0.1 Matrices, matrix addition, and scalar multiplication for matrices.

0. Abstract. We introduce:—

o the notion of matrices, and the notion of equality for matrices,

matrix addition, and its properties,

the notions of zero matrix and additive inverse,

scalar multiplication for matrices, and its properties,

presentation of matrices in terms of blocks, and presentation of matrix addition and scalar multiplication in
terms of blocks.

1. Definition. (Matrices.)

An (m X n)-matrix (or matrix of size m by n) with real/complex entries, with m rows and n columns, is an (m X n)-

rectangular array
X11 X12 X13  r Xin
X21 X220 X3 o Xop
X31  X32 X33 - X3p
Xml Xm2 Xm3 =°°° Xmn

in which the mn entries x;;’s are respectively real/complex numbers.

Denote such a matrix by X. Fixanyk=1,2,--- ,m,andany { =1,2,--- ,n.
(1) The k-th row of the matrix X is the ‘horizontal” array
[ X1 X2 X3 -0 Xkn ]

(2) The ¢-th column of X is the ‘vertical” array
X1¢

X2¢
X3¢
Xt
(3) The (k, £)-th entry (or the (k, {)-th element) of X is number xy,.
(It is where the k-th row and the {(-th column of X meet.)

Further terminologies.
A (1 X n)-matrix (with just one row) is also called a row vector with size n.

An (m X 1)-matrix (with just one column) is also called a column vector with size m.

2. Example (1).

5
Its first, second and third rows are

1 2
(a) [ 3 Aél ] is a (3 X 2)-matrix.

(1 2] [3 4] [5 6]

|

respectively.
Its first and second columns are

[6; JeSET
\—J
—
NN
| S —

respectively.
1 2 3 4
(b) % Z é g is a (4 X 4)-matrix.
4 5 6 7

Its first, second, third and fourth rows are
[1 2 3 4], [2 3 4 5], [3 4 5 6], [4 5 6 7]

respectively.



Its first, second, third and fourth columns are

1 2 3 4
2 3 4 5
3 ) 4 | 57 6
4 5 6 7
respectively.
3. Example (2).
1 1 1
(@) LetX=|2 22 23
3 3 3
The (i, j)-th entry of X is i/.
a a a
(b) Let a be a real number, and X = [ 8 8 a ]
a

Denote the (i, j)-th entry of X by x;;.

if i<j
Then x;; = { i i>;‘
1 0 --- 0
e 1 o --- 0
2
() LetX=| € € -0
e'n en'—l en'—2 1

Denote the (i, j)-th entry of X by x;;.

el if ix>
Thenxifz{ 0 if i<;'

4. Definition. (Equality for matrices.)
Let A be an (m X n)-matrix, with its (i, j)-th entry being a;; for each i, j.
Let B be a (p X q)-matrix, with its (k, {)-th entry being b;; for eachk, €.
We say that A, B are equal (as matrices) if and only if:

(1) m = p and n = g, and moreover,
(2) aij = bjj for alli, j.
5. Definition. (Addition for matrices.)
Let A, B be (m x n)-matrices with the (i, j)-th entries respectively given by aij, bi]- for eachi, j.
We define the sum of the matrices A, B to be the (m X n)-matrix whose (i, j)-th entry is a;; + b;; for each/, j.
It is denoted by A + B.
(We also read A + B as the ‘resultant of B added to A".)

Remark. Insymbols, this definition says:

ann A - i bii by -+ by an+bu ap+bn - Ay + b

I boi by -+ by ay +by  an+by - ay+by
. . . + . . . = . . .

Al Am2 - Amn by bmy - by 1 + b1 Ay + g -+ Ay + by

6. Example (3). (Addition for matrices.)
[ -H)+1 0+2 ] _ [ 2

(a)[_z1 _02]+[ ] 2+(-1) (-2)+0 2]
© |15 e|+[537|=|415 315 &7 )-8 & 5|

7. Theorem (1). (Commutativity and associativity of matrix addition.)

(1) Suppose A, B are (m X n)-matrices. Then A+ B = B + A.
(2) Suppose A, B, C are (m x n)-matrices. Then A+ (B+C) = (A+B) +C.



10.

11.

12.

Remark. By virtue of (2), we agree to write ‘A + B + C’ for either 'A+ (B+ C) or ‘(A + B) + C".
Proof of Statement (1) of Theorem (1). Suppose A, B are (m X n)-matrices. Denote the respective (i, j)-th entries
of A, B by a;j, bjj for each i, j.

Fix any i, j.

By the definition of matrix addition, the (i, j)-th entry of A + B is a;j + b;;.

