parabolic regularity
theory, which unfortunately cannot be applied to the inviscid
problem due to the less regularity of the velocity.
Out strategy is to solve the magnetic system in the framework of
energy method, which is naturally consistent with the Euler
equations, so that the solution can be constructed as the limit of
the approximate solutions to an elaborate chosen regularization.



Remark 6.13: The main ideas and strategies for the
plasma-vacuum interface problem can be modified to study the
plasma-plasma interface problem to obtain its global
well-posedness.



§6.3 Ideas of Analysis

Strategy:
LWP + Global a priori estimates + Continuity Argument ⇒ GWP

§6.3.1 Local well-posedness (LWP)

I Since the Lorentz force is of lower-order regularity compared
with magnetic diffusion,

Main Strategy: Decompose (6.25) ≈ Hydrodynamic part on
Ω−⊕ Magnetic part on Ω⊕ iteration scheme



I Hydrodynamic part on Ω−: For F = curlϕ̃b × (B̄ + b) with
given ϕ̃ and b, solve the following free surface incompressible
Euler equations with surface tension:


∂ϕt u + u · ∇ϕu +∇ϕp = F in Ω−
divϕu = 0 in Ω−
∂tη = u · N , p = −σH on Σ
u3 = 0 on Σ−
(u, η)|t=0 = (u0, η0)

(6.34)

Remark 6.14 The hydrodynamic part (6.34) can be solved is a
similar way as Coutand-Shkoller ’07.



I Magnetic part on Ω: For G = u × (B̄ + b̃) with u, b̃, and η
given, solve the following fixed initial boundary value problem
for the magnetic field (b, b̂):

∂ϕt b + k curlϕcurlϕb = curlϕG in Ω−
divϕb = 0 in Ω−
curlϕb̂ = 0, divϕb̂ = 0 in Ω+

[b] = 0 on Σ

b̂ × e3 = 0 on Σ+

b3 = 0, kcurlϕb × e3 = G × e3 on Σ−
b|t=0 = b0

(6.35)



Remark 6.15 This is the major difficult part of LWP due to
nonlocal boundary condition on Σ. However, in the more regular
case (i.e. u satisfies NS equation). (6.35) was solved by
Padula-Solonnikov (’10) with η being a small perturbation of flat
case (η = 0) by employing the full parabolic regularity. However,
such a full parabolic regularity of solving (6.35) is not consistent in
the iteration scheme to construct solutions to (6.25) since the
hyperbolic Euler equations could not provide such higher regularity
for u and η.



New Approach: We solve (6.35) in the functional framework based
on the energy structure (6.26).

Step 1: Consider the following regularized problem:

∂ϕ
ε

t bε + k curlϕ
ε
curlϕ

ε
bε = curlϕ

ε
(G ε −Ψε) in Ω−

divϕ
ε
bε = 0 in Ω−

curlϕ
ε
b̂ε = 0, divϕ

ε
b̂ε = 0 in Ω+

[bε] = 0 on Σ

b̂ε × e3 = 0 on Σ+

bεε = 0, kcurlϕ
ε
bε × e3 = G ε × e3 on Σ−

(6.36)

where ε > 0: smoothing parameter; ϕε = ϕ(ηε); ηε and G ε are
smooth regularizations of η and G ; Ψε: corrector to be
constructed, which are crucial to satisfy the compatibility condition
for (6.36).



Step 2: Solve (6.36) in the higher order regularity context by
modifying the arguments due to Padula-Solonnikov (’10).

Step 3: To derive the uniform estimates (independent of ε > 0) for
the solution to (6.36) with the desired regularity in our functional
framework. To this end, we make important use of the following
regularizing electric field in vacuum, Ê ε, which solves

curlϕ
ε
Ê ε = ∂ϕ

ε

t b̂ε, divϕ
ε
b̂ε = 0 in Ω+

Ê ε × N−ε = (−kcurlϕ
ε
bε + G ε −Ψε)× Nε on Σ

Ê ε
3 = 0 on Σ+

(6.37)

whose solvability is classical (see Cheng-Shkoller (’17)).



Step 4: The solution to (6.35) is then obtained as the limit of
solutions to (6.36) as ε→ 0+ after deriving the uniform estimates
on the approximate solutions on a time interval independent of ε
by a variant of the derivation of the estimates for (6.25) sketched
below.

Finally, we can construct the local solution to (6.25) by the
method of successive approximations based on the solvability of
(6.34) and (6.35).�



§6.3.2 A Priori Energy Estimates

Our derivation of a priori estimates for the solutions to (6.25) is
based on the physical energy-dissipation structure (6.26), and
involves the vacuum electric field Ê which solves:

curlϕÊ = ∂ϕt b̂, divϕÊ = 0 in Ω+

Ẽ ×N = E ×N on Σ

Ê3 = 0 on Σ+

(6.38)

and the estimates of Ê in terms E2N , E2N , D2N can be obtained
easily by the Hodge theory.



Tangential energy estimates:

I Applying the energy-dissipation structure law (6.26) to the
high order temporal and horizontal spatial derivatives ∂α for
α ∈ N1+2 with |α| ≤ 2N yields

1

2

d

dt

(∫
Ω−

(|∂αu|2 + |∂αb|2)dνt +

∫
Ω+

|∂αb̂|2dνt

+

∫
Σ
σ|∇∂αη|2

)
+ k

∫
Ω+

|curlϕ∂αb|2dνt

= −
∫

Ω−

∂αp [∂α, div] udνt −
∫

Σ
σ∂αH [∂α,N ] u

−
∫

Ω+

∂αÊ · [∂α, curlϕ] b̂dνt + ΣR ,

(6.39)

where ΣR denotes nonlinear terms which can be controlled by
the energies!



I When α0 ≤ 2N − 1, the first three terms on the right hand
side of (6.39) can be shown to be also of ΣR .

I When α0 = 2N, the difficulty is that ∂2N
t p, ∂2N

t H and ∂2N
t Ê

seem to be out of control. However, integrating by parts in
times shows the third term is of ΣR , so it remains to estimate
the first two terms. As we observed earlier, integrating by
parts in both time and space in an appropriate order and then
employing a crucial cancellation between ∂2N

t p and σ∂2N
t H on

Σ by using the dynamical boundary condition, one can show
that the first two terms are of ΣR too!



I The above arguments lead to the following tangential energy
evolution estimate:

Ē2N(t) +
∫ t

0 D̄2N(s)ds

≤ E2N(0) + E
3
2

2N(t) +

∫ t

0

√
EN+4(s)(E2N(s) + D2N(s))ds

(6.40)

where the tangential energy and dissipation functionals are
defined by

Ēn :=
n∑

j=0

||∂jtu||20,n−j +
n∑

j=0

||∂jtb||20,n−j

+
n∑

j=0

||∂jt b̂||20,n=j +
n∑

j=0

|∂jtη|2n−j+1,

(6.41)



D̄n :=
n∑

j=0

||curl ∂jtb||20,n−j (6.42)

I To show that EN+4(t) decays sufficiently fast so that√
εN+4(t) is integrable in time (since the energy cannot be

dominated by the dissipation), we can derive the following set
of tangential energy evolution estimates different from (6.40):

d

dt
(Ēn + Bn) + D̄n .

√
E2NDn, n = N + 4, · · · , 2N − 2, (6.43)

with Bn satisfying |Bn| .
√

E2NEn.



I Improved tangential dissipation estimates: Note that the

tangential dissipation D̄n contains only curl-estimate of b. We
can improve this as follows. Set

D̄n :=
n∑

j=0

||∂jtb||21,n−j +
n∑

j=0

||∂jt b̂||2n−j+1 (6.44)

(1) H1-dissipation estimates of b and full dissipation estimates

on b̂:

D̄2N . D̄2N + EN+4(E2N + D2N), (6.45)

D̄n . D̄n + DN+4E2N , n = N + 4, · · · , 2N − 1, (6.46)

which follows from Hodge-type estimates.



(2) Tangential dissipation estimates for u: (due to the coupling,

B̄3 6= 0)
I B̄ · ∇-dissipation estimates on u:

n−1∑
j=0

||B̄ · ∇∂ j
tu3||20,n−j−1 +

n−1∑
j=0

||B̄ · ∇∂ j
t(k∂3bh + B̄3uh)||20,n−j−1

. D̄n + DN+4E2N

(6.47)

which follows by projecting the magnetic equations onto the
vertical and horizontal components respectively. Thus using
Poincare-type inequality related to B̄ · ∇ together with
boundary conditions on Σ− ⇒.



I Tangential dissipation estimates for u:

n−1∑
j=0

(||∂jtu||20,n−j−1 + |∂jtu|2n−j−1) . D̄n + DN+4E2N (6.48)

where B̄3 6= 0 and k > 0 are all used crucially!

Normal Derivative Estmates:

The heart of the analysis is to derive the estimates involving the
normal derivatives of u and b. The key of this is the observation of
the damping structure for the fluid vorticity field induced by the
magnetic field.



I Induced damping structure for the vorticity:

The fluid vorticity curlϕu satisfy

∂ϕt (curlϕu) + u · ∇ϕ(curlϕu) = B̄ · ∇ϕ(curlϕu) + · · · (6.49)

with + · · · being some nonlinear terms. Note that
divϕb = 0⇒

B̄3∂
ϕ
3 (curlϕb)1 = B̄3∂

ϕ
1 (curlϕb)3 + B̄3(curlϕcurlϕb)2,

B̄ · ∇ϕu2 = B̄h · ∇ϕhu2 − B̄3(curlϕu)1 + B̄3∂
ϕ
2 u3.

Thus ∂ϕt b = curlϕE implies that



B̄ · ∇ϕ(curlϕb)1

≡ B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
3 (curlϕb)1

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 + B̄3(curlϕcurlϕb)2

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 +

B̄3

k
(−∂ϕt b2 + B̄ · ∇ϕu2 + · · · )

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 −

B̄2
3

k
(curlϕu)1

+
B̄3

k
(−∂ϕt b2 + B̄h · ∇ϕhu2 + B̄3∂2u3 + · · · )

= B̄h · ∇h(curlb)1 + B̄3∂1(curlϕb)3 −
B̄2

3

k
(curlϕu)1

+
B̄3

k
(∂tb2 + B̄h · ∇hu2 + B̄3∂2u3) + · · ·



Similar computations hold for B̄ · ∇ϕ(curlϕb)2. Thus we get the
following equation for (curlϕu)h, for i = 1, 2:

∂ϕt (curlϕu)i + u · ∇ϕ(curlϕu)i +
B̄2

3

k
(curlϕu)i

= B̄h · ∇h(curlb)i + B̄3∂i (curlb)3

+(−1)i+1 B̄3

k
(−∂tb3−i + B̄h · ∇hu3−i + B̄3∂3−iu3) + · · ·

(6.50)

Since B̄3 6= 0, k > 0, so (6.50) yields the desired
transport-damping structure for (curlϕu)h, which provides the key
mechanism for global-in-time estimates!!!



I Estimating those terms on the right hand side of (6.50) by
Ē2N in (6.40), one can get estimates in E2N as:

d

dt
||(curlϕu)h||22N−1 + ||(curlϕu)h||22N−1 +

2N∑
j=0

||∂jtu||22N−j

+
2N∑
j=0

||∂jtb||22N−j+1 +
2N∑
j=0

||∂jt b̂||22N−j+1

. Ē2N + D̄2N + EN+4E2N ,
2N∑
j=0

||∂jtu||22N−j +
2N−1∑
j=0

||∂jtb||22N−j+1 + ||∂2N
t b||20

+
2N−1∑
j=0

||∂jt b̂||22N−j+1 + ||∂2N
t b̂||20

. Ē2N + ||(curlϕu)h||22N−1 + EN+4E2N

(6.51)



I Estimating those terms on the right hand side of (6.50) by
(6.48) (the tangential dissipation estimates), one can estimate
the terms in Dn as: for n = N + 4, · · · , 2N,



d

dt
||(curlϕu)h||2n−2 +

n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j

+
n∑

j=0

||∂jtb||21,n−j +
n∑

j=0

||∂jt b̂||2n−j+1 . D̄n + DN+4E2N ,

||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n +
n−1∑
j=1

||∂jtb||2n−j+1

+||∂nt b||20 + ||b̂||2n +
n−1∑
j=1

||∂jt b̂||2n−j+1 + ||∂nt b̂||20

. Ēn + ||(curlϕu)h||2n−2 + EN+4E2N

(6.52)



I The energy and dissipation estimates for the pressure p and
the free surface function η can be obtained by the elliptic
estimates as for n = N + 4, · · · 2N,

I Energy estimates:

n−1∑
j=0

||∂jtp||2n−j +
n−1∑
j=0

|∂jtη|2n−j+ 3
2

+ |∂nt η|21 + |∂n+1
t η|2− 1

2

≤ Ēn +
n∑

j=1

||∂jtu||2n−j +
n−1∑
j=0

||∂jtb||2n−j + EN+4E2N .

(6.53)

I Dissipation estimates:

n−2∑
j=0

||∂jtp||2n−j−1 +
n−2∑
j=0

|∂jtη|2n−j+ 1
2

+ |∂n−1
t η|21 + |∂nt η|20

≤ D̄n +
n−1∑
j=1

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j−1 + DN+4E2N .

(6.54)



Global Boundedness of High-order Energy:
Collecting all the tangential and normal estimates and using them
recessively, one can get that for E2N suitably small, then

E2N(t) +

∫ t

0
D2N(s)ds . E2N(0) +

∫ t

0

√
EN+4E2N(s)ds (6.55)

and

d

dt
En + Dn ≤ 0, n = N + 4, · · · , 2N − 2 (6.56)

I The global energy bound will be achieved of EN+4(t) decays
fast in time. However, note that En . Dn does not hold, as
there is no hope to get exponential decays also for either
temporal or spatial regularities, Dn cannot control En, so it is
impossible to derive the algebraic decay as Guo-Tice.



Decay of the Lower-order Energy:
The key observation is that El ≤ Dl+1. This and (6.56) will yield
the desired decay of EN+4 by a time weighted argument:

I Rewrite (6.56) as

d

dt
EN+4+j + DN+4+j ≤ 0, j = 0, · · · ,N − 6. (6.57)

Multiplying (6.57) by (1 + t)N−5−j and using EN+4+j ≤ DN+5+j

yield

d

dt
((1 + t)N−5−jEN+4+j) + (1 + t)N−5−jDN+4+j

≤ (N − 5− j)(1 + t)N−6−jEN+4+j

≤ (N − 5− j)(1 + t)N−6−jDN+5+j

. (1 + t)N−5−(j+1)DN+4+(j+1)

(6.58)



Integrating (6.58) in time and making a suitable linear combination
of the resulting inequalities, one can get

N−5∑
j=0

(1 + t)N+5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds

. E2N(0) +

∫ t

0
D2N−1(s)ds

(6.59)



The a priori Estimates

Then we arrive at the final energy estimates

Proposition: Let N ≥ 8. ∃ a universal constant δ̄ > 0ni if

E2N(t) ≤ σ̄, ∀t ∈ [0,T ] (6.60)

Then

E2N(t) +

∫ t

0
D2N(s)ds ≤ cE2N(0)∀ ∈ [0,T ] (6.61)



and

n−6∑
j=0

(1 + t)N−5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds

. E2N(0),

(6.62)

where c is a universal constant independent of T .



§6.4 Results on Plasma-Plasma Interface
As in Figure 6.2, consider two immiscible plasmas occupying the
two regions Ω±(t) respectively, with corresponding velocities u±,
pressure p±, and magnetic field B±, which are assumed to solve
the following plasma-plasma interface problem:

∂tu± + u± · ∇u± +∇p± = curlB± × B± in Ω±(t)
divu± = 0 in Ω±(t)
∂tB± = curlE±,E± = u± × B± − k±curlB± in Ω±(t)
divB± = 0 in Ω±(t)
∂tη = u± · N on Σ(t)
p+ = p− + σH,B+ = B−,E+ ×N = E− ×N on Σ(t)
u+ · e3 = 0,B+ × e3 = B̄ × e3 on Σ+

u− · e3 = 0,B− · e3 = B̄ · e3,E− × e3 = 0 on Σ−

(6.63)

where k± > 0 and B̄ is a uniform transversal magnetic field
(B̄3 6= 0).



I Using the same flatten map Φ defined in (6.21) and in flatten
coordinates, one has

∂ϕt u + u · ∇ρu +∇ϕp = curlϕb × (B̄ + b) in Ω
divϕu = 0 in Ω
∂ϕt b = curlϕE ,E = u × B − kcurlϕb in Ω
divϕb = 0 in Ω
∂tη = u · N on Σ
[p] = σH, [b] = 0, [E ]×N = 0 on Σ
u3 = 0, b × e3 = 0 on Σ+

u3 = 0, b3 = 0,E × e3 = 0 on Σ−
(u, b, η)|t=0 = (u0, b0, η0)

(6.64)

where f = f± on Ω±, and [f ] = f+|Σ − f−|Σ.



The initial data are required to satisfy the 2N-th order
compatibility conditions:

divϕ0 u0 = 0 in Ω, [u0] · N0 = 0 on Σ, u0,3 = 0 on Σ±;
divϕ0 b0 = 0 in Ω, [b0] = 0 on Σ, b0 × e3 = 0 on Σ+, b0,3 = 0 on Σ−;[
∂jtb(0)

]
×N0 = 0 on Σ, ∂jtb(0)× e3 = 0 on Σ+, j = 1, · · · , 2N − 1;

∂jt([E ]×N )(0) = 0 on Σ, ∂jtE (0)× e3 = 0 on Σ−, j = 0, · · · , 2N − 1.

(6.65)

I Using the notation ||f ||2k = ||f+||2Hk (Ω+)
+ ||f−||2Hk (Ω)

,

|f |23 = ||f+||Hs(Σ) + ||f−||Hs(Σ).



I For N ≥ 4, define the higher order energy functional,
lower-order energy functional, and the corresponding
dissipation functional as

E2N :=
2N∑
j=0

||∂jtu||22N−j + |∂2N
t u|2− 1

2
+

2N−1∑
j=0

||∂jtb||22N−j+1

+||∂2N
t b||20 +

2N−1∑
j=0

||∂jtp||22N−j

+
2N−1∑
j=0

|∂jtη|22N−j+ 3
2

+ |∂2N
t η|21 + |∂2N+1

t η|2− 1
2

(6.66)



En := ||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n

+
n−1∑
j=1

||∂jtb||2n−j+1 + ||∂nt b||20 +
n−1∑
j=0

||∂jtp||2n−j

+
n−1∑
j=0

|∂jtη|2n−j+ 3
2

+ |∂nt η|21 + |∂n+1
t η|2− 1

2

(6.67)

where n = N + 4, · · · , 2N, and

Dn :=
n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j

+
n∑

j=0

||∂jtb||21,n−j +
n−2∑
j=0

||∂jtp||2n−j−1

+
n−2∑
j=0

|∂jtη|2n−j+ 1
2

+ |∂n−1
t η|21 + |∂nt η|20

(6.68)



§6.4 Results on Plasma-Plasma Interface

Then the main results are as stated as exactly as the main theorem
for the plasma-vacuum interface before except that the condition
(6.28) is replaced by (6.65).

