
The Karush-Kuhn-Tucker (KKT) conditions

In this section, we will give a set of sufficient (and at most times nec-
essary) conditions for a x? to be the solution of a given convex opti-
mization problem. These are called the Karush-Kuhn-Tucker (KKT)
conditions, and they play a fundamental role in both the theory and
practice of convex optimization. We have derived these conditions
(and have shown that they we both necessary and sufficient) in some
special cases in the previous notes

We will start here by considering a general convex program with in-
equality constraints only. This is just to make the exposition easier
— after we have this established, we will show how to include equality
constraints (which must always be affine in convex programming). A
great source for the material in this section is [Lau13, Chap. 10].

Everywhere in this section, the functions f (x), g1(x), . . . , gM(x),
gm : RN → R, are convex and differentiable.
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KKT (inequality only)
The KKT conditions for the convex program

minimize
x

f (x) subject to g1(x) ≤ 0 (1)

g2(x) ≤ 0
...

gM(x) ≤ 0

in x ∈ RN and λ ∈ RM are

gm(x) ≤ 0, m = 1, . . . ,M, (K1)

λ ≥ 0, (K2)

λmgm(x) = 0, m = 1, . . . ,M, (K3)

∇f (x) +
M∑
m=1

λm∇gm(x) = 0, (K4)

We start by establishing that these are sufficient conditions for a
minimizer.

If the KKT conditions hold for x? and some λ? ∈ RM , then x? is
a solution to the program (1).

Below, we denote the feasible set as

C = {x ∈ RN : gm(x) ≤ 0, m = 1, . . . ,M}.
It should be clear that the convexity of the gm implies the convexity1

1The gm are convex functions, so their sublevel sets are convex sets, and C
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of C. The sufficiency proof simply relies on the convexity of C, the
convexity of f , and the concept of a descent/ascent direction.

Suppose x?,λ? obey the KKT conditions. The first thing to note is
that if

λ?1 = λ?2 = · · · = λ?M = 0,

then (K4) implies that
∇f (x?) = 0,

and hence x? is a global min, as by the convexity of f ,

f (x) ≥ f (x?) + 〈x− x?,∇f (x?)〉 = f (x?),

for all x ∈ C.

Now suppose that R > 0 entries of λ? are positive — without loss
of generality, we will take these to be the first R,

λ?1 > 0, λ?2 > 0, · · · , λ?R > 0, λ?R+1 = 0, · · · , λ?M = 0.

We can rewrite (K4) as

∇f (x?) + λ?1∇g1(x?) + · · · + λ?R∇gR(x?) = 0, (2)

and note that by (K3),

g1(x
?) = 0, . . . , gR(x?) = 0.

Consider any x ∈ C, x 6= x?. As C is convex, every point in between
x? and x must also be in C, meaning

gm(x? + θ(x− x?)) ≤ 0 = gm(x?), m = 1, . . . , R,

is an intersection of sublevel sets.
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for all 0 ≤ θ ≤ 1. This means that x − x? cannot be an ascent
direction, and so

〈x− x?,∇gm(x?)〉 ≤ 0, m = 1, . . . , R.

It is now clear that

〈x− x?,∇f (x?)〉 ≥ 0,

as otherwise there is no way (2) can hold with positive λm. Along
with the convexity of f , this means that

f (x) ≥ f (x?) + 〈x− x?,∇f (x?)〉 ≥ f (x?).

Since this holds for all x ∈ C, x? is a minimizer.

Necessity

To establish the necessity of the KKT conditions, we need one piece
of mathematical technology that we have not been exposed to yet.
The Farkas lemma is a fundamental result in convex analysis; we
will prove it in the Technical Details section.

Farkas Lemma:
Let A be an M ×N matrix and b ∈ RM . The exactly one of the
following two things is true:

1. there exists x ≥ 0 such that Ax = b;

2. there exists λ ∈ RM such that

ATλ ≤ 0, and 〈b,λ〉 > 0.
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With this in place, we can give two different situations under which
KKT is necessary. These are by no means the only situations for
which this is true, but these two cover a high percentage of the cases
encountered in practice.

Suppose x? is a solution to a convex program with affine inequality
constraints:

minimize
x∈RN

f (x) subject to Ax ≤ b.

Then there exists a λ? such that x?,λ? obey the KKT conditions.

In this case, the constraint functions have the form

gm(x) = 〈x,am〉 − bm, and so ∇gm(x) = am,

where aT
m is the mth row of A. Since x? is feasible, K1 must hold.

