
Week 1

1.1 Groups
Definition. A group is a set G equipped with a binary operation

∗ : G×G −→ G

(called the group operation or “product” or “multiplication”) such that the fol-
lowing conditions are satisfied:

• The group operation is associative, i.e.

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ G.

• There is an element e ∈ G, called an identity element, such that

a ∗ e = e ∗ a = a,

for all a ∈ G.

• For every a ∈ G there exists an element a−1 ∈ G, called an inverse of a,
such that

a−1 ∗ a = a ∗ a−1 = e.

Remark. We often write a · b or simply ab to denote a ∗ b.
Definition. If ab = ba for all a, b ∈ G, we say that the group operation is com-
mutative and that G is an abelian group; otherwise we say that G is nonabelian.

Remark. When the group is abelian, we often use + to denote the group opera-
tion.

Definition. The order of a group G, denoted by |G|, is the number of elements in
G. We say that G is finite (resp. infinite) if |G| is finite (resp. infinite).
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Example 1.1.1. The following sets are groups, with respect to the specified group
operations:

• G = Q, where the group operation is the usual addition + for rational
numbers. The identity is e = 0. The inverse of a ∈ Q with respect to + is
−a. This is an infinite abelian group.

• G = Q× = Q\{0}, where the group operation is the usual multiplication
for rational numbers. The identity is e = 1, and the inverse of a ∈ Q× is
a−1 = 1

a
. This group is also infinite and abelian.

Note that Q is not a group with respect to multiplication. For in that case,
we have e = 1, but 0 ∈ Q has no inverse 0−1 ∈ Q such that 0 · 0−1 = 1.

Exercise: Verify that the following sets are groups under the specified binary
operations:

• (Z,+), (Q,+), (R,+), (C,+).

• (Q× = Q\{0}, ·), (R× = R\{0}, ·), (C× = C\{0}, ·)

• (Um, ·), where m ∈ Z>0,

Um = {1, ζm, ζ2m, . . . , ζm−1m }

and ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C.

• The set of bijective functions f : R −→ R, where f ∗ g := f ◦ g (i.e.
composition of functions).

In general, one can consider any nonempty set X . Then the set

SX := {σ : X → X : σ is bijective}

of all bijective maps from X onto X is a group under composition of maps.
This example actually fits in a much more general setting. To see this, let us

digress a little bit to category theory.

Definition. A category C consists of

• a class Obj(C) of objects of the category; and

• for every two objects A,B of C, a set HomC(A,B) of morphisms,

satisfying the following properties:
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• For every objectA of C, there exists (at least) one morphism 1A ∈ HomC(A,A),
the identity on A.

• For every triple of objects A,B,C of C, there is a map

HomC(A,B)× HomC(B,C)→ HomC(A,C)

sending a pair of morphisms (f, g) to their compositon g ◦ f .

• The composition is associative, i.e. if f ∈ HomC(A,B), g ∈ HomC(B,C)
and h ∈ HomC(C,D), then we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

• The identity morphisms are identities with respect to composition, i.e. for
all f ∈ HomC(A,B), we have

f ◦ 1A = f, 1B ◦ f = f.

Examples:

1. The category Set is defined by

• Obj(Set) = the class of all sets;

• for X, Y in Obj(Set), HomSet(X, Y ) = the set of all maps f : X →
Y .

2. Fix a field F (e.g. F = R or C). Then the category VectF is defined by

• Obj(VectF ) = the class of all vector spaces over ;

• for V,W in Obj(VectF ), HomVectF (V,W ) = the set of all F -linear
transformations T : V → W .

Definition. Let C be a category. A morphism f ∈ HomC(A,B) is called an
isomorphism if there exists g ∈ HomC(B,A) such that

g ◦ f = 1A, f ◦ g = 1B.

Proposition 1.1.2. The inverse of an isomorphism is unique.

Definition. An automorphism of an object A of a category C is an isomorphism
from A to itself. The set of automorphisms of A is denoted AutC(A). It is a group
with identity 1A. (Exercise.)
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For C = Set and a set X ∈ Obj(Set), the automorphism group AutSet(X) is
nothing but SX defined above. The following is another example.

Example 1.1.3. The set G = GL(2,R) of real 2× 2 matrices with nonzero deter-
minants is a group under matrix multiplication, with identity element:

I =

(
1 0
0 1

)
.

In the group G, we have:(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
Note that there are matrices A,B ∈ GL(2,R) such that AB 6= BA. Hence

GL(2,R) is nonabelian (and infinite).

More generally, for any n ∈ Z>0, the set GL(n,R) of n × n real matrices
M , such that detM 6= 0, is a group under matrix multiplication, called the Gen-
eral Linear Group. Note that GL(n,R) is nothing but the automorphism group
AutVectR(Rn) of Rn ∈ Obj(VectR). The group GL(n,R) is nonabelian for n ≥ 2.

Exercise: The set SL(n,R) of real n × n matrices with determinant 1 is a group
under matrix multiplication, called the Special Linear Group.

Example 1.1.4. Let n ∈ Z>0. Consider the finite set

Zn = {0, 1, 2, . . . , n− 1}.

We define a binary operation +n on Zn by

a+n b =

{
a+ b if a+ b < n,
a+ b− n if a+ b ≥ n.

for any a, b ∈ Zn.

Exercise: Then (Zn,+n) is a finite abelian group. (By abuse of notation, we will
usually use the usual symbol + to denote the additive operation for this group.)

Proposition 1.1.5. The identity element e of a group G is unique.

Proof. Suppose there is an element e′ ∈ G such that e′g = ge′ for all g ∈ G.
Then, in particular, we have:

e′e = e

But since e is an identity element, we also have e′e = e′. Hence, e′ = e.
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Proposition 1.1.6. Let G be a group. For all g ∈ G, its inverse g−1 is unique.

Proof. Suppose there exists g′ ∈ G such that g′g = gg′ = e. By the associativity
of the group operation, we have:

g′ = g′e = g′(gg−1) = (g′g)g−1 = eg−1 = g−1.

Hence, g−1 is unique.

Let G be a group with identity element e. For g ∈ G, n ∈ N, let:

gn := g · g · · · g︸ ︷︷ ︸
n times

.

g−n := g−1 · g−1 · · · g−1︸ ︷︷ ︸
n times

g0 := e.

Proposition 1.1.7. Let G be a group.

1. For all g ∈ G, we have:
(g−1)−1 = g.

2. For all a, b ∈ G, we have:

(ab)−1 = b−1a−1.

3. For all g ∈ G, n,m ∈ Z, we have:

gn · gm = gn+m.

Proof. Exercise.
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Week 2

2.1 Cyclic groups
Definition. Let G be a group, with identity element e. The order of an element
g ∈ G, denoted by |g|, is the smallest positive integer n such that gn = e; if no
such n exists, we say that g has infinite order and write |g| =∞.

Example 2.1.1. • If G is a group with identity e, then |g| = 1 if and only if
g = e. Also, |g| = 2 if and only if g 6= e and g−1 = g.

• In (C×, ·), |i| = 4; but in (C,+), |i| =∞.

Exercise: If G has finite order, then every element of G has finite order.

Proposition 2.1.2. Let G be a group with identity element e. Let g be an element
of G. If gn = e for some n ∈ Z>0, then |g| divides n.

Proof. Let m = |g|. Suppose gn = e. By the Division Theorem, there exist
(unique) integers q and 0 ≤ r < m such that n = mq + r. So gn = (gm)q · gr
which implies that gr = e. This forces r = 0 (since otherwise this violates the
definition of |g| = m). Hence m | n.

Given an element g in a group G, we define the subset 〈g〉 ⊂ G as the set of
all integral powers of g:

〈g〉 = {gn : n ∈ Z}.
By definition, we have

|g| =
{

min{n ∈ Z>0 : gn = e} if ∃n ∈ Z>0 such that gn = e,
∞ otherwise.

Proposition 2.1.3. If |g| =∞, then 〈g〉 is an infinite set; in fact, the mapZ→ 〈g〉,
n 7→ gn is a bijection. If |g| = m <∞, then

〈g〉 = {e, g, g2, . . . , gm−1}.
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Proof. Suppose |g| = ∞. It follows from the definition of 〈g〉 that the map Z →
〈g〉, n 7→ gn is surjective. So we only need to show that it is also injective.
Suppose gn1 = gn2 for some n1, n2 ∈ Z. If n1 6= n2, then without loss of
generality, we can assume that n1 > n2. Then we have gn1−n2 = e with n1−n2 ∈
Z>0. But this violates the assumption that |g| =∞. Hence we must have n1 = n2,
showing the required injectivity.

When |g| = m < ∞, we want to show that 〈g〉 = {e, g, g2, . . . , gm−1}.
Clearly we have 〈g〉 ⊃ {e, g, g2, . . . , gm−1}, so we only need to prove the re-
verse inclusion. Take an element gn ∈ 〈g〉. Then the Division Theorem im-
plies that there exist integers q and 0 ≤ r < m such that n = mq + r. So
gn = (gm)q · gr = gr ∈ {e, g, g2, . . . , gm−1}. This completes the proof.

Definition. A group G is cyclic if there exists g ∈ G such that every element of
G is equal to gn for some integer n. In this case, we write G = 〈g〉, and say that g
is a generator of G.

Remark. The generator of of a cyclic group might not be unique, i.e. there may
exist different elements g1, g2 ∈ G such that G = 〈g1〉 = 〈g2〉.
Example 2.1.4. • (Z,+) is cyclic, generated by 1 or −1.

• (Zn,+) is cyclic, generated by 1, or k ∈ Zn such that gcd(k, n) = 1. In
particular, if p is a prime, then any k 6= 0 in Zp is a generator.

• (Um, ·) is cyclic, generated by ζm = e2πi/m, or ζnm for any integer n ∈ Zm
such that gcd(m,n) = 1.

Exercise: The group (Q,+) is not cyclic.

Proposition 2.1.5. Every cyclic group is abelian

Proof. Let G be a cyclic group. Then G = 〈g〉 for some element g ∈ G and every
element is of the form gn for some n ∈ Z. Now

gn1 · gn2 = gn1+n2 = gn2+n1 = gn2 · gn1 .

So G is abelian.

Remark. The converse is not true, namely, there are non-cyclic abelian groups
(e.g. the Klein 4-group Z2 × Z2).
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2.2 Symmetric groups
Definition. Let X be a set. A permutation of X is a bijective map σ : X −→ X .

Proposition 2.2.1. The set SX of permutations of a set X is a group with respect
to ◦, the composition of maps.

Proof. • Let σ, γ be permutations ofX . By definition, they are bijective maps
from X to itself. It is clear that σ ◦ γ is a bijective map from X to itself,
hence σ ◦ γ is a permutation of X . So ◦ is a well-defined binary operation
on SX .

• For α, β, γ ∈ SX , it is clear that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Define a map e : X −→ X as follows:

e(x) = x, for all x ∈ X.

It is clear that e ∈ SX , and that e ◦ σ = σ ◦ e = σ for all σ ∈ SX . Hence, e
is an identity element in SX .

• Let σ be any element of SX . Since σ : X −→ X is by assumption bijective,
there exists a bijective map σ−1 : X −→ X such that σ◦σ−1 = σ−1◦σ = e.
So σ−1 is an inverse of σ with respect to the operation ◦.

Terminology: We call SX the symmetric group on X .

Notation. Let n be a positive integer. Consider the set In := {1, 2, . . . , n}. Then
we denote SIn by Sn and call it the n-th symmetric group.

For n ∈ Z>0, the group Sn has n! elements.
For n ∈ Z>0, by definition an element of Sn is a bijective map σ : In −→ In,

where In = {1, 2, . . . , n}. We often describe σ using the following notation:

σ =

(
1 2 · · · n

σ(1) σ(2) . . . σ(n)

)
Example 2.2.2. In S3,

σ =

(
1 2 3
3 2 1

)
is the permutation on I3 = {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.
σ(1) = 3, σ(2) = 2, σ(3) = 1.
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For α, β ∈ S3 given by:

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
,

we have:

αβ = α ◦ β =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
(since, for example, α ◦ β : 1

β7−→ 2
α7−→ 3.).

We also have:

βα = β ◦ α =

(
1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
Since αβ 6= βα, the group S3 is non-abelian.
In general, for n ≥ 3, the group Sn is non-abelian (Exercise: Why?).
For the same α ∈ S3 defined above, we have:

α2 = α ◦ α =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
and:

α3 = α · α2 =

(
1 2 3
2 3 1

)
◦
(

1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= e

Hence, the order of α is 3.

More on Sn

Consider the following element in S6:

σ =

(
1 2 3 4 5 6
5 4 3 6 1 2

)
We may capture the action of σ : {1, 2, . . . , 6} −→ {1, 2, . . . , 6} using the nota-
tion:

σ = (15)(246),

where (i1i2 · · · ik) denotes the permutation:

i1 7→ i2, i2 7→ i3, . . . , ik−1 7→ ik, ik 7→ i1

and j 7→ j for all j ∈ {1, 2, . . . , n}\{i1, i2, . . . , ik}. We call (i1i2 · · · ik) a k-cycle
or a cycle of length k. Note that 3 is missing from (15)(246), meaning that 3 is
fixed by σ.
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Proposition 2.2.3. Every permutation α ∈ Sn is either a cycle or a product of
disjoint cycles.

Proof. Let σ ∈ Sn be a permutation on the set In = {1, 2, . . . , n}. For a, b ∈ In,
we say a ∼ b if and only if b = σk(a) for some k ∈ Z. This defines an equivalence
relation on In (Exercise). So it produces a partition of In into a disjoint union of
equivalence classes:

In = O1 tO2 t · · · tOm.

(The equivalence classes O1, O2, . . . , Om ⊂ In are called orbits of σ.) Then, for
j = 1, 2, . . . ,m, we define a permutation µj ∈ Sn by

µj(a) =

{
σ(a) if a ∈ Oj,
a if a 6∈ Oj.

Each µj is a cycle (of length |Oj|). They are disjoint since the Oj’s form a parti-
tion. Also we have

σ = µ1µ2 · · ·µm.

Exercise: Disjoint cycles commute with each other.

A 2-cycle is often called a transposition, for it switches two elements with
each other.

2.3 Dihedral groups
Consider the subset T of transformations ofR2, consisting of all rotations by fixed
angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon Pn with n sides in R2, centered at the origin. Iden-
tify the polygon with its n vertices, which form a subset Pn = {x1, x2, . . . , xn} of
R2. If τ(Pn) = Pn for some τ ∈ T , we say that Pn is symmetric with respect to
τ .

Intuitively, it is clear that Pn is symmetric with respect to n rotations

{r0, r1, . . . , rn−1},

and n reflections
{s1, s2, . . . , sn}

in T . In particular |Dn| = 2n.
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Proposition 2.3.1. The set Dn := {r0, r1, . . . , rn−1, s1, s2, . . . , sn} is a group,
with respect to the group operation defined by composition of transformations:
τ ∗ γ = τ ◦ γ.

Terminology: Dn is called the n-th dihedral group.
Let r = r1 ∈ Dn be the rotation by the angle 2π/n in the counterclockwise

direction (and similarly rk denotes the rotation by the angle 2kπ/n in the counter-
clockwise direction). Then the set of rotations in Dn is given by

〈r〉 = {id, r, r2, . . . , rn−1}.

Furthermore, the composition of two reflections is a rotation (which can be seen,
e.g. by flipping a Hong Kong 2-dollar coin). So if we let s = s1 ∈ Dn be one of
the reflections, then the set of reflections in Dn is given by

{s, rs, r2s, . . . , rn−1s}.