Remark 6.16: The main strategy of the proof is similar as before
except two points: the highest temporal derivative estimates are
different, and the local well-posedness is proved by a different
regularization procedure!



§7. Uniqueness and Convex Integration Technique

§7.1 Introduction to uniqueness problems

Hyperbolic Balance Laws

Consider hyperbolic system of balance laws

∂tu +∇xF (u) = G (u), u ∈ Rm, x ∈ Rn. (7.1)

Hyperbolicity: ∀ξ ∈ Sn−1, the matrix

ξ · ∇uF (u) has m real eigenvalues (7.2)

Suppose that ∃ a convex entropy-entropy flux pair (η,Q), i.e.

∂tη(u) +∇x · (Q(u)) = ∇uη(u) · G (u) (7.3)

∇2η(u) > 0



Well-known facts:

• Local well-posedness theory of smooth solution to (7.1) (by
energy methods).

• Shock formations in general (Lax, John, Christodoulou).

• It is necessary to study ”weak solutions” in the sense of
distributions.

• However, weak solutions are not unique!

• Admissible weak solutions?



Admissible Criterion:

• vanishing viscosity limits;

• stability conditions (1D, Lax, Oleinik, Liu, etc.);

• entropy criteria: a bounded measurable solution to (7.1) is
admissible if

∂tη(u) +∇x · (Q(u))−∇uη · G (u) ≤ 0 (7.4)

in the sense of distribution.



Facts:

• In 1D, all these admissible criterion are equivalent for small
amplitude solutions. Furthermore, the global well-posedness
of admissible small amplitude solutions is established in BV by
Glimm, Bressan, etc..

Major Question: How about M-D systems?

• Both Existence and Uniqueness are open!!!



Non-Uniqueness and Convex Integration

Recent breakthroughs due to De Lellis-Székelyhidi

• Incompressible Euler system

- L∞ solution: De Lellis-Székelyhidi (09’, 10’),
Székelyhidi-Choffrut (14’)

- Hölder solutions: De Lellis-Székelyhidi (12’), Isett (12’),
Buckmaster-De Lellis-Székelyhidi-Isett (15’)

• Compressible Euler systems

- admissible weak solutions: De Lellis-Székelyhidi (10’),
Chiodaroli (12’), Feiresl (13’), Chiodaroli-De Lellis-Kreml (14’)

• Other related models, etc.



The Compressible Euler Systems

We consider the n-dimensional isentropic Euler systems with or
without source terms{

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p(ρ) = B(ρu),
(7.5)

where

I the pressure p satisfies p′(ρ) > 0,

I B is a constant n × n matrix.



Admissible Weak Solutions

(ρ,u) ∈ L∞(Rn × [0,∞)) is called an admissible weak solution to
(7.5) if

I it solves the system (7.5) in the sense of distribution;

I it satisfies the energy inequality in the sense of distribution

∂t(ρE(ρ)+ρ
|u|2

2
)+∇·[(ρE(ρ)+ρ

|u|2

2
)u]−B(ρu)·u ≤ 0 (7.6)

where E =
∫

r−2p(r)dr .



Previous Works on Non-uniqueness of the Compressible Euler system

Infinitely many admissible weak solutions to (7.5) with B = 0:

I De Lellis and Székelyhidi(10’, ARMA) : global-in-time, a
special class of piece-wise constant initial densities and L∞

velocities;

I Chiodaroli(12’): local-in-time, general smooth initial densities,
a class of L∞ velocities;

I Feireisl(13’): global-in-time, smooth initial density close to a
constant;

I Chiodaroli, De Lellis and Kreml(14’, CPAM) : global-in-time,
a class of Riemann initial data connected by admissible
1-shock and 3-shock.

I All these are based on the method of convex-integration:



Convex Integration
 

subsolution 

solution 



Wild Solutions and h-Principles

Weak solutions by the convex integration are highly oscillatory,
which are called wild solutions in the literature:

• Build on oscillations in multi-dimensional space.

• Reflect flexibility of the solution space at low regularity.

• Many of the available criteria, with the exception of vanishing
viscosity limits, unable to single out a unique solution.

Questions:

1. Structure of such a wild solution?

2. Uniqueness or non-uniqueness of the admissible weak
solutions to the Euler systems with lower order effects?



Some Physical Models with Source Terms

I damped Euler systems where

B = −
(

1 0
0 1

)
,

I rotating shallow water system where p(ρ) = ρ2 and

B = −
(

0 −1
1 0

)
.

I Different from isentropic Euler, these two systems have global
smooth solutions for sufficiently small and smooth initial data;
e.g. see Wang and Yang(2001, J.D.E.);Sideris, Thomases, and
Wang(2003, C.P.D.E), Cheng and Xie(2011, J.D.E.).



§7.2 Main Results

Theorem 7.1 (Luo-Xie-Xin, Adv. in Math. 2016)
Suppose that B is an anti-symmetric constant matrix and Ω = Rn

or Tn. Let ρ0 be any given positive piecewise constant function in
the sense that there are at most countably many mutually disjoint
open sets Ωi with Hn(Ω \ (Ui Ωi )) = 0 and positive constants {ρ̄i}
with 0 < inf i ρ̄i ≤ supi ρ̄i < +∞, such that

ρ0(x) ≡ ρ̄i for x ∈ Ωi .

Then there exists an m0 ∈ L∞(Rn) such that there are infinitely
many global bounded admissible weak solutions (ρ,m) to the
Cauchy problem for (7.1). Furthermore, either of the following two
cases holds in each Ωi

(1) (ρ,m)(x , t) = (ρ̄i , 0), a.e. for (x , t) ∈ Ωi × [0,∞);

(2) (ρ,m) has exactly N∗n states in Ωi × (0,∞), where

N∗n = n(n+3)
2 ;

and there exists at least one i such (2) holds.



Remarks:

I Also apply to the Compressible Euler system, i.e. B = 0.

I The finite-state property of the admissible weak solutions
obtained in the Theorem 7.1 indicates that such an entropy
weak solution could be truely “wild”. Indeed, in the special
case B = αJ, α 6= 0, the finite-state entropy solution cannot
be continuous at any point in Ωi × [0,∞) where (2) holds.

I For the class of Riemann initial data Chiodaroli-Dellis-Kreml,
we can also show the existence of infinitely many admissible
finite-state solution to (7.1) with B = 0.

I First result on finite state solutions to the compressible Euler
system.

I This theorem is motivated by the problem of finding
deformations with finitely many gradients in non-convex
calculus of variations.



Theorem 7.2 (Luo-Xie-Xin, Adv. in Math. 2016)
Let B be an anti-symmetric constant matrix. For any piece-wise
Lipschitz density ρ0 and any given T > 0, there exists m0 ∈ L∞,
such that (ρ0,m0) admits infinitely many global-in-time admissible
weak solutions (ρ,m). Furthermore, these solutions (ρ,m) are
locally finite state for t > T :

(ρ,m)(x , t) ∈ {(ρj ,m(i ,j)), i = 1, · · · , 5} a.e. in Ωj × [T ,∞).

where Ωj are non-intersecting open subset of Rn such that
Rn = ∪jΩj .



Remarks:

• One can also construct admissible weak solutions which, after
a initial layer of time-span O(||∇ρ0||L∞), transite to locally
finite state.

• The wild solutions exist globally without any smallness
assumption on the initial density as in Feireisl (14’), which is
crucial there.

• Complicated discontinuities develop even for smooth initial
density.



Theorem 7.3 (Luo-Xie-Xin, Adv. in Math. 2016)
Let B be a constant matrix. For any smooth density ρ0 close to a
constant, there exists m0 ∈ L∞, such that (ρ0,m0) admits
infinitely many global-in-time admissible weak solutions satisfying
the decay estimates

‖(ρ− ρ],m)‖L∞(Rn) ≤ κe−βt , (7.7)

where ρ] is the constant far field and κ = κ(ε)→ 0 as ε→ 0,

β = max
[
0, sup{−ξTBξ : ξ ∈ Rn, |ξ| = 1}

]
.



Remarks:

I The results indicate lower order dissipations and dispersion are
unable to rule out the wile solutions.

I Related results for dissipative solutions to (7.5) with damping
has been obtained in Donatelli-Feireisl-Marcati using a
different method. However, our approach can deal with
general constant B and localize the perturbations.



Reformulation as a differential inclusion

Adapting the approach of De Lellis and Székelyhidi, a bounded
weak solution (ρ,m) to (7.5) is equivalent to a solution
(ρ,m,U, q) of the under-determined linear system

L(ρ,m,U, q) =

{
∂tρ+∇ ·m,
∂tm +∇ ·U +∇(p(ρ) + q)− Bm,

=

(
0
0

)
(7.8)

and the nonlinear point-wise constrains

(m,U) ∈ Kρ,q a.e. (7.9)

where

Kρ,q = {Rn × Sn×n0 :
m⊗m

ρ
−U = qI} (7.10)

and Sn×n0 denotes the set of n × n symmetric trace-free matrices.



Subsolutions

Suppose D is a space-time open set. The quadruple
(ρ,m,U, q) ∈ L∞(Rn × [0,∞);R+ × Rn × Sn×n0 × R̄+) is called a
strict subsolution in D if

I it satisfies the linear system L(ρ,m,U, q) = 0 in Rn × [0,∞).

I (ρ,m,U, q) ∈ C (D) and satisfies the relaxed constrains

(m,U)(x , t) ∈ int conv Kx ,t in D (7.11)

where Kx ,t ⊂ Kρ(x ,t),q(x ,t) is a family of compact sets, and the
map (x , t) 7→ Kx ,t is continuous in the Hausdorff metric.

(ρ,m,U, q) is called a subsolution if L(ρ,m,U, q) = 0 and satisfies

(m,U)(x , t) ∈ conv Kρ(x ,t),q(x ,t) in Rn × [0,∞) (7.12)



Subsolutions

I It can be shown that for ρ > 0, q > 0

int conv Kρ,q = {(n,V) ∈ Rn × Sn×n0 :
n⊗ n

ρ
− V < qI},

(7.13)

This implies compactness in the weak limit, and in particular
(0, 0) ∈ int conv Kρ,q.

I It is not hard to construct strict subsolutions, by finding
solutions to the under-determined linear system L(·) = 0 (7.8)
which satisfy the relaxed open constrains (7.11).



Remarks

The subsolutions here are more general:

• Previous works:

Kx ,t = Kρ(x ,t),q(x ,t), isomorphic toSn−1;

• Here we allow simplex-type constraint sets, i.e.

Kx ,t could be vortices of a simplex (with
n(n + 3)

2
vortices)

which is one of the key points for the construction of finite
state solutions.



Constraint set: vertices of a simplex
 

subsolution 

solution 



From Subsolutions to Solutions

The main lemma shows that weak solutions can be obtained from
strict subsolutions.

Lemma 7.4 (Main Lemma)
Suppose (ρ,m,U, q) is a strict subsolution in D then there exists
infinitely many subsolutions (ρ,m′,U′, q) such that

supp (m′ −m,U′ −U) ⊂ D

and
(m′,U′) ∈ Kx ,t a.e. in D.

In particular, (ρ,m′) is a weak solution to (7.5) in D.



The Wave Cone Λ

w̃ ∈ Λ : plane waves ofL
 

subsolution  𝒘 

solution 

𝒘+ �̃� 



Convex Integration
The wave cone Λ associated with L is the set of directions
(n̄, V̄) ∈ R2 × S2×2

0 to which there exists a vector (ξ, τ) ∈ R2 × R
such that for any function h and ε > 0 there exists
(n,V) ∈ C∞c (Q;R2 × S2×2

0 ) satisfying

L(0,n,V, 0) =

{
∇ · n
∂tn +∇ · V − Bn,

= 0. (7.14)

|(n,V)− (n̄, V̄)h(τ t + ξx)| < ε in Q1−ε. (7.15)∫
(n,V)dx = 0. (7.16)

The constructions iterate plane-wave-type solutions to the linear
operator L. One need to show that the wave cone is suitably large,
i.e. plenty of localized plane waves of L.



Wave cones in the presence of sources

I For Λ0 associated with the homogeneous operator L0 (B = 0),

w1 − w2 ∈ Λ0, for wi ∈ Kρ,q

I However, source terms change the plane waves for L.

I Question: Are there enough localized plane waves with source
terms?

I Key observation: plane waves with source terms can be
viewed as perturbations of plane waves for L0 in the high
frequency regime.

I We find a new construction of localized plane waves by
balancing the source terms with suitable corrections, which
implies

Λ = Λ0 (which is plenty!)



Localized Plane Waves

For any constant matrix B we show the existence of localized plane
waves of L.

Lemma 7.5 (Localized plane waves)
Suppose w ∈ Rn × Sn×n0 satisfies

w = µ1w1 + µ2w2, µ1 + µ2 = 1, µi > 0, w̄ = w2 − w1 ∈ Λ.

Given ε > 0, then there exists w̃ ∈ C∞c (Q;Rn × Sn×n0 ) such that

1. Lw̃ = 0,
∫

w̃(x , t)dx = 0;

2. there exists two disjoint open sets Oi such that

|w + w̃i − wi | < ε in Oi ; ||Oi | − µi | < ε



Piecing together localized plane waves, by an induction process one
can show

Lemma 7.6 (Building blocks)
Suppose K̃ ⊂ Kρ̄,q̄ and w ∈ int conv K̃ , for any given ε > 0, then
there exists w̃ ∈ C∞c (Q;Rn × Sn×n0 ) such that

1. Lw̃ = 0,
∫

w̃(x , t)dx = 0;

2. w + w̃ ∈ int conv K̃ ;

3.
∫
Q dist(w + w̃ , K̃ ) < ε;



Perturbation Property

In view of Lemma 7.6, a scaling and continuity argument yields

Lemma 7.7 (Perturbation property)
Let (ρ,m,U, q) be a strict subsolution in a bounded space-time
domain D. Let ε > 0, then there exists a compact set C ⊂ D and
a sequence of strict subsolution wk in D such that∫

D
dist (wk(x , t),Kx ,t)dxdt ≤ ε

and

supp (wk − w) ⊂ C,
wk → w in CL∞w .



Adding Localized Plane Waves∫
Q

dist (w + w̃ , k̃)dxdt < ε

 

w 

k̃ ⊂ kρ,q : vertices of a simplex



Proof of Lemma 7.4

1. Partition D into small cubes Qi . Construct localized plane
waves w̃i ∈ C∞0 (Qi ). Let w̃ = Σi w̃i .

2. Given ε > 0, refine the constructions (diam (Qi )→ 0) gives∫
D

dist (w + w̃ ,Kx ,t)dxdt < ε.

3. Set w0 to be w (a strict subsolution). Iteration gives {wk}
with

∫
D dist(wk ,Kx ,t)→ 0. By Lemma 7.7, choosing suitable

high frequency

⇒ almost independence of increments
⇒ local strong convergence

Hence, one can obtain a weak solution w ′ = limk wk .



Construction of Finite State Weak Solutions

For finite state weak solution, one need to choose the constrain set
to be a simplex. The key is to analyze the phase space.

Constrain sets of simplex

Lemma 7.8
Let w ∈ int conv Kρ,q. Then ∃ a simplex S in Rn × Sn×n0 with
vertices

K = {wi}N∗i=1 ⊂ Kρ,q

such that

w ∈ int conv K, where N∗ =
n(n + 3)

2
.

Remarks: For n = 2, N∗ = 5; n = 3, N∗ = 9, etc.



Degenerate Cases
 

w 

Example: w NOT an interior point of the simplex by any three
vertices.



Proof of Lemma 7.8 (Caratheodory’s theorem + a perturbation
argument)

• Caratheodory’s theorem ⇒ ∃ a finite set K ′ ⊂ Kρ,q with

w ∈ int conv K ′

• Perturb K ′ in Kρ,q to avoid degenerate cases.

• Since dim(Kρ,q) = n − 1 < dim(Rn × Sn×n0 ) = n(n+3)−1
2 , so

the perturbations are non-trivial, one needs to use the
nowhere-flat property of Kρ,q.



Nowhere-flat Property

H ∩ Kρ,q has no interior point in Kρ,q

for any hyperplane H ⊂ Rn × Sn×n0 .

This can be proved by showing the local affine dimension of
w0 ∈ K1,1/n is a constant = dim(Rn × Sn×n0 ).



Proof of Theorem 7.1

• For any given antisymmetric B, we can construct strict
subsolutions (ρ, 0, 0, q) where ρ, q are piecewise constants
satisfying

p(ρ) + q = constant

with piecewise constant state constraint set Ki given by
Lemma 7.8.

• Apply Lemma 7.4 to obtain finite state weak solutions.

• Observe that the energy equality holds.



Proof of Theorem 7.2

I For anti-symmetric B, there is a class of ‘steady’ strict
subsolutions (ρ, 0, 0, q) where ρ, q are piece-wise constant
satisfying

p(ρ) + q = const

I Construct a sophisticated non-smooth ansatz such that after
time T it becomes the steady strict subsolution, which is
piece-wise constant in small cubes Qj with radius rj .

I The radius rj is chosen suitably so that the coefficients of the
Riccati-type differential inequality are independent of T .
Choose a small T before the blow-up time.

I As a consequence of our construction, ρ would instantly
develop discontinuities with complicated geometry even if ρ0

is smooth.



Proof of Theorem 7.3

I Construct a smooth subsolution (ρ,m,U, q) adapting
Feireisl’s ansatz for B = 0, such that the density becomes
constant in finite time.

I Apply Lemma 7.4 to obtain weak solutions.

I The entropy inequality is reduced to a Riccati-type differential
inequality

I By assuming ρ0 is a small perturbation of some positive
constant, one could find a solution to the differential
inequality.

I The decay estimate (7.7) follows from the energy inequality.



§7.3 Summary and Problems

Summary

I Non-uniqueness of finite state admissible weak solutions for
Riemann data.

I Neither damping nor rotating forces could guarantee
uniqueness in the class of admissible bounded weak solutions.

I Even partial viscosities cannot rule out “wild solutions”.

I There exists finite state admissible weak solutions with or
without sources.

I The “wild solutions” have nothing to do with “amplitude”.



Open Problems

I Non-uniqueness results from smooth given initial data?

I Uniqueness problem with better regularities?

I Uniqueness problems for general lower order terms satisfying
Kawashima’s conditions?