If none of the constraints are “active”, meaning gm(x?) < 0 for
m = 1, . . . ,M (and so x? lies in the interior of C), then it must be
that ∇f (x?) = 0, and K2–K4 hold with λ? = 0.

Suppose that there are R active constraints at x?; without loss of
generality, we will take these to be the first R:

g1(x
?) = 0 , g2(x

?) = 0 , . . . , gR(x?) = 0,

gR+1(x
?) < 0 , . . . , gM(x?) < 0.

We start by taking λR+1 = λR+2 = · · · = λM = 0, which means K3
will hold. Suppose that there were no λ ≥ 0 such that

∇f (x?) + λ1∇g1(x?) + · · · + λR∇gR(x?) = 0. (3)
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With A′ : R × N consisting of the first R rows of A, and b′ ∈ RR

as the first R entries in b, this means that there is no λ′ ∈ RR such
that

A′Tλ′ = −∇f (x?), λ′ ≥ 0.

By the Farkas lemma, this means that there is a d ∈ RN such that

A′d ≤ 0, 〈d,−∇f (x?)〉 > 0,

which means, since ∇gm(x) = am,

〈d,∇f (x?)〉 < 0

〈d,∇g1(x?)〉 ≤ 0
...

〈d,∇gR(x?)〉 ≤ 0.

This means that d is a descent direction for f , and is not an ascent
direction for g1, . . . , gR. Because the constraint functionals are affine,
if 〈d,∇gm(x?)〉 = 0 above, then gm(x?+td) = gm(x?) — this means
that moving in the direction d will not increase g1, . . . , gm. Since the
last M −R constraints are not active, we can move at least a small
amount in any direction so that they stay that way. This means that
there exists a t > 0 such that

f (x? + td) < f (x?),

but also maintains feasibility:

gm(x? + td) ≤ 0, m = 1, . . . ,M.

This directly contradicts the assertion that x? is optimal, and so
λ1, . . . , λR ≥ 0 must exist such that (3) holds.

For general convex inequality constraints, there are various other
scenarios under which the KKT conditions are necessary; these are
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called constraint qualifications. We have already seen that
polygonal (affine) constraints qualify. Another set of constraint qual-
ifications are Slater’s condition:

Slater’s condition: There exists at least one strictly feasible
point; a x such that none of the constraints are active:

g1(x) < 0 , g2(x) < 0 , · · · , gM(x) < 0.

Suppose that Slater’s condition holds for g1, . . . , gM , and let x?

be a solution to

minimize
x∈RN

f (x) subject to gm ≤ 0, m = 1, . . . ,M.

Then there exists a λ? such that x?,λ? obey the KKT conditions.

This is proved in much the same way as in the affine inequality case.
Suppose that x? is a solution, and that

g1(x
?) = 0 , g2(x

?) = 0 , . . . , gR(x?) = 0,

gR+1(x
?) < 0 , . . . , gM(x?) < 0.

We take λR+1 = · · · = λM = 0, and show that if there is not
λ1, . . . , λR ≥ 0 such that

∇f (x?) +
R∑

m=1

λm∇gm(x?) = 0, (4)

then there is a another feasible point with a smaller value of f .
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By the Farkas lemma, if there does not exist a λ1, . . . , λR ≥ 0 such
that (4) holds, then there must be a u ∈ RN such that

〈u,∇f (x?)〉 < 0

〈u,∇g1(x?)〉 ≤ 0
...

〈u,∇gR(x?)〉 ≤ 0.

Now let z be a strictly feasible point, gm(z) < 0 for all m. We know
that

0 > gm(z) ≥ gm(x?)+〈z−x?,∇gm(x?)〉 ⇒ 〈z−x?,∇gm(x?)〉 < 0,

for m = 1, . . . , R, since then gm(x?) = 0. So u is a descent direction
for f0, and z − x? is a descent direction for all all of the constraint
functions gm, m = 1, . . . , R that are active.

We consider a convex combination of these two vectors

dθ = (1− θ)u + θ(z − x?).

We know that 〈dθ,∇gm(x?)〉 < 0 for all 0 < θ ≤ 1, m = 1, . . . , R.
We also know that there is a θ small enough so that dθ is a descent
direction for f0; there exists 0 < ε0 < 1 such that

〈dε0,∇f (x?)〉 < 0.

