0.1 Transpose, symmetry and skew-symmetry.

0. Assumed background.

e 1.1 Matrices, matrix addition, and scalar multiplication for matrices.
e 1.2 Matrix multiplication.

Abstract. We introduce:—
o the notion of transpose,

o the notions of symmetry and skew-symmetry.

In the appendix, we digress onto the notion of definition, theorem, proof, and the format which dictates how they
are to be read.

. Definition. (Transpose of a matrix.) We. conclwd e thet

Let A be an\(m X ni_l\matrix, whose (i, j)-th entry is denoted by aij. — r(‘__ A
. Sy o °
The transpose of A is the (n X m)imatrix whose (k, {)-th entry is given b Q'J) th T)a .
It is denoted by A'. A
g = it N "

Remark. Insymbolic terms, what this definition says is:—

a3 0 in a1l 41 a4z ot Aml
Aon dip dxpp Az o Am2

IfA=| %1 43 Bn | then At = | W13 23 433 -+ 2

: : A : eguek

Am1 Ap A2n A3p **° Qmn FlYS:t g{/k‘)uat:t$ 4} 'tb\’O_ T (%

2 €
Example (1). (Transpose of a matrix.) Lj,\c,)t = C A
1 2
1 2 3 1 3 0
sopeea=[ 4 3}o-[ 1 1§ |sac-[} ] i, o)
1 0 1 2
Thend'=| 2 1 ,Bf:[g %]andct—[% y }5] Cs (7
Yeloion of J(Vamrpgq Wikh AC. CMP?’ TN

edd;iom (a) Note that A+ B = [ %

&

5

2
R Wehave A’ +Bf=---=[ 5 2 [. Sol(A + B)! = A" + B! (in this example).
MARGED [3 3] S P

g].Then(A+B)t=[§ é] L/%Cf7 (Pﬂr\) nedwi

Conem
(b) NotethatAC:m:[% A
- N X n
WehaveCtAt=---:[1% % in thi . C P
£t Q1 o P Thedh S
3. Theorem (1). (Basic properties of transpose.) C A

Suppose A, B are (m X n)-matrices, C is an (n X p)-matrix, and A is a number. Then:— ( N + 4 wa\l f z ]

(1) Suppose A is an (m x n)-matrix. Then (A")' = A.

(2) Suppose A, B are (m x n)-matrices. Then (A + B)! = A" + B'.

(3) Suppose A is an (m x n)-matrix, and A is a number. Then (AA)' = AA".

(4) Suppose A is an (m x n)-matrices, and C is an (n X p)-matrix. Then (AC)! = C'A’.
Proof of Statement (4) of Theorem (1).
Suppose A is a (m X n)-matrix, and C is an (1 X p)-matrix. (So AC is an (m X p)-matrix, and (AC)" is a (p X m)-matrix.)
(By definition, A" is an (1 X m)-matrix, and C' is a (p X n)-matrix. So C'A’ is well-defined as a (p x m)-matrix.)
Denote the (i, j)-th entry of A by a;;. Denote the (k, £)-th entry of C by cy,.
Fixany¢=1,2,--- ,pandi=1,2,--- ,m.
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o By the definition of matrix multiplication, the (i, {)-th entry of AC is given by Z ajicje.
. j=1

Then, by the definition of transpose, the (¢, i)-th entry of (AC) is given by Z aiiCjc
=1
o By the definition of transpose, for each j = 1,2,--- ,n, the (¢, j)-th entry of Cltisc j¢, and the (j, i)-th entry of At
is a,-]-.
n
Then, by the definition of matrix multiplication, the (¢, 7)-th entry of C'A’ is given by Z aijcjc.
j=1
Hence (AC)! = CtA".
Proof of Statements (1), (2), (3) of Theorem (1). Exercise. (Imitate what is done above.)
4. Definition. (Symmetric matrix and skew-symmetric matrix.)
Suppose A is an (n X n)-square matrix. Then:—
(1) A is said to be symmetric if and only if A" =
(2) A is said to be skew-symmetric if and only if A" = —A.