I Uniqueness of Navier-Stokes limits?



§8 Steady Compressible Euler equations

§8.1 Introduction on steady compressible Euler system

Steady flow: then the solution does not depend on time.{
div (ρ~u) = 0
div (ρ~u ⊗ ~u) +∇p = 0

(8.1)

Vorticity:

w = curl~u = ∇× ~u =

 ∂2 u3 − ∂3 u2

∂3 u1 − ∂1 u3

∂1 u2 − ∂2 u1





Theorem 8.1 (Kelvin Theorem)
The line integral of the vorticity over a closed material curve is
constant in time.

dX

ds
= ~u(X , (s, t), t)

I (t) =

∫
c

w dl ,
dI (t)

dt
= 0

Definition 8.1: The flow is said to be irrotational if

w = ∇× ~u ≡ 0

Fact: For smooth flows, the flow is irrotational if it is irrotational
initially.

Definition 8.2: An isentropic irrotational flow is said to be
potential flow.



Theorem 8.2 (Bernoulli’s law)
For steady potential flow,

1

2
|u|2 +

∫
p′(ρ)

ρ
dρ

is constant.

Proof of Theorem 8.2: The momentum equation can be written as

(~u · ∇)~u +
∇p

ρ
= 0

~u

(
∇
(

1

2
|u|2 +

∫
p′(ρ)

ρ

))
= 0

1

2
|u|2 +

∫
p′(ρ)

ρ
dρ is constant along a material curve.



If w = ∇× ~u = 0,

1

2
|u|2 +

∫
p′(ρ)

ρ
dρ = c̄

q = |~u|,
q2

2
+

∫
p′(ρ)

ρ
= c̄

We can normalize so that when q = 0, ρ = 1, c = 1,

1

2
q2 +

∫ ρ

1

p′(ρ)

ρ
ds = 0

⇒ ρ = ρ(q)



F (q, ρ) =
1

2
q2 +

∫ ρ

1

p′(s)

s
ds

∂F

∂ρ
=

p′(ρ)

ρ
=

c2(ρ)

ρ
> 0

ρ(q) is a non-increasing function of q.

q +
c2(ρ)

ρ

dρ

dq
= 0

so
dρ

dq
= −ρq

c2
≤ 0

dρ

dq
= −ρ

q

q2

c2
= −ρ

q
M2



Example: Polytropic gas: p(ρ) = Aργ ,

c2(ρ) = Aγργ−1

q = 0, ρ = 1, c = 1, this implies that A =
1

γ

p(ρ) =
1

γ
ργ

q2

2
+

∫ ρ

1

ργ−1

ρ
dρ = 0

0 =
q2

2
+

1

γ − 1
(ργ−1 − 1)

so

ργ−1 = 1− γ − 1

2
q2

ρ =

(
1− γ − 1

2
q2

) 1
γ−1

M2 =
q2

c2
=

q2

1− γ−1
2 q2



Definition 8.3: ∃ qcr and qmax such that

(i) M < 1 iff q < qcr

(ii) 0 ≤ q ≤ qmax

Fact: For polytropic gas,

qcr =

(
2

γ + 1

) 1
2

qmax =

(
2

γ − 1

) 1
2

Lemma 8.1: For polytropic gas, then

1. M < 1(> 1) iff q <

(
2

γ + 1

) 1
2

(
>

(
2

γ + 1

) 1
2

)

2. 0 ≤ q <

(
2

γ − 1

) 1
2



The potential equation

w = ∇× ~u = 0

Then there exists ϕ such that

~u = ∇ϕ

div (ρ~u) = 0⇔ div (ρ∇ϕ) = 0

Since
q = |~u| = |∇ϕ|, ρ = ρ(q) = ρ(|∇ϕ|)

so
div (ρ(|∇ϕ|)∇ϕ) = 0



div (ρ(|∇ϕ|)∇ϕ) =
3∑

i=1

∂xi (ρ(|∇ϕ|)∂xi ϕ)

=
3∑

i=1

(ρ(|∇ϕ|) ∂2
xi
ϕ+ ∂xiρ(|∇ϕ|) ∂xi ϕ)

=
3∑

i=1

ρ(|∇ϕ|) ∂2
xi
ϕ− ρq

c2

n∑
j=1

∂xi ϕ∂xj xi ϕ

q
∂xi ϕ


= ρ

 3∑
i=1

∂2
xi
ϕ− 1

c2

 3∑
i ,j=1

∂xi ϕ∂xj ϕ∂ij ϕ


= ρ

3∑
i ,j=1

(
δij −

∂i ϕ∂j ϕ

c2

)
∂ij ϕ



Potential equation

3∑
i ,j=1

(
δij −

1

c2
∂i ϕ∂j ϕ

)
∂ij ϕ = 0 (8.2)

quasilinear second order equation.

Lemma 8.2 (8.2) is hyperbolic if M > 1, elliptic if M < 1,
parabolic if M = 1.

Proof of Lemma 8.2: Note that the type of the equation is a local
property, and also the equation is rotation invariant, we can
assume at the given point, the velocity is (q, 0, 0). Then at the
point, the coefficient matrix is 1−M2

1
1





Fact:

1. Mass flux ρq = qρ(q) is an increasing function of the speed
for subsonic flow, and a decreasing function of q for
supersonic flow.

2. ρ(q) > 0 is a smooth function which is nonincreasing on
[0, qmax].

 

𝜌𝑞 

𝑞𝑐𝑟 𝑞max 𝑞 



Proof: Due to Bernoulli’s law

q2

2
+ h(ρ) = const

so

q +
c2(ρ)

ρ

dρ

dq
= 0

Therefore
dρ

dq
= − ρq

c2(ρ)
= −ρ

q
M2

d

dq
(ρq) = q

dρ

dq
+ ρ = q

(
−ρ

q
M2

)
+ ρ = ρ(1−M2)

d

dq
(ρq) = ρ(1−M2) =

{
> 0 M < 1
< 0 M > 1



Example:

n = 2, x1 = x , x2 = y , u1 = u, u2 = υ

u − iυ = qe−iθ, q2 = u2 + υ2, θ = arctan
υ

u

Then the potential equation becomes

(c2 − u2)∂2
x ϕ− 2uυ ∂2

xy ϕ+ (c2 − υ2) ∂2
y ϕ = 0

or (
1− u2

c2

)
∂2
x ϕ− 2

uυ

c2
∂2
xy ϕ+

(
1− υ2

c2

)
∂2
y ϕ = 0 (8.2)’



Stream function formulation:
Continuity equation (ρu)x + (ρυ)y = 0. Then there exists
ψ = ψ(x , y) such that

ρu = ψy , ρυ = −ψx

ψ is called a stream function.

Let (x , y) = (x(s), y(s)) be a particle path, i.e.
dx

ds
= u(x(s), y(s))

dy

ds
= υ(x(s), y(s))

then

dψ(x(s), y(s))

ds
=

∂ψ

∂x
ẋ(s) +

∂ψ

∂y
ẏ(s)

= −ρυ · u + ρu · υ
= 0



so
ρφx = ψy , ρϕy = −ψx

ψ2
x + ϕ2

y = ρ2 q2 = (ρq)2

Then (
ψx

ρ

)
x

+

(
ψy

ρ

)
y

= 0 (8.3)

Remark 8.1: In general, the potential equation (8.2)’ is preferred
to the equation (8.3).

Discontinuous flows:

1. The potential of a subsonic flow is at least twicely
differentiable.

2. The discontinuities of ∇u occur on the characteristics
(supersonic flow).



Definition 8.4: For 2-D potential flow, the characteristic lines are
called Mach lines, which are given by

(c2 − u2)(dy)2 + 2uυ dx dy + (c2 − υ2)(dx)2 = 0 (8.4)

Remark 8.2: It should be clear that the Mach lines depend on
each given flow.

Lemma 8.3: In the supersonic region, through each point, there
passes two Mach lines, and the Mach line intersect the stream line
at the angle

±α = ± arctan
1√

M2 − 1

and at sonic state, the angle is ±Π

2
, so that the Mach lines are

parallel there. Such an angle, α, is call Mach angle.



Proof of Lemma 8.3: Since we are in a supersonic region, so the
local existence of two Mach lines through each point is trivial.
Without loss of generality, we assume that at (x0, y0),
(u, υ)(x0, y0) = (q0, 0). Then at a small neighborhood of (x0, y0)

(1−M2
0 )

(
dy

dx

)2

+ 1 = O(1)

where M2
0 =

q2
0

c2(ρ0)
, so

(
dy

dx

)2

=
1

M2
0 − 1

+ O(1)

dy

dx
= ± 1√

M2
0 − 1

+ O(1)



On the other hand, the streamline through (x0, y0) has the slope

dy

ds
= υ,

dx

ds
= u

so
dy

dx
=
υ

u
= O(1)

3. Shock wave: discontinuities in u, ρ, p.
We are looking for a surface, across which the velocity vector
u, the density ρ, and the pressure p have jump discontinuity,

(i) Supersonic → supersonic
(ii) Supersonic → subsonic (transonic shocks)



Shock condition:

(i) The tangential components of the velocity field is continuous
across the shock surface (flow is irrotational), which implies
that ϕ is continuous across the shock surface.

(ii) The normal components of the velocity multiplied by the
density (Fanonumber) is continuous across the shock

[(~u · ~n) · ρ] = 0 (conservation of mass)

(iii) The density increases across the shock surface, i.e., the
second law of thermodynamics, entropy condition.

Remark 8.3: Due to (iii) (entropy condition), a supersonic flow
may become subsonic up crossing a shock, but not vice versa.



Some physical problems and boundary conditions

1. Flow around an obstacle

(i) Far fields boundary condition:
The boundary condition at infinity

q∞ e iθ∞ = lim
z→∞

(ϕx − iϕy )

(ii) On the solid body, no flow boundary condition

~u · n = 0

(
∂ϕ

∂n
= 0

)
ψ is constant along the solid boundary.



(iii) Since the domain is not simply connected, so ϕ in general is
not single-valued

Γ =

∮
c

dϕ, Γ : given circulation number (C )

C is any closed smooth curve around the body.

Remark 8.4: Physically, instead of the condition (C ) for profile
with cusp or corner points, one may impose so called
Kutta-Joukowski condition, i.e., the velocity is required to be
continuous at the trailing edge. If the profile is smooth, then one
requires that the velocity field is zero at some point on the
boundary.

trailing edge



2. Half space problem

(i) q∞ e iθw =
lim z→∞

z∈H+
(ϕx − iϕy )

(ii)
∂ϕ

∂n
= 0

3. Infinite nozzle problem
∂ϕ

∂n
= 0 on both upper and

lower walls

or ψ = C2 on the upper wall
ψ = C1 on the lower wall



4. Free boundaries
A moving fluid on top of another fluid (dead water). In this
case, the domain of moving fluid is included by the solid
boundary, along which ∂ϕ

∂n = 0, i.e., ψ = const, and the
surface which separate two fluids, the surface is a free
boundary, along which ∂ϕ

∂n = 0 and speed must be constant.

dead water



Hodograph Transformation

Hodograph transformation change the roles of independent and
dependent variables.
2-D potential flow:

u = u(x , y)

υ = υ(x , y)

(x , y): independent variable
(u, υ): dependent variable

The system
uy = υx(

1− u2

c2

)
∂x u − 2

uυ

c2
uy +

(
1− υ2

c2

)
∂yυ = 0

is a quasilinear system

(u, υ) : (x , y) 7→ (u, υ)(x , y)



Find
T : (u, υ) 7→ (x , y)

such that in the state space

(x , y) = (x , y)(u, υ)

satisfies a linear system

J =
∂(u, υ)

∂(x , y)
=

∣∣∣∣ ux uy

υx υy

∣∣∣∣
= ux υy − uy υx = φxx ϕyy − ϕ2

xy 6= 0

 

(𝑥, 𝑦) (𝑢, 𝜐) 

𝑇 



Lemma 8.4

1. For subsonic flow, the zeros of Jare isolated, and the mapping
from physical plan into the hodograph plane has no singularity
except branch points as in the complex function theory.

2. For supersonic flows, J vanishes along simple waves. A curve
in a supersonic flow along which J vanishes must be a Mach
line, and near such a line, the mapping into the hodograph
plane has a fold.

Differential Equations in the hodograph plane
Chaplygin equation:(

q

ρ
ψq

)
q

+
1−M2

qρ
ψθθ = 0

q2 = u2 + υ2, θ = arctan
υ

u



Assume that in a small neighborhood of a given point, J 6= 0, so
locally the hodograph transformation is well-defined. We would like
to derive the potential equation in terms of (u, υ), or polar
coordinate (q, θ) satisfying

u = q cos θ, υ = q sin θ

q is flow speed, and θ is flow angle.

There exists a velocity potential, ϕ = ϕ(x , y), ∇ϕ = (u, υ), and
there exists a stream function ψ = ψ(x , y) satisfying
∇ψ = (−ρυ, ρu).

dϕ = ϕx dx + ϕy dy = u dx + υ dy = q(cos θ dx + sin θ dy)
dψ = ψx dx + ψy dy = −ρυ dx + ρu dy = ρq(− sin θ dx + cos θ dy)

so

dx + i dy =
e iθ

q

(
dϕ+

i

ρ
dψ

)
x + iy =

∫
e iθ

q

(
dϕ+

i

ρ
dψ

)
where

∫
is a line integral.



The right line integral should be path independent, this is
equivalent to 

∂θ ϕ =
q

ρ
∂yψ

∂q ϕ = −1−M2

ρq
ψθ

(8.5)

Indeed,

e iθ

q

(
dϕ+

i

ρ
dψ

)
=

e iθ

q

(
ϕq +

i

ρ
ψq

)
dq +

e iθ

q

(
ϕθ +

i

ρ
ψθ

)
dθ

x + iy =

∫
e iθ

q

(
ϕq +

i

ρ
ψq

)
dq +

e iθ

q

(
ϕθ +

i

ρ
ψθ

)
dθ

So the line-integral is path independent iff(
e iθ

q

(
ϕq +

i

ρ
ϕq

))
θ

=

(
e iθ

q

(
ϕθ +

i

ρ
ψθ

))
q

(8.6)



Recall ρ = ρ(q). (8.6) becomes

1

ρq
ψq −

1

q2
ϕθ + i

(
− 1

qρ2
ρq ψθ −

1

qρ
ψθ −

1

q
ϕq

)
= 0

⇔
1

ρq
ψq =

1

q2
ϕθ,

1

qρ2
ρq ψθ +

1

qρ
ψθ −

1

q
ϕq = 0

This is nothing but (8.5).

It following from (8.5)(
q

ρ
ψq

)
q

+

(
1−M2

ρq
ψθ

)
θ

= 0 (8.7)

i.e. (
q

ρ
ψq

)
q

+
1−M2

ρq
ψθθ = 0

This is called Chaplygin equation.



In terms velocity potential ϕ,

ρ

q
∂θ ϕ = ψq,

ρq

1−M2
∂q ϕ = ψθ

then (
ρq

1−M2
ϕq

)
q

+
ρ

q
ϕθθ = 0 (8.8)

q

ρ
ϕqq +

(
q

ρ

)
q

ψq +
1−M2

ρq
ψθθ = 0

(
q

ρ

)
q

=
1 + M2

ρ

q

ρ
ψqq +

1 + M2

ρ
ψq +

1−M2

ρq
ψθθ = 0

(1−M2)ψθθ + q2 ψqq + q(1 + M2)ψq = 0 (8.9)



Key point: (8.7) ((8.8), (8.9)) is a single 2nd order linear equation
for either stream function ψ or velocity potential. This can be used
to find special solutions and to derive some key a priori estimates.

Linearizing the potential equation by the Legendre transformation

We regard (x , y) as functions of (u, υ)

J−1 =
∂(x , y)

∂(u, υ)
=

∣∣∣∣ xu xυ
yu yυ

∣∣∣∣
is well-defined in (u, υ)-plane. Then by simple direct computation,
one has

ux =
yυ

J−1
uy = − xυ

J−1

υx = − yu
J−1

υy =
xu

J−1



so
υx = uy ⇒ − yu

J−1
= − xυ

J−1
⇒ xυ = yu

(c2 − u2)ux − uυ(uy + υx) + (c2 − υ2)υy = 0

⇒ (c2 − u2)
yυ

J−1
− uυ

(
− xυ

J−1
− yu

J−1

)
+ (c2 − υ2)

xu
J−1

= 0

⇒ (c2 − u2)yυ + uυ(xυ + yu) + (c2 − υ2)xu = 0

i.e. {
xυ = yu
(c2 − υ2)yυ + uυ(yu + xυ) + (c2 − u2)xu = 0

There exists a potential H©(u, υ) such that

∂u H© = x , ∂υ H© = y

(c2 − υ2) H©υυ + 2uυ H©uυ + (c2 − u2) H©uu = 0



The velocity potential ϕ, stream function ψ and the Legender
transform of the potential H© has the relation given by

ϕ = ux + υy − H©(u, υ)

ψu = ψx xu + ψy yu = −ρυ H©uu + ρu H©uυ

ψυ = ψx xυ + ψy yυ = −ρυ H©uυ + ρu H©υυ

Remark 8.5: These two linearization techniques are equivalent for
smooth flows.

Remark 8.6: Even assume J 6= 0 everywhere, we have not solve a
general potential flow problem. Though the equations are
linearized after the hodograph transformation, in general, the
physical boundary are getting more complexed.



Properties of the hodograph equations:

1. All the hodograph equations are linear which are
elliptic, in the disk, q2 = u2 + υ2 < q2

cr

hyperbolic, in the region, q2 = u2 + υ2 > q2
cr

parabolic, on the circle, q2
max > q2 = u2 + υ2 = q2

cr

 

𝜐 

𝑞𝑐𝑟 

𝑢 

𝑞max 



2. In the supersonic region, all the equations have the same
characteristics which are the images of the Mach lines in the
physical plane. These characteristic are given by the equation.

q dθ ±
√

M2 − 1 dq = 0

This implies two characteristics pass through every point in
the region and on the sonic circle, the sonic circle has a cusp.

Proof: Just take the Chaplygin equation

(1−M2)ψθθ + q2 ψqq + q(1 + M2)ψq = 0

(i) q2 < q2
cr ⇔ M2 < 1, ⇒ 1−M2 > 0, q2 > 0 elliptic.

(ii) q2 > q2
cr ⇔ M2 > 1, 1−M2 < 0, q2 > 0 hyperbolic.

(iii) q2 = q2
cr ⇔ M2 = 1.