So we can enumerate the elements of Dn as

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.
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Week 3

3.1 Subgroups
Definition. Let G be a group. A subset H of G is a subgroup of G (denoted as
H ≤ G) if

• H is closed under the operation on G, i.e.

a ∗ b ∈ H for any a, b ∈ H,

so that the restriction of the binary operation G × G → G to the subset
H×H ⊂ G×G gives a well-defined binary operation H×H → H , called
the induced operation on H , and

• H is a group under this induced operation.

Example 3.1.1. • For any group G, we have the trivial subgroup {e} ≤ G
and also G ≤ G. We call a subgroup H ≤ G nontrivial if {e} � H and
proper if H � G.

• We have Z < Q < R < C under addition, and Q× < R× < C× under
multiplication.

• For any n ∈ Z, nZ is a subgroup of (Z,+). Note that nZ = 〈n〉.

• More generally, for any element a in a group G, 〈a〉 = {ak : k ∈ Z} is a
subgroup of G, called the cyclic subgroup generated by a ∈ G; see §3.2.
For instance, the set of all rotations (including the trivial rotation) in a dihe-
dral group Dn is the cyclic subgroup generated by r, the counterclockwise
rotation by 2π/n.

• Let F be a field and V be a vector space over F . Then any subspaceW ⊂ V
is in particular an additive subgroup, i.e. (W,+) ≤ (V,+).
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• For any field F , the special linear group SL(n, F ) := {A ∈ GL(n, F ) :
detA = 1} and the orthogonal group O(n, F ) := {A ∈ GL(n, F ) :
ATA = I = AAT} (where AT denotes the transpose of A) are both sub-
groups of the general linear group GL(n, F ). Their intersection SO(n, F ) :=
O(n, F ) ∩ SL(n, F ) = {A ∈ O(n, F ) : detA = 1}, called the special or-
thogonal group, is another subgroup of GL(n, F ).

For F = C, the unitary group U(n) := {A ∈ GL(n,C) : A∗A = I =
AA∗} (where A∗ denotes the conjugate transpose of A) and the special
unitary group SU(n) := U(n) ∩ SL(n,C) = {A ∈ U(n) : detA = 1} are
subgroups of GL(n,C).

• By viewing Dn as permutations of the vertices of a regular n-gon Pn, we
can regard Dn as a subgroup of Sn.

• Consider the symmetric group Sn where n ∈ Z>0.

Proposition 3.1.2. Every permutation σ ∈ Sn is a product of (not necessar-
ily disjoint) transpositions.

Proof. We already know that each permutation is a product of (disjoint)
cycles. So the statement follows from the fact that each cycle is a product
of transpositions:

(i1i2 · · · ik) = (i1ik)(i1ik−1) · · · (i1i3)(i1i2).

Example 3.1.3.(
1 2 3 4 5 6
5 4 3 6 1 2

)
= (15)(246) = (15)(26)(24) = (15)(46)(26)

Note that a given element σ of Sn may be expressed as a product of trans-
positions in different ways, but:

Proposition 3.1.4. In every factorization of σ as a product of transpositions,
the number of factors is either always even or always odd.

To see this, we first need to make sense of the sign of a permutation. Con-
sider the polynomial

∆n :=
∏

1≤i<j≤n

(xi − xj) ∈ Z[x1, x2, . . . , xn].
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For example, we have

∆1 = 1 (by convention)
∆2 = x1 − x2
∆3 = (x1 − x2)(x1 − x3)(x2 − x3)
∆4 = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

...

For any permutation σ ∈ Sn, we can define its action on ∆n by

σ ·∆n :=
∏

1≤i<j≤n

(xσ(i) − xσ(j)).

Observe that we always have σ ·∆n = ±∆n.

Definition. The sign of a permutation σ ∈ Sn is defined as s(σ) ∈ {±1}
such that σ ·∆n = s(σ)∆n. We say that σ is even (resp. odd) if s(σ) = +1
(resp. s(σ) = −1).

Now Proposition 3.1.4 follows from the fact that for a product of transpo-
sitions σ = τ1τ2 . . . τr, its sign is given by s(σ) = (−1)r. The subset An
of Sn consisting of even permutations is a subgroup of Sn. An is called the
n-th alternating group.

Proposition 3.1.5. A nonempty subset H of a group G is a subgroup of G if and
only if, for all a, b ∈ H , we have ab−1 ∈ H .

Proof. Suppose that H ⊆ G is a subgroup with identity eH . Then we have eH ·
eH = eH in H . Viewing this equation in G, we have eH · eH = eH = eG · eH .
Applying the cancellation law in G gives eH = eG, so the identity in H is the
same as that in G. Next, for h ∈ H , let h′ ∈ H and h−1 ∈ G be the inverses of
h in H and G respectively. Then we have h′ · h = eH in H . But eH = eG, so we
have h′ · h = eG = h−1 · h in G, which implies that h−1 = h′ ∈ H . Now for any
a, b ∈ H , we have b−1 ∈ H , and finally closedness implies that ab−1 ∈ H .

Conversely, suppose H is a nonempty subset of G such that ab−1 ∈ H for all
a, b ∈ H .

• (Existence of identity:) Let eG be the identity element of G. Since H is
nonempty, it contains at least one element h. Since eG = h · h−1, and by
hypothesis h · h−1 ∈ H , the set H contains eG, which will be an identity in
H .

• (Existence of inverses:) Since eG ∈ H , for all b ∈ H we have b−1 =
eG · b−1 ∈ H .
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• (Closedness:) For all a, b ∈ H , we know that b−1 ∈ H . Hence, ab =
a · (b−1)−1 ∈ H .

• (Associativity:) This is inherited from that in G.

Hence, H is a subgroup of G.

One can use this criterion to check that all the previous examples are indeed
subgroups.

3.2 Cyclic subgroups
Recall that for any group G and any element g ∈ G, we have the subset

〈g〉 = {gn : n ∈ Z}.

Proposition 3.2.1. Let G be a group. Then for any element g ∈ G, the subset 〈g〉
is the smallest subgroup of G containing g, which we call the cyclic subgroup
generated by g.

Proof. Let gk, gl be two arbitrary elements in 〈g〉. Then gk(gl)−1 = gk−l ∈ 〈g〉.
So 〈g〉 is a subgroup of G by Proposition 3.1.5.

Now let H ≤ G be any subgroup containing g. Then gk ∈ H for any k ∈ Z
since H is a subgroup. Hence 〈g〉 ⊂ H .

Proposition 3.2.2. The intersection of any collection of subgroups of a group G
is also a subgroup of G.

Proof. Exercise.

Corollary 3.2.3. Let G be a group. Then for any g ∈ G, we have

〈g〉 =
⋂

{H:g∈H≤G}

H.

Proposition 3.2.4. Every subgroup of a cyclic group is cyclic.

Proof. Let G = 〈g〉 be a cyclic group, and H ≤ G a subgroup. If H is trivial,
then it is cyclic (generated by the identity e). If H is nontrivial, then there exists
k ∈ Z>0 such that gk ∈ H . We set

m := min{k ∈ Z>0 : gk ∈ H}.

We claim that H is generated by gm. First of all, we obviously have 〈gm〉 ⊂ H .
Conversely, let gn be an arbitrary element in H . By the Division Theorem, there
exist (uniquely) integers q and 0 ≤ r ≤ m − 1 such that n = mq + r. So
gn = (gm)q ·gr which implies that gr = (gm)−q ·gn ∈ H . This forces r = 0. Thus
gn ∈ 〈gm〉, and we have shown that H ⊂ 〈gm〉. This completes the proof.
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Corollary 3.2.5. Any subgroup of (Z,+) is of the form nZ for some n ∈ Z.

Because of this corollary, we can define the gcd of two integers as follows.
For any a, b ∈ Z, the subset

〈a, b〉 := {ma+ nb : m,n ∈ Z}

is a subgroup of Z using Proposition 3.1.5 (check this!). Corollary 3.2.5 implies
that 〈a, b〉 is of the form dZ for some positive integer d. We then define the great-
est common divisor (gcd), denoted as gcd(a, b), to be this positive integer d. One
can check that this gcd satisfies the following properties (as expected):

• d | a and d | b,

• d = ka+ lb for some k, l ∈ Z, and

• if k | a and k | b, then k | d.

Proposition 3.2.6. Let G be a cyclic group of order n and g ∈ G be a generator
of G, i.e. G = 〈g〉. Let gs ∈ G be an element in G. Then

|gs| = n/d,

where d = gcd(s, n). Moreover, 〈gs〉 = 〈gt〉 if and only if gcd(s, n) = gcd(t, n).

Proof. Let us write a = gs and letm := |a|. First of all, we have an/d = (gs)n/d =
(gn)s/d = e since |G| = n. Proposition 2.1.2 implies that m | (n/d). On the other
hand, we have e = am = gsm which implies, again by Proposition 2.1.2, that
n | sm. Dividing both sides by d gives (n/d) | (s/d)m. But n/d and s/d are
relatively prime, so we must have (n/d) | m. This proves that |gs| = m = n/d
where d = gcd(s, n).

To prove the second assertion, we first show that there is an equality of sub-
groups 〈gs〉 = 〈gd〉 where d = gcd(s, n). One inclusion is clear: as d | s, we have
gs ∈ 〈gd〉 which implies 〈gs〉 ⊂ 〈gd〉. Conversely, note that there exist k, l ∈ Z
such that d = ks + ln. So we have gd = (gs)k · (gn)l = (gs)k ∈ 〈gs〉 and hence
〈gd〉 ⊂ 〈gs〉. This proves the equality we claimed.

Now, 〈gs〉 = 〈gt〉 implies that |gs| = |gt| which in turn gives gcd(s, n) =
gcd(t, n). Conversely, if we have gcd(s, n) = gcd(t, n) =: d, then 〈gs〉 = 〈gd〉 =
〈gt〉.

Corollary 3.2.7. All generators of a cyclic group G = 〈g〉 of order n are of the
form gr where r is relatively prime to n.
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Week 4

4.1 Generating sets
Let G be a group, S a nonempty subset of G. Then similar to the case of a cyclic
subgroup, it can be proved using Proposition 3.1.5 that the subset:

〈S〉 := {am1
1 am2

2 · · · amn
n : n ∈ N, ai ∈ S,mi ∈ Z}

is the smallest subgroup of G containing S. We call 〈S〉 the subgroup of G gen-
erated by S. If G = 〈S〉, then we say S is a generating set for G.

Remark. Similar to the cyclic subgroup generated by a single element, we have

〈S〉 =
⋂

{H:S⊂H≤G}

H.

If S = {a1, a2, . . . , al} is a finite set, we often write

〈a1, a2, . . . , al〉

to denote the subgroup generated by S.

Example 4.1.1. • The set of cycles and the set of transpositions are two ex-
amples of generating sets for Sn.

• We also have Sn = 〈(12), (12 · · ·n)〉.

• We have Dn = 〈r, s〉 where r is the rotation by the angle 2π/n in the
counterclockwise direction and s is any reflection.

If there exists a finite number of elements a1, a2, . . . , al ∈ G such that

G = 〈a1, a2, . . . , al〉,

then we say that G is finitely generated.

17



For example, every cyclic group is finitely generated, for it is generated by one
element. Every finite group is also finitely generated, since we may take the finite
generating set S to be G itself. Finitely generated groups are relatively easier to
understand (though already much harder than finite groups). For instance, there
is a simple classification for finitely generated abelian groups but not for those
which are not finitely generated.

Exercise: The group (Q,+) is not finitely generated.

4.2 Review on equivalence relations and partitions
Let S be a set.

A partition P of S is a collection of subsets {Si : i ∈ I} of S (here I is some
index set) such that

• Si 6= ∅ for each i ∈ I ,

• Si ∩ Sj = ∅ if i 6= j, and

•
⋃
i∈I Si = S.

We may also say that P is a subdivision of S into a disjoint union of nonempty
subsets, written as

S =
⊔
i∈I

Si.

An equivalence relation on S is a relation ∼ (i.e. a subset of S × S) which is

• (Reflexive:) a ∼ a for any a ∈ S,

• (Symmetric:) if a ∼ b, then b ∼ a, and

• (Transitive:) if a ∼ b and b ∼ c, then a ∼ c.

In fact, partition and equivalence relation are two equivalent concepts.
First of all, given a partition {Si : i ∈ I} of S, we can define a relation on S

by the rule a ∼ b if a, b ∈ Si for some i ∈ I . Then it is easy to check that ∼ is an
equivalence relation on S.

Conversely, suppose we are given an equivalence relation ∼ on S. For any
a ∈ S, the set

Ca = {b ∈ S : a ∼ b}
is called the equivalence class of a. The reflexive axiom implies that a ∈ Ca; in
particular, Ca 6= ∅ for all a ∈ S. Also, S is the union of all the equivalence classes
Ca. Finally, we claim that if Ca ∩ Cb 6= ∅, then Ca = Cb.
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Proof of claim. Suppose there exists c ∈ Ca ∩ Cb. So we have a ∼ c and b ∼ c.
The symmetric and transitive axioms then imply that a ∼ b (and b ∼ a). Now for
any d ∈ Ca, we have d ∼ a, so d ∼ b by a ∼ b and the transitive axiom. Thus
d ∈ Cb and this shows that Ca ⊂ Cb. Reversing the roles of a and b in the same
argument shows that Cb = Ca. Therefore Ca = Cb.

We conclude that the collection of equivalence classes Ca, a ∈ S gives a
partition of S.

4.3 Cosets and The Theorem of Lagrange
Let G be a group, H a subgroup of G. We are interested in knowing how large H
is relative to G.

We define a relation ∼L on G as follows:

a ∼L b if and only if b = ah for some h ∈ H,

or equivalently:
a ∼L b if and only if a−1b ∈ H.

Exercise: ∼L is an equivalence relation.
We may therefore partition G into a disjoint union of equivalence classes with

respect to ∼L. We call these equivalence classes the left cosets of H in G; each
left coset of H has the form

aH = {ah : h ∈ H}.

We could likewise define a relation ∼R on G by

a ∼R b if and only if b = ha for some h ∈ H,

or equivalently:
a ∼R b if and only if ba−1 ∈ H.

∼R is also an equivalence relation, whose equivalence classes, which are subsets
of the form

Hb = {hb : h ∈ H}, b ∈ G,

are called the right cosets of H in G.

Definition. The number of left cosets of a subgroup H of G is called the index of
H in G. It is denoted by:

[G : H]

Theorem 4.3.1 (Lagrange). Let G be a group, and H ≤ G be a subgroup.
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• For any a ∈ G, the maps ψ : H → aH , h 7→ ah and ϕ : H → Ha, h 7→ ha
are both bijections. Hence any two cosets (no matter left ot right) have the
same cardinality (as that of H).

• If G is finite, then |H| divides |G|. More precisely, |G| = [G : H] · |H|.

Proof. Since left cosets (or right cosets) of H partition G, the second statement
follows from the first one. For any s ∈ aH , by definition of a left coset (as an
equivalence class) we have s = ah for some h ∈ H . Hence, ψ is surjective. If
ψ(h′) = ah′ = ah = ψ(h) for some h′, h ∈ H , then h′ = a−1ah′ = a−1ah = h.
Hence, ψ is injective. Similarly, one can show that ϕ is a bijection.

Remark. As a consequence of the Theorem of Lagrange, we see that the numbers
of left cosets and right cosets, if finite, are equal to each other; more generally, the
set of left cosets has the same cardinality as the set of right cosets. So the index
of a subgroup can be defined using right cosets as well.

