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Figure 1: This week we have Kana (Piman ver.), also drew by my friend:)

Theorem 1 (Warm up). Let −∞ < a < b < ∞ and let f, g be differentiable on (a, b)

such that g′(x) ̸= 0 for all x ∈ (a, b). Suppose that

lim
x→a+

f(x) = 0 = lim
x→a+

g(x).

If lim
x→a+

f ′(x)

g′(x)
= L ∈ R ∪ {±∞}, then lim

x→a+

f(x)

g(x)
= L.

Proof. CASE I: Suppose L < ∞.

By the definition of right limit, for any ϵ > 0 there exists a δ = δ(ϵ) > 0 such that for all

x ∈ (a, a+ δ) we have ∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ϵ.

For any (x, y) ⊂ (a, a + δ), the Cauchy Mean Value Theorem tells us that there exists

u ∈ (x, y) such that
f(y)− f(x)

g(y)− g(x)
=

f ′(u)

g′(u)
.

Since u ∈ (x, y) ⊂ (a, a+ δ), we have∣∣∣∣f ′(u)

g′(u)
− L

∣∣∣∣ < ϵ
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which is equivalent to ∣∣∣∣f(y)− f(x)

g(y)− g(x)
− L

∣∣∣∣ < ϵ.

Take limit x → a+, f(x), g(x) → 0 (because what we have obtained is true for all

x ∈ (a, a+ δ)) so we obtain ∣∣∣∣f(y)g(y)
− L

∣∣∣∣ ≤ ϵ

and this inequality is true for all y ∈ (a, a+ δ). Hence the right limit of f(y)
g(y)

is L.

CASE II: Suppose L = ∞.

By the definition of right limit, for any M > 0 there exists a δ = δ(ϵ) > 0 such that for

all x ∈ (a, a+ δ) we have
f ′(x)

g′(x)
> M

For any (x, y) ⊂ (a, a + δ), the Cauchy Mean Value Theorem tells us that there exists

u ∈ (x, y) such that
f(y)− f(x)

g(y)− g(x)
=

f ′(u)

g′(u)
.

Since u ∈ (x, y) ⊂ (a, a+ δ), we have

f ′(u)

g′(u)
> M

which is equivalent to
f(y)− f(x)

g(y)− g(x)
> M.

Take limit on x, and then y as above.

Theorem 2. Suppose lim
x→∞

g(x) = lim
x→∞

f(x) = 0 and lim
x→∞

f ′(x)

g′(x)
= L, then

lim
x→∞

f(x)

g(x)
= L

Proof. We start with the case ∞ > L.

Similar to the above argument, for any ϵ > 0 there exists K such that for all x, y > K we

have

L− ϵ <
f(x)− f(y)

g(x)− g(y)
< L+ ϵ

Take limit y → ∞ we obtain

L− ϵ ≤ f(x)

g(x)
≤ L+ ϵ
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and the result follows.

When L = ∞, our argument would be starting with: for any M > 0 there exists K such

that for all x, y > K we have
f(x)− f(y)

g(x)− g(y)
> M

Take limit on y then
f(x)

g(x)
> M

for all x > K. The result follows.

Theorem 3. Suppose lim
x→∞

g(x) = lim
x→∞

f(x) = ∞ and lim
x→∞

f ′(x)

g′(x)
= L, then

lim
x→∞

f(x)

g(x)
= L

Proof. We start with the case ∞ > L > 0.

By lim
x→∞

f ′(x)

g′(x)
= L we know that for all ϵ > 0 there exists K1 = K1(ϵ) > 0 such that for

all x > K1 we have

L− ϵ <
f ′(x)

g′(x)
< L+ ϵ

Pick any x, y > K1, by Cauchy mean value theorem, there exists u ∈ (x, y) such that

f ′(u)

g′(u)
=

f(y)− f(x)

g(y)− g(x)
.

Since u ∈ (x, y) implies u > K1, we have L− ϵ < f(y)−f(x)
g(y)−g(x)

< L+ ϵ.

Since g → ∞ we can assume g(x), g(y) > 0. Or, to be clumsy, we can find K ′
1 such that

g(x) > 0 whenever x > K ′
1 and replace K1 by max{K1, K

′
1}.

Fix x, for any d > 0 to be determined, there exists K2 such that for all y > K2 we have

0 < g(x)
g(y)

< d (note: the fraction is positive), which gives

(L− ϵ)
g(y)− g(x)

g(y)
<

f(y)− f(x)

g(y)− g(x)

g(y)− g(x)

g(y)
< (L+ ϵ)

g(y)− g(x)

g(y)

(L− ϵ)(1− d) <
f(y)− f(x)

g(y)
< (L+ ϵ)(1− d) < L+ ϵ

For the same d we can also find K3 such that for all y > K3 we have −d < f(x)
g(y)

< d, hence

for any y > K3 we have

(L− ϵ)(1− d)− d <
f(y)

g(y)
< L+ ϵ+ d
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Choose d = min{ ϵ
L−ϵ

, ϵ}, this gives (L − ϵ)(1 − d) ≥ L − 2ϵ and d ≤ ϵ. As d is fixed, we

may fix K2, K3, let K = max{K1, K2, K3}, then for all x, y > K we have

L− 3ϵ <
f(y)

g(y)
< L+ 2ϵ

This implies lim
y→∞

f(y)

g(y)
= L.

I think students used l’Hopital’s rule a lot in MATH1018, just without a rigorous treatment
on the proof behind.