3. M2 > 1. Then the equation for characteristics for Chaplygin
equation is given by

(1−M2)(dq)2 + q2(dθ)2 = 0

q2(dθ)2 = (M2 − 1)(dq)2

q dθ = ±
√

M2 − 1 dq

Canonical form of the hodograph equation:

1. Subsonic flow: Introduce distorted speed as

q∗ = q exp

∫ q

q1

(√
1−M2 − 1

) dq

q

ρ∗ =
ρ√

1−M2

λ = log q∗



Then the Chaplygin equation can be transformed into

φθθ + φλλ +
ρ∗λ
ρ∗
φλ = 0

Set

Λ =
ρ∗λ
ρ∗

= (ln ρ∗)λ =
d

dλ
ln ρ∗

φθθ + φλλ + Λφλ = 0

ψθθ + ψλλ − Λψλ = 0



2. Transonic flow: Introducing new variable

ϕ′ =
ϕ

qcr
, ψ′ =

ψ

(ρcr qcr )

Setting

σ =

∫ q

qcr

ρ

ρcr

dq

q
,

dσ

dq
=

ρ

ρcr q

σ → −∞ as q → 0, σ → 0 as q → qcr

∂θ φ
′ =

ϕθ
qcr

=
q

ρ

ψq

qcr
=

q

ρ
ρcr ψ

′
q

=
q

ρ
ρcr

∂

∂σ
ψ′

dσ

dq
=

q

ρ
ρr
∂ψ′

∂σ

ρ

ρcrq
=

∂ψ′

∂σ
∂θ ϕ

′ = ∂σ ψ
′



Similarly

∂σ ϕ
′ = −1−M2

ρ
ρ2
cr ψ

′
θ

Define

K =
1−M2

ρ
ρ2
cr

∂σ ϕ
′ = −K∂θ ψ

′

so

∂2
σ ψ
′ + K∂2

θ ψ
′ = 0 (8.10)

with

K = (1−M2)
ρ2
cr

ρ
= K (σ) (8.11)

K (σ = 0) = 0

K ′(σ)|σ=0 =

(
dK

dq

dq

dσ

)∣∣∣∣
σ=0



For polytropic gas, p(ρ) =
1

γ
ργ

K ′(σ) = −(γ + 1)

K ≈ −(γ + 1)σ when σ ≈ 0

Mapping back into physical plane:
Once we get a solution to a hodograph equation, we can transform
this solution back into physical plane

(q, θ) 7→ (x , y)

x + iy =

∫
e iθ

q

(
dϕ+

i

ρ
dψ

)
subsonic flow: branch singularity



In the supersonic region, one can compute

J−1 =
∂(x , y)

∂(q, θ)
=

1

ρ2 q2
(q2 ψ2

q + (1−M2)ψ2
θ)

and
q2 ψ2

q = (M2 − 1)ψ2
θ

is called limiting line.
The mapping from hodograph plane into physical plane has a fold
on the limiting line.

Equations in the potential plane:
Potential plane is (ϕ,ψ)-plane



Proposition 8.1: For flows with ρq 6= 0, the potential equation is
equivalent to

qψ =
q

ρ
θϕ, θψ = −1−M2

ρq
qϕ

(q, θ) - unknowns, (ϕ,ψ) - independent variables.(
ρ

q
qψ

)
ψ

+

(
1−M2

ρq
qϕ

)
ϕ

= 0



Proof of Proposition 8.1: If ρq 6= 0, then

∂(ϕ,ψ)

∂(x , y)
= ρq2 6= 0

⇔ ∆ =
∂(ϕ,ψ)

∂(q, θ)
= ϕθ ψq − ψθ ϕq 6= 0

It follows from

θϕ = −ψq

∆
, qϕ =

ψθ
∆

θψ =
ϕq

∆
, qψ = −ϕθ

∆



Approximate Equations

Since the potential equation in the physical plane has two major
difficulties:

(i) quasi-linearities

(ii) change type

Simplifications:

1. M → 0,⇒ Incompressible{
div~u = 0
∂y u − ∂x υ = 0



There exists a velocity potential ϕ such that

∂2
x ϕ+ ∂2

y ϕ = 0


(

1− u2

c2

)
ux − 2uυ uy +

(
1− υ2

c2

)
υy = 0

uy − υx = 0

M =
q

c
=

√
u2 + υ2

c



2. The previous case can be offer from asymptotic expansion(
1− u2

c2

)
ϕxx − 2uυ

1

c2
ϕxy +

(
1− υ2

c2

)
ϕyy = 0

ϕ(x , y) = ϕ0(x , y) + ϕ1(x , y)M2
0 + ϕ2(x , y)M4

0 + · · ·

∂2
x ϕ0 + ∂2

y ϕ0 = 0



3. Nearly parallel flow

Φ(x , y) = q0(x) + ϕ(x , y)

both ϕ and its derivatives are small.

Let M0 be the free stream Mach number corresponding to
(q0, 0). Then the leading order equation will become

(1−M2
0 )ϕxx + ϕyy = 0



4. Transonic Approximation (Von Karman)
Derivation of small disturbance equation. Consider a nearly
horizontal flow.

y

x

The key assumption: “the disturbance in the x-direction is
much larger than those in y -direction”.

Φ(x , y) = qcr (x + ϕ(x , y))

Basic assumption:

(i) ϕ(x , y) and its derivatives are small compared with qcr .

(ii) φy φxy is small compared with φx φxx and φyy .



Then for polytropic gas, p(ρ) =
ργ

γ
, the leading order equation is

−(γ + 1)φx φxx + ϕyy = 0

This is Von Karman equation. Transonic small Disturbance
Equation

u = Φx = qcr (1 + ϕx) υ = qcr ϕy

ρ =

(
1− γ − 1

2
q2

) 1
γ−1

=

(
1− γ − 1

2
q2
cr [(1 + ϕx)2 + ϕ2

y ]

) 1
γ−1

≈
(

1− γ − 1

2
q2
cr (1 + 2ϕx)

) 1
γ−1

q2
cr =

2

γ + 1



c2 = ργ−1 ≈ 1− γ − 1

2
q2
cr (1 + 2ϕx)

= q2
cr

(
1

q2
cr

− γ − 1

2
(1 + 2ϕx)

)
= q2

cr

(
1− γ − 1

2
2ϕx

)
= q2

cr (1− (γ − 1)ϕx)

c ≈ qcr

(
1− γ − 1

2
ϕx

)

M2 =
u2 + υ2

c2
≈ u2

c2
≈ q2

cr (1 + ϕx)2

q2
cr

(
1− γ−1

2 ϕx

)2

≈ 1 + (γ + 1)ϕx



(
1− u2

c2

)
Φxx −

2uυ

c2
Φxy +

(
1− υ2

c2

)
Φyy = 0

−(γ + 1)ϕx ϕxx + ϕyy = 0

Since
(1 + ϕxy )ϕy ϕxy

c2
≈ ϕy ϕxy

c2
≈ ϕy ϕxy

(γ + 1)ϕx ϕxx − ϕyy = 0

u = ϕx , υ = ϕy

{
(γ + 1)u ux + υy = 0
uy − υx = 0



Write this is a system of conservation laws

∂y

(
u
υ

)
+ ∂x

(
−υ

−γ+1
2 u2

)
= 0

⇒ ∂

(
u
υ

)
+

(
0 −1

−(γ + 1)u 0

)
∂x

(
u
υ

)
= 0

(x , y) 7→ (u, υ)

As before, {
xυ − yu = 0
(γ + 1)uyυ − xu = 0

Then the Legender transformation χ of ϕ, defined by

∇χ(u,υ) = (x , y)⇔ ∂u χ = x , ∂υ χ = y

(γ + 1)u χυυ − χuu = 0
(Tricomi equation)

elliptic hyperbolic

υ

u



Some Modified Equations

Idea: To introduce some density-speed relations to get some simple
equations

ρ = h(q2)

1. Chaplygin “gas”

γ = −1 “cold presscene”

ρ = (1 + q2)−1/2 =
1√

1 + q2

Then the potential equation

(1 + φ2
y )φxx − 2φx φy φxy + (1 + φ2

x)φyy = 0

This is the classical minimal surface equation.



2. Tricomi “gas”
Recall that in the hodograph plane, the potential equation can
be written as

K (σ)ψθθ + ψσσ = 0

dK

dσ

∣∣∣∣
σ=0

= −(γ + 1) for polytropic gas

Frankl’s proposal: replace the nonlinear K (σ) by the linear one

K (σ) = −(γ + 1)σ

Then
(γ + 1)σ ψθθ − ψσσ = 0



§8.2 Mathematical Theory of Subsonic Flows

1. Linear Theory

2. Quasilinear Theory

A(u, υ)φxx + 2B(u, υ)φxy + C (u, υ)φyy = 0 (8.12)

u = ∂x φ, υ = ∂y φ

In general, we do not have a priori uniform ellipticity.

Fact: The potential flow equation always has a variational
structure.

Lemma 8.5 If ∃ a function F = F (u, υ) such that

Fuu = A, Fuυ = B, Fυυ = C

Then the equation (12.71) is the Euler-Lagrange equation of
the variational problem

min

∫ ∫
F (u, υ) dx dy



Proof of Lemma 8.5: By the standard calculus of variation

min

∫ ∫
F (ϕx , ϕy ) dx dy

h(0) = min

∫ ∫ ϕ

F ((ϕ+ tη)x , (ϕ+ tη)y ) dx dy

Then
h′(t) = 0 ⇔ ∂x Fu + ∂y Fυ = 0

Fuu ux + Fuυ ux + Fuυ uy + Fυυ υy = 0

so
Aux + B(uy + υx) + Cυy = 0



Lemma 8.6 For the potential equation(
1− u2

c2

)
ϕxx −

2uυ

c2
ϕxy +

(
1− υ2

c2

)
ϕyy = 0

is equivalent to the Euler-Lagrangion equation for

min

∫ ∫
F (u, υ) dx dy

with

F (u, υ) =
1

2

∫ q2

0
ρ(
√

t)dt

Proof of Lemma 8.6:

∂2
u F = ρ

(
1− u2

c2

)
, ∂2

uυ F = −ρuυ

c2
, ∂2

υ F = ρ

(
1− υ2

c2

)



3. Remarks on subsonic flows around a profile
Consider a profile P, where boundary is a smooth curve,
except for a trailing edge with opening εΠ.

If ε = 0, the profile has tangent at the trailing edge. The
tangent to P is assumed to satisfy a uniform Hölder condition
with respect to arc length. Now, let us consider a purely
subsonic flow around the profile. Let Φ = ϕ+ iψ be the
complex potential of the flow with the velocity vector
w = u − iυ = qe−iθ. The boundary condition at infinity

lim
|z|→∞

w = w∞ = q∞ e−iθ∞ (z = x + iy) (8.13)



On the profile,

∂φ

∂n
= 0 or ψ = const (8.14)

Kutta-Joukowski condition:

w is continuous at the trailing edge (8.15)

or

Γ =

∮
P

dϕ is given, ε = 1 (8.16)

P1 :


(

1− u2

c2

)
ϕxx −

2uυ

c2
ϕxy +

(
1− υ2

c2

)
ϕyy = 0

(72), (73), (74)

P2 : (71), (72), (73), (75)



Theorem 8.3 (Bers) For any given θ∞, there exists q̂ > 0,
depending only on the profile, the equation of states, such that P1

has a unique solution ϕ for q∞ ∈ (0, q̂). The velocity

w = φx − iϕy

is Hölder continuous on the profile, and depends on w∞
continuously. Then maximum speed qM = max |w | takes on all the
value between 0 and qcr , and qM → 0 as q∞ → q̂, qM → qcr as
q∞ → q̂.



Remark 8.7 qm = max
(x ,y)∈P

|∇ϕ| depends continuously on w∞. In

particular, for fixed θ∞, qm(q∞) continuously. Is that true that qm

depends on q∞ monotonically? qm ↗ as q∞ ↗?

For symmetric profile, let P ∈ ∂P, then |w |(P) is increasing with
respect to q∞, except two point where |w | = 0.

It remains to describe the position of front stagnation point
(dependent on qm).

Remark 8.8 In 3-D and sufficiently slow flows past an obstacle,
Finn Gilbary Dong prove the existence and uniqueness results
similar to the 2-D case.

Remark 8.9 For Chaplygin gas, it is conjectured that q̂ = +∞.



§8.3 Subsonic Flows in a Nozzle
Steady irrotation subsonic flow

(ρu)x + (ρυ)y = 0 (8.17)

υx = uy (8.18)

 

y 

x 
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The momentum conservation is guaranteed by Bernoulli’s law

q2

2
+ h(ρ) = const (8.19)

where

h′(ρ) =
c2(ρ)

ρ
=

p′(ρ)

ρ
(8.20)

h is called enthalpy.

For polytropic gas, p(ρ) = Aργ , γ > 1, isothermal gas
p(ρ) = A(ρ).

Normalization,

ρ = 1, c2(1) = 1, q = 1, q =
√

u2 + υ2



Then the Bernoulli’s law

q2

2
+

∫ ρ

1

p′(s)

s
ds = 1

For polytropic gas, p(ρ) =
ργ

γ
, for isothermal case, p(ρ) = ρ.

The Bernoulli’s law for polytropic gas

q2

2
+
ργ−1

γ − 1
=

γ + 1

2(γ − 1)

Then

ρ = ρ(q2) =

(
1− (γ − 1)(q2 − 1)

2

) 1
γ−1

Now we normalize the density and speed by the critical density and
speed.

ρcr = 1, qcr = 1



Facts:

1. The flow is subsonic iff q < 1, (or ρ > 1).

2. ρ = ρ(q2) is a decreasing function of q2, which achieves
maximum at q = 0.

3. 1 ≥ m = ρq = (ρq)(q) ≥ 0, ∀ q ≥ 0 which is increasing on
(0, 1) and decreasing on (1, qmax), it achieves maximum at
q = 1

d

dq
(ρq)(1) = 0

 

𝜌 

1 

1 q 



4. ρ = ρ(m2) (it is well-defined for subsonic region).

ρ = ρ(m2) = H(m2)

 

𝑚 

1 q 



H is a decreasing function, H(1) = 1, H(m2) ≥ 1 if m ∈ [0, 1].

H(m2) ∈ C ([0, 1]), H(m2) ∈ C 2([0, 1]), H ′(ξ) < 0, ξ ∈ (0, 1)

lim
ξ→1−

H ′(ξ) = −∞

dρ

dm
=

dρ

dq

dq

dm
→ −∞

 

𝜌 

1 𝑚 = 𝜌𝑞 

1 



Introduce a stream function ψ,

∂x ψ = −ρυ, ∂yψ = ρu

so

υ = −∂x ψ
ρ
, u =

∂yψ

ρ

uy − υx =

(
∂y ψ

ρ

)
y

−
(
−∂x ψ

ρ

)
x

= 0

|∇ψ|2 = ρ2(u2 + υ2) = ρ2 q2 = m2

ρ = ρ(m2) = H(|∇ψ|2)

(
∂x ψ

H(|∇ψ|2)

)
x

+

(
∂y ψ

H(|∇ψ|2)

)
y

= 0 (8.21)



Boundary conditions, on Si

(u, υ) · ~n = 0

~n: inner normal on Si .

Let ~l be the tangential vector along Si

~l · ~n = 0

∂ψ

∂~l
= ∇ψ ·~l = (−ρυ, ρu) ·~l = ρ(u, υ)⊥ ·~l = 0

ψ(x , y) must be constant along Si .

After normalization, we can assume that

ψ(x , y) = 0 on S1

ψ(x , y) = m > 0 on S2
(8.22)



Question: If m is small enough, then there exists a unique subsonic
solution to (8.21) and (8.22).

Si : xi = y = fi (x) = fi (x1)

lim
x→−∞

f1(x) = 0, lim
x→+∞

f1(x) = a

lim
x→−∞

f2(x) = 1, lim
x→+∞

f2(x) = b > a

f1(x) < f2(x), x ∈ R1

f ′i (x), f
′′
i (x)→ 0 as |x | → ∞

fi ∈ C 2,α
loc , α > 0

(8.23)



Fact: (8.23) implies that uniform exterior ball condition is satisfied
with a uniform radius γ0 < 0.

Ω = {(x , y) : f1(x) < y < f2(x), y ∈ R1}

Problem: Find a negative ψ such that
(

∂x ψ

H(|∇ψ|2)

)
x

+

(
∂y ψ

H(|∇ψ|2)

)
y

= 0 Ω (8.21)

ψ(x , y) =
y − f1(x)

f2(x)− f2(x)
m on ∂Ω (8.22)



§9 Some Problems in M-D Compressible Flows Involving
Mixed Type PDEs and Free Boundaries

§9.1 Introduction

§9.1.1 Steady Euler equations


div(ρ~u) = 0
div(ρ~u ⊗ ~u) +∇p = 0
div(ρ~uE + ~up) = 0

(9.1)

Basic feature:

I mixed type PDEs;

I change-type and degenerate PDEs;

I wave phenomena.



Two important particular cases:

Steady Potential Flow equations:
steady + isentropic + irrotational ⇒

~u = ∇φ

N∑
i=1

((∂iϕ)2 − c2(|∇φ|))∂2
i φ+ 2

∑
1≤i≤j≤N

∂iϕ∂jφ∂
2
ijφ = 0 (9.2)

with c2(ρ) = p′(ρ) (c : sound speed) and Bernoullis law:
1
2 |∇φ|

2 + h(ρ) = c0 with enthalpy h defined as

h′(ρ) =
c2(ρ)

ρ



Basic Feature:

The potential equation is


hyperbolic if M > 1 (supersonic)

elliptic if M < 1 (subsonic)
parabolic if M = 1 (sonic)

here M = |~u|
c is the Mach number of the flow.

Remark:
This is one of the most interesting change-type degenerate PDEs.



§9.1.2 Two-dimensional isentropic steady flows


∂x(ρu) + ∂y (ρv) = 0
∂x(ρu2) + ∂y (ρuv) + ∂x p = 0
∂x(ρuv) + ∂y (ρv 2) + ∂y p = 0

(9.3)

The characteristic speeds of this system are: λ1 = v
u ,

λ± =
uv±c(ρ)

√
u2+v2−c2(ρ)

u2−c2

The system is


hyperbolic if M > 1 (supersonic)

hyperbolic + elliptic if M < 1 (subsonic)

degenerate if M = 1 (sonic)



§9.1.3 Some Progress on Special Physically Relevant Flow
Patterns

1. Subsonic Flows past a solid body

 

I irrotation steady flows: almost done!
Bears, Gilberg, Shiffmann, Dong, · · · , (1950’s)

I rotational steady flows: symmetric body, Chen-Du-Xie-Xin
(2016), open in general.