Corollary 4.3.2. Let G be a finite group. The order of every element of G divides
the order of G.

Proof. Since G is finite, any element of g ∈ G has finite order |g|. Since the order
of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g|g|−1}

is equal to |g|, it follows from Lagrange’s Theorem that |g| = |H| divides |G|.

Corollary 4.3.3. If the order of a group G is prime, then G is a cyclic group.

Proof. Let G be a group such that p = |G| is a prime number. Since p ≥ 2, there
exists a ∈ G \ {e}. The above corollary them says that |a| | p. But |a| 6= 1, so we
must have |a| = p. This means that G = 〈a〉.

Corollary 4.3.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

Proof. The previous corollary already says that |g| | |G|, i.e. |G| = k · |g|. So
g|G| = (g|g|)k = e.

4.4 Examples of cosets
Example 4.4.1. Let G = (Z,+). Let:

H = 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}
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The set H is a subgroup of G. The left cosets of H in G are as follows:

3Z, 1 + 3Z, 2 + 3Z,

where i+ 3Z := {i+ 3k : k ∈ Z}.
In general, for n ∈ Z, the left cosets of nZ in Z are:

i+ nZ, i = 0, 1, 2, . . . , n− 1.

Exercise: For the subgroup (Z,+) < (R,+), show that the set of (left) cosets are
parametrized by [0, 1), so that we have

R =
⊔

t∈[0,1)

(t+ Z) .

Exercise: For a vector subspace W ⊂ V , we consider the subgroup (W,+) <
(V,+). Then the set of cosets are given by the affine translates v + W , v ∈ V ,
of W in V . Let W ′ ⊂ V be a subspace complementary to W , meaning that it
satisfies the following conditions:

• dimW ′ = dimV − dimW , and

• W ∩W ′ = {0}.

Show that the set of cosets of W in V are parametrized by W ′, so that

V =
⊔
v∈W ′

(v +W ) .

Example 4.4.2. Let G = GL(n,R). Let:

H = GL+(n,R) := {h ∈ G : deth > 0} .

(Exercise: H is a subgroup of G.)
Let:

s =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ∈ G
Note that det s = det s−1 = −1.

21



For any g ∈ G, either det g > 0 or det g < 0. If det g > 0, then g ∈ H . If
det g < 0, we write:

g = (ss−1)g = s(s−1g).

Since det s−1g = (det s−1)(det g) > 0, we have s−1g ∈ H . So, G = H t sH ,
and [G : H] = 2. Notice that both G and H are infinite groups, but the index of
H in G is finite.
Example 4.4.3. Let G = GL(n,R), H = SL(n,R). For each x ∈ R×, let:

sx =


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

 ∈ G
Note that det sx = x.

For each g ∈ G, we have:

g = sdet g(s
−1
det gg) ∈ sdet gH

Moreover, for distinct x, y ∈ R×, we have:

det(s−1x sy) = y/x 6= 1.

This implies that s−1x sy /∈ H , hence syH and sxH are disjoint cosets. We have
therefore:

G =
⊔
x∈R×

sxH.

The index [G : H] in this case is infinite.
Example 4.4.4. Consider the dihedral group Dn, and the cyclic subgroup 〈r〉
generated by the counterclockwise rotation by 2π/n. Since

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s},

we directly see that
Dn = 〈r〉 t s〈r〉.

Example 4.4.5. Consider the n-th symmetric group Sn, and the subgroup An <
Sn consisting of all the even permutations. Let τ ∈ Sn be a transposition. Exer-
cise: the map σ 7→ τσ gives a bijection between An and Bn := Sn \ An, the set
of all odd permutations. Hence we have Sn = An t τAn.
Example 4.4.6. Recall that S3(= D3) is generated by ρ = (123) and µ = (12).
(In fact, S3 = {id, ρ, ρ2, µ, ρµ, ρ2µ}.) For the cyclic subgroup H = 〈µ〉 < S3, the
left cosets are given by H, ρH, ρ2H so that we have S3 = H t ρH t ρ2H .
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Week 5

5.1 Normal subgroups and quotient groups
Let G be a group, and H ≤ G be a subgroup. It is tempting to ask whether one
can define a group structure on the set of left cosets of H in G by

aH · bH := (ab)H,

where ab on the RHS is the product of a, b in G.

Definition. A subgroup H ≤ G is called normal if aH = Ha for all a ∈ G. We
usually denote a normal subgroup by H �G.

Remark. Let G be a group, and H ≤ G be a subgroup. Then the following
statements are equivalent:

1. H is normal in G, i.e. H �G.

2. aH ⊆ Ha for all a ∈ G.

3. aHa−1 ⊆ H for all a ∈ G.

4. aHa−1 = H for all a ∈ G.

Theorem 5.1.1. Let G be a group, and H ≤ G be a subgroup. The operation on
the set of left cosets of H in G defined by

aH · bH := (ab)H for a, b ∈ G (5.1.2)

is well-defined if and only if H �G.

Proof. First note that the operation (5.1.2) is well-defined if and only if for any
a, b ∈ G and h, h′ ∈ H , we have

(ahbh′)H = (ab)H.

23



Suppose that this is the case. Then, in particular, we have ahb ∈ (ab)H for any
a, b ∈ G and h ∈ H . This implies that aha−1 ∈ H for any a ∈ G and h ∈ H . So
we have aHa−1 ⊆ H for any a ∈ G, and hence H �G by Remark 5.1.

Conversely, suppose that H � G. Consider arbitrary elements h, h′ ∈ H and
a, b ∈ G. Since H � G, there exists h′′ ∈ H such that hb = bh′′. So we have
ahbh′ = abh′′h′, which implies that ahbh′ ∈ (ab)H . Then (ahbh′)H∩(ab)H 6= ∅.
This forces (ahbh′)H = (ab)H because these are equivalence classes. This shows
that the operation (5.1.2) is well-defined.

Corollary 5.1.3. Let H be a normal subgroup of a group G. The (left) cosets of
H in G form a group, called the quotient group of G by H , under the binary
operation (5.1.2).

Proof. Associativity is inherited from G. The coset H = eH acts as the identity
element, and the inverse of a left coset aH is given by a−1H .

Note that |G/H| = [G : H]. In particular, when G is finite, we have |G/H| =
|G| / |H|.
Remark. One can replace left cosets by right cosets (and vice versa) in all the
above discussions.

5.2 Examples of normal subgroups and quotient groups
Example 5.2.1. If G is an abelian group, then any subgroup is normal. For in-
stance, we have

• (Z,+) � (Q,+) � (R,+) � (C,+).

• (Q×, ·) � (R×, ·) � (C×, ·).

• nZ� Z for any integer n.

• (W,+)� (V,+) for any vector subspace W ≤ V . (Recall that the set V/W
of cosets of W in V , which is nothing but the set of affine translates of W in
V , can be equipped with the structure of a vector space, called the quotient
space of V by W .)

Example 5.2.2. For any group G, we have {e}�G and G�G, and G/{e} ∼= G
and G/G ∼= {e}.
Example 5.2.3. For any integer n ≥ 3, we have An � Sn and Sn/An ∼= Z2.

Example 5.2.4. Consider the dihedral group Dn, where n ≥ 3 is an integer.
The cyclic subgroup 〈r〉 generated by the counterclockwise rotation r by 2π/n is
normal in Dn (because it is of index 2), and Dn/〈r〉 ∼= Z2.
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Example 5.2.5. For any positive integer n and any field F , we have SL(n, F ) �
GL(n, F ), and GL(n, F )/SL(n, F ) ∼= F×.
Example 5.2.6. For S3 = {id, ρ, ρ2, µ, ρµ, ρ2µ}, where ρ = (1, 2, 3) and µ =
(1, 2), the subgroup 〈µ〉 = {id, µ} ≤ S3 is not normal because ρH 6= Hρ and
ρ2H 6= Hρ2.

5.3 Group Homomorphisms
Definition. Let G = (G, ∗), G′ = (G′, ∗′) be groups.

A group homomorphism φ from G to G′ is a map φ : G −→ G′ which
satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),

for all a, b ∈ G.
If φ is also bijective, then φ is called an isomorphism. If there exists an

isomorphism φ : G −→ G′ between two groups G and G′, then we say G is
isomorphic to G′, and denoted by G ' G′.

An isomorphism from G onto itself is called an automorphism; the set of all
automorphisms of a group G is a group itself, denoted by Aut(G).
Remark. Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is
also a homomorphism, and consequently, φ−1 is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same
algebraic properties – they only differ by relabeling of their elements. One of the
most fundamental questions in group theory is to classify groups up to isomor-
phisms.
Example 5.3.1. • Let V,W be vector spaces over R (or C). Then a linear

transformation φ : V −→ W is in particular a homomorphism between
abelian groups φ : (V,+) −→ (W,+).

• The determinant det : GL(n,R) −→ R× is a group homomorphism.

• The exponential map exp : (R,+) −→ (R>0, ·) is an isomorphism from the
additive group of real numbers to the multiplicative group of positive real
numbers, whose inverse if given by the logarithm log : (R>0, ·) −→ (R,+).

Example 5.3.2. • For any nonzero integer n, we have nZ ≤ Z, and the map
φ : nZ −→ Z defined by nk 7→ k is an isomorphism. Note that nZ < Z
is proper whenever |n| > 1, so a proper subgroup can be isomorphic to the
parent group!

• On the other hand, for any integer n, the map φ : Z −→ Z defined by
k 7→ nk is a homomorphism but not an isomorphism unless |n| = 1.
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• Given a positive integer n, the remainder map φ : Z −→ Zn defined by
mapping k to its remainder when divided by n is a surjective homomor-
phism (check this!).

• The map φ : Z −→ Z defined by k 7→ k + 1 is not a homomorphism.

Example 5.3.3. The group:

G =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ θ ∈ R}
is isomorphic to

G′ = {z ∈ C : |z| = 1}.

Here, the group operation on G is matrix multiplication, and the group operation
on G′ is the multiplication of complex numbers.

Proof. Each element inG′ is equal to eiθ for some θ ∈ R. Define a map φ : G −→
G′ as follows:

φ

((
cos θ − sin θ
sin θ cos θ

))
= eiθ.

Exercise: φ is a bijective group homomorphism.

Here are some basic properties of group homomorphisms:

Proposition 5.3.4. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof. We prove the first claim, and leave the rest as an exercise.
Since eG is the identity element of G, we have eG ∗ eG = eG. On the other

hand, since φ is a group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)−1 exists in G′, hence:

φ(eG)−1 ∗′ φ(eG) = φ(eG)−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand
side is equal to φ(eG).

Proposition 5.3.5. Let φ : G −→ G′ be a homomorphism of groups. Then
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1. For any subgroup H of G, its image φ(H) under φ is a subgroup of G′.

2. For any subgroup H ′ of G′, its preimage φ−1(H ′) under φ is a subgroup of
G.

Proof. Let H ≤ G. To prove that φ(H) ≤ G′, we use the subgroup criterion. So
let φ(a), φ(b) ∈ φ(H), where a, b ∈ H . Then φ(a) · φ(b)−1 = φ(ab−1) because φ
is a homomorphism, and ab−1 ∈ H because H‘G. So φ(a) · φ(b)−1 ∈ φ(H). This
proves (1). The proof of (2) is left as an exercise.

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined
as:

imφ := φ(G) := {φ(g) : g ∈ G}

The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′}.

Corollary 5.3.6. The image of φ is a subgroup ofG′. The kernel of φ is a subgroup
of G.

Proposition 5.3.7. A group homomorphism φ : G −→ G′ is one-to-one if and
only if kerφ = {eG}.

Proof. Exercise.

Proposition 5.3.8. Let φ : G −→ G′ be a homomorphism of groups. Then

1. For any normal subgroup N of G, its image φ(N) under φ is a normal
subgroup of imφ (not G′!).

2. For any normal subgroup N ′ of G′, its preimage φ−1(N ′) under φ is a nor-
mal subgroup of G.

Proof. This time we just prove (2). Proposition 5.3.5 (2) already tells us that
φ−1(N ′) ≤ G. To see that it is normal, let g ∈ G and a ∈ φ−1(N ′). Then
φ(gag−1) = φ(g)φ(a)φ(g)−1 because φ is a homomorphism. Now φ(a) ∈ G′

and N ′ � G′ implies that φ(g)φ(a)φ(g)−1 ∈ N ′. So gag−1 ∈ φ−1(N ′) and we
conclude that φ−1(N ′) �G.

Corollary 5.3.9. The kernel kerφ of a group homomorphism φ : G −→ G′ is a
normal subgroup of G.
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Week 6

6.1 Group Homomorphisms (Cont’d)
As we have mentioned, isomorphisms preserve algebraic properties. Here are
some examples.

Proposition 6.1.1. Let G be a cyclic group, then any group isomorphic to G is
also cyclic.

Proof. Exercise.

Example 6.1.2. The cyclic group Z4 is not isomorphic to Z2 × Z2.

Proof. Each element of G = Z2 × Z2 is of order at most 2. Since |G| = 4, G
cannot be generated by any of its elements. Hence, G is not cyclic, so it cannot be
isomorphic to the cyclic group Z4.

Proposition 6.1.3. Let G be an abelian group, then any group isomorphic to G is
abelian.

Proof. Exercise.

Example 6.1.4. The group D6 has 12 elements. We have seen that D6 = 〈r2, s〉,
where r2 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if D6 is isomorphic to Z6 × Z2. The answer is no. For Z6 × Z2

is abelian, but D6 is not.

Remark. Both claims remain true if we replace isomorphism by a surjective ho-
momorphism, namely, if φ : G −→ G′ is a surjective homomorphism, then we
have

• G is cyclic⇒ G′ is cyclic,

• G is abelian⇒ G′ is abelian.
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Try to prove these assertions by yourself!

Exercise. Check that the restriction of a homomorphism φ : G −→ G′ to a
subgroup H ≤ G gives a homomorphism from H to G′.

Proposition 6.1.5. If φ : G −→ G′ is an isomorphism, then |φ(g)| = |g| for any
g ∈ G.

Proof. By the previous exercise, the restriction of φ to the subgroup 〈g〉 gives a
homomorphism

φ|〈g〉 : 〈g〉 −→ G′,

which is injective and with image

imφ|〈g〉 = 〈φ(g)〉.

Therefore, φ|〈g〉 is an isomorphism from 〈g〉 to 〈φ(g)〉. In particular, we have
|φ(g)| = |g|.

6.2 Canonical projection and the First Isomorphism
Theorem

Proposition 6.2.1. Let N be a normal subgroup in a group G. The map π : G→
G/N defined by π(a) := aN is a surjective homomorphism with kerπ = N . We
call π : G→ G/N the canonical projection.

Proof. For any a, b ∈ N , we have π(ab) = (ab)N = (aN)(bN) = π(a)π(b). So
π is a homomorphism (essentially because the product on G/N is well-defined).
It is obviously surjective. Its kernel is given by kerπ = {a ∈ G : π(a) = N} =
{a ∈ G : aN = N} = N .

We have seen that the kernel of any homomorphism is a normal subgroup;
Proposition 6.2.1 tells us that conversely any normal subgroup is a kernel.

