
0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

• 1.1 Matrices, matrix addition, and scalar multiplication for matrices.

• 1.2 Matrix multiplication.

Abstract. We introduce:—

• the notion of transpose,

• the notions of symmetry and skew-symmetry.

In the appendix, we digress onto the notion of definition, theorem, proof, and the format which dictates how they

are to be read.

1. Definition. (Transpose of a matrix.)

Let A be an (m ⇥ n)-matrix, whose (i, j)-th entry is denoted by aij.

The transpose of A is the (n ⇥m)-matrix whose (k, `)-th entry is given by a`k.

It is denoted by At.

Remark. In symbolic terms, what this definition says is:—

If A =

2
666666666664

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
am1 am2 am3 · · · amn

3
777777777775

then At =

2
666666666664

a11 a21 a31 · · · am1

a12 a22 a32 · · · am2

a13 a23 a33 · · · am2

...
...

...
...

a1n a2n a3n · · · amn

3
777777777775
.

2. Example (1). (Transpose of a matrix.)

Suppose A =


1 2 3

0 1 2

�
, B =


1 3 0

2 1 1

�
and C =

2
66664

1 2

0 1

1 3

3
77775.

Then At =

2
66664

1 0

2 1

3 2

3
77775 , Bt =

2
66664

1 2

3 1

0 1

3
77775 and Ct =


1 0 1

2 1 3

�
.

(a) Note that A + B =


2 5 3

2 2 3

�
. Then (A + B)

t =

"
2 2

5 2

3 3

#
.

We have At + Bt = · · · =
"

2 2

5 2

3 3

#
. So (A + B)

t = At + Bt
(in this example).

(b) Note that AC = · · · =


4 13

2 7

�
. Then (AC)

t =


4 2

13 7

�

We have CtAt = · · · =


4 2

13 7

�
. So (AC)

t = CtAt
(in this example).

3. Theorem (1). (Basic properties of transpose.)

Suppose A,B are (m ⇥ n)-matrices, C is an (n ⇥ p)-matrix, and � is a number. Then:—

(1) Suppose A is an (m ⇥ n)-matrix. Then (At
)
t = A.

(2) Suppose A,B are (m ⇥ n)-matrices. Then (A + B)
t = At + Bt.

(3) Suppose A is an (m ⇥ n)-matrix, and � is a number. Then (�A)
t = �At.

(4) Suppose A is an (m ⇥ n)-matrices, and C is an (n ⇥ p)-matrix. Then (AC)
t = CtAt.

Proof of Statement (4) of Theorem (1).

Suppose A is a (m⇥ n)-matrix, and C is an (n⇥ p)-matrix. (So AC is an (m⇥ p)-matrix, and (AC)
t

is a (p⇥m)-matrix.)

(By definition, At
is an (n ⇥m)-matrix, and Ct

is a (p ⇥ n)-matrix. So CtAt
is well-defined as a (p ⇥m)-matrix.)

Denote the (i, j)-th entry of A by aij. Denote the (k, `)-th entry of C by ck`.

Fix any ` = 1, 2, · · · , p and i = 1, 2, · · · ,m.
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• By the definition of matrix multiplication, the (i, `)-th entry of AC is given by

nX

j=1

aijcj`.

Then, by the definition of transpose, the (`, i)-th entry of (AC) is given by

nX

j=1

aijcj`.

• By the definition of transpose, for each j = 1, 2, · · · ,n, the (`, j)-th entry of Ct
is cj`, and the ( j, i)-th entry of At

is aij.

Then, by the definition of matrix multiplication, the (`, i)-th entry of CtAt
is given by

nX

j=1

aijcj`.

Hence (AC)
t = CtAt

.

Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)

4. Definition. (Symmetric matrix and skew-symmetric matrix.)

Suppose A is an (n ⇥ n)-square matrix. Then:—

(1) A is said to be symmetric if and only if At = A.

(2) A is said to be skew-symmetric if and only if At = �A.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

(a) The (n ⇥ n)-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.

(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

(c) Let A =
2
66664

1 3 5

3 2 4

5 4 6

3
77775.

Note that At =

2
66664

1 3 5

3 2 4

5 4 6

3
77775 = A. Then A is symmetric.

Note that At , �A. Then A is not skew-symmetric.

(d) Let A =
2
66664

0 1 2

�1 0 3

�2 �3 0

3
77775.

Note that At =

2
66664

0 �1 �2

1 0 �3

2 3 0

3
77775 = �A. Then A is skew-symmetric.

Note that At , A. Then A is not symmetric.

(e) Let B =


1 3

2 4

�
.

Note that Bt =


1 2

3 4

�
.

We have Bt , B. Then B is not symmetric.

We have Bt , �B. Then B is not skew-symmetric.

(f) Let B =
2
66664

1 1 0

�1 0 0

0 0 0

3
77775.

Note that Bt =

2
66664

1 �1 0

1 0 0

0 0 0

3
77775.

We have Bt , B. Then B is not symmetric.

We have Bt , �B. Then B is not skew-symmetric.

6. Lemma (2).
Suppose A is a square matrix. Then:—

(1) A + At is symmetric.

(2) A � At is skew-symmetric.

Proof of Lemma (2).
Suppose A is a square matrix.
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(1) We have (A + At
)
t = At + (At

)
t = At + A = A + At

.

Then, by definition of symmetric matrix, A + At
is symmetric.

(2) We have (A � At
)
t = [A + (�At

)]
t = At + (�At

)
t = At � (At

)
t = At � A = �(A � At

).

Then, by definition of skew-symmetric matrix, A � At
is skew-symmetric.

7. Theorem (3).
Suppose A is a square matrix. Then there are some unique square matrices B,C such that B is symmetric, C is
skew-symmetric, and A = B + C.

Proof of Theorem (3).
Suppose A is a square matrix.

[We have two tasks, which are (↵), (�) below:—

(↵) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively

labelled B,C in the subsequent consideration, which we hope will satisfy A = B + C.

(�) Then we verify for such a pair of matrices B,C two things:—

(1) The equality ‘A = B + C’ holds indeed.

(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy A = P + Q, then P = B and

Q = C.

We proceed with (↵), and follow up with (�).

But how to proceed with (↵)?]

[Roughwork.

According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:—

• A + At
is a symmetric matrix.

• A � At
is a skew-symmetric matrix.

However, because (A + At
) + (A � At

) = 2A, they are not the respective B,C that we hope for. But we are getting

close.]

Define B =
1

2
(A + At

), and C =
1

2
(A � At

).

Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)

• We have B + C =
1

2
(A + At

) +
1

2
(A � At

) = A.

• Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and A = P +Q.

By assumption, Pt = P and Qt = �Q. Then At = (P +Q)
t = Pt +Qt = P �Q.

Now we have 2P = (P +Q) + (P �Q) = A + At
. Then P =

1

2
(A + At

) = B.

We also have 2Q = (P +Q) � (P �Q) = A � At
. Then Q =

1

2
(A � At

) = C.
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