I Prandtl’s lifting line theory (1918)
 

vortex line 

Chen-Xin-Zang (2022)



2. 2D wedge problem: many results

 
shock 



I 3D steady problem: irrotational flow:

 

supersonic shock 

Chen, Chen-Xin-Yin (2002), Yin

I Instability of transonic shock (Yin, Xu-Yin)



3. Instability of smooth transonic flows
 

sonic curve supersonic 

subsonic 

C. Morawetz (1950’s): such a wave pattern is unstable!!

Open Problem: Piecewise smooth transonic flows with shocks past
a solid body?



4. Shock Reflection Problems (Riemann Problem)
⇒ quasi-steady flows: mixed type PDEs

 

𝜶 

supersonic shock 

Various possibilities



I RR

 

supersonic 

Transonic shock 

supersonic 

Von. Neumann (1930’s), Courant-Friedrich’s (1940’s),
Morawetz (1980), Chen-Feldman (2010), Valker-Liu (2008),
Chen-Feldman-Xiang.



I MR: open
Shuxing Chen,

 

• DMR etc.



Remarks: All the important cases here are open due to

I free-boundaries;

I mixed-type PDE;

I strong degeneracy;

I strong nonlinearities;

I complex geometry, etc.



5. Smooth subsonic steady flows in a nozzle

 

m: mass flux 

• irrotational: L. Bers, Xie-Xin (2007), Du-Xin-Yan, ...
• rotational: Xie-Xin (2010), etc;
• non-smooth flows: ...



6. Smooth transonic steady flows:
I Meyer type flow

 

subsonic supersonic 

sonic 

Major difficulties: strong degeneracy at the sound curve which
is free in general!



Wang-Xin (2019): irrotational flows

 

vacuum 

vacuum 

subsonic supersonic 

sonic line 



I Taylor’s type flows

 

subsonic supersonic 

C. Morawetz: such a flow is unstable



How about?

 

transonic shock 

supersonic subsonic unstable → 
 
 
 
 
 
 

stable → supersonic subsonic 

sonic 



7. Transonic shocks in a de Laval nozzle:
Courant-Friedrich’s Problems (1948): Motivated by
engineering studies, Courant-Friedrichs proposed the following
problem on transonic shock phenomena in a de Laval nozzle:

r0, (q0, 0, 0) 

pe

 



Summary of Major Results:

I Solved for expanding cone by Courant-Friedrich (1948).

I Ill-posedness by potential flows (Xin-Yin, 2005-2007).

I For modified potential flow, the problem is well-posed in 3-D
by Bae-Feldman (2010).

I Completely solved in 2D by Li-Xin-Yin (2009-2013).

I Dynamical stability for symmetric flows (Xin-Yin (2008),
Rauch-Xie-Xin (2011)).



Remarks:

I As for the shock reflection problem, all the major difficulties
there are present here except the strong degeneracy of sonic
state. One of the key difficulties is that in the subsonic region,
the governing system is mixed type (elliptic + hyperbolic), so
the possible loss of regularity due to hyperbolic models is
essential! This is the main reason that the problem is still
open in 3-dimension!



I Even in 2-dimension, an important physically interesting
pattern is

 

subsonic 

sonic curve 

supersonic 

transonic shock 

subsonic  Pe 

which is open!!

8. Subsonic-sonic jet flows
Ali-Caffarelli-Freiderman, Lili Du, J. Cheng-Du, Wang-Xin.



§9.2 Smooth Transonic Flows

§9.2.1 Introduction and the Problems

Recall the Steady Euler Systems as:
div(ρ~u) = 0
div(ρ~u ⊗ ~u) +∇p = 0
div(ρ~uE + ~up) = 0

(9.4)



A proto-type simplified model: Potential Flows
Assume that

s = Constant, curl~u = 0. (9.5)

In terms of velocity potential ϕ,

~u = ∇ϕ. (9.6)

Then (9.4) can be replaced by the following Potential Flow
Equation.

div(ρ(|∇φ|2)∇φ) = 0 (9.7)



with normalized pressure

p(ρ) =
1

γ
ργ , γ > 1

ρ(q2) =

(
1− γ − 1

2
q2

) 1
γ−1

, 0 < q2 <
2

γ − 1
,

c2(ρ) = p′(ρ) = 1− γ − 1

2
|∇φ|2

At sonic state, the sound speed is

c∗ =

(
2

γ + 1

) 1
2

.



Remark 1: The potential equation (9.7) is a 2nd order quasilinear
PDE which is

hyperbolic if |∇ϕ| = |~u| > c∗ (supersonic)
elliptic if |∇ϕ| = |~u| < c∗ (subsonic)

parabolic if |∇ϕ| = c∗ (sonic)

Remark 2: (9.7) also appears in geometric analysis such as mean
curvature flows.



Remark 3: Although the potential flow model is a toy model
physically, it gives rise a lot interesting mathematical studies and
results.

CHALLENGE: understand the structure of flows containing sonic
state! and construct physically interesting transonic flow patterns.

Past Progresses: Mainly on either subsonic flows or supersonic
flows



Subsonic flow: Steady Compressible Flows Past A Solid Body
∃ Huge literatures on the studies of the potential equation (9.7), in
particular, for subsonic flows around an airfoil (L. Bers, R. Finn, D.
Gilbarg, Shiffman, G. Dong, Chen-Dafermos-Slemrod-Wang
(2007)).

M∞

 



Fact: For 2-D flow past a profile, if the Mach number (M = |~u|
c ) of

the freestream is small enough, then the flow field is subsonic
outside the profile. Furthermore, as the freestream Mach number
increases, the maximum of the flow speed tends to the sound
speed, and the limiting WEAK subsonic-sonic flow was obtained in
(2007 CMP). Similar theory holds for 3-D.



Supersonic flows, partial results available:

Open Problems: General Transonic Flows! (C. Morawetz)

Remark: Special smooth transonic flows have been studied
extensively by Courant-Friedrich’s, Morawetz, Bers, K. O.
Friedrich’s, A. G. Kuz’min, Xinmou Wu (Sing-Mo Ou), Xiaqi Ding,
for special boundary conditions.



Steady Compressible Flows in a Nozzle

Facts:

• Compressible flows in a nozzle are important flow patterns in
fluid dynamics and aeronautics;

• Most of the rich wave phenomena in M-D appear in
compressible flows in a general nozzle.



(I) Subsonic Flows in A Nozzle
Ber’s Problem (1958): For a given infinite long 2-D or 3-D
axially symmetric solid nozzle, show that there is a global
subsonic flow through the nozzle for an appropriately given
small mass flux

m0 =

∫
s
ρ~u · ~nds (9.8)



Questions:

• Existence of subsonic irrotation flows for small m0?

• How do the flows change by varying m0?

• Is there a critical mass flux m0?

However, this problem has not been solved until recently dispite
many studies on subsonic flows in a finite nozzle with non-physical
B.C’s.



S 

dsnum
s

rr
⋅= ∫ ρ0

 

One of Keys: To understand behavior of flows near sonic
state.



Main Results: (Xie-Xin, 2007, 2010) Positive answer to Ber’s
problem.

• For suitably small m0 and c1,α nozzle, there exists a smooth
subsonic irrotational flow.

• For asymptotically flat nozzles, ∃| critical m̂0 such that if
m0 < m̂0, ∃| subsonic flow in the nozzle which tends uniform
subsonic flow at the two ends, and the maximum speed
approach the critical sound speed as m0 tends to m̂0.

• Similar well-posedness results hold for 3-D irrotional flows
(Du-Xin-Yan, 2011).

• These results have been generalized to non-irrotional flows by
Xie-Xin (2010), etc..



(II) Subsonic-Sonic Flows (For potential flows)

1. Weak subsonic-sonic flows as limits of global uniformly
subsonic flows as m0 approaches its critical value m̂?

Answer: Yes by Xie-Xin (2010) in 2D, Huang (2011),
Chen-Huang-Wang (2016) in M-D.

Remark:

• These are general results on the existence of subsonic-sonic
flows in a general nozzle.

• Yet, the structure of the solution is not clear!!!



2. Continuous Subsonic-Sonic flows (Gilbarg-Shiffman (1954),
Wang-Xin (2013), Wang-Xin (2020))

Remark: Due to the strong degeneracy at the sonic state, it is
a long standing open problem how to obtain “smooth” flows
containing sonic states except accelerating transonic flows
(Kutsumin, for special boundary conditions or perturbed
problems).

(III) Supersonic flows: partial results available, local existence of
solutions and global small variation of weak solutions.



On transonic flow patterns?
However, few existence results are available for transonic flow
patterns.

(1) For flows past a profile:

• ∃ some special smooth transonic flow for special foils with
special M0 by Bers through constructing explicit solutions in
Hodograph plane.

• By C. Morawetz, smooth transonic flows past a profile hardly
exists and are unstable even if they exists under small
perturbations.

• almost no results for transonic flows with shocks past a profile.



(2) For steady irrotational flows in a nozzles:
• ∃ two types expected smooth transonic flow patterns:

(i) Taylor type:

 

subsonic supersonic 

∗ Do not exists in general and unstable!



(ii) Meyer type: special Meyer type flows can be obtained by
power series expansions in a Hodograph plane! Such a flow
satisfies the equations and the nozzle shape cannot be given a
priorily.

 

subsonic supersonic 

This is a long standing open question since Lipman Bers.



(iii) Unstable:

 

transonic shock 

supersonic subsonic unstable → 
 
 
 
 
 
 

stable → supersonic subsonic 

sonic 



Remark: There are some other smooth transonic wave patterns
with or without vorticity such as circulatory and purely radial flows
and their perturbations besides nozzle flows and flows past a body,
see Courant-Friedrich’s, Weng-Xin-Yuan ’20.



(3) On studies of properties of sonic curves for smooth transonic
flows:
Bers studied the continuation of the flow across the smooth
sonic curve when the smooth subsonic-sonic flow is given
ahead (as a Cauchy problem)

 

subsonic supersonic 



He proposed the concept of the exceptional points on a sonic
curve:

• unique extension if no exceptional points.

• if ∃ | exceptional point, either no extension or non-unique
extension.

Open question: structures of the sonic curve and exceptional
points?

Basic Question: Are there continuous transonic flows for some
physical boundary conditions?



Related to this basic question, we will address the following three
specific questions?

Question 1: What are the structures of a sonic curve and
exceptional points for a smooth transonic flow?

Question 2: Are there continuous subsonic-sonic-supersonic flow
in a class of de Laval nozzles with suitable physical boundary
conditions? In particular, can one obtain the existence of Meyer
type flow in a class of de Laval nozzles with suitable boundary
conditions?

Question 3: Can such a solution be global?



§9.2.2 Sonic Curves and Properties of Exceptional Points

Goal: Profile and location of the sonic curve for a steady-
irrotational c2-transonic flow.
Let (u, v) be such a flow, so it satisfies

∂x(ρu) + ∂y (ρv) = 0, ∂y u − ∂x v = 0 (9.9)

Let (ϕ,ψ) be a velocity potential-streamline function pair,

∂x ϕ = u, ∂y ϕ = v ∂x ψ = −ρv , ∂y ψ = ρu

Let (q, θ) be the polar coordinates in the velocity space with θ
being the angle of velocity inclination to the x-axis, i.e.

u = q cos θ, v = q sin θ



Then the system (9.4) changes to the Chaplygin equations:

∂ψ θ + A(q)ϕ = 0, (B(q))ψ − θϕ = 0 (9.10)

with

A(q) =

∫ q

c∗

ρ(s2) + 2s2ρ′(s2)

sρ2(s2)
ds, B(q) =

∫ q

c∗

ρ(s2)

s
ds, (9.11)

0 < q < qmax



Bers description of exceptional points: (in physical plane)

Let S be a sonic curve of a c2-transonic flow. The positive
direction on S is defined by requiring that if one moves long S in
this direction, then the subsonic region must lie on the left

 

H 

(u,v) 

supersonic subsonic 

v 



Bers formula:

θs = −sin2 H©
c∗

∂q

∂ν
(9.12)

where: s is arc length on S , ν: the unit normal pointing to
supersonic region, H©: the angle between the velocity vector and ν.

θs ≤ 0

Definition: points where θs = 0 are called exceptional!



Fact: Exceptional points are important in extending a given
subsonic flow smoothly into supersonic flow at least locally.

Indeed, if S contains no exceptional points at all, then the given
subsonic flow can be extended smoothly into a supersonic flow on a
region enclosed the characteristic issued from the end points. If S
has a unique exceptional point, such an extension is not well-posed.



Natural Question: What is the structure of S and the exceptional
points on S?

Main Results:

(1) The set of exceptional points for a c2-transonic flow of Meyer
type is closed and connected.

(2) ∃/ any exceptional points for any c2-transonic flow of Taylor
type.



Proposition 9.1 For any c2-transonic flow, a point on the sonic
curve is exceptional iff the velocity vector is or orthogonal to the
sonic curve at that point.

Proposition 9.2 p ∈ S is exceptional iff ∂q
∂ψ (p) = 0.

Description of sonic curve at the potential-stream function plane.



Given a general nozzle of the form in the potential plane

G = {(ϕ,ψ), g1(ψ) < ϕ < g2(ψ), ψ1 ≤ ψ ≤ ψ2} (9.13)

where ψ1 < ψ2 and g1(ψ) < g2(ψ), ψ1 ≤ ψ ≤ ψ2.

Theorem 9.1 (Wang-Xin, 2016) Let q ∈ c2(Ḡ ) be a transonic
flow of Meyer type with the sonic curve S . Then S can be divided
into three connected parts Se , S+, S−: where Se is the set of
exceptional points, while S+ and S− denote the parts from the end
point of Se to the upper and lower walls, respectively.



Furthermore:

(i) Se is a closed segment parallel to ψ-axis.

(ii) S+ and S− are two graphes of functions of ϕ, respectively.
Particularly, if the subsonic region is located on the left of S ,
then ϕ is strictly decreasing from the lower endpoints to the
upper endpoint, while strictly increasing from lower endpoint
to the upper endpoint.



(iii) if Se = φ, then S = S+ or S = S−.

 

 

supersonic 



Theorem 9.2 (Wang-Xin, 2016) Assume that q ∈ c2(Ḡ ) is a
c2-transonic flow of Taylor type with sonic curve S . Then each
points on S is non-exceptional and ϕ is strictly monotone along S .

                   Ψ  Supersonic  
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Characteristic Curves on sonic curve
Theorem 9.3 (Wang-Xin, 2016) Let q be a c2-transonic flow of
Meyer type with sonic curve S = S+ ∪ Se ∪ S−.

(i) ∃| two characteristic curves from each points on Ṡ+ ∪ Ṡ−.

(ii) ∃/ characteristic curves from any points on Ṡe .

(iii) ∃ characteristic curves from S+ ∩ Se and S− ∩ Se , and the
maximal and minimal ones are unique.



(iv) If S+ 6= φ, S− = 0, then f ′′1 (x) > 0, x1 ≤ x ≤ x∗.

(v) If S+ = φ, S− 6= φ, then f ′′2 (x) < 0, x2 ≤ x ≤ x∗.



Theorem 9.4 (Wang-Xin, 2016) Let q be a c2-transonic flow of
Taylor type whose sonic curve interests the upper wall at
(x1−, f1(x1−)) and (x1+, f1(x1+)), while the lower wall at
(x2−, f2(x2−)) and (x2+, f2(x2+)), then

f ′′1 (x) > 0 x1− ≤ x ≤ x1+

f ′′2 (x) < 0 x2− < x ≤ x2−



Remark: Theorem 9.4 generalizes the previous assertion of Bers
that the boundary of the supersonic enclosure on the walls cannot
contain a straight segment.

Unstability of Transonic flows with non-exceptional points

Theorem 9.5 (Wang-Xin, 2016) Let q be a c2-transonic of
Meyer type whose subsonic is located to the left with sonic curve
S = S+ ∪ Se ∪ S− which intersects the upper and lower walls at
(x1, f1(x1)) and (x2, f2(x2)) respectively. If S+ ∪ S− 6= φ, then such
flow is unstable for c1-perturbation of the nozzle.



Remark Theorem 9.5 indicates that one should look for smooth
transonic flow of Meyer type whose sonic points are all exceptional.
We will do this for finite 2-dimensional symmetric De Laval
Nozzles described as follows:

 

 𝑦 = 𝑓(𝑥) 
                                                                                                     𝛤𝑢𝑏 

                  𝜞𝒊𝒏                                                                                                                                            𝜞𝒐𝒖𝒕  

Ω 

 𝒍−  𝒍+   



Γub : y = f (x), l− < x < l+, f ′(x) =


< 0 x < 0
= 0 x = 0
> 0 x > 0

Γin : x = g(y), 0 ≤ y ≤ f (l−)
Γout : x = g(y), 0 ≤ y ≤ f (l+)

For this special nozzle Ω: we have



Theorem 9.6 (Wang-Xin, 2019) Let q ∈ c2(Ω̄) be a Meyer type
flow in Ω. Then the following are equivalent:

(a) The ene point of the sonic curve lies at the throat.

(b) The angle of the velocity inclination to the x-axis is always
equal to zero on the sonic curve.

(c) Every point is exceptional on the sonic curve.

(d) The velocity vector is orthogonal to the sonic curve.

(e) The potential is a constant on the sonic curve.

(f) The sonic curve is located at the throat of the nozzle.



§9.2.3 Local Well-Posedness Results on Meyer-Type
Transonic Flows

Formulations of the Problems:
Smooth subsonic-sonic-supersonic flows in a de Laval nozzle

Consider the following class of nozzles:
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(l+ > l > 0)



where

upper wall Γub : y = f (x), 0 < x < l+, (d < 0 < l+)
inlet Γin : x = g(y), 0 ≤ y ≤ f (0)

lower wall Γlb : y = 0, d ≤ x ≤ l+

f ′′(x) = 0(1)(x − l)2 (9.14)



Problem 9.1: Look for a smooth subsonic flow entering Γin

perpendicularly which becomes sonic at the throat and increase to
supersonic after the throat.

Since the flow is required to be supersonic after the throat so one
cannot assign boundary condition on the outlet Γout . Thus, Γout

will be treated as a free boundary where the velocity potential
becomes constant.