Theorem 6.2.2. Let φ : G → G′ be a group homomorphism. Then the map
φ : G/ kerφ → imφ defined by φ(a kerφ) = φ(a) is a isomorphism such that
φ = φ ◦ π, i.e. the following diagram commutes:

G G/ kerφ

imφ

φ

π

φ
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Proof. Write N = kerφ. First of all, we need to show that φ is well-defined.
Suppose a′N = aN . Then a′ = an for some n ∈ N = kerφ. So we have
φ(a′N) = φ(a′) = φ(an) = φ(a)φ(n) = φ(a) = φ(aN). Hence φ is well-
defined.

Now, sine φ is a homomorphism, we have φ((aN)(bN)) = φ((ab)N) =
φ(ab) = φ(a)φ(b) = φ(aN)φ(bN). So φ is also a group homomorphism. It
is clearly surjective, and its kernel is given by kerφ = {aN : φ(a) = eG′} =
{aN : a ∈ N} = {N}. We conclude that φ is an isomorphism.

Finally, for any a ∈ G, we have (φ ◦ π)(a) = φ(aN) = φ(a). This completes
the proof.

This theorem is usually called the First Isomorphism Theorem. It is the
main tool to establish isomorphisms between groups. Also, it tells us that any
group homomorphism φ : G → G′ can be decomposed as the composition of a
surjection and an injection:

G G/ kerφ imφ G′

φ

π '
φ

ι

Compare this to the decomposition of a set-theoretic map f : A→ B as:

A im f B

f

6.3 Classification of cyclic groups
Example 6.3.1. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting
of all rotations, where r1 denotes the anti-clockwise rotation by the angle 2π/n,
and rk = rk1 . Then, H is isomorphic to Zn = (Zn,+n).

Proof. Define φ : H −→ Zn as follows:

φ(rk1) = k, k ∈ Z,

where k denotes the remainder of the division of k by n.
The map φ is well defined: If rk1 = rk

′
1 , then rk−k

′

1 = e, which implies that
n = |r1| divides k − k′. Hence, k = k′ in Zn.

For i, j ∈ Z, we have ri1r
j
1 = ri+j1 ; hence:

φ(ri1r
j
1) = φ(ri+j1 ) = i+ j = i+n j = φ(ri1) +n φ(rj1).
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This shows that φ is a homomorphism. It is clear that φ is surjective, which then
implies that φ is one-to-one, for the two groups have the same size. Hence, φ is a
bijective homomorphism, i.e. an isomorphism.

In fact:

Theorem 6.3.2. Any infinite cyclic group is isomorphic to (Z,+). Any cyclic
group of finite order n is isomorphic to (Zn,+n).

Proof. Write G = 〈g〉.
Suppose |G| =∞. Consider the map

φ : Z→ G, k 7→ gk.

φ is a homomorphism because φ(k1 + k2) = gk1+k2 = gk1 · gk2 = φ(k1) · φ(k2).
φ is injective because φ(k1) = φ(k2) implies that gk1 = gk2 which forces k1 = k2
as |g| =∞. φ is surjective because G is generated by g. We conclude that φ is an
isomorphism.

If |G| = n <∞, Claim 2.1.3 says that we can write

G = 〈g〉 = {e, g, g2, . . . , gn−1}.
Consider the bijection

φ : G→ Zn, gi 7→ i.

We have

φ(gi1 · gi2) = φ(gi1+i2)

=

{
φ(gi1+i2) if i1 + i2 < n,
φ(gi1+i2−n) if i1 + i2 ≥ n

=

{
i1 + i2 if i1 + i2 < n,
i1 + i2 − n if i1 + i2 ≥ n

= φ(gi1) + φ(gi2),

so φ is an isomorphism.

So for any n ∈ Z ∪ {∞}, there is a unique (up to isomorphism) cyclic group
of order n. In particular, we have the following:

Corollary 6.3.3. If G and G′ are two finite cyclic groups of the same order, then
G is isomorphic to G′.

For example, the multiplicative group of m-th roots of unity

Um = {z ∈ C : zm = 1} = {1, ζm, ζ2m, . . . , ζm−1m },
where ζm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C, is cyclic of order m. So it
is isomorphic to Zm, and an isomorphism is given by

φ : Zm −→ Um, k 7→ ζkm.
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6.4 Structure of finite abelian groups
Consider the group Zm × Zn, where m,n are positive integers.

Lemma 6.4.1. The order of the element (1, 1) ∈ Zm × Zn is given by lcm(m,n).

Proof. Let k = |(1, 1)|. Then k · (1, 1) = (0, 0) ∈ Zm × Zn. Hence m|k and n|k,
which implies that lcm(m,n)|k. On the other hand, we have lcm(m,n) · (1, 1) =
(0, 0) ∈ Zm × Zn, which implies that k|lcm(m,n). Hence, we conclude that
k = lcm(m,n).

Proposition 6.4.2. The group Zm × Zn, , where m,n are positive integers, is
cyclic if and only if m,n are relatively prime.

Proof. If m,n are relatively prime, then the above lemma shows that (1, 1) gen-
erates Zm × Zn.

Conversely, for any (a, b) ∈ Zm × Zn, we have lcm(m,n) · (a, b) = (0, 0) ∈
Zm × Zn. Thus |(a, b)| |lcm(m,n). In particular, |(a, b)| ≤ lcm(m,n), and equal-
ity never holds if m,n are not relatively prime.

For example, Z2 × Z12
∼= Z2 × Z3 × Z4

∼= Z6 × Z4.

Theorem 6.4.3. Any finite abelian group is isomorphic to a direct product of finite
cyclic groups. More precisely, let m be a positive integer with prime factorization
m = pn1

1 p
n2
2 . . . pnk

k . Then a finite abelian group G of order m is isomorphic to a
product of the form

k∏
i=1

(
Zpni1

i
× Zpni2

i
× · · · × Z

p
ni`i
i

)
,

where nij , i = 1, . . . , k and j = 1, . . . , `i, are positive integers such that ni =
ni1 + ni2 + · · ·+ ni`i (i.e. a partition of ni).

Proof. This is out of the scope of this course (and will be covered in MATH4080).

For example, any abelian group of order 36 = 2232 is isomorphic to one of the
following 4 groups:

Z22 × Z32
∼= Z36,

Z22 × Z2
3
∼= Z3 × Z12,

Z2
2 × Z32

∼= Z2 × Z18,

Z2
2 × Z2

3
∼= Z6 × Z6.
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Week 7

7.1 Rings
Definition. A ring is a set R equipped with two binary operations:

+, · : R×R→ R

which satisfy the following properties:

1. (R,+) is an abelian group.

2. (a) The multiplication · is associative, i.e.

(a · b) · c = a · (b · c)

for all a, b, c ∈ R.

(b) There is an element 1 ∈ R (called the multiplicative identity) such that
1 · a = a · 1 = a for all a ∈ R.

3. (Distributive laws:)

(a) a · (b+ c) = a · b+ a · c and

(b) (a+ b) · c = a · c+ b · c

for all a, b, c ∈ R.

Definition. A triple (R,+, ·) satisfying all the above conditions except 2(b) is
called a rng or a ring without identity.

Example 7.1.1. The following sets, equipped with the usual operations of addition
and multiplication, are rings:

1. Z, Q, R, C.
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2. Z[x], Q[x], R[x], C[x] (Polynomials with integer, rational, real, complex
coefficients, respectively.)

3. Q[
√

2] =
{∑n

k=0 ak(
√

2)k : ak ∈ Q, n ∈ N
}

= {a+ b
√

2 : a, b ∈ Q}.

4. For a fixed n, the set of n× n matrices with integer coefficients.

5. C[a, b] = {f : [a, b]→ R : f is continuous.}

6. (N,+, ·) is not a ring because (N,+) is not a group.

Example 7.1.2. 2Z is a rng. It is not a ring.

Remark. • For convenience’s sake, we often write ab for a · b.

• In the definition, commutativity is required of addition, but not of multipli-
cation.

• Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element a ∈ R such that ab 6= 1 for all
b ∈ R.

Proposition 7.1.3. In a ring R, there is a unique additive identity and a unique
multiplicative identity.

Proof. We already know that the additive identity is unique.
Suppose there is an element 1′ ∈ R such that 1′r = r or all r ∈ R, then in

particular 1′1 = 1. But 1′1 = 1′ since 1 is a multiplicative identity element, so
1′ = 1.

Proposition 7.1.4. For any r in a ring R, its additive inverse −r is unique. That
is, if r + r′ = r + r′′ = 0, then r′ = r′′.

If r has a multiplicative inverse, then it is also unique. That is, if rr′ = 1 = r′r
and rr′′ = 1 = r′′r, then r′ = r′′.

Proposition 7.1.5. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributive laws,

0r = (0 + 0)r = 0r + 0r

Adding −0r (additive inverse of 0r) to both sides, we have:

0 = (0r + 0r) + (−0r) = 0r + (0r + (−0r)) = 0r + 0 = 0r.

The proof of r0 = 0 is similar and we leave it as an exercise.
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Proposition 7.1.6. For all elements r in a ring, we have (−1)(−r) = (−r)(−1) =
r.

Proof. We have:

0 = 0(−r) = (1 + (−1))(−r) = −r + (−1)(−r).

Adding r to both sides, we obtain

r = r + (−r + (−1)(−r)) = (r +−r) + (−1)(−r) = (−1)(−r).

We leave it as an exercise to show that (−r)(−1) = r.

Proposition 7.1.7. For all r in a ring R, we have: (−1)r = r(−1) = −r

Proof. Exercise

Proposition 7.1.8. If R is a ring in which 1 = 0, then R = {0}. That is, it has
only one element.

We call such an R the zero ring.

Proof. Exercise.

Definition. A ring R is said to be commutative if ab = ba for all ab ∈ R.

Example 7.1.9. • Z, Q, R, C are all commutative rings, so are Z[x], Q[x],
R[x], C[x].

• For a fixed natural number n > 1, the ring of n × n matrices with integer
coefficients, under the usual operations of addition and multiplication, is not
commutative.

Modular arithmetic
Let n be a positive integer. Two integers a, b ∈ Z are said to be congruent modulo
n, denoted as a ≡ b mod n, if n | (a − b). This defines an equivalence relation
on Z. Congruence modulo n is exactly the same as the relation defined by the
subgroup nZ ≤ Z, so the induced partition is the same as that given by the cosets
of nZ in Z.

Recall that the remainder map φ : Z −→ Zn defined by mapping k to its
remainder when divided by n is a surjective group homomorphism. Applying the
First Isomorphism Theorem (Theorem 6.2.2) to it gives the natural isomorphism

(Z/nZ,+) ∼= (Zn,+)
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of abelian groups.
For any integer a ∈ Z, we denote by a ∈ Z/nZ the coset of nZ in Z rep-

resented by a, and by abuse of notations, also the (unique) remainder in Zn =
{0, 1, 2, . . . , n− 1} of the division of a by n. Then we have a ≡ a′ mod n if and
only if a = a′. Since the addition a + b = a+ b is well-defined on the quotient
Z/nZ, the addition on Z is compatible with the congruence relation in the sense
that if a ≡ a′ mod n and b ≡ b′ mod n, then a+ b ≡ a′ + b′ mod n.

The multiplication on Z is also compatible with the congruence relation, i.e.
if a ≡ a′ mod n and b ≡ b′ mod n, then ab ≡ a′b′ mod n. To see this, write
a′ − a = kn and b′ − b = `n. Then a′b′ − ab = (a + kn)(b + `n) − ab =
(bk + a` + k`n)n is a multiple of n. This means that the operation a · b := ab is
well-defined on the quotient Z/nZ.

Proposition 7.1.10. With addition and multiplication defined above, Z/nZ ∼= Zn
is a commutative ring.

Proof. We already know that (Z/nZ,+) is an abelian group.
Since the multiplication on Z is also compatible with the congruence relation,

associativity of the multiplication defined by a · b := ab follows from that on Z,
and it is clear that 1 is the multiplicative identity.

On the other hand, the distributive laws also from that of Z.

Rings of polynomials
Definition. Let R be a nonzero commutative ring.

A polynomial with coefficients in R (in one-variable) is a formal sum

f(x) =
∞∑
i=0

aix
i

with ai ∈ R such that ai = 0 for all but finitely many i’s.
If ai 6= 0 for some i, then the largest such i is called the degree of f(x),

denoted by deg f(x).
We denote by R[x] the set of all polynomials with coefficients in R.

Given

f(x) =
∞∑
i=0

aix
i, g(x) =

∞∑
i=0

bix
i ∈ R[x],
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we define the addition and multiplication as follows (as usual):

f(x) + g(x) :=
∞∑
i=0

(ai + bi)x
i,

f(x)g(x) :=
∞∑
i=0

(
i∑

k=0

akbi−k

)
xi.

(7.1.11)

Proposition 7.1.12. With addition and multiplication thus defined, R[x] is a com-
mutative ring.

Proof. Exercise.

Remark. A polynomial f(x) defines a function f : R → R by a 7→ f(a). But
f(x) may not be determined by f : R→ R. For example, the polynomials

f(x) = 1 + x+ x2, g(x) = 1 ∈ Z2[x]

define the same (constant) function from Z2 to itself.

Remark. A formal power series with coefficients in R (in one-variable) is a
formal sum

f(x) =
∞∑
i=0

aix
i

where ai ∈ R for all i (but without the condition that ai = 0 for all but finitely
many i’s). The set R[[x]] of all formal power series with coefficients in R is also
a commutative ring under the operations (7.1.11).
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Week 8

Integral domains and fields
Definition. A nonzero element r in a ring R is called a zero divisor if there exists
nonzero s ∈ R such that rs = 0.
Definition. A nonzero commutative ring R is called an integral domain if it has
no zero divisors.
Example 8.0.1. 1. Z,Q,R,C are all integral domains, so are Z[x],Q[x],R[x],

C[x]. More generally, if R is an integral domain, so is R[x].

2. Since 2, 3 6≡ 0 mod 6, and 2 · 3 = 6 ≡ 0 mod 6, the ring Z6 is not an
integral domain. Similarly, if n is composite, then Zn is not an integral
domain.

3. Consider R = C[−1, 1], the ring of all continuous functions on [−1, 1],
equipped with the usual operations of addition and multiplication for func-
tions. Let:

f =

{
−x, x ≤ 0,

0, x > 0.
, g =

{
0, x ≤ 0,

x, x > 0.

Then f and g are nonzero elements ofR, but fg = 0. SoR is not an integral
domain.

Proposition 8.0.2. A commutative ring R is an integral domain if and only if the
cancellation law holds for multiplication, i.e. whenever ca = cb and c 6= 0, we
have a = b.

Proof. Suppose R is an integral domain. If ca = cb, then by distributive laws,
c(a− b) = c(a+−b) = 0. Since R is an integral domain, we have either c = 0 or
a− b = 0. So, if c 6= 0, we must have a = b.

Conversely, suppose cancellation law holds. Suppose there are nonzero a, b ∈
R such that ab = 0. By a previous result we know that 0 = a0. So, ab = a0,
which by the cancellation law implies that b = 0, a contradiction.
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Definition. Let R be a ring. A unit in R is an element a ∈ R which has a
multiplicative inverse, i.e. there exists a−1 ∈ R such that aa−1 = a−1a = 1.

The set of all units in a ring R is denoted as R×; it is a group under multipli-
cation. (Exercise.)
Example 8.0.3. The only units of Z are ±1.

Example 8.0.4. Let R be the ring of all real valued functions on R. Then, any
function f ∈ R satisfying f(x) 6= 0, ∀x, is a unit.

Example 8.0.5. Let R be the ring of all continuous real valued functions on R,
then f ∈ R is a unit if and only if it is either strictly positive or strictly negative.