5. Example (2). (Examples and non-examples on symmetric matrices and skew-symmetric matrices.)

(a) The (n x n)-zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.

(b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

1 3 5
(c) LetA=|3 2 4
5 4 6
135
Note that Af = [ 3 2 4 ] = A. Then A is symmetric. Con ﬂ’V\ J’\X\”’( & haiiy [41 webi ('E
546 - HL\WM(—MS@V/f]N c
; . . Wwhith ©$
Note that A" # —A. Then A is not skew-symmetric.
0 1 2 : JE= A
(d) LetAz[ 1003 } ne .
0 -1 -2 A t - A
Note that A’ = [ % g —03 } = —A. Then A is skew-symmetric.

Note that A! # A. Then A is not symmetric.

1 3

Note that Bf :[ ;’ i ]

We have B' # B. Then B is not symmetric.
We have Bf # —B. Then B is not skew-symmetric.
1 10
(f) LetB=| -1 0 0 |.
0 0 0

The Plaw ing € 2 F”N]L Df

n
1 -1 0 RWM eed
NotethatB'=| 1 0 0 KT
e [000] i g wich b
We have B! # B. Then B is not symmetric. &m Djluol}ba flonS 7‘

We have B! # —B. Then B is not skew-symmetric.

b1 (~A’«))%
6. Lemma (2). &A ‘/A ) = A+

Suppose A is a square matrix. Then:— t
— ‘t
At + vy

il

(1) A+ A! is symmetric.

(2) A— A!is skew-symmetric. - ,b;t ‘ ) )
Proof of Lemma (2). /Yﬁ ) :_ - A
Suppose A is a square matrix. - A (
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(1) Wehave (A+ AN = Al+ (A =At+ A=A+ A
Then, by definition of symmetric matrix, A + A’ is symmetric.
(2) Wehave (A- AN =[A+ (AN = AT+ (AN = A" — (A} = A" - A = —(A - A)).
Then, by definition of skew-symmetric matrix, A — Atis skew-symmetric.
7. Theorem (3).

Suppose A is a square matrix. Then there are some unique square matrices B, C such that B is symmetric, C is

skew-symmetric, and A = B + C. A ?Md( wc—(] v ,P)W ¢ the thesrum :
Proof of Theorem (3). . H\ o ponh rCC gtM—SJM’M@M (-
Suppose A is a square matrix. . A= B+ ¢ Wi R y g

[We have two tasks, which are (a), (8) below:— ‘ A“? _ R 4 . (/t - B" C (M\H ’]L )

(a) Conceive some appropriate symmetric matrix, and some appropriate skew-symmetric matrix, respectively
labelled B, C in the subsequent consideration, which we hope will satisfy A = B + C.

(B) Then we verify for such a pair of matrices B, C two things:— then Gl Ma e Gg whatn) |
(1) The equality ‘A = B + C’ holds indeed.

(2) If some symmetric matrix P and some skew-symmetric matrix Q also satisfy A = P + Q, then P = B and

R Az Btc gali
We proceed with (a), and follow up with (). 7 B - =
But how to proceed with («)?] At T R-C. A- At
[Roughwork. = -

According to Lemma (2), we have a pair of symmetric matrix and skew-symmetric matrix determined by A alone:—

o A+ Alis a symmetric matrix.

o A — Alis a skew-symmetric matrix.

However, because (A + A") + (A — A") = 2A, they are not the respective B, C that we hope for. But we are getting
close.]

Define B = %(A + A", and C = %(A - Ah).
Note that B is symmetric, and C is skew-symmetric. (Why? Apply Lemma (2) and Theorem (1).)
1 ho L t
e WehaveB+C = §(A+A)+ E(A—A)zA.

e Suppose P is a symmetric matrix, Q is a skew-symmetric matrix, and A = P + Q.
By assumption, P! = Pand Q' = —-Q. Then A' = (P+ Q) =P'+ Q' =P - Q.

Now wehave2P = (P+ Q)+ (P- Q)= A+ A". ThenP = %(A+At):B.

We also have2Q = (P+ Q) - (P- Q) =A - Al. Then Q = %(A—At)zc.
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