Γout : x = t(y), 0 ≤ y ≤ f (l+) (9.15)



In the physical plane, Problem 9.1 can be formulated as

div(ρ(|∇ϕ|2)∇ϕ) = 0 on Ω
ϕ(g(y), y) = 0 0 ≤ y ≤ a = f (0)
∂ϕ
∂ν (x , f (x)) = 0 0 < x < l+
∂ϕ
∂y (x , 0) = 0 d < x < t(0)

|∇ϕ(l , y)| = c∗, |∇ϕ| < c∗, x < l , |∇ϕ| > c∗, x > l
ϕ = constant > 0 on Γout

(9.16)

Set
Ω− = Ω ∩ {x < l}, Ω+ = Ω ∩ {x > l}



Since the sonic is expected to be located at the throat, we will
decompose the transonic flow problem into a subsonic-sonic
problem:

div(ϕ|∇ϕ|2∇φ) = 0 on Ω−
ϕ(g(y), y) = Cin 0 ≤ y ≤ a = f (0)
∂ϕ
∂y (x , 0) = 0 d < x < l
∂ϕ
∂ν (x , f (x)) = 0 0 < x < l
|∇ϕ(l , y)| = c∗, ϕ(l , y) = 0 0 ≤ y ≤ f−(l)
|∇φ(x , y)| < c∗, (x , y) ∈ Ω−

(9.17)



and a sonic-supersonic problem

div(ρ|∇φ|2∇φ) = 0 on Ω+

|∇φ(l , y)| = C∗, ϕ(0, y) = 0 0 < y < f+(l)
∂ϕ
∂y (x , 0) = 0 l < x < t(0)
∂ϕ
∂ν (x , f+(x)) = 0 l < x < l+
ϕ(t(y), y) = Cout 0 < y < f+(l+)
|∇φ(x , y)| > c∗, (x , y) ∈ Ω+

(9.18)

where Cin and Cout are free constants, and

f−(x) = f (x), x < l , f+(x) = f (x), x > l .



Then one of the main results is the following existence of Meyer
type smooth transonic flows in the de Laval nozzle:

Theorem 9.7 (Wang-Xin, 2019) ∃ δ0 > 0, such that for
0 < l+ − d ≤ δ0, then the Problem 9.1 ((9.16)) has a unique
solution ϕ ∈2,1 (Ω).

Remark 1 Theorem 9.7 yield the first rigorous existence of a
Meyer type transonic flow in a de Laval nozzle, which is c1,1.
However, such transonic flow pattern is strongly singular in the
sense that the sonic curve is a characteristic degenerate boundary
in the subsonic-sonic region, while in the sonic-supersonic region,
all characteristics from sonic points coincide on the sonic curve and
never approach the supersonic region.



Remark 2 The geometry of the nozzle, (9.14), plays an important
role for the existence of Meyer-type transonic flows. Indeed, it can
be shown quite easily that

f ′′(x) = O(1)(x − l)2

is a necessary condition for a c2 transonic flow whose sonic curve
lies in the throat of the nozzle. Furthermore, if f ′(l) = 0 is also
necessary, otherwise it is impossible to extend a subsonic flow after
a sonic curve as shown by Wang-Xin (2013) earlier.



Remark 3 Can the smallness on the length of the nozzle be
relaxed? This is a subtle question. In fact, new phenomena will
occur for global flows!!

Remark 4 Our analysis can be modified quite easily to produce
subsonic-sonic-subsonic flow patterns as
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subsonic subsonic 

sonic 



Remark 5 If the nozzle consists the converging parts, flat part,
and diverging part, then, our analysis can be used to constructed a
transonic flow pattern: subsonic in the converging part, sonic at
the flat part, and supersonic at the diverging part.

 

supersonic subsonic 
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x 

sonic 



Remark 6 For the Meyer type smooth transonic flows constructed
here, that the sonic curve is everywhere exceptional plays a crucial
role in the proof. We are not sure about the general construction
of Meyer type flows containing non-exceptional sonic curves.
However, recently, a class of smooth transonic flows with or
without vorticity are constructed for annulus and cylindrical
domains and their sonic points are non-exceptional is established
by Weng-Xin-Yuan (2020). The approach in here is completely
different!



Global Well-Posedness of Smooth Supersonic Flows and Formation
of Vacuum

In this section, we discuss the extension of the previous transonic
smooth flows into the expanding nozzle. This will be reduced to
the well-posedness of smooth supersonic flows in an expanding
nozzle where some interesting phenomena occurs.



Assume that a nozzle is expanding and semi-infinite long.

Question 1: Under what geometrical conditions, a smooth global
supersonic flow may exist in an infinite long nozzle?

Question 2: If such a global smooth supersonic flow exists, what is
the asymptotic behavior at downstream? In particular, does
vacuum appear downstream?

Question 3: In the case of appearance of vacuum, what the
discerption of the vacuum set? In particular, what are the
singularities of the interface separating the gases from the vacuum
state?



Question 4: In case the supersonic flow does not exists globally,
what are the singularities?

Consider the supersonic flows in a nozzle given below.
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Upper Wall Γup : y = f (x), l0 ≤ x < l1, f ∈ C 2([l0, l1])

Inlet Γin : x = γ(y), 0 ≤ y ≤ f (l0), γ ∈ C 2([0, f (l0)])

f (l0) > 0, lim
x→l1

(x + f (x)) = +∞, f ′(x) ≥ 0

γ(f (l0)) = l0, γ
′(0) = 0, γ′(f (l0)) = −f ′(l0)

and the nozzle is assumed to be symmetric around y -axis.



Then the problem can be formulated as

(SP)



div(ρ(|∇φ|2)∇ϕ) = 0 in Ω
φ(γ(y), y) = 0 0 ≤ y ≤ f (l0)
|∇φ(γ(y), y)| = q0(y) 0 ≤ y ≤ f (l0))
ρ(|∇φ(x , 0)|2)∂yφ(x , 0) = 0 γ(0) ≤ x < l1
ρ(|∇φ(x , f (x))|2)·

(∂yφ(x , f (x))− f ′(x)∂xφ(x , f (x))) = 0 l ≤ x < l1



Some basic assumptions:

(H0): q0 ∈ C 1,
√

2/(γ + 1) < inf q0 ≤ sup q0 <
√

2/(γ − 1)

(H1): The streamlines of the incoming flow are rarefactive on Γin,
i.e.

γ
′′

(y) ≤ 0, 0 < y < f (l0)

(H2): |q′0(y)| ≤ −γ′′ (y)
1+(γ′(y))2

√
−q2

0(y)ρ(q2
0(y))

ρ(q2
0(y))+2q2

0(y)ρ′(q2
0(y))

.



Then the following results can be obtained:

Theorem 9.8 (Wang-Xin, 2015) Assume that (H0) holds. If the
upper wall is straight, then (H2) is the necessary and sufficient
condition for the well-posedness of global supersonic flow to (SP).
Under (H2), the smooth supersonic flow never reaches sonic states
or vacuum in any bounded region. In the case that (H2) is invalid,
then a shock wave or a sonic state must form in the flow and in
this case, if (H1) is satisfied, then only shock waves occur.

Next, we consider the general expanding curved nozzles.



Theorem 9.9 (Wang-Xin, 2015) Assume that (H0) and (H2)
hold, and the upper wall is expanding and convex. Then there
exists a unique global smooth supersonic flow in the nozzle. Such
a supersonic flow has continuous acceleration and may contain
vacuum state. If there are vacuum states in such a flow, the set of
vacuum points is closed and there exists the first vacuum point in
the increasing x-direction. The first vacuum state must be located
at the upper wall and the set of vacuum states is the closed
domain bounded by the tangent half-line of the upper-wall at the
point to the downstream and the upper wall after that point.



Furthermore, the tangent half-line is a streamline of the flow, the
flow speed is globally Lipschitz continuous in the nozzle and the
normal derivatives of the flow speed and the square of second
speed and zero on the interface separating the gas from the
vacuum state.
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smooth supersonic flow 

The geometry of the nozzle is crucial for the formation of the
vacuum.



Theorem 9.10 (Wang-Xin, 2015) Assume that (H0) and (H2)
hold. Let the upper wall be convex but not straight. Then the
vacuum state must occur in finite region if one of the following
holds:

(i) The incoming flow is near vacuum. Indeed, the first vacuum
will tend to (x∗, f (x∗)) with

x∗ = inf{x ∈ [l0, l1) : f ′(x) > 0} as q(f (l0)) tends to
√

2(γ − 1).

(ii) Either lim
x→+∞

f
′′

(x)x2γ/(γ+1) = +∞, l1 = +∞, f ′(+∞) < +∞

or lim
x→l1

f
′′

(x)

(f ′(x))3
f 2γ/(γ+1)(x) = +∞, l1 ≤ +∞, f ′(l1) = +∞



The convexity of the upper wall is almost necessary condition for
existence of smooth supersonic flow in the following sense.

Theorem 9.11 (Wang-Xin, 2015) If the upper wall of the
nozzle is a convex perturbation of a straight line, then there exists
q0 satisfying (H0) and (H2) such that shock must form for the
supersonic flow in a nozzle.



Remark: Global smooth supersonic flows have been studied by H.
Yin’s group.

Finally, we turn to the globally extension of the smooth transonic
flow globally in the convex expanding part of the nozzle. It can be
verified that the local transonic flows always satisfies (H0) and
(H2) at the exit in the supersonic region. Thus we have



Theorem 9.12 (Wang-Xin, 2019) Assume that f ∈ C 4,
γ ∈ C 3,α satisfies the conditions for the location existence of
transonic flow as before and furthermore

lim
x→l−1

(x + f (x)) = +∞, f ′(x) ≥ 0, l+ ≤ x < l1

Then the local transonic flow can be extended globally with
ϕ ∈ C 1(Ω̄), and ∇φ ∈ C 0,1(Ω̄) with properties discussed
previously.

 

vacuum 

vacuum 

subsonic supersonic 

sonic line 



§9.2.4 Smooth Subsonic-Sonic Flows in General Curves

In order to understand the subsonic extension of the previous local
Meyer-type transonic sonic, we will study the general existence of
smooth of subsonic-sonic solutions in general nozzle.

Difficulties for Subsonic-Sonic Flows:

I For a subsonic-sonic flow, the potential flow equation is
quasilinear and degenerate at the sonic state.

I The location of sonic points is unknown in general.



I To get suitable regularity and estimates, one needs the
location and asymptotic behavior of sonic points in advance.

I To get the location and asymptotic behavior of sonic points,
one needs suitable regularity and estimates in advance.

There have been extensive studies on subsonic and subsonic-sonic
flow problems past profiles or in infinitely long nozzles.

However, the well-posedness, precise regularity and location
of sonic points for general subsonic-sonic flow problems are
still open.



Smooth subsonic flows past profiles:

I F. Frankl and M. Keldysch, Bulletin of the Academy of
Sciences, 12(1934), 561–697. (only for small Mach number at
infinity)

I M. Shiffman, On the existence of subsonic flows of a
compressible fluid, J. Rational Mech. Anal., 1(1952),
605–652.

I L. Bers, Existence and uniqueness of a subsonic flow past a
given profile, Comm. Pure Appl. Math., 7(1954), 441–504.



Theorem 9.13 (L. Bers) For two dimensional flows past a
profile, the whole flow field will be subsonic outside the profile if
the Mach number of the freestream is small enough; furthermore,
the maximum flow speed will tend to the sound speed as the
freestream Mach number increases.
♦ The theory and methods fail to deal with subsonic-sonic flows
with the critical freestream Mach number.



Location of Sonic Points for Smooth Subsonic-Sonic Flows:

I D. Gilbarg and M. Shiffman, On bodies achieving extreme
values of the critical Mach number, I, J. Rational Mech.
Anal., 3(1954), 209–230.

Theorem 9.14 (D. Gilbarg and M. Shiffman) For smooth
subsonic-sonic flows past a profile, the sonic points must occur at
the profile.
♦ Existence is unknown.



Bounded Subsonic-Sonic Flows past Profiles:

I G. Q. Chen, C. M. Dafermos, M. Slemrod and D. H. Wang,
On two-dimensional sonic-subsonic flow, Comm. Math. Phys.,
271(2007), 635–647.

I G. Q. Chen, F. M. Huang and T. Y. Wang, Subsonic-sonic
limit of approximate solutions to multidimensional steady
Euler equations, Arch. Ration. Mech. Anal., 219(2)(2016),
719–740.



Based on the compensated compactness, it was shown that

Theorem 9.15 (G. Q. Chen, C. M. Dafermos, et al. (2017))
The flows with sonic points past a profile may be realized as weak
limits of sequences of strictly subsonic flows.
♦ Bounded subsonic-sonic flows. Uniqueness is open and location
of sonic points is unknown.



Smooth Subsonic Flows in Infinitely Long Nozzles:

I C. J. Xie and Xin, Global subsonic and subsonic-sonic flows
through infinitely long nozzles, Indiana Univ. Math. J.,
56(2007), 2991–3023.

Theorem 9.16 (C. J. Xie and Xin (2007)) There exists a
critical value for a general infinite nozzle such that a strictly
subsonic flow exists uniquely as long as the incoming mass flux is
less than the critical value; furthermore, the maximum flow speed
will tend to the sound speed as the incoming mass flux increases.



Subsonic-Sonic Flows in Infinitely Long Nozzles:

Theorem 9.17 (C. J. Xie and Xin (2007)) The critical flows
can be realized as the weak limits of strictly subsonic flows
associated with the incoming mass fluxes increasing to the critical
value.
♦ Bounded subsonic-sonic flows. Uniqueness is open and location
of sonic points is unknown.



Theorem 9.18 (D. Gilbarg and M. Shiffman, 1954) For
smooth subsonic-sonic flows in an infinitely long, the sonic points
must occur at the wall or at the throat. Furthermore, if there is a
sonic point at the throat, then the flow must be sonic on the whole
throat.

♦ Existence is unknown.
♦ Precise location of the sonic points is unknown. For a smooth
subsonic-sonic flow in a nozzle, do the sonic points occur at the
wall or at the throat?



Summary of Known Results for Subsonic-Sonic Flows:

I The existence of the critical Mach number and the critical
mass flux:
It is unknown whether there is a subsonic or subsonic-sonic
flow or not if the Mach number or the mass flux is greater
than or equal to the critical value.

I The location of sonic points for a given smooth flow:
The existence is open, and the precise location of the sonic
points is unknown.

I The existence of week solutions:
The uniqueness and the location of sonic points are unknown.



The well-posedness, precise regularity and location of sonic
points for general subsonic-sonic flow problems are not
covered by previous works.

Aim: Give a complete answer for the subsonic-sonic flow
problem in general nozzles or past general profiles, including the
well-posedness, the precise regularity and the location of sonic
points.



Another Motivation: to extend the local Meyer type transonic
solution to large domain subsonically.

Question: Subsonic Extension

 



Shape of Nozzles:

f ′′(x) = O(|x |λ±), λ± > 2.

If there is such a smooth transonic flow whose sonic points are
located at the throat, then

f ′′(x) = O(|x |2).



Lipschitz Continuous Subsonic-Sonic Flows in General Nozzles:

Assume that f ∈ C 2,1([l−, l+]) satisfies

f ′(l±) = 0, f (x) > f (0) = 0 for x ∈ [l−, 0) ∪ (0, l+], (9.19)

where l− < 0 < l+. For h > 0, we consider the subsonic-sonic
flows in the nozzle

Ωh = {(x , y) ∈ R2 : l− < x < l+, 0 < y < fh(x) = f (x) + h}.



f ′(l±) = 0, f (x) > f (0) = 0 for x ∈ [l−, 0) ∪ (0, l+]. (9.20)

Remark: f ′(l±1 ) = 0 is a compatibility condition for continuous
flows. Since f ′(l±1 ) = 0, there is a smallest cross section for the
nozzle. The second assumption in (9.19) means that the smallest
cross section of the nozzle is unique and not located at the inlet
and outlet.



f ′(l±) = 0.

Remark: If there are several smallest cross sections, or the
smallest cross section is located at the inlet or outlet, the similar
results hold.



Formulation of the Subsonic-Sonic Flow Problem:
♦ The flow satisfies the slip condition on the wall.

♦ The velocity of the flow is horizontal at the inlet and the outlet.

The subsonic-sonic flow problem in Ωh is formulated as



div(ρ(|∇ϕ|2)∇ϕ) = 0, (x , y) ∈ Ωh, (9.21)

∂ϕ

∂y
(x , 0) = 0, l− < x < l+, (9.22)

∂ϕ

∂y
(x , fh(x))− f ′(x)

∂ϕ

∂x
(x , fh(x)) = 0, l− < x < l+, (9.23)

ϕ(l±, y) = ζ±, 0 < y < fh(l±), (9.24)

ϕ(0, f (0)) = 0, (9.25)

sup
Ωh

|∇ϕ| = c∗, (the flow is subsonic-sonic) (9.26)

where ζ± (ζ− < 0 < ζ+) are free constants, and ϕ(0, f (0)) is
normalized to be zero.



Well-posedness of Subsonic-Sonic Flows:

Theorem 9.19 (Well-posedness (Wang-Xin, 2021)) Assume
that f ∈ C 2,1([l−, l+]) satisfies (9.19). For h > 0, the
subsonic-sonic flow problem (9.21)–(9.26) admits a unique
subsonic-sonic flow ϕ ∈ C 1,1(Ωh). Furthermore, the sonic points
must occur at the wall or the throat.



Rough location of sonic points: the sonic points must occur at the
wall or the throat.

Remark:

I If a point at the throat (not at the wall) is sonic, the flow is
sonic on the whole throat.

I If the flow is sonic at a point belonging to the upper wall but
not to the throat, then the curvature of the upper wall at this
point is positive.



Theorem 9.20 (Location of sonic points (Wang-Xin, 2021))
Assume that f ∈ C 2,1([l−, l+]) satisfies (9.19). Let ϕh ∈ C 1,1(Ωh)
be the subsonic-sonic flow to the problem (9.21)–(9.26) for h > 0.
There exist two constants 0 ≤ h∗ ≤ h∗ such that

(i) If h > h∗, then the sonic points of the flow must be located at
the wall.

(ii) If h ≤ h∗, then the flow is sonic on the whole throat.

(iii) If 0 < h < h∗, then the set of sonic points of the flow is the
throat.

(iv) If h∗ < h ≤ h∗, then the flow is sonic on the whole throat and
there is also other sonic point at the wall.



Complete Classification of Subsonic-Sonic Flows:
For f ∈ C 2,1([l−, l+]) satisfying (9.19), there exist 0 ≤ h∗ ≤ h∗.
The geometry of the wall near the throat determines
whether h∗ is positive or not.

Theorem 9.21 (Location of sonic points (Wang-Xin, 2021))

(i) h∗ > 0 if f also satisfies

lim
x→0±

(±x)−λ
±

f ′′(x) > 0 for some constants λ± ≥ 2.

(ii) h∗ = 0 if f also satisfies

lim
x→0+

x−λf ′′(x) or lim
x→0−

(−x)−λf ′′(x) ∈ (0,+∞]

for some constant λ ∈ [0, 2).



Remark:

(i) f ′′(x) = O(x2) is a sufficient and necessary condition for
h∗ > 0 (or h∗ > 0).

(ii) There are many f ∈ C 2,1([l−, l+]) such that 0 < h∗ < h∗.

(iii) Our analysis depends crucially on the Chaplygin equations in
the hodograph plane. It is completely open to study the
similar problem in 3-D.