Definition. A division ring is a ring R in which every nonzero element is a unit,
i.e. R× = R \ {0}. A field is a nonzero commutative division ring.

In other words, a nonzero commutative ring F is a field if and only if every
nonzero element r ∈ F has a multiplicative inverse r−1, i.e. rr−1 = r−1r = 1.

For example, Q, R, C are fields, but Z is not a field.
Also, the polynomial rings Q[x], R[x], C[x] are not fields. Indeed, in general,

we have the following

Proposition 8.0.6. For any field F , the only units of F [x] are nonzero constants.

Proof. Given any f ∈ F [x] such that deg f > 0, for all nonzero g ∈ F [x] we have

deg fg ≥ deg f > 0 = deg 1;

hence, fg 6= 1. If g = 0, then fg = 0 6= 1. So, f has no multiplicative inverse.
If f ∈ F \ {0} is a nonzero constant, then f−1 = 1

f
is a constant polynomial

in F [x], and f
(

1
f

)
=
(

1
f

)
f = 1. So, f is a unit.

Finally, if f = 0, then fg = 0 6= 1 for all g ∈ F [x], so the zero polynomial
has no multiplicative inverse.

Note that if every nonzero element of a commutative ring has a multiplicative
inverse, then that ring is an integral domain:

ca = cb =⇒ c−1ca = c−1cb =⇒ a = b.

So we conclude that

Proposition 8.0.7. A field is an integral domain.

Proposition 8.0.8. Let k ∈ Zn \ {0}.

• If gcd(k, n) > 1, then k is a zero divisor.
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• If gcd(k, n) = 1, then k is a unit.

Proof. Let d := gcd(k, n).
If d > 1, then n/d is a nonzero element in Zn, and we have k · (n/d) =

(k/d) · n = 0 in Zn. So k is a zero divisor.
If d = 1, then there exist a, b ∈ Z such that ak + bn = 1. But this means we

have a · k = 1 in Zn. So k is a unit.

Hence, the set of zero divisors in Zn is precisely given by

{k ∈ Zn \ {0} : gcd(k, n) > 1}

and the set of units in Zn is precisely given by

Z×n := {k ∈ Zn \ {0} : gcd(k, n) = 1}.

In particular, we have the following

Corollary 8.0.9. Zn is a field if and only if n is prime.

Notation. For p prime, we often denote the field Zp by Fp.

Proposition 8.0.10. Equipped with the usual operations of addition and multipli-
cations for real numbers, F = Q[

√
2] := {a+ b

√
2 : a, b ∈ Q} is a field.

Proof. Observe that: (a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2 lies in F ,
and (a + b

√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2 ∈ F . Hence, F is closed

under the addition and multiplication for real numbers. As operations on R, they
are commutative, associative, and satisfy the distributive laws; therefore, as F is a
subset of R, they also satisfy these properties as operations on F .

It is clear that 0 and 1 are respectively the additive and multiplicative identities
of F . Given a + b

√
2 ∈ F , where a, b ∈ Q, it is clear that its additive inverse

−a− b
√

2 also lies in F . Hence, F is a commutative ring.
To show that F is a field, we need to find the multiplicative inverse for every

nonzero a+ b
√

2 in F . As an element of the field R, the multiplicative inverse of
a+ b

√
2 is:

(a+ b
√

2)−1 =
1

a+ b
√

2
.

It remains to show that this number lies in F . Observe that:

(a+ b
√

2)(a− b
√

2) = a2 − 2b2.

We claim that a2 − 2b2 6= 0. Suppose a2 − 2b2 = 0, then either (i) a = b = 0, or
(ii) b 6= 0,

√
2 = |a/b|. Since we have assumed that a + b

√
2 is nonzero, case (i)
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cannot hold. But case (ii) also cannot hold because
√

2 is know to be irrational.
Hence a2 − 2b2 6= 0, and:

1

a+ b
√

2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,

which lies in F .

Remark. Actually Q[
√

2] is a subring of the field R. In general, any subring of
a field is an integral domain. (Exercise.)

Proposition 8.0.11. All finite integral domains are fields.

Proof. Let R be an integral domain with n elements, where n is finite. Write
R = {a1, a2, . . . , an}. We need to show that for any nonzero element a 6= 0
in R, there exists i ∈ {1, . . . , n} such that ai is the multiplicative inverse of a.
Now consider the set S = {aa1, aa2, . . . , aan}. Since R is an integral domain,
the multiplicative cancellation law holds. In particular, since a 6= 0, we have
aai = aaj if and only if i = j. The set S is therefore a subset of R with n distinct
elements, which implies that S = R. In particular, we must have 1 = aai for
some i, and then ai is the desired multiplicative inverse of a.

The field of fractions
An integral domain fails to be a field precisely when there is a nonzero element
with no multiplicative inverse. The ring Z is such an example, for 2 ∈ Z has no
multiplicative inverse. But any nonzero n ∈ Z has a multiplicative inverse 1

n
inQ,

which is a field. So, a question one could ask is, can we “enlarge” a given integral
domain to a field, by formally adding multiplicative inverses to the ring?

An equivalence relation

Given an integral domain D (commutative, with 1 6= 0). We consider the set

D × (D \ {0}) := {(a, b) : a, b ∈ D, b 6= 0},

and define a relation ≡ on it as follows:

(a, b) ≡ (c, d) if ad = bc.

Lemma 8.0.12. The relation ≡ is an equivalence relation.

Proof. Exercise.
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Now we define addition + and multiplication · on D × (D \ {0}) as follows:

(a, b) + (c, d) := (ad+ bc, bd)

(a, b) · (c, d) := (ac, bd)

Proposition 8.0.13. Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′), then:

1. (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).

2. (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Proof. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a′, b′) + (c′, d′) =
(a′d′ + b′c′, b′d′). Since by assumption ab′ = a′b and cd′ = c′d, we have:

(ad+ bc)b′d′ = adb′d′ + bcb′d′ = a′bdd′ + c′dbb′ = (a′d′ + b′c′)bd;

hence, (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).
For multiplication, by definition we have (a, b) · (c, d) = (ac, bd) and (a′, b′) ·

(c′, d′) = (a′c′, b′d′). Since

acb′d′ = ab′cd′ = a′bc′d = a′c′bd,

we have (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Let
Frac(D) := (D × (D \ {0}))/ ≡

be the set of equivalence classes of D× (D \ {0}), with respect to ≡. An equiva-
lence class represented by (a, b) ∈ D× (D \{0}) is denoted (as usual) by [(a, b)].

Corollary 8.0.14. The binary operations + and · on Frac(D) defined by

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

[(a, b)] · [(c, d)] = [(ac, bd)]

are well-defined.

Proposition 8.0.15. The set Frac(D), equipped with + and · defined as above,
forms a field, with additive identity 0 = [(0, 1)] and multiplicative identity 1 =
[(1, 1)]. The multiplicative inverse of a nonzero element [(a, b)] ∈ Frac(D) is
[(b, a)].

Proof. Exercise.

Definition. Frac(D) is called the field of fractions of the integral domain D.
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For example, Frac(Z) may be identified with Q, by identifying a/b ∈ Q,
a, b ∈ Z, with [(a, b)] ∈ Frac(Z).

As another example, consider a field F and the polynomial ring F [x]. We
denote by F (x) the field Frac(F [x]) of fractions of F [x]. It is called the field of
rational functions over F (even though we do not view its elements as actual
functions on F ). Symbolically, we may write:

F (x) =

{
f

g
: f, g ∈ F [x], g 6= 0

}
,

where
e

f
=
g

h

iff eh = fg.
For example, in F (x), we have:

x2 − 1

x− 1
=
x+ 1

1
= x+ 1,

because (x2 − 1)(1) = (x− 1)(x+ 1).
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Week 9

9.1 Homomorphisms
Definition. LetR andR′ be rings. A ring homomorphism fromR toR′ is a map
φ : R→ R′ with the following properties:

1. φ(1R) = 1R′;

2. φ(a+ b) = φ(a) + φ(b), for all a, b ∈ R;

3. φ(a · b) = φ(a) · φ(b), for all a, b ∈ R.

Note that if φ : R→ R′ is a homomorphism, then:

• φ(0R) = 0R′ , and φ(−a) = −φ(a) for all a ∈ R

• If u is a unit in R, then 1 = φ(u ·u−1) = φ(u)φ(u−1), and 1 = φ(u−1 ·u) =
φ(u−1)φ(u); which implies that φ(u) is a unit, with φ(u)−1 = φ(u−1).

Example 9.1.1. The map φ : Z → Q defined by φ(n) = n is a homomorphism,
since:

1. φ(1) = 1,

2. φ(n+Z m) = n+Q m.

3. φ(n ·Z m) = n ·Q m.

This is a special case of the natural embedding j : D ↪→ Frac(D).

Example 9.1.2. Fix an integer n which is larger than 1. The reminder map
φ : Z → Zn is a ring homomorphism. The fact that the multiplication on Z is
compatible with the congruence relation shows that φ preserves multiplication.
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Example 9.1.3. For any ring R, define a map φ : Z→ R as follows:

φ(0) = 0;

For n ∈ N,
φ(n) = n · 1R := 1R + 1R + · · ·+ 1R︸ ︷︷ ︸

n times

;

φ(−n) = −n · 1R := n · (−1R) = (−1R) + (−1R) + · · ·+ (−1R)︸ ︷︷ ︸
n times

.

The map φ is a homomorphism.

Proof. Exercise.

Remark. In fact this is the only homomorphism from Z to R since we need to
have φ(1) = 1R and this implies that

φ(n) = n · φ(1) = n · 1R.

Example 9.1.4. Let R be a commutative ring. For each element r ∈ R, we may
define a map φr : R[x]→ R as follows:

φr

(
n∑
k=0

akx
k

)
=

n∑
k=0

akr
k

The map φr is a ring homomorphism.

Definition. If a ring homomorphism φ : R → R′ is a bijective map, we say that
φ is an isomorphism, and that R and R′ are isomorphic as rings.

Notation. If R and R′ are isomorphic, we write R ∼= R′.

Proposition 9.1.5. If φ : R → R′ is an isomorphism, then φ−1 : R′ → R is an
isomorphism.

Proof. Since φ is bijective, φ−1 is clearly bijective. It remains to show that φ−1 is
a homomorphism:

1. Since φ(1R) = 1R′ , we have φ−1(1R′) = φ−1(φ(1R)) = 1R.

2. For all b1, b2 ∈ R′, we have

φ−1(b1 + b2) = φ−1(φ(φ−1(b1)) + φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) + φ−1(b2))) = φ−1(b1) + φ−1(b2)
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3. For all b1, b2 ∈ R′, we have

φ−1(b1 · b2) = φ−1(φ(φ−1(b1)) · φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) · φ−1(b2))) = φ−1(b1) · φ−1(b2)

This shows that φ−1 is a bijective homomorphism.

The key point here is that an isomorphism is more than simply a bijective
map, for it must preserve algebraic structures. For example, there is a bijective
map f : Z→ Q since both are countable, but they cannot be isomorphic as rings:
Suppose φ : Z → Q is an isomorphism. Then we must have φ(n) = nφ(1) = n
for any n ∈ Z. So φ cannot be surjective.

We have the following universal property for the field of fractions of an in-
tegral domain.

Proposition 9.1.6. Let D be an integral domain, and let Frac(D) be its field of
fractions. Then there is a natural embedding j : D ↪→ Frac(D) by a 7→ [(a, 1)],
which is universal among all embeddings from D to a field, in the sense that, for
any embedding ι : D ↪→ L from D into a field L, there exists an embedding
i : Frac(D) ↪→ L such that ι = i ◦ j.
Proof. For j : D ↪→ Frac(D), we have

j(a+ b) = [(a+ b, 1)] = [(a, 1)] + [(b, 1)] = j(a) + j(b),

j(ab) = [(ab, 1)] = [(a, 1)][(b, 1)] = j(a)j(b)

for any a, b ∈ D. So j is a ring homomorphism. It is injective because j(a) = j(b)
means (a, 1) ≡ (b, 1) which implies that a = b.

Now if ι : D ↪→ L is an embedding of D into a field L, we define a map
i : Frac(D)→ L by

i([(a, b)]) := ι(a)ι(b)−1.

Since ι is an embedding, b 6= 0 implies that ι(b) 6= 0. Also, if (a, b) ≡ (a′, b′),
then

ab′ = a′b⇒ ι(a)ι(b′) = ι(a′)ι(b)⇒ ι(a)ι(b)−1 = ι(a′)ι(b′)−1,

so i is well-defined.
For [(a, b)], [(c, d)] ∈ Frac(D), we have

i([(a, b)] + [(c, d)]) = i([(ad+ bc, bd)])

= ι(ad+ bc)ι(bd)−1

= (ι(a)ι(d) + ι(b)ι(c))ι(b)−1ι(d)−1

= ι(a)ι(b)−1 + ι(c)ι(d)−1

= i([(a, b)]) + i([(c, d)]),
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and

i([(a, b)][(c, d)]) = i([(ac, bd)])

= ι(ac)ι(bd)−1

= ι(a)ι(b)−1 · ι(c)ι(d)−1

= i([(a, b)]) · i([(c, d)]).

Hence, i is a ring homomorphism.
Also, if i([(a, b)]) = i([(c, d)]), then ι(a)ι(b)−1 = ι(c)ι(d)−1 which gives

ι(ad) = ι(bc), and injectivity of ι implies that ad = bc which means (a, b) ≡
(c, d). So i is an embedding. Finally, for any a ∈ D, we have (i ◦ j)(a) =
i([a, 1]) = ι(a)ι(1)−1 = ι(a). Therefore, i ◦ j = ι.

In particular, we have the following

Corollary 9.1.7. If F is a field, then Frac(F ) ∼= F .

Let R be a commutative ring, let R[x, y] denote the ring of polynomials in x, y
with coefficients in R:

R[x, y] =

{
m∑
i=0

n∑
j=0

aijx
iyj : m,n ∈ Z≥0, aij ∈ R

}

Proposition 9.1.8. R[x, y] is isomorphic to R[x][y].

(Here, R[x][y] is the ring of polynomials in y with coefficients in the ring
R[x].)

Proof. We define a map φ : R[x, y]→ R[x][y] as follows:

φ

(
m∑
i=0

n∑
j=0

aijx
iyj

)
=

n∑
j=0

(
m∑
i=0

aijx
i

)
yj

Exercise: Show that φ is a homomorphism.
It remains to show that φ is one-to-one and onto.
For f =

∑m
i=0

∑n
j=0 aijx

iyj ∈ kerφ, we have:

φ(f) =
n∑
j=0

(
m∑
i=0

aijx
i

)
yj = 0R[x][y] =

∑
j=0

0R[x] · yj,

which implies that, for 0 ≤ j ≤ n, we have:
m∑
i=0

aijx
i = 0R[x], 0 ≤ i ≤ m.
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Hence,
aij = 0R, for 0 ≤ i ≤ m, 0 ≤ j ≤ n,

which implies that kerφ = {0}. Hence, φ is one-to-one.
Given g =

∑n
j=0 pjy

j ∈ R[x][y], where pj ∈ R[x]. We want to find f ∈
R[x, y] such that φ(f) = g. Let m be the maximum degree of the pj’s. We may
write:

g =
n∑
j=0

(
m∑
i=0

ajix
i

)
yj,

where aji is the coefficient of xi in pj , with aji = 0 if i > deg pj . It is clear that:

φ

(
m∑
i=0

n∑
j=0

ajix
iyj

)
= g.

Hence, φ is onto.