Finally, we also know that we can move a small enough amount in
any direction and keep constraints gR+1, . . . , gM inactive. Thus there
is a t > 0 such that

f (x? + tdε0) < f (x?), gm(x? + tdε0) ≤ 0, m = 1, . . . ,M,

which directly contradicts the assertion that x? is optimal.
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It should be clear from the two arguments above that Slater’s condi-
tion can be refined — we only need a point which obeys gm(z) < 0
for the gm which are not affine. We now state this formally:

Suppose that g1, . . . , gM ′ are affine functionals, and gM ′+1, . . . , gM
are convex functional which are not affine. Suppose that Slater’s
condition holds for gM ′+1, . . . , gM , and let x? be a solution to

minimize
x∈RN

f (x) subject to gm(x) ≤ 0, m = 1, . . . ,M.

Then there exists a λ? such that x?,λ? obey the KKT conditions.

The above statement lets us extend the KKT conditions to optimiza-
tion problems with linear equality constraints, which we now state.

20
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 9:08, October 7, 2022



KKT (with equality constraints)
The KKT conditions for the optimization program

minimize
x

f (x) subject to gm(x) ≤ 0, m = 1, . . . ,M (5)

hp(x) = 0, p = 1, . . . , P

in x ∈ RN , λ ∈ RM , and ν ∈ RP are

gm(x) ≤ 0, m = 1, . . . ,M, (K1)

hp(x) = 0, p = 1, . . . , P

λ ≥ 0, (K2)

λmgm(x) = 0, m = 1, . . . ,M, (K3)

∇f (x) +
M∑
m=1

λm∇gm(x) +
P∑
p=1

νp∇hp(x) = 0, (K4)

We call the λ and ν above Lagrange multipliers. Notice that
λ is constrained to be positive, while ν can be arbitrary. Also, if
the hp are affine, which they have to be for the program above to be
convex, then we can write the equality constraints

hp(x) = 0, p = 1, . . . , P as Ax = b,

for some A : P ×N and b ∈ RP . Also, we can rewrite (K4) as

∇f (x) +
M∑
m=1

λm∇gm(x) +ATν = 0.

If the gm are convex and the hp affine, then the KKT conditions
are sufficient for x? to be the solution to the convex program (5).
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If Slater’s condition holds for the non-affine gm, then they are also
necessary. Almost nothing changes in the proofs above — we could
simply separate an equality constraint of the form 〈x,a〉 = b into
〈x,a〉 − b ≤ 0 and 〈x,−a〉 + b ≤ 0. Then we can recombine the
result, taking ν = λ1 − λ2, where λ1 is the Lagrange multiplier for
〈x,a〉 − b and λ2 is the same for 〈x,−a〉 + b.
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Technical Details: Proof of the Farkas Lemma

We prove the Farkas Lemma: if A is an M ×N matrix and b ∈ RM

is a given vector, then exactly one of the following two things is true:

1. there exists x ≥ 0 such that Ax = b;

2. there exists v ∈ RM such that

ATv ≤ 0, and 〈b,v〉 > 0.

It is clear that if the first condition holds, the second cannot, as
〈b,v〉 = 〈x,ATv〉 for any x such that Ax = b, and 〈x,ATv〉 ≤ 0
for any x ≥ 0 and ATv ≤ 0.

It is more difficult to argue that if the first condition does not hold,
the second must. This ends up being a direct result of the separating
hyperplane theorem. Let C(A) be the (convex) cone generated by
the columns a1, . . . ,aN of A:

C(A) =

{
v ∈ RM : v =

N∑
n=1

θnan, θn ≥ 0, n = 1, . . . , N

}
.

Then 1 above is clearly equivalent to b ∈ C(A). Since C(A) is closed
and convex, and b is a single point, we know that if b 6∈ C(A), then
C(A) and b are strongly separated by a hyperplane. That is, if
b 6∈ C(A) implies that there exists a v ∈ RM such that

vTb > vTλ for all λ ∈ C(A),

which is the same as saying

vTb > sup
λ∈C(A)

vTλ = sup
x≥0
vTAx.
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We know that 0 ∈ C(A), so we must have vTb > 0. The above
equation also gives a finite upper bound (namely whatever the actual
value of vTb is) on the function vTAx for all x ≥ 0. But this
means that ATv ≤ 0, as otherwise we would have the following
contradiction. If there were some index n such that (ATv)[n] = ε >
0, then with em ≥ 0 as the unit vector

en[k] =

{
1, k = n,

0, k 6= n
,

we have

sup
x≥0
vTAx ≥ sup

α≥0
vTA(αen) = sup

α≥0
αε =∞,

which contradicts the existence of this upper bound.
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