Similarly, The (i, j)-th entry of B + A is b;j + a;;.

By the commutativity of addition for real/complex numbers, we have a;; + bij = b;; + a;;.

Then by the definition of matrix equality, A + B = B + A.

Proof of Statement (2) of Theorem (1).  This is left as an exercise.

(Imitate what is done above, using associativity of addition for real/complex numbers instead.)
Theorem (2). (“Existence and uniqueness’ of “additive identity’ for matrices.)

There is a unique (m X n)-matrix Z such that for any (m X n)-matrix A, the equality A + Z = A holds.
Proof of Theorem (2). Let Z be the (m X n)-matrix whose entries are all 0.

[We intend to verify two things:

(1) The equality A + Z = A holds for any (m X n)-matrix A.
(2) If some (m x n)-matrix Y possesses the property ‘A +Y = A for any (m X n)-matrix A’, then Y = Z.

We proceed with (1), (2) separately.]
Let A be an (m X n)-matrix with the (i, j)-th entry given by a;; for each i, j.
(1) For each i, j, the (i, j)-th entry of A + Z is given by a;; + 0 = a;;.
Then by the definition of matrix addition, A + Z = A.
(2) Let Y be an (m x n)-matrix with the (i, j)-th entry given by y;; for each i, j. Suppose A +Y = A.
By the definition of matrix addition, for each i, j, we have a;; + y;; = a;;. Then y;; = 0.

Therefore, by the definition of matrix equality, Y = Z.

Definition. (Zero matrix.)
The (m x n)-matrix whose entries are all 0 is called the (m X n)-zero matrix.

It is denoted by O,xn, (or simply O when no confusion arises).

Theorem (3). (‘Existence and uniqueness’ of “additive inverse’ for a matrix)

Suppose A is an (m X n)-matrix. Then there is a unique (m X n)-matrix C such that A + C = Oy

Proof of Theorem (3).  Exercise, imitating the proof of Theorem (2). [We provide the beginning steps below:
Suppose A is an (m X n)-matrix, with its (i, j)-th entry given by a;; for each1i, j.
Let P be the (m X n)-matrix, with its (i, j)-th entry given by —a;; for each i, j.

Now imitate the argument for Theorem (2) to verify the statements below:—

(1) A+P=0y,.
(2) IfQis an (m x n)-matrix satisfying A + Q = O, then Q = P as matrices.

Fill in the detail as an exercise.]

Definition. (Additive inverse, ‘matrix subtraction’.)

Let A, B be (m X n)-matrices with the (i, j)-th entries respectively given by a;j, b;; for each i, j.

(a) The additive inverse of A is the (m X n)-matrix whose (i, j)-th entry is given by —a;; for each i, j.
It is denoted by —A.
(We also read —A as ‘minus A”.)
(b) The difference of B from A is the (m X n)-matrix given by the sum B + (=A).
(For each i, j, its (i, j)-th entry is given by b;; — a;;.)
We may write B + (—A) as B — A.
(We also read B — A as the ‘resultant of subtracting A from B".)



13. Definition. (Scalar multiplication for matrices.)

Let A be an (m X n)-matrix with real/complex entries, with its (i, j)-th entry given by a;; for each i,j. Let A be a
real/complex number.

The product of the matrix A by the scalar A is defined to be the (m X n)-matrix whose (i, j)-th entry is Aa;; for each
i, j. It is denoted by AA.

(We also read AA as ‘the scalar multiple of A by A’, or the resultant of multiplying the matrix A by the scalar 1".)

Remark. In symbols, this definition says:

an i ccc i Aayipr Aap oo Aay
a1 A - A Adyr Aaxp -+ Adyy,
Oml  Am2  **°  Qmn /\aml /\amz ce /\amn

14. Example (4). (Scalar multiplication for matrices.)
1 2 3
@34 53]

3-1 3-2 3-3 3 6 9
5 2

8 5 0 0 16 5 16
o]):[o 10}+[14 0]:[14 10].

15 20 12 10 27 30

15. Theorem (4). (Properties of scalar multiplication for matrices.)

Suppose A, B are (m X n)-matrices, and A, i are scalars. Then:—
(1) A(A+B)=AA+ AB.
(2) A+ WA =2AA+ uA.
(3) A(uA) = (ApA.

@) 1A = A.
G) (-1)A = —A.
(6) 0A = Opxn.

Proof of Theorem (4).  Exercise. (Imitate the arguments for Theorem (1).)

16. Presentation of matrices in blocks, introduced through examples.

Very often, for one reason or another, we like to:—

e visualize various ‘rectangular blocks of entries” inside a given matrix as matrices on their own, or

e construct a matrix by putting given matrices of ‘smaller sizes” alongside each other.
We introduce this idea through concrete examples.