9.1.1 Subrings
Definition. Let R be a ring. A subset S of R is said to be a subring of R if it
is a ring under the addition +R and multiplication ×R associated with R, and its
additive and multiplicative identity elements 0, 1 are those of R.

To show that a subset S of a ring R is a subring, it suffices to show that:

• S contains the multiplicative identity of R.

• a− b ∈ S for any a, b ∈ S.

• S is closed under multiplication, i.e. a · b ∈ S for all a, b ∈ S.

Definition. The kernel of a ring homomorphism φ : R→ R′ is the set:

kerφ := {a ∈ R : φ(a) = 0}

The image of φ is the set:

imφ := {b ∈ R′ : b = φ(a) for some a ∈ R}.

Proposition 9.1.9. Let φ : R→ R′ be a ring homomorphism.

1. If S is a subring of R, then φ(S) is a subring of R′.

2. If S ′ is a subring of R′, then φ−1(S ′) is a subring of R.
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Proof. Let us prove 1. and leave 2. as an exercise. So let S be a subring of R.

• Since 1 ∈ S, we have φ(1) = 1 ∈ φ(S).

• φ(a)− φ(b) = φ(a− b) ∈ φ(S) for any a, b ∈ S.

• φ(a) · φ(b) = φ(a · b) ∈ φ(S) for any a, b ∈ S.

We conclude that φ(S) is a subring of R′.

Corollary 9.1.10. For a ring homomorphism φ : R → R′, imφ is a subring of
R′.

Remark. Note that kerφ is not a subring unless R′ is the zero ring.

Proposition 9.1.11. A ring homomorphism φ : R → R′ is one-to-one if and only
if kerφ = {0}.

Proof. Suppose φ is one-to-one. For any a ∈ kerφ, we have φ(0) = φ(a) = 0,
which implies that a = 0 since φ is one-to-one. Hence, kerφ = {0}.

Suppose kerφ = {0}. If φ(a) = φ(a′), then 0 = φ(a) − φ(a′) = φ(a − a′),
which implies that a − a′ ∈ kerφ = {0}. So, a − a′ = 0, which implies that
a = a′. Hence, φ is one-to-one.

Proposition 9.1.12. A subring of a field is an integral domain.

Proof. Let F be a field and S ⊂ F be a subring. Suppose we have a, b ∈ S
with a 6= 0 such that ab = 0. We need to show that b = 0. Since F is a field,
a 6= 0 implies that it is a unit, i.e. it has a multiplicative inverse a−1. So we have
0 = a−1(ab) = b.

For example, any subring of C is an integral domain. This produces a lot of
interesting examples which are important in number theory. For instance, the ring
of Gaussian integers:

Z[i] := {a+ bi : a, b ∈ Z} ⊂ C

is an integral domain. More generally, for any ξ ∈ C, the subset

Z[ξ] = {f(ξ) : f(x) ∈ Z[x]} ⊂ C

is an integral domain.
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Week 10

10.1 Ideals
Definition. An ideal I in a ring R is an additive subgroup of (R,+) such that

r · I ⊂ I and I · r ⊂ I

for any r ∈ R.
Remark. Note that for an ideal I ⊂ R, we have 1 ∈ I if and only if I = R,
because if 1 ∈ I , then r = 1 · r ∈ I for all r ∈ R, which implies that I = R.
Example 10.1.1. For any ring R, the sets {0} and R itself are ideals in R.

An ideal I ( R is called proper and an ideal {0} ( I ⊂ R is called nontriv-
ial.
Example 10.1.2. For any n ∈ Z, the subgroup I = nZ = {kn : k ∈ Z} is an
ideal.
Example 10.1.3. Generalizing the above example, consider a commutative ring
R. Let a ∈ R. Then

(a) := {ra : r ∈ R}
is an ideal, called the principal ideal generated by a.

Proof. 1. 0 = 0a ∈ (a);

2. Given r1a, r2a ∈ (a), we have r1a+ r2a = (r1 + r2)a ∈ (a).

3. For all ra ∈ (a) and a ∈ R, we have s(ra) = (sr)a ∈ (a).

More generally, given any nonempty subset A ⊂ R, the set of finite linear
combinations of elements in A:

(A) := {r1a1 + r2a2 + · · ·+ rkak : k ∈ Z>0, ri ∈ R, ai ∈ A}

is an ideal in R, called the ideal generated by A.
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Proposition 10.1.4. Let φ : R→ R′ be a ring homomorphism.

1. If I is an ideal of R, then φ(I) is an ideal of imφ.

2. If I ′ is an ideal of R′, then φ−1(I ′) is an ideal of R.

Proof. Let us prove 2. and leave 1. as an exercise. So let I ′ be an ideal of R′. We
already know that φ−1(I ′) is an additive subgroup of R. Now, consider arbitrary
elements r ∈ R and a ∈ φ−1(I ′). We have φ(a) ∈ I ′ and since I ′ is an ideal,
we have φ(ra) = φ(r)φ(a) ∈ I ′, so ra ∈ φ−1(I ′). Similarly, one can show that
ra ∈ φ−1(I ′). We conclude that φ−1(I ′) is an ideal of R.

Corollary 10.1.5. If φ : R → R′ is a ring homomorphism, then kerφ is an ideal
of R.

Example 10.1.6. The kernel of the reminder map φ : Z → Zn is kerφ = nZ =
(n), which is the principal ideal generated by n.

Proposition 10.1.7. A nonzero commutative ring R is a field if and only if it has
no proper nonzero ideals

Proof. Suppose a nonzero commutative ring R is a field. If an ideal I of R is
nonzero, it contains at least one nonzero element a of R. Since R is a field, a
has a multiplicative inverse a−1 in R. Since I is a ideal, and a ∈ I , we have
1 = a−1a ∈ I . This implies that I = R.

Conversely, let R be a nonzero commutative ring whose only ideals are {0}
and R. Given any nonzero element a ∈ R, the principal ideal (a) generated by
a is nonzero because it contains a 6= 0. Hence, by hypothesis, the ideal (a) is
necessarily the whole ring R. In particular, the element 1 lies in (a), which means
that there exists r ∈ R such that ar = 1. This shows that any nonzero element of
R is a unit. Hence, R is a field.

Proposition 10.1.8. Let F be a field, and R a nonzero ring. Any ring homomor-
phism φ : F → R is necessarily injective.

Proof. Since R is not a zero ring, it contains 1 6= 0. So, φ(1) = 1 6= 0, which
implies that kerφ is a proper ideal of F . Since F is a field, we must have kerφ =
{0}. It follows that φ must be injective.

10.2 Quotient Rings
LetR be a ring. Let I be an ideal ofR. Then in particular I is an additive subgroup
of (R,+). Let R/I denote the set of all cosets of I in (R,+), namely, the set of
elements of the form

r = r + I = {r + a : a ∈ I}, r ∈ R.
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Terminology: We sometimes call r the residue of r in R/I .
Recall that r̄ = 0̄ if and only if r ∈ I; more generally, r̄ = r̄′ if and only if

r − r′ ∈ I .
We already know that there is a well-defined addition on R/I , making it an

abelian group. It is tempting to also define multiplication on R/I using that on R:

r · r′ := rr′,

for any r, r′ ∈ R/I .
The following is the reason why we care about ideals:

Theorem 10.2.1. Given any additive subgroup (I,+) ≤ (R,+). The multiplica-
tion

r · r′ = rr′

is well-defined on R/I if and only if I is an ideal in R.

Proof. Suppose that I is an ideal. Then for any r, r′ ∈ R, and a, a′ ∈ I , we have

(r + a) · (r′ + a′) = rr′ + ra′ + ar′ + aa′ ∈ rr′ + I = rr′.

Hence the multiplication is well-defined.
Conversely, suppose the multiplication is well-defined, meaning that for any

r, r′ ∈ R and a, a′ ∈ I , we have (r + a′)(r′ + a) = rr′. In particular, we have
ra = r0 = I and ar = 0r = I which implies that ra ∈ I and ar ∈ I for any
r ∈ R and a ∈ I . So I is an ideal.

Proposition 10.2.2. The setR/I , equipped with the addition + and multiplication
· defined above, is a ring.

Proof. We note here only that the additive identity element of R/I is 0 = 0 + I ,
the multiplicative identity element of R/I is 1 = 1 + I , and that −r = −r for all
r ∈ R.

We leave the rest of the proof (additive and multiplicative associativity, com-
mutativity, distributive laws) as an Exercise.

Proposition 10.2.3. The map π : R→ R/I , defined by

π(r) = r, ∀r ∈ R.

is a surjective ring homomorphism with kernel kerπ = I .

Proof. Exercise.
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Theorem 10.2.4 (First Isomorphism Theorem). Let φ : R → R′ be a ring ho-
momorphism. Then the map φ : R/ kerφ → imφ defined by φ(r) = φ(r) is a
isomorphism such that φ = φ ◦ π, i.e. the following diagram commutes:

R R/ kerφ

imφ

φ

π

φ

Proof. We only need to show that φ : R/ kerφ → imφ preserves the multiplica-
tion. Let r, r′ ∈ R/ kerφ. Then φ(r ·r′) = φ(rr′) = φ(rr′) = φrφr′ = φ(r)φ(r′).
So we are done.

Example 10.2.5. For a positive integer n, the remainder or mod n map φ : Z −→
Zn induces the ring isomorphism Z/nZ ∼= Zn.

Example 10.2.6. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.

Proof. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the equivalence class of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism (Exercise).
Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:
i ≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)

in Z[i]/(1 + 3i). Hence, φ is surjective.
Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:
n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,
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which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i). This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.
It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).

Example 10.2.7. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof. Define a map φ : R[x] −→ C as follows:

φ(
n∑
k=0

akx
k) =

n∑
k=0

aki
k.

Exercise: φ is a homomorphism.
For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.
It remains to compute kerφ = {f(x) =

∑n
k=0 akx

k : f(i) = 0}. Note that
f(x) is a real polynomial, so f(i) = 0 also implies that f(−i) = 0. Hence
both ±i are roots of f(x) if it lies in kerφ. Factor Theorem then tells us that
(x2 + 1) = (x− i)(x + i) | f(x). So kerφ ⊂ (x2 + 1). On the other hand, i is a
root of x2 + 1, so we have (x2 + 1) ⊂ kerφ. We conclude that kerφ = (x2 + 1).

It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼= C.

10.3 Polynomial ring as a PID
Recall that an ideal (a) = {ra : r ∈ R} generated by one element a ∈ R is called
a principal ideal. Note that R = (1) and {0} = (0) are both principal ideals.
Definition. If D is an integral domain in which every ideal is principal, we say
that D is a principal ideal domain (abbrev. PID).

Any field is a PID because a field F contains only two ideals (0) = {0} and
(1) = F .

The first nontrivial example of a PID is given by Z: Since every ideal I in Z is
in particular an additive subgroup, the classification of subgroups of cyclic groups
tells us that I can only be of the form (n) = nZ. So any ideal is principal.

Next we claim that for any field F , the ring of polynomials F [x] is also a PID.
To prove this we first establish the following:
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Proposition 10.3.1 (Division Theorem for polynomials). Let F be a field. For all
nonzero d, f ∈ F [x], there exist unique q, r ∈ F [x] such that

f = qd+ r,

with r = 0 or deg r < deg d.

Proof. We prove existence by induction on deg f . The base case corresponds to
the case where deg f < deg d; and the inductive step corresponds to showing that,
for any fixed d, the claim holds for f if it holds for all f ′ with deg f ′ < deg f .

Base case: If deg f < deg d, we take r = f . Then, indeed f = 0 · d+ r, with
deg r < deg d.

Inductive step: Let d =
∑n

i=0 aix
i ∈ F [x] be fixed, where an 6= 0. For any

given f =
∑m

i=0 bix
i ∈ F [x], m ≥ n, suppose the claim holds for all f ′ with

deg f ′ < deg f . Let
f ′ = f − a−1n bmx

m−nd.

Then, deg f ′ < deg f , hence by hypothesis there exist q′, r′ ∈ F [x], with deg r′ <
deg d, such that

f − a−1n bmx
m−nd = f ′ = q′d+ r′,

which implies that:
f = (q′ + a−1n bmx

m−n)d+ r′.

So, f = qd+ r′, where q = q′ + a−1n bmx
m−n ∈ F [x], and deg r′ < deg d.

For uniqueness, suppose there exist q′, r′ ∈ F [x] such that f = q′d + r′,
where r′ = 0 or deg r′ < deg d. Then we have (q′ − q)d = r − r′. Since
deg(r − r′) < deg d, this is not possible unless q′ = q. This in turn implies that
r′ = r.

Theorem 10.3.2. Let F be a field. Then, F [x] is a PID.

Proof. Since F is a field, the previous claim holds for all d, f ∈ F [x] such that
d 6= 0.

Let I be an ideal of F [x]. Let d be a nonzero polynomial in I with the least
leading degree. Such a d exists because the leading degree of a polynomial is a
nonnegative integer. Since I is an ideal, we have (d) ⊆ I . It remains to show that
I ⊆ (d).

For any f ∈ I , the Division Theorem implies that

f = qd+ r,

for some q, r ∈ F [x] such that deg r < deg d. Observe that r = f − qd lies in
I . Since d is a nonzero element of I with the least degree, the element r must
necessarily be zero. In order words f = qd, which implies that f ∈ (d). Hence,
I ⊆ (d), and we conclude that I = (d).
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Week 11

11.1 Factorization of polynomials
Definition. Let F be a field. Let f =

∑n
i=0 cix

i be a polynomial in F [x]. An
element a ∈ F is a root of f if

f(a) :=
n∑
i=0

cia
i = 0

in F .

Proposition 11.1.1 (Factor Theorem). Let F be a field and f be a polynomial in
F [x]. Then, a ∈ F is a root of f if and only if (x− a) divides f in F [x].

Proof. Given any polynomial f ∈ F [x] and any element a ∈ F , the Division
Theorem implies that there exist q, r ∈ F [x] such that:

f = q(x− a) + r, deg r < deg(x− a) = 1.

This implies that r is a constant polynomial. Viewing the polynomials as functions
and evaluating both sides of the above equation at x = a, we have

f(a) = q(a− a) + r = r.

Hence, f(a) = 0 if and only if r = 0 if and only if (x− a) | f .

Theorem 11.1.2. Let F be a field, and f be a nonzero polynomial in F [x].

1. If f has degree n, then it has at most n roots in F .

2. If f has degree n and a1, a2, . . . , an ∈ F are distinct roots of f , then:

f = c ·
n∏
i=1

(x− ai) := c(x− a1)(x− a2) · · · (x− an)

for some c ∈ F×.
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Proof. We prove both statements by induction on n = deg f .

1. If f has degree 0, then f is a nonzero constant, which implies that it has no
roots. So, in this case the claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f . If f has no roots in F , then the claim holds for f
since 0 < n. If f has a root a ∈ F , then by the Factor Theorem there exists
q ∈ F [x] such that:

f = q(x− a).

For any other root b ∈ F of f which is different from a, we have:

0 = f(b) = q(b)(b− a).

Since F is a field, it has no zero divisors; so, it follows from b− a 6= 0 that
q(b) = 0. In other words, b is a root of q. This shows that all roots of f
different from a are also roots of q. Since deg q = n − 1, by the induction
hypothesis q has at most n− 1 roots. Therefore, f has at most n roots.

2. The n = 0 case is trivial. Suppose n > 0, and the claim holds for any
polynomial of degree n′ < n which has n′ distinct roots in F . Let f be a
polynomial in F [x] which has n = deg f distinct roots a1, a2, . . . , an in F .
By the Factor Theorem again, there exists q ∈ F [x] of degree n − 1 such
that

f = q(x− an).