§9.3 Transonic Flows with Shocks

§9.3.1 Introduction: Transonic flows with a shock!
Key Features:

• Nonlinearities (⇒ shocks in general)

• Mixed-type systems

• Change of types and degeneracies etc.

General Theory: Open

One challenging task: transonic flows with shocks! (Smooth
transonic flows are unstable (both structurally and dynamically), so
SHOCKS must turn in general (Morawetz)!)



Transonic flows with shocks in curved nozzles:
In general, SHOCK WAVES must appear, and the flow patterns
can become extremely complicated. Then the analysis of such flow
patterns becomes a challenge for the field due to:

• complicated wave reflections,

• degeneracies,

• free boundaries,

• change type of equations,

• mixed-type equations.



Some Progresses:

• General weak solutions by the theory of
Compensated-compactness (C. Morawetz, R. Kohn, Gamba,
etc.), incomplete!!!

• Quasi-1D models (Embid-Majda-Goodman, Liu, Gamba, etc.).

• Some special steady M-D transonic wave patterns with shocks
recently (Chen-Feldman, Bae-Feldman, Chen-Chen-Feldman,
Xin-Yin, Xin-Yan-Yin, S. Chen, Fang, Liu-Yuan, Keyfitz,
Volker, T. P. Liu, S. K. Weng, Weng-Xin-Yuan, etc.).



Courant-Friedrich’s Problem (1948):
Motivated by engineering studies, Courant-Friedrichs proposed the
following problem on transonic shock phenomena in a de Laval
nozzle:

r0, (q0, 0, 0) 

pe

 



Consider an uniform supersonic flow entering a de Laval nozzle.
Given an appropriately large receiver pressure pe at the exit of the
nozzle, if the supersonic flow extends passing through the throat of
the nozzle, then at the certain place of the divergent part of the
nozzle, a shock wave must intervene and the flow is compressed
and slowed down to a subsonic speed, and the location and
strength of the shock are adjusted automatically so that the
pressure at the exit becomes the given pressure pe .



Remarks:

• It seems to be a very reasonable conjecture both
experimentally and physically!

• The conjecture is true for quasi-1D models
(Courant-Friedrich’s).

• The conjecture is also true for some symmetric flows with
some additional constraints or modified boundary conditions
(see S. Chen, Yuan, Xin-Yin (2005), Chen-Feldman (2008),
etc.).



Summary of Major Results:

1. (Xin-Yin). The potential flow model is NOT suitable for
Courant-Friedrich’s problem. Indeed, ∃ a class of de Laval
nozzles with straight expanding part, neither existence nor
uniqueness holds true for Courant-Friedrich’s transonic shock
problem unless for special exit pressure in both 2D and 3D.
(Xin-Yin (CPAM 2005, PJM 2008)). However, for modified
irrotational 3-D flows, the well-posedness can be established
by Bae-Feldman (2010).



2. Nonlinear Structural Stability of a class of transonic shocks
(Li-Xin-Yin, 2009-2013)

I Both existence and uniqueness are obtained for a general class
of 2D de Laval nozzles which are generic perturbations of
straight (expending on contracting) nozzles with general
variable pressure.

I Under the further assumptions that the nozzle wall changes
slowly and the incoming Mach number is suitable large, we
obtain not only the existence and uniqueness, but also that the
shock location depends monotonically on the exit pressure.



I In 3D, some partial results (in particular, axisymmetric straight
nozzles) on both existence and uniqueness have been obtained
(Li-Xin-Yin, 2010 JDE, 2010 PJM), for axisymmetric flows
without swirl under the axisymmetric perturbations of the exit
pressure.

3. Nonlinear Structural Stability of general 3D axisymmetric
transonic shocks, Weng-Xie-Xin, 2020.

4. Dynamical stability for symmetric flows (Liu, Xin-Yin, 2008
JDE, Rauch-Xie-Xin, 2013).

5. New existence results in the case that the nozzle is a generic
small but non-trivial perturbations of 2D flat nozzles
(Fang-Xin, CPAM 2021), and generic small but non-trivial
axisymmetric perturbations of a cylindrical nozzle (Fang-Gao,
preprint).



§9.3.2 Formation of the Courant-Friedrich’s Transonic Shock
Problem

2D Case:
In this section, we formulate a transonic shock problem in a finite
nozzle due to Courant-Friedrich’s. For simplicity in presentation,
we will concentrate on the 2D steady Euler system.

Consider a uniform supersonic flow (q0, 0) with constant density
ρ0 > 0 and entropy s0 which enters a nozzle with variable sections,
while the pressure at the exit is properly given:



 

x2

x1

 x2 = f2 (x1) 

x1 = ξ (x2) p = pe

 

x2 = f1 (x1) 

Σ 
Ω- Ω+

The nozzle is given by

Ω = {(x1, x2)|f1(x1) < x2 < f2(x1),−1 ≤ x ≤ 1} (9.27)



Let the shock surface be given by

Σ : x1 = ξ(x2) (9.28)

Then the Rankine-Hugoniot Conditions should be satisfied on Σ:
[ρu1]− ξ′(x2) [ρu2] = 0[
ρu2

1 + p
]
− ξ′(x2) [ρu1u2] = 0

[ρu1u2]− ξ′(x2)
[
ρu2

2 + p(ρ)
]

= 0[
(ρe + 1

2ρ|u|
2 + p)u1

]
− ξ′(x2)

[
(ρe + 1

2ρ|u|
2 + p)u2

]
= 0

(9.29)



Furthermore, the physical entropy condition on Σ is

[p] > 0 (9.30)

Set (ρ±, u±1 , u
±
2 , s

±)(x) = (ρ, u1, u2, s)|Ω± with

Ω± = {x ∈ Ω|x1 ≷ ξ(x2)} (9.31)

The boundary conditions can be described as:
Entry B.C.

(ρ, u1, u2, s)|x1=−1 = (ρ0, q0, 0, s0) (9.32)



Solid Wall B.C.

~u · ~n = 0⇔ u2 = f ′i (x1)u1 on x2 = fi (x1) (9.33)

Exit B.C.

p+|x1=1 = pe(x2) (9.34)

with pe(x2) being a smooth suitable function on [f1(1), f2(1)].

Main Task: To find a piecewise smooth solution to (9.1) which is
supersonic on Ω− and subsonic on Ω+ satisfying (9.29), (9.30),
(9.32)-(9.34) under suitable conditions!



3D Axisymmetric Case:
In standard spherical coordinates, (r , θ, ϕ) with basis vectors

er = (cos θ, sin θ cosϕ, sin θ sinϕ)t ,

eθ = (− sin θ, cos θ cosϕ, cos θ sinϕ)t ,

eϕ = (0,− sinϕ, cosϕ)t .

Set ~u = U1er + U2eθ + U3eϕ. Then 3D Axisymmetric Euler system
becomes





∂r (r 2ρU1 sin θ) + ∂θ(rρU2 sin θ) = 0

ρU1∂rU1 + 1
r ρU2∂θU1 + ∂rp − ρ(U2

2 +U2
3 )

r = 0

ρU1∂rU2 + 1
r ρU2∂θU2 + 1

r ∂θp + ρU1U2
r − ρU2

3
r cos θ = 0

ρU1∂r (rU3 sin θ) + 1
r ρU2∂θ(rU3 sin θ) = 0

ρU1∂rS + 1
r ρU2∂θS = 0

(9.35)

A finite axisymmetric nozzle can be given by

Ω = {(r , θ), r1 < r < r2, 0 ≤ θ ≤ F (r)}



with F ∈ C 2,α([r1, r2]), r1 < r2 being two fixed positive numbers.
And the nozzle wall is

Γ = {(r , θ) : θ = F (r), r1 ≤ r ≤ r2} 

 

 

 

 

 

 

  

r = r1 r = r2 

Γ 

S 

Let the incoming flow at the inlet r = r1 be supersonic and

~U(r1, θ) = (U1i ,U2i ,U3i , pi , Si )(θ) ∈ C 2,α([0, θ0]) (9.36)

~u · ~n = 0⇔ U2 = rF ′(r)U1 on Γ (9.37)



At the exit of the nozzle, the receiver pressure is prescribed as

p(x) = pe(θ) at Γe = {(r2, θ) : θ ∈ (0, θ1)}

Let S = {(r , θ) : r = ξ(θ), θ ∈ [θ, θ∗]} and (ξ(θ∗), θ∗) stand for the
shock front and the intersection circle of the shock surface with
nozzle wall respectively. Across the shock, the Rankine-Hugoniot
conditions are:





[ρU1]− ξ′(θ)
ξ(θ) [ρU2] = 0[

ρU2
1 + p

]
− ξ′(θ)

ξ(θ) [ρU1U2] = 0

[ρU1U2]− ξ′(θ)
ξ(θ)

[
ρU2

2 + p
]

= 0

[ρU1U3]− ξ′(θ)
ξ(θ) [ρU2U3] = 0[

ρ+ 1
2 |U|

2 + p
ρ

]
= 0

(9.38)

and the entropy condition is

S+(ξ(θ)+, θ) > S−(ξ(θ)−, θ) for θ ∈ [0, θ∗] (9.39)



§9.3.3 Structural Stability of the Courant-Friedrich’s Transonic
Shock

We now first give a positive answer to the Courant-Friedrich’s
transonic shock problem for the 2D Euler system for a class of de
Laval nozzles whose divergent part is a small generic perturbation
of a straight expansion form. We will use the polar coordinates

r =
√

x2
1 + x2

2 , θ = arctan
x2

x1



Consider a 2D de Laval as follows
 

2
2Γ

 

0 
θ0

r = x0-1 2
1Γ  

r = x0+1 

r = x0



Assume that nozzle walls Γ1 and Γ2 are c3,α-regular (0 < α < 1).

Γ1
1 and Γ1

2 include the convergent part, x0 − 1 ≤ r ≤ x0,
Γ2

1 and Γ2
2 consist of the divergent part, x0 ≤ r ≤ x0 + 1,

where x0 > 1 fixed,

Γ2
i : θ = (−1)iθ0 + fi (r) (9.40)

with

fi (r) ∈ c3,α[x0, x0 + 1], ||fi ||3,α ≤ ε (9.41)



The exit pressure condition is replaced by

p+|r=x0+1 = pe + εp0(θ) (9.42)

where pe is a positive constant, and

p0 ∈ c2,α[−θ0 + f1(x0 + 1), θ0 + f2(x0 + 1)], ||p0||c2,α ≤ c (9.43)

Background Solution: A symmetric transonic-shock solution

Fact: for ε = 0, ∃(pm, pm) such that for any pe ∈ (pm, pM),
∃|r0 ∈ (x0, x0 + 1), so that (9.1) has a unique transonic shock
solution:



(u±10, u
±
20, p

±
0 , s

±
0 ) on Ω±0 = Ω ∩ {r ≷ r0} (9.44)

with x1 =
√

r 2
0 − x2

2 begin the shock curve, (u−10, u
−
20, p

−
0 , s

−
0 ) is

symmetric near r = x0, while

(u+
10, u

+
20, p

+
0 , s

+
0 ) = (U+

0 (r) cos θ,U+
0 (r) sin θ, p+

0 (r), s+
0 ) on Ω+

0

with s+
0 a constant and p+

0 (r = x0 + 1) = pe .

Remark: The existence of such a symmetric transonic shock is due
to Courant-Friedrich’s. One of the main results here shows that
such a solution is structurally stable.



Theorem 9.3.1 (Li-Xin-Yin, 2013): Let the nozzle be given as in
(9.40)-(9.41). Then ∃ a constant ε0 > 0 such that for all
ε ∈ [0, ε0], the transonic shock problem, (9.4), (9.29)-(9.34) (with
x1 = −1 replaced by r = x0 − 1, x2 = 1 replaced by r = x0 + 1),
has a unique solution ((u±1 , u

±
2 , p

±, s±)(x); ξ(x2)) with the
following properties:

(i) ξ(x2) ∈ c2,α(x1
2 , x

2
2 ) ∩ c1,α[x1

2 , x
2
2 ], and∥∥∥∥ξ(x2)−

√
r 2
0 − x2

2

∥∥∥∥
c1,α[x1

2 ,x
2
2 ]

≤ c0ε (9.45)

where x1
2 and x2

2 stand for the vertical coordinates of the
intersection points of x1 = ξ(x2) with the two nozzle walls.



(ii) (u+
1 , u

+
2 , p

+, s+) ∈ c1,α(Ω+) ∩ cα(Ω̄+), and∥∥∥(u+
1 , u

+
2 , p

+, s+)− (û+
1,0, û

+
2,0, p̂

+
0 , s

+
0 )
∥∥∥
cα(Ω̄+)

≤ c0ε (9.46)

where Ω+ is the subsonic region given by

Ω+ = Ω ∩ {ξ(x2) < x1 <
√

(x0 + 1)2 − x2
2} (9.47)

and (û+
1,0, û

+
2,0, p̂

+
0 , s

+
0 ) = (û+

0
x
r , p̂

+
0 (r), s+

0 ) which is a suitable

extension of (u+
0

x
r , p

+
0 (r), s+

0 ).



Remark 9.3.1: This result gives a first complete positive answer
to the transonic shock problem due to Courant-Friedrich’s for 2D
full compressure Euler system by showing that the background
symmetric transonic shock is structurally stable under small
perturbations of either the exit pressure, or the nozzle shape. It
can also be shown that it is also stable under suitable small
perturbations of incoming supersonic flows (S. K. Weng, 2012).



Remark 9.3.2: For the general de Laval nozzle, the
cα(Ω̄+)-regularity of the subsonic flow in Theorem 9.3.1 is optimal
even if fi ∈ c∞(i = 1, 2) (see Xin-Yan-Yin, ARMA 2009). On the
other hand, if the wall of the nozzles are straight, i.e., fi (r) ≡ 0, so

Γ2
i : θ = (−1)iθ0, (9.48)

then the regularities of the solution can be improved to c2,α or
even higher. See Li-Xin-Yin 2009. Furthermore,



Theorem 9.3.2 (Li-Xin-Yin, 2009 MRL): Under the same
assumptions as Theorem 9.3.1 except that (9.40) is replaced by
(9.48), i.e. the divergent part of the nozzle is straight. Then
∃ε0 > 0, such that for all ε ∈ [0, ε0], the transonic shock problem
has a unique solution (u±1 , u

±
2 , p

±, s±, ξ(x2)) with the following
estimates:
(i) ξ ∈ c3,α[x1

2 , x
2
2 ], and∥∥∥∥ξ2(x2)−

√
r 2
0 − x2

2

∥∥∥∥
c3,α[x1

2 ,x
2
2 ]

≤ c0ε (9.49)



(ii) (u+
1 , u

+
2 , p

+, s+) ∈ c2,α(Ω̄+), and∥∥∥(u+
1 , u

+
2 , p

+, s+)− (û+
1,0, û

+
2,0, p̂

+
0 , ŝ

+
0 )
∥∥∥
c2,α(Ω̄+)

≤ c0ε (9.50)

where

Ω+ = {(x1, x2) : ξ(x2) < x1 <
√

(x0 + 1)2 − x2
2 ,

|x2| < x1 tan θ0}
(9.51)



Remark 9.3.3: It should be noted that in Theorem 9.3.1 and
Theorem 9.3.2, there is no requirement on the size of θ0, i.e. we
do not require that the nozzle is slowly varying which is one of the
main assumptions in almost all previous studies. However, in the
case that the nozzle wall is slowly varying, we can obtain the
following important property that the exit depends on the shock
position monotonically.



Theorem 9.3.3 (Li-Xin-Yin, CMP 2009): Let the assumptions in
Theorem 9.3.2 hold. Assume further that

0 < θ0 < θ̄ for suitably small θ̄ > 0. (9.52)

and

M−(x0) >

√
2γ+1 − 2

γ
(9.53)



Then the transonic shock problem has a unique solution with the
following properties:
(i) ξ ∈ c4,α[x1

2 , x
2
2 ], and∥∥∥∥ξ2(x2)−

√
r 2
0 − x2

2

∥∥∥∥
c4,α[x1

2 ,x
2
2 ]

≤ c0ε (9.54)

(ii) (u+
1 , u

+
2 , p

+, s+) ∈ c3,α(Ω̄+), and∥∥∥(u+
1 , u

+
2 , p

+, s+)− (û+
1,0, û

+
2,0, p̂

+
0 , ŝ

+
0 )
∥∥∥
c3,α(Ω̄+)

≤ c0ε (9.55)

(iii) More importantly, the shock location depends on the exit
pressure monotonically and Lipschitz continuously.



We now turn to the transonic shock problem in 3D axisymmetric
nozzles:

 

 

 

 

 

 

 

  

r = r1 

r = r2 

r S 
r0 
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Background transonic shock: Let θ0 ∈ (0, π2 ), r1 < r2 be fixed
positive numbers.

Ωb = {(r , θ) : r ∈ (r1, r2); θ ∈ (0, θ0)} : straight divergent nozzle

For given spherical symmetric supersonic data at the inlet r = r1,

~U(x)|r=r1 = (U−b (r1)er , p
−
b (r1), S−b ), S−b : a constant.

∃ positive constant p1 < p2, such that for any given constant exit
pressure p̄e ∈ (p1, p2), such that ∃| piecewise smooth spherical
symmetric transonic shock solution ~Ub(x)→



~Ub(x) = (~ub, pb,Sb)(x) =

{
~U−b := (U−b (r), 0, 0, p−b (r),S−b ), in Ω−b
~U+
b := (U+

b (r), 0, 0, p+
b (r),S+

b ), in Ω+
b

(9.56)

with a shock front located at r = r0 ∈ (r1, r2), and

Ω−b := Ωb ∩ {r ∈ (r1, r0)}, Ω+
b = Ωb ∩ {r ∈ (r0, r2)} (9.57)

(see Courant-Friedrich’s (1948), Xin-Yin (2008).)



Goal: Structural stability of this background transonic shock
solution under axisymmetric perturbations of incoming flow,
shape of the nozzle, and the exit pressure.

• Perturbed nozzle:

Ω = {(r , θ) : r1 < r < r2, 0 ≤ θ ≤ F (r) = θ0 + εf (r)} (9.58)

f ∈ C 2,α[r1, r2], f (r1) = f ′(r1) = 0, and the no-flow B.C. becomes

U2 = εrf ′(r)U1 onΓ := {(r , θ); θ = θ0 + εf (r), r1 ≤ r ≤ r2}



• Perturbed incoming data: at r = r1,

~U−(r1, θ) = ~Ub(r1) + ε(U−10,U
−
20,U

−
30, p

−
0 , S

−
0 )(θ) (9.59)

with (U−10,U
−
20,U

−
30, p

−
0 ,S

−
0 ) ∈ C 2,α[0, θ0] and suitable

compatibility conditions at both θ = 0 and θ = θ0.