If n = 1, we are done; otherwise, for 1 ≤ i < n, we have

0 = f(ai) = q(ai) (ai − an)︸ ︷︷ ︸
6=0

.

Since F is a field, this implies that q(ai) = 0 for 1 ≤ i < n. So,
a1, a2, . . . , an−1 are n − 1 distinct roots of q. By the induction hypothe-
sis, there exists c ∈ F such that

q = c(x− a1)(x− a2) · · · (x− an−1).

Hence, f = q(x− an) = c(x− a1)(x− a2) · · · (x− an−1)(x− an).

Corollary 11.1.3. Let F be a field. Let f, g be nonzero polynomials in F [x]. Let
n = max{deg f, deg g}. If f(a) = g(a) for n+ 1 distinct a ∈ F . Then, f = g.
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Proof. Let h = f − g, then deg h ≤ n. By hypothesis, there are n + 1 distinct
elements a ∈ F such that h(a) = f(a)− g(a) = 0. If h 6= 0, then it is a nonzero
polynomial with degree ≤ n which has n + 1 distinct roots, which contradicts
the previous theorem. Hence, h must necessarily be the zero polynomial, which
implies that f = g.

Recall the theorem:

Theorem 11.1.4. Let F be a field. The ring F [x] is a PID.

Definition. A polynomial in F [x] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.1.5. Let F be a field. Let f, g be nonzero polynomials in F [x]. There
exists a unique monic polynomial d ∈ F [x] with the following properties:

1. (f, g) = (d)

2. d divides both f and g, i.e. there exists a, b ∈ F [x] such that f = ad,
g = bd.

3. There are polynomials p, q ∈ F [x] such that d = pf + qg.

4. If h ∈ F [x] is a divisor of f and g, then h divides d.

Terminology. This d ∈ F [x] is called the greatest common divisor (abbrev.
gcd) of f and g. We say that f and g are relatively prime if their gcd is 1.

Proof of Corollary 11.1.5. 1. By the above theorem, there exists d ∈ F [x]
such that (f, g) = (d). Replacing d by a−1n d, if necessary, we may assume
that d is a monic polynomial. It remains to show that d is unique. Indeed,
for any integral domain D and elements a, b ∈ D, we have (a) = (b) if
and only if b = au for some u ∈ D×. Now a unit in F [x] is given by a
nonzero element c ∈ F×. So if (d) = (d′), where both d and d′ are monic
polynomials, then there exists c ∈ F× such that d′ = cd. Since d′ and d are
both monic, comparing the leading coefficients on both sides yields c = 1.
Hence, d = d′.

2. f ∈ (f, g) = (d) implies that d divides f ; similarly, d divides g.

3. d ∈ (d) = (f, g) implies that d = pf + qg for some p, q ∈ F [x].

4. Part 3. says that there are p, q ∈ F [x] such that d = pf + qg. It is then clear
that if h divides both f and g, then h must divide d.
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Definition. A nonconstant polynomial p ∈ F [x] is said to be irreducible if there
do not exist f, g ∈ F [x], with deg f, deg g < deg p, such that p = fg.

Example 11.1.6. • Any degree 1 polynomial f(x) = ax + b, a 6= 0, is irre-
ducible in F [x].

• x2+1 is irreducible inR[x] but reducible inC[x]. So irreducibility is relative
to the field F .

• By the Fundamental Theorem of Algebra, which states that any noncon-
stant polynomial f(x) ∈ C[x] splits over C meaning that there exists
c, α1, . . . , αn (where n = deg f(x)) such that f(x) = c(x−α1) · · · (x−αn),
the only irreducible polynomials in C[x] are degree 1 polynomials and the
only irreducible polynomials in R[x] are polynomials of degree 1 and 2.

Theorem 11.1.7. Any PID D is a unique factorization domain (abbrev. UFD)
which means that any nonzero nonunit r ∈ D can be factorized into a finite
product of irreducible elements, and the factorization is unique up to reordering
of factors (and also up to multiplication by units).

Proof. Omitted. For those who are interested in it, see Chapter 11, Section 2 in
M. Artin’s Algebra.

So we have the following

Corollary 11.1.8. Every nonconstant polynomial f ∈ F [x] may be written as:

f = cp1 · · · pn,

where c is a nonzero constant, and each pi is a monic irreducible polynomial in
F [x]. The factorization is unique up to reordering of the factors.

In particular, the gcd of two polynomials can be computed using the Euclidean
Algorithm as in the case of Z.

Example 11.1.9. For any polynomial f ∈ R[x], its complex roots come in conju-
gate pairs. Let a1, a2, . . . , ak ∈ R be the real roots, and α1, α1, α2, α2, . . . , α`, α`
be the conjugate pairs of complex roots of f . Then the unique factorization of f
in R[x] is given by

f = c ·
k∏
i=1

(x− ai) ·
∏̀
j=1

(x2 − 2xRe αj + |αj|2).
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Remark. Unique Factorization does not necessarily hold if F is not a field. For
example, in Z4[x], we have

x2 = x · x = (x+ 2)(x− 2).

All factors are linear, so they are irreducible. But clearly x+ 2 is not equal to x.

Theorem 11.1.10. Let F be a field. Let p be a polynomial in F [x]. The following
statements are equivalent:

1. F [x]/(p) is a field.

2. F [x]/(p) is an integral domain.

3. p is irreducible in F [x].

Proof. 1⇒ 2: This is because every field is an integral domain.
2 ⇒ 3: If p is not irreducible, there exist f, g ∈ F [x], with degrees strictly

less than that of p, such that p = fg. Since deg f, deg g < deg p, the polynomial
p does not divide f or g in F [x]. Consequently, the equivalence classes f and g
of f and g, respectively, modulo (p) is not equal to zero in F [x]/(p). On the other
hand, f · g = fg = p = 0 in F [x]/(p). This implies that F [x]/(p) is not an
integral domain. Hence, p is irreducible if F [x]/(p) is an integral domain.

3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is differ-
ent from the additive identity element 0. So we need to check that the equivalence
class of 1 ∈ F [x] in F [x]/(p) is not 0. Since p is irreducible, by definition we
have deg p > 0. Hence, 1 6∈ (p), for a polynomial of degree > 0 cannot divide a
polynomial of degree 0 in F [x]. We conclude that that 1 6= 0 in F [x].

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in F [x]/(p). Given any f ∈ F [x] whose equivalence class f
modulo (p) is nonzero in F [x]/(p), we want to find its multiplicative inverse f

−1
.

If f 6= 0 in F [x]/(p), then by definition f − 0 /∈ (p), which means that p does
not divide f . Since p is irreducible, this implies that gcd(p, f) = 1. By Corol-
lary 11.1.5, there exist g, h ∈ F [x] such that fg + hp = 1. It is then clear that
g = f

−1
, since fg− 1 = hp implies that fg− 1 ∈ (p), which by definition means

that f · g = fg = 1 in F [x]/(p).

Corollary 11.1.11. Let F be a field. Let p be an irreducible polynomial in F [x].
Suppose p divides the product f · g of two polynomials f, g ∈ F [x]. Then either p
divides f or p divides g.

Proof. p | f ·g implies that f ·g = 0 in F [x]/(p). But the above theorem says that
F [x]/(p) is an integral domain (or even a field), so it has no 0-divisors. Therefore,
we must have either f = 0 or g = 0, and hence either p | f or p | g.
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Week 12

12.1 Irreducibility of polynomials over Q
We are interested in determining which polynomials in Q[x] are irreducible.

Proposition 12.1.1. Let f = a0 + a1x + · · · + anx
n be a polynomial in Q[x],

with ai ∈ Z. Every rational root r of f in Q has the form r = b/c (b, c ∈ Z with
gcd(b, c) = 1) where b|a0 and c|an.

Proof. Let r = b/c be a rational root of f , where b, c are relatively prime integers.
We have:

0 =
n∑
i=0

ai(b/c)
i

Multiplying both sides of the above equation by cn, we have:

0 = a0c
n + a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n,

or equivalently:

a0c
n = −(a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n).

Since b divides the right-hand side, and b and c are relatively prime, b must divide
a0. Similarly, we have:

anb
n = −(a0c

n + a1c
n−1b+ a2c

n−2b2 + · · ·+ an−1cb
n−1).

Since c divides the right-hand side, and b and c are relatively prime, c must divide
an.

This proposition is useful mainly for polynomials f ∈ Q[x] of deg ≤ 3,
because such a polynomial is reducible only if it has a root in Q.

Example 12.1.2. Consider the polynomial f(x) = x3 + 3x + 2 ∈ Q[x]. The
above proposition says that the only possible roots of f(x) are ±1 or ±2, but one
directly checks that none of these is a root. So f(x) is irreducible in Q[x].
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Example 12.1.3. In fact the same argument applies to polynomials of deg ≤ 3
with coefficients in other fields. For example, we may consider f(x) = x3 + 3x+
2 ∈ Z5[x]. Then one checks that f has no root in Z5 (by directly computing the
values of f(k) for each k ∈ Z5). So f(x) is also irreducible in Z5[x].

For a polynomial of arbitrary degree in Q[x], we will discuss some general
methods to determine whether it is irreducible; these methods stem from a theo-
rem of Gauss.

Definition. A polynomial f ∈ Z[x] is said to be primitive if the gcd of its coeffi-
cients is 1.

Remark. Note that if f ∈ Z[x] is monic, i.e. its leading coefficient is 1, then it is
primitive.

More generally, if d is the gcd of the coefficients of f ∈ Z[x], then 1
d
f is a

primitive polynomial in Z[x].

Lemma 12.1.4 (Gauss’s Lemma). If f, g ∈ Z[x] are both primitive, then fg is
primitive.

Proof. Write f =
∑m

k=0 akx
k, g =

∑n
k=0 bkx

k. Then, fg =
∑m+n

k=0 ckx
k, where:

ck =
∑
i+j=k

aibj.

Suppose fg is not primitive. Then, there exists a prime p such that p divides
ck for k = 0, 1, 2, . . . ,m + n. Since f is primitive, there exists a least u ∈
{0, 1, 2, . . . ,m} such that au is not divisible by p. Similarly, since g is primitive,
there is a least v ∈ {0, 1, 2, . . . , n} such that bu it not divisible by p. We have:

cu+v =
∑

i+j=u+v
(i,j)6=(u,v)

aibj + aubv,

hence:
aubv = cu+v −

∑
i+j=u+v
i<u

aibj −
∑

i+j=u+v
j<v

aibj

By the minimality conditions on u and v, each term on the right-hand side of the
above equation is divisible by p. Hence, p divides aubv, which by Euclid’s Lemma
implies that p divides either au or bv, a contradiction.

Lemma 12.1.5. Every nonzero f ∈ Q[x] can be uniquely written as:

f = c(f)f0,

where c(f) is a positive rational number, and f0 is a primitive polynomial in Z[x].
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Definition. The rational number c(f) is called the content of f .

Proof. Existence:
Write f =

∑n
k=0(ak/bk)x

k, where ak, bk ∈ Z. Let B = b0b1 · · · bn. Then, g :=
Bf is a polynomial in Z[x]. Let d be the gcd of the coefficients of g. Let D = ±d,
with the sign chosen such that D/B > 0. Observe that f = c(f)f0, where

c(f) = D/B,

and
f0 :=

B

D
f =

1

D
g

is a primitive polynomial in Z[x].
Uniqueness:

Suppose f = ef1 for some positive e ∈ Q and primitive f1 ∈ Z[x]. We have:

ef1 = c(f)f0.

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

uf1 = vf0.

Since gcd(u, v) = 1, v divides each coefficient of f1, and u divides each coeffi-
cient of f0. But f0 and f1 are primitive, so we must have u = v = 1. Hence,
e = c(f), and f1 = f0.

Corollary 12.1.6. For f ∈ Z[x], we have c(f) ∈ Z.

Proof. Let d be the gcd of the coefficients of f . Then, (1/d)f is a primitive
polynomial, and

f = d

(
1

d
f

)
is a factorization of f into a product of a positive rational number and a primitive
polynomial in Z[x]. Hence, by uniqueness of c(f) and f0, we have c(f) = d ∈
Z.

Corollary 12.1.7. Let f, g, h be nonzero polynomials in Q[x] such that f = gh.
Then c(f) = c(g)c(h) and f0 = g0h0.

Proof. The condition f = gh implies that:

c(f)f0 = c(g)c(h)g0h0,

where f0, g0, h0 are primitive polynomials and c(f), c(g), c(h) are positive rational
numbers. By Gauss’s Lemma, g0h0 is primitive. The uniqueness part of Lemma
12.1.5 implies that that c(f) = c(g)c(h) and f0 = g0h0.
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Theorem 12.1.8 (Gauss). Let f be a nonzero polynomial in Z[x]. If f = GH for
some G,H ∈ Q[x], then f = gh for some g, h ∈ Z[x], where deg g = degG,
deg h = degH .

Consequently, if f cannot be factored into a product of polynomials of smaller
degrees in Z[x], then it is irreducible as a polynomial in Q[x].

Proof. Suppose f = GH for someG,H inQ[x]. Then f = c(f)f0 = c(G)c(H)G0H0,
where f0, G0, H0 are primitive polynomials in Z[x]. The above corollaries tell
us that c(G)c(H) = c(f) ∈ Z>0 and f0 = G0H0. Hence, g := c(f)G0 and
h := H0 are polynomials in Z[x], with deg g = degG, deg h = degH , such that
f = gh.

Let p be a prime. Then Fp ∼= Z/pZ is a field. For a ∈ Z, let a denote the
residue of a in Fp.

Theorem 12.1.9. Let f =
∑n

k=0 akx
k be a monic polynomial in Z[x]. If f :=∑n

k=0 akx
k is irreducible in Fp[x] for some prime p, then f is irreducible in Q[x].

Proof. Suppose f is irreducible in Fp[x], but f is not irreducible in Q[x]. By
Gauss’s theorem, there exist g, h ∈ Z[x] such that deg g, deg h < deg f and
f = gh. Since f is by assumption monic, and p - 1, we have deg f = deg f .
Moreover, gh = g · h. Hence, f = gh = g · h, where deg g, deg h < deg f . This
contradicts the irreducibility of f in Fp[x].

Hence, f is irreducible in Q[x] if f is irreducible in Fp[x].

Remark. The above theorem holds in the more general case when an 6= 0 in Fp,
i.e. p - an.

Example 12.1.10. The polynomial f(x) = x4−5x3+2x+3 ∈ Q[x] is irreducible.

Proof. Consider f = x4 − 5x3 + 2x + 3 = x4 − x3 + 1 in Z2[x]. If we can
show that f is irreducible, then by the previous theorem we can conclude that f is
irreducible.

Since Z2 = {0, 1} and f(0) = f(1) = 1 6= 0, we know right away that f has
no linear factors. So, if f is not irreducible, it must be a product of two quadratic
factors:

f = (ax2 + bx+ c)(dx2 + ex+ g), a, b, c, d, e, g ∈ Z2.

Note that by assumption a, d are nonzero elements of Z2, so a = d = 1. This
implies that, in particular:

1 = f(0) = cg

1 = f(1) = (1 + b+ c)(1 + e+ g)
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The first equation implies that c = g = 1. The second equation then implies that
1 = (2 + b)(2 + e) = be. Hence, b = e = 1. We have:

x4−x3 + 1 = (x2 +x+ 1)(x2 +x+ 1) = x4 + 2x3 + 3x2 + 2x+ 1 = x4 +x2 + 1,

a contradiction. Hence, f is irreducible in Z2[x], which implies that f is irre-
ducible in Q[x].