• Perturbed exit pressure: at r = r2

p(x)|r=r2 = p̄e + εp0(θ) , pe(θ) (9.60)

with p0 ∈ C 1,α satisfying suitable compatibility conditions.



Problem: Look for piecework smooth solution to (9.35) of the form

~U(r , θ) =

{
~U− , (U−1 ,U

−
2 ,U

−
3 , p

−,S−)(r , θ), on Ω−
~U+ , (U+

1 ,U
+
2 ,U

+
3 , p

+,S+)(r , θ), on Ω+
(9.61)

with the shock front S = {(r , θ) : r = ξ(θ), 0 ≤ θ ≤ θ∗},

Ω− = {(r , θ) : r1 ≤ r ≤ ξ(θ), 0 ≤ θ ≤ θ0 + εf (r)},Ω+ = Ω \ Ω−,

satisfying the conditions (9.59), (9.60), and (9.36)-(9.37).

Fact: The spherical symmetric transonic shock is structurally
stable under generic perturbations of the incoming data, nozzle
shape and exit pressure (general axisymmetric perturbations).



Theorem 3.4 (Weng-Xie-Xin 2021). ∃ uniform constant ε0 > 0,
such that for 0 < ε ≤ ε0, the transonic shock problem (9.61) has a
unique solution such that

(i) ξ(θ) ∈ C
(−1−α;{θ∗})
3,α;(θ,θ∗)

satisfies

||ξ(θ)− r0||(−1−α;{θ∗})
3,α;(0,θ∗)

≤ C0ε (9.62)

(ii) ~U− ∈ C 2,α
(Ω−) satisfies

||~U− − ~U−b ||C2,α(Ω̄−) ≤ C0ε (9.63)

(iii) ~U+ ∈ C
(−α;Γw,s)
2,α;Ω+

, with Γw ,s = Γ ∩ Ω̄+, satisfies

||~U+ − ~U+
b ||

(−α;Γw,s)
2,α;Ω+

≤ C0ε (9.64)



Remark 9.3.4 In the case no perturbations of the nozzle
(f (r) ≡ 0), then the regularities in Theorem 9.3.4 can be improved
significantly, see Weng-Xie-Xin 2021.

Remark 9.3.5 For straight expanding nozzle (f (r) ≡ 0) and the
incoming flow has no swirl, the structural stability has been proved
by Li-Xin-Yin 2010 (i.e., U±3 ≡ 0).



Remark 9.3.6 For generic axisymmetric perturbations of the
nozzle and with swirl velocity, the simultaneous appearances of
singularities near the intersection of the shock surface with the
nozzle wall and symmetry axis make the 2-D approach of
Li-Xin-Yin difficult to apply. The key idea to overcome this
difficulty is to introduce a new modified Lagrangian transformation.

Remark 9.3.7 The nonlocality in 3D axisymmetric case is more
pronounced than in 2D case.



Some Basic Observations:
1. Shock position: Since shock speed depends on the values of the
solution on its both sides, so shock front problems are always free
boundary problems for which the shock front required going
through specific lower dimensional manifold is possible. However,
for Courant-Friedrich’s transonic shock problem in a de Laval
nozzle, due to the geometry of the nozzle and the given exit
pressure condition, the requirement of the shock going through a
fixed point will be overdetermined system as shown by Xin-Yan-Yin
2009. In fact, the shock position and the solutions on both sides
have to be determined simultaneously!



2. Optimal regularities: Cα, 0 < α < 1
For general curved nozzles, as have shown by Xin-Yin 2008,
Xin-Yan-Yin 2009, Cα, 0 < α < 1, is the optimal global regularity
for the solutions to the Courant-Friedrich’s transonic shock
problem unless the nozzle wall is straight! This does NOT depend
on the smoothness of the nozzle wall.

3. Transport of low regularities
Since the steady Euler system is elliptic-hyperbolic coupled, thus
the Cα-regularities at the intersection of shock front with the
nozzle wall will propagate along particle paths, which leads to the
essential difficulties to estimate the nonlinear problem.



Main Ideas of the Analysis:

1. The supersonic flow can be obtained by the standard
characteristic method.

2. Then reduce the transonic shock problem to a nonlinear free
boundary-value problem for an elliptic-hyperbolic system on
the subsonic region.

3. Introduce an Euler-Lagrange transformation to deal with the
propagation of the singularity at the intersection of the shock
with the walls of the nozzle.



4. Transform the free boundary value problem into a system on a
fixed domain consisting of

• a nonlinear ODE for the shock position with a free initial
position;

• a first order nonlinear elliptic system for the pressure and the
angular velocity;

• two transport equations for the specific entropy and Bernoulli’s
function respectively.



5. To determine the position of the transonic shock together
with the downstream subsonic flow simultaneously by an
elaborate iteration scheme which effectively decouple the
hyperbolic modes from the elliptic modes in the Euler system.
One of the key ingredients in this iteration scheme is to solve
a boundary value problem for a first order 2× 2 elliptic system
with non-local terms (the interaction of incoming supersonic
flow and the downstream subsonic flow through R-H
conditions) and on unknown parameter (the free position of
the shock curve on the wall of the nozzle).



� A priori gradient estimates to obtain compactness to obtain a
fixed point.

� For 3D axisymmetric problem, the standard Euler-Lagrangian
transformation does not work. A modified Lagrangian
transformation can be introduced to straighten the
streamlines and remove the singularities near the symmetry
axis simultaneously.

However, the basic strategy depends crucially on the uniqueness of
the background solutions.



§9.3.4 The Transonic Shock Problem in a Finite Slowly-Varying
General Nozzle
We now consider the transonic shock problem in §9.2 in the case
that the nozzle in a generic perturbation of a flat nozzle as in the
following picture 

y 

x 

pe 

 w2 

w1 

y = w (x) 
 

- + 

Σ 

L 

Ū- 

Set: U = (p, θ, q, s), θ = arctan u
v : flow angle, q =

√
u2 + v 2

Φ = 1
2 q2 + h, h = e + p

ρ : enthalpy



The Background Solution:
For a flat nozzle, ϕ = ϕ̄w (x) ≡ 1, then the given uniform
supersonic state Ū− = (p̄−, 0, q̄−, s̄−) can be connected to a
unique subsonic state Ū+ = (p̄+, 0, q̄+, s̄+) through a normal
transonic shock x = x̄s

 

y 

Ū- 

𝒙 𝒔 x = L 
x 

Ū+ 

where ρ̄−q̄− = ρ̄+q̄+ = 1, 1
2 q̄2
− + h(ρ̄−) = 1

2 q̄2
+ + h(ρ̄+) (i.e.

Φ− = Φ+). HOWEVER, x̄s can be any number in (0, L).



Descriptions of the Nozzle Wall and Exit Pressure
Let

p ∈ c2+α(R̄+),©h ∈ c2+α([0, L]), α ∈ (0, 1),3

||p||c2+α(R̄+) < +∞, || ©h||c2+α([0,L]) = 1

©h(0) =©h′(0) =©h′′(0) = 0

Then set

pe(y) = p̄+ + σp(y) (9.65)

ϕw (x) = 1 +
∫ x

0 tan(σ©h(s))ds (9.66)

0 < σ � 1 a small constant.
The other formulation of the problem is same as in §9.2.



Lagrange Formulation of the Transonic Shock Problem
Set {

ξ = x

η =
∫ (x ,y)

(0,0) ρu(s, t)dt − ρv(s, t)ds
(9.67)

In the Lagrange coordinate, the Euler equation becomes
∂ηp − sin θ

ρq ∂ξp + q cos θ∂ξθ = 0, (9.68)

∂ηθ − sin θ
ρq ∂ξθ −

cos θ
ρq

1−M2

ρq2 ∂ξp = 0, (9.69)

ρq∂ξq + ∂ξp = 0, (9.70)
∂ξΦ = 0. (9.71)



The Rankine-Hugoniot Condition becomes
G1(U+,U−) , [ 1

ρu ][p] + [uv ][v ] = 0, (9.72)

G2(U+,U−) , [u + p
ρu ][p] + [pUu ][v ] = 0, (9.73)

G3(U+,U−) , [ 1
2 q2 + h] = 0, (9.74)

G4(U+,U−) , [v ]− ψ′[p] = 0, (9.75)

where the shock position becomes

Σs := {(ξ, η), ξ = ψ(η), 0 < η < 1} (9.76)

The domain becomes

 

𝜼 

𝛀− 

𝚪𝟐 L 
𝝃 

𝛀+ 

1 

𝚪𝟏 𝚪𝟑  

𝚪𝟒  

𝚺𝒔  



where

Entrance: Γ1 = {(ξ, η) : ξ = 0, 0 < η < 1}
Exit: Γ3 = {(ξ, η) : ξ = L, 0 < η < 1}
Lower Wall: Γ2 = {(ξ, η) : 0 < ξ < L, η = 0}
Upper Wall: Γ4 = {(ξ, η) : 0 < ξ < L, η = 1}

The nozzle becomes Ω = {(ξ, η) : 0 < ξ < L, 0 < η < 1}
with supersonic region Ω− = {(ξ, η) : 0 < ξ < ψ(η), 0 < η < 1}
subsonic region Ω+ = {(ξ, η) : ψ(ξ) < ξ < L, 0 < η < 1}



The Transonic Shock Problem (TSP): For given (p,©h) satisfying
(9.65), (9.66), look for a shock solution (U−; U+;ψ) such that:

(i) The shock front Σs is given by (9.76).

(ii) U−(ξ, η) solves the Euler system (9.68)-(9.71) on Ω− such
that

U−(ξ, η) = Ū− on Γ1,
θ− = 0 on Γ2,
θ− = σ©h(ξ) on Γ4

(9.77)



(iii) U+(ξ, η) solves (9.68)-(9.71) on Ω+ with

θ+ = 0 on Γ2, θ+ = σ©h(ξ) on Γ4, (9.78)

p+ = pe(Y (L, η)) = p̄+ + σp(Y (L, η)) (9.79)

with

Y (L, η) =

∫ η

0

1

(ρq cos θ)(L, s)
ds

(iv) On Σs , (U−,U+, ψ
′) satisfies the R-H conditions

(9.72)-(9.75).

The Key Elements: How to determine the initial approximate
locations of the shock front?



Remark: As discussed in §9.3, the free boundary value problem
(TSP) can be reduced to find the location of the shock front
together with the state of the subsonic flow field U+ behind the
shock front. One may try to design a nonlinear iteration scheme
starting from the unperturbed shock (Ū−, Ū+). Then the
key difficulty is the information of the location of the approximate
shock front. Our idea to overcome this difficulty is that we will
design a free boundary problem for the linearized Euler system
which will yield useful information on the initial approximation
location of the shock front.



A Linearized Free Boundary Value Problem (LTSP)
We will linearize both the Euler system (9.68)-(9.71) and R-H
conditions (9.72)-(9.75) simultaneously at the background solution
(Ū−; Ū+; ψ̄′ ≡ 0). Let (U̇−; U̇+; ψ̇′; ξ̇∗) be the linearized quantises
for the corresponding parameters:
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The initial approximate location of the shock front is given

Σ̇s = {(ξ, η) : ξ = ξ̇∗, 0 < η < 1}

with ξ̇∗ to be determined.

Then the domain Ω = ¯̇Ω− ∪ ¯̇Ω+ with

Ω̇− = {(ξ, η) : 0 < ξ < ξ̇∗, 0 < η < 1}

Ω̇+ = {(ξ, η) : ξ̇∗ < ξ < L, 0 < η < 1}

and similarly Γ2 = Γ̇−2 ∪ Γ̇+
2 , Γ4 = Γ̇−4 ∪ Γ̇+

4 , with



Γ̇−2 = {(ξ, η) : 0 < ξ < ξ̇∗, η = 0}
Γ̇+

2 = {(ξ, η) : ξ̇∗ < ξ < L, η = 0}
Γ̇−4 = {(ξ, η) : 0 < ξ < ξ̇∗, η = 1}
Γ̇+

4 = {(ξ, η) : ξ̇∗ < ξ < L, η = 1}

We look for (U̇−; U̇+; ψ̇′; ξ̇∗) such that



(i) On Ω̇−, U̇− satisfies the linearized Euler equation at Ū−:
∂ηṗ− + q̄−∂ξ θ̇− = 0, (9.80)

∂η θ̇− − 1
ρ̄−q̄−

1−M̄2
−

ρ̄−q̄2
−
∂ξṗ− = 0, (9.81)

ρ̄−q̄−∂ξq̇− + ∂ξṗ− = 0, (9.82)
∂ξ ṡ− = 0, (9.83)

and boundary conditions:

U̇−(0, η) = 0 on Γ1,

θ̇− = 0 on Γ̇−2 ,

θ̇− = ©̇h−N(ξ) ≡ σ©h(ξ) on Γ̇−4

(9.84)



(ii) On Ω̇+, U̇+ satisfies the linearized Euler equations at Ū+:
∂ηṗ+ + q̄+∂ξ θ̇+ = 0, (9.85)

∂η θ̇+ − 1
ρ̄+q̄+

1−M̄2
+

ρ̄+q̄2
+
∂ξṗ+ = 0, (9.86)

ρ̄+q̄+∂ξq̇+ + ∂ξṗ+ + ρ̄+Γ̄+∂ξ ṡ+ = 0, (9.87)
∂ξ ṡ+ = 0, (9.88)

and boundary conditions:

ṗ+(L, η) = ṗe(η) = σp(η) on Γ3,

θ̇+ = 0 on Γ̇+
2 ,

θ̇+ = σ©h(ξ) on Γ̇+
4

(9.89)



(iii) U̇−, U̇+ and ψ̇′ satisfy the linearized R-H condition across Σ̇s

β+
j · U̇+ + β−j · U̇− = 0, j = 1, 2, 3 on Σ̇s (9.90)

β+
4 · U̇+ + β−4 · U̇− − [p̄]ψ′ = 0, on Σ̇s (9.91)

where
β±j = ∇U±Gj |(Ū+; Ū−), j = 1, 2, 3, β±4 = ∇U±G4|(Ū+, Ū−, ψ̄

′)

which can be computable explicitly in terms of (Ū−, Ū+), and
ξ̇∗ ∈ (0, L) will be determined together with U̇+ and U̇−.



Remarks:

(1) For LTSP, the linearized R-H condition (9.91) on Σ̇s is used
only to determine ψ̇′ once U̇− and U̇+ are found. ψ̇′ describes
the shape of the updated approximate shock-front whose
location can be determined by this together with ξ̇∗.

(2) For LTSP, Σ̇s is a free boundary, since ξ̇∗ is unknown and
needs to be determined together with U̇±. Indeed, Ū+ is
subsonic, the sub-system (9.85)-(9.86) is an elliptic system of
first order. Thus the solvability of this sub-system together
with the boundary condition (9.89) yields suitable constraints
on ξ̇∗ and geometry of the wall and the exit pressure. Indeed,
set



R(ξ) ,
∫ L

0
©h(τ)dτ − k̇

∫ ξ

0
©h(τ)dτ, ξ ∈ (0, L),

ṗ∗ ,
1

ρ̄+q̄+

1− M̄2
+

ρ̄+q̄2
+

∫ 1

0
p(η)dη, (9.92)

where

k̇ = [p̄](
γ − 1

γp̄+
+

1

ρ̄+q̄2
+

) > 0



Then the solvability condition turns out to be that ∃ξ̇∗ ∈ (0, L)
such that

R(ξ̇∗) = ṗ∗ (9.93)

Set
R , inf

ξ∈(0,L)
R(ξ), R̄ , sup

ξ∈(0,L)
R(ξ)

then if

R < ṗ∗ < R̄ (9.94)

there must be at least one solution ξ̇∗ ∈ (0, L) to the equation
(9.93), so that LTSP has one solutions.



Main Results:

Theorem 9.3.5 (Fang-Xin, CPAM 2022). Assume that ξ̇∗ ∈ (0, L)
satisfies (9.93) and ©h(ξ̇∗) 6= 0. Then ∃σ0 = σ0(Ū±, L,

1
©h(ξ̇∗)

) such

that if σ ∈ (0, σ0), then the TSP has a solution (U−; U+;ψ) which
satisfies the following estimates for α ∈ (0, 1), β > 2

|ψ(1)− ξ̇∗| ≤ csσ, ||ψ′||
w

1− 1
β (Σs)

≤ csσ (9.95)

||U− − Ū−||c2,α(Ω−) ≤ c−s σ (9.96)

||U+ − Ū+||(Ω+;Σs) ≤ c+
s σ (9.97)



where cs , c±s are constants depending only on Ū±, L, 1
©h(ξ̇∗)

, and

||U||(Ω+;Σs ) = ||p||w1
β(Ω+) + ||θ||w1

β(Ω+) + ||(q, s)||c(Ω̄+) + ||(q, s)||
w

1− 1
β

β

(Σs)

Furthermore, let (U̇−; U̇+; ψ̇′; ξ̇∗) be a solution to LTSP, then it
holds that

||ψ′ − ψ̇′||
w

1− 1
β

β (Σs)
≤ 1

2
σ

3
2 (9.98)

||U− − U̇−||c1,α(Ω−) ≤
1

2
σ

3
2 (9.99)

||U+ − U̇+||(Ω+;Σs) ≤
1

2
σ

3
2 (9.100)



Remark 1: The regularity of subsonic flow in this theorem can be
improved by more elaborate choose of initial approximations of the
shock location.

Remark 2: If ©h(x) 6= 0∀x ∈ (0, L). Then the nozzle is either
expanding (©h(x) > 0∀x ∈ (0, L)) or contracting
(©h(x) < 0∀x ∈ (0, L)).
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supersonic subsonic 
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©h(x) > 0 ©h(x) < 0



Then (9.93) can have only one solution, then our method will yield
a transonic shock solution to TSP. However, the uniqueness of
such a solution is not known yet.

Remark 3: In the case that the nozzle have both expanding and
contracting parts. Then (9.93) may have multiple solutions. In this
case, corresponding to each solution of (9.93), our method will
yield a transonic shock solution. Thus, in this case, we constract
multiple transonic shock solutions to TSP.
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↖ Both are admissible shocks ↗

Remark 4: The proof of the main results is based on

• Solvability of LTRP.

• A nonlinear iteration scheme based on LTRP.

Remark 5: Similar results have been obtained by Fang-Gao for 3D
axisymmetric case by the ideas here and the modified Lagrangian
transform introduced by Weng-Xie-Xin (2021).



Open Problems:

(1) Uniqueness Problem of TSP, (Global uniqueness).

(2)

 

subsonic 

sonic curve 

supersonic 

shock 

subsonic  Pe 

(3) 3-D transonic shock problem and Meyer type smooth transonic
flows?

(4) Other wave patterns

 