Theorem 12.1.11 (Eisenstein’s Criterion). Let f = a0 + a1x + · · · + anx
n be a

polynomial in Z[x]. If there exists a prime p such that p|ai for 0 ≤ i < n, but
p - an and p2 - a0, then f is irreducible in Q[x].

Proof. We prove by contradiction. Suppose f is not irreducible in Q[x]. Then,
by Gauss’s Theorem, there exists g =

∑l
k=0 bkx

k, h =
∑n−l

k=0 ckx
k ∈ Z[x], with

deg g, deg h < deg f , such that f = gh.
Consider the image of these polynomials in Fp[x]. By assumption, we have:

anx
n = f = gh.

This implies that g and h are divisors of anxn. Since Fp is a field, unique factor-
ization holds for Fp[x]. Hence, we must have g = bux

u, h = cn−ux
n−u, for some

u ∈ {0, 1, 2, . . . , l}. If u < l, then n − u > n − l ≥ deg h, which cannot hold.
So, we conclude that g = blx

l, h = cn−lx
n−l. In particular, b0 = c0 = 0 in Fp,

which implies that p divides both b0 and c0. Since a0 = b0c0, we have p2|a0, a
contradiction.

Example 12.1.12. The polynomial x5+3x4−6x3+12x+3 is irreducible inQ[x]
by the Eisenstein’s criterion using p = 3.

Example 12.1.13. For any positive integer n and any prime p, xn−p is irreducible
in Q[x] by the Eisenstein’s criterion using p.

Example 12.1.14. Let p be a prime. The p-th cyclotomic polynomial is by defi-
nition:

Φp(x) = (xp − 1)/(x− 1) = xp−1 + xp−2 + · · ·+ x+ 1.

Lemma 12.1.15. Let p be a prime. For all k ∈ {1, 2, . . . , p − 1}, p divides
(
p
k

)
(given that

(
p
k

)
is an integer).

Proof. By definition:(
p

k

)
=
p(p− 1) · · · (p− (k − 2))(p− (k − 1))

k!

Cross-multiplying, we obtain:

k!

(
p

k

)
= p(p− 1) · · · (p− (k − 2))(p− (k − 1))
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Since p divides the right-hand side, it must also divide the left-hand side k!
(
p
k

)
=

1 ·2 · · · k ·
(
p
k

)
. Since k < p, none of {1, 2, . . . , k} is divisible by p. So, by Euclid’s

Lemma, p divides
(
p
k

)
.

Corollary 12.1.16 (Gauss). The polynomial Φp irreducible in Q[x].

Proof. Consider:

Φp(x+ 1) = [(x+ 1)p − 1]/x = xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + · · ·+ p.

By Eisenstein’s criterion, we conclude that Φp(x+ 1) is irreducible. This implies
that Φp(x) is irreducible: Suppose Φp(x) = g(x)h(x), for some g(x), h(x) ∈
Q[x], with deg g(x), deg h(x) < deg Φp(x), then Φp(x+ 1) = g(x+ 1)h(x+ 1).
Since g(x + 1), h(x + 1) are polynomials in Q[x], and deg g(x + 1) = deg g,
deg h(x+ 1) = deg h, deg Φp(x+ 1) = deg Φp(x), this implies that Φp(x+ 1) is
not irreducible, a contradiction.
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Week 13

13.1 Field extensions
Recall that any ring homomorphism between two fields is injective.

Definition. A subfield F of a field E is a subring of E which is a field; in this
case, we also say E is an extension of F , or E/F is a field extension. Caution:
Note that the notation E/F does not mean a quotient ring!

LetE/F be a field extension (or a subfield F of a fieldE). Let α be an element
of E. Consider the evaluation map

φα : F [x]→ E, f 7→ f(α),

which is a homomorphism such that φα|F = idF . The image of φα is the subring

F [α] := imφα = {f(α) : f ∈ F [x]}

in E. Since E is a field, F [α] is an integral domain. Also, the subfield

F (α) =

{
f(α)

g(α)
: f, g ∈ F [x], g(α) 6= 0

}
in E is precisely the field of fractions of F [α].

There are two scenarios:

• kerφα = {0}, i.e. α is not a root of any nonzero polynomial f ∈ F [x].
In this case, we say α ∈ E is transcendental over F . Then φα gives an
isomorphism F [x] ∼= F [α].

• kerφα 6= {0}, i.e. α is a root of some nonzero polynomial f ∈ F [x]. In this
case, we say α ∈ E is algebraic over F . Since F [x] is a PID, kerφα = (p)
for some p ∈ F [x]. Then the First Isomorphism Theorem implies that

φα : F [x]/(p) ∼= F [α].
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As F [α] is an integral domain, Theorem 11.1.10 tells us that p is irreducible
and that F [x]/(p) ∼= F [α] is in fact a field. Hence we have

F [x]/(p) ∼= F [α] = F (α).

Remark. Note that F (α) is the smallest subfield of E containing F and α. We
say that F (α) is obtained from F by adjoining α.

Theorem 13.1.1. Let E/F be a field extension and α be an element of E.

1. If α is algebraic over F , then α is a root of an irreducible polynomial p ∈
F [x], such that p | f for any f ∈ F [x] with f(α) = 0.

2. For p be an irreducible polynomial F [x] of which α is a root. Then, the map
φα : F [x]/(p) −→ F (α), defined by:

φ(
n∑
j=0

cjx
j + (p)) =

n∑
j=0

cjα
j,

is a ring isomorphism mapping x+ (p) to α and a+ (p) to a for any a ∈ F .
(Here,

∑n
j=0 cjx

j+(p) is the equivalence class of
∑n

j=0 cjx
j ∈ F [x] modulo

(p).)

3. Let p be an irreducible polynomial in F [x] of which α is a root. Then, each
element in F (α) has a unique expression of the form:

c0 + c1α + · · · cn−1αn−1,

where ci ∈ F , and n = deg p.

4. If α, β ∈ E are both roots of an irreducible polynomial p in F [x], then
there exists a ring isomorphism σ : F (α) −→ F (β), with σ(α) = β and
σ(s) = s, for all s ∈ F .

Proof. 1. We only need to prove the last part. So let f ∈ F [x] be such that
f(α) = 0. Then f ∈ kerφα = (p) which means that p | f .

2. This was done above.

3. Since φα in Part 2 is an isomorphism, we know that each element γ ∈ F (α)
is equal to φα(f + (p)) = f(α) :=

∑
cjα

j for some f =
∑
cjx

j ∈ F [x].
By the division theorem for F [x]. There exist m, r ∈ F [x] such that f =
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mp + r, with deg r < deg p = n. Write r =
∑n−1

j=0 bjx
j , with bj = 0 if

j > deg r. We have:

γ = φα(f + (p)) = φα(r + (p)) =
n−1∑
j=0

bjα
j.

It remains to show that this expression for γ is unique. Suppose γ = g(α) =∑n−1
j=0 b

′
jα

j for some g =
∑n−1

j=0 b
′
jx
j ∈ F [x]. Then, g(α) = r(α) = γ

implies that (g − r) + (p) ∈ F [x]/(p) is in the kernel of the map φα in Part
2. Since φα is one-to-one, we have (g − r) ≡ 0 modulo (p), which implies
that p | (g − r) in F [x]. Since deg g, deg r < p, this implies that g − r = 0.
So, the expression γ = b0 + b1α + · · ·+ bn−1α

n−1 is unique.

4. By Part 2, we have an isomorphism φβ : F [x]/(p) −→ F (β), such that
φβ(x + (p)) = β, and φβ(a + (p)) = a for all a ∈ F . So the map φαβ :=

φβ ◦ φ
−1
α : F (α) −→ F (β) is the desired isomorphism between F (α) and

F (β).

Remark. Suppose p is an irreducible polynomial in F [x] of which α ∈ E is a root.
Part 4 of the theorem essentially says that F (α) is a vector space of dimension
deg p over F , with basis:

{1, α, α2, . . . , αn−1}.
Example 13.1.2. Consider F = Q as a subfield of E = R. The element α ∈
3
√

2 ∈ R is a root of the the polynomial p = x3 − 2 ∈ Q[x], which is irreducible
in Q[x] by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says thatQ(α), i.e. the smallest subfield of R
containing Q and α, is equal to the set:

{c0 + c1α + c2α
2 : ci ∈ Q}

The addition and multiplication operations in Q(α) are those associated with R,
in other words:

(c0 + c1α + c2α
2) + (b0 + b1α + b2α

2) = (c0 + b0) + (c1 + b1)α + (c2 + b2)α
2,

(c0 + c1α + c2α
2) · (b0 + b1α + b2α

2)

= c0b0 + c0b1α+ c0b2α
2 + c1b0α+ c1b1α

2 + c1b2α
3 + c2b0α

2 + c2b1α
3 + c2b2α

4

= (c0b0 + 2c1b2 + 2c2b1) + (c0b1 + c1b0 + 2c2b2)α + (c0b2 + c1b1 + c2b0)α
2

Exercise: Given a nonzero γ = c0 + c1α + c2α
2 ∈ Q(α), ci ∈ Q, find

b0, b1, b2 ∈ Q such that b0 + b1α+ b2α
2 is the multiplicative inverse of γ in Q(α).

69



Example 13.1.3. Since 3
√

2 is a root of x3 − 2, the polynomial p = x3 − 2 has a
linear factor in Q( 3

√
2)[x]. More precisely,

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+ (
3
√

2)2).

Theorem 13.1.4 (Kronecker). If F is a field, and f is a nonconstant polynomial
in F [x], then there exists a field extension E of F , such that f ∈ F [x] ⊂ E[x] is a
product of linear polynomials in E[x].

In other words, there exists a field extension E of F , such that:

f = c(x− α1) · · · (c− αn),

for some c, αi ∈ E.

Proof. We prove by induction on deg f .
If deg f = 1, we are done.
Inductive Step: Suppose deg f > 1. Suppose, for any field extension F ′ of F ,

and any polynomial g ∈ F ′[x] with deg g < deg f , there exists a field extension
E of F ′ such that g splits into a product of linear factors in E[x].

If f is irreducible, then F ′ := F [x]/(f) contains a root α of f , namely α =
x+(f) ∈ F [x]/(f). Hence, f = (x−α)q in F ′[x], with deg q < deg f . Moreover,
F ′ is a field extension of F if we identify F with the subset {c+(p) : c ∈ k} ⊂ F ′,
where c is considered as a constant polynomial in F [x]. Then, by the induction
hypothesis, there is an extension field E of F ′ such that q splits into a product of
linear factors in E[x]. Consequently, f splits into a product of linear factors in
E[x].

If f is not irreducible, then f = gh for some g, h ∈ F [x], with deg g, deg h <
deg f . So, by the induction hypothesis, there is a field extension F ′ of F such that
g is a product of linear factors in F ′[x]. Hence, f = (x−α1) · · · (x−αn)h in F ′[x].
Since deg h < deg f , by the inductive hypothesis there exists a field extension E
of F ′ such that h splits into linear factors in E[x]. Hence, f is a product of linear
factors in E[x].

Remark. There is a theorem saying that for any field F , there exists a unique field
extension F of F in which every element is algebraic over F and such that any
polynomial in F [x] splits over F . The field extension F is called the algebraic
closure of F .

13.2 Finite fields
Let F be a finite field. Then we must have charF = p for some prime number p.
So F is a field extension of Fp.
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Proposition 13.2.1. Let F be a finite field. Then, the number of elements of F is
equal to pn for some prime p and n ∈ N.

Proof. Note that F is a vector space over Fp. Since the cardinality of F is finite,
the dimension n of F over Fp must necessarily be finite. Hence, there exist n
basis elements α1, α2, . . . , αn in F , such that each element of F may be expressed
uniquely as:

c1α1 + c2α2 + · · ·+ cnαn,

where ci ∈ Fp. Since Fp has p elements, it follows that F has pn elements.

Theorem 13.2.2 (Galois). Given any prime p and n ∈ N, there exists a finite field
F with pn elements.

Proof. Consider the polynomial:

f = xp
n − x ∈ Fp[x]

By Kronecker’s theorem (or by the existence of algebraic closure), there exists a
field extension K of Fp such that f splits into a product of linear factors in K[x].
Let:

F = {α ∈ K : f(α) = 0}.

Exercise: Let g = (x − a1)(x − a2) · · · (x − an) be a polynomial in k[x],
where k is a field. Show that the roots a1, a2, . . . , an are distinct if and only if
gcd(g, g′) = 1, where g′ is the derivative of g.

In this case, we have f ′ = pnxp
n−1− 1 = −1 in Fp[x]. Hence, gcd(f, f ′) = 1,

which implies by the exercise that the roots of f are all distinct. So, f has pn

distinct roots in K, hence F has exactly pn elements.
It remains to show that F is a field. Let q = pn. By definition, an element

a ∈ K belongs to F if and only if f(a) = aq − a = 0, which holds if and only if
aq = a. For a, b ∈ F , we have:

(ab)q = aqba = ab,

which implies that F is closed under multiplication. Since K, being a extension
of Fp, has characteristic p. we have (a+ b)p = ap + bp. Hence,

(a+ b)q = (a+ b)p
n

= ((a+ b)p)p
n−1

= (ap + bp)p
n−1

= (ap + bp)p)p
n−2

= (ap
2

+ bp
2

)p
n−2

= · · · = ap
n

+ bp
n

= a+ b,

which implies that F is closed under addition.
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Let 0, 1 be the additive and multiplicative identity elements, respectively, of
K. Since 0q = 0 and 1q = 1, they are also the additive and multiplicative identity
elements of F .

For nonzero a ∈ F , we need to prove the existence of the additive and multi-
plicative inverses of a in F .

Let −a be the additive inverse of a in K. Since (−1)q = −1 (even if p = 2,
since 1 = −1 in Z2), we have:

(−a)q = (−1)qaq = −a,

so −a ∈ F . Hence, a ∈ F has an additive inverse in F .
Since aq = a in K, we have:

aq−2a = aq−1 = 1

in K. Since a ∈ F and F is closed under multiplication, aq−2 = a · · · a︸ ︷︷ ︸
q−2 times

lies in F .

So, aq−2 is a multiplicative inverse of a in F .

Proposition 13.2.3. Let F be a field, f a nonzero irreducible polynomial in F [x],
then F [x]/(f) is a vector space of dimension deg f over F .

Proof. Let E = F [x]/(f), then E is a field extension of F which contains a root
α of f , namely, α = x := x + (f). By Theorem 13.1.1, E = F (α), and every
element in E may be expressed uniquely in the form:

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1, ci ∈ k, n = deg f.

This shows that E is a vector space of dimension deg f over F .

Corollary 13.2.4. If F is a finite field with |F | elements, and f is an irreducible
polynomial of degree n in F [x], then the field F [x]/(f) has |F |n elements.

Example 13.2.5. Let p = 2, n = 2. To construct a finite field with pn = 4
elements. We first start with the finite field Z2, then try to find an irreducible poly-
nomial f ∈ Z2[x] such that Z2[x]/(f) has 4 elements. Based on our discussion so
far, the degree of f should be equal to n = 2, since n is precisely the dimension
of the desired finite field over Z2. Consider f = x2 + x + 1. Since p is of degree
2 and has no root in Z2, it is irreducible in Z2[x]. Hence, Z2[x]/(x2 + x + 1) is a
field with 4 elements.
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