(a) Let Ay, Ay, ---,Ap be matrices each with m rows, and with ny, 1y, - -+ , 1, columns respectively.

The matrix [ A1 | A2 | -+ | Ay ] stands for the (m X (11 + 1 + - -+ + n,))-matrix whose columns from left to
right are that of A1, A, - -+, A, in succession, each from left to right.
Illustration.
a1 a2 413 a14 a5 a6
_ | 421 dxp az3 _ | a2 _ | d25 2
LetAv=| 43 a3 a3 [ A2=| a5 [ A= a5 ase
ag1 A4 043 144 45 46
a1 a2 M3 | 414 | 415 16
a a a a s a
Al Ar | Ax 1= 821 a2 a23 | a4 | 25 26
Then [ A1 | Az | A5 ] 431 a3 433 | 434 | 435 a3
41 042 443 | Q44 | 045 Q46

(b) Let By, By, -+, By, be matrices each with n columns, and with my,m;, -, m, rows respectively.

By
B,
The matrix | . | stands for the ((m1 + ma + - -+ + my) X n)-matrix whose rows from top to bottom are that of

B,
By, By, - -+, By in succession, each from top to bottom.

Ilustration.



biu b1z biz bu
Let B; :[ by by by by }, B, = by by by by 1, B :[ bs1 ZSZ 253 254
bs1 bz b3z b 61 De2 bez  Des
bt b biz bu
B bor by by by
Then[ BZ ] = b31 b32 b33 b34

B by by Dyz by
3 bsi bsy Dsz Dsy
be1 bex Dbez bes

(c) The same idea can be extended to the construction of matrices with rows and columns of blocks.

Ilustration.
€11 C12 (13 C14 C15 Cie
C51 Cs52  Cs3 C54
_ | €21 Cx C23 _ | Coa _ | €5 Co6 _ _ _
LetCiu = | 5 ¢ o 1C2=| ¢y [ C3 =] o 3 | Cor = | C1 Ce2 Ces |, Cp = | Coa |, Co3 =
C71 C72 C73 C74
C41 C42 (43 C44 C45 C46

C55  Cs6
Ce5 Co6 |,
C75  C76

C11 Ci2 C13 | Cia | C15 Ci6

C21 Cxp (€23 | C24 | C25 (26

Cii | Cpy | C C31 €3 (33 | C34 | C35 (36
Then[ 2 ; 18 1= | ca1 Cap C43 | Cas | Ca5  Cap

C61 Ce2 Ce3 | Coa | Co5 Cé6

C51 Cs2 C53 | Cs4 | C55  Csp
C71 C72 C73 | C7a | C75 C7

17. Theorem (5).
Let Ajj, Bij be matrices foreachi=1,2,--- ,pand j=1,2,--- 4.
Suppose that for eachi=1,2,--- ,p, the matrices Ay, An, -+ ,Aig, Bi1, B, - - - , Big have the same number of rows.

Suppose that foreachj=1,2,--- ,q, the matrices A1j, Azj, - , Apj, B1j, B2j, - - - , Byj have the same number of columns.

An | Apn | | Ay Bii [ B2 | -+ | By
An [An [ [ Ay Boi | Bn | --- [ By
Define A = } ,and B = . .
Ap [ Ap |- [ Ay Byr [ B2 [+ | Byg
A+ B [Anp+Bn |-+ | Ay + By
An +Bn [Axn+Bn |-+ [ Ay + By
Then A+ B = . .
Apl + Bpl Apj)_ + Bp2 s qu + qu
M | AAp |+ | Ady
XAy [ Mgy [ | Adiay

Moreover, AA =

Ny | Ay [ | Ay

for each number A.
Proof of Theorem (5).  Omitted. (This is omitted not because it is difficult, but because it is a tedious and
straightforward exercise in book-keeping.)

18. Illustrations of the content of Theorem (5).

a1 G1p A3 | A14 | A5 die byt b1z biz | bia | bis bie
(a) LetA=| %21 42 @3 |@u|dx5 O | p_ by by bos | bos | bos  boe
a3 asy 4azz | dz4 | 435 dze | b3, b32 b33 b34 b35 b3
41 Q42 (43 | 44 | Q45 Q46 byt by Dbyz | bag | bas by
[ 411 d12 413 ] 14 a5 16
_ | 421 dax a3 _ | a2 _ | 425 42
LetAv=| 43 a3y ax [ A2=| a5 [ A5=| a5 ase
L A41 Q42 43 | 44 ag5 46
[ 11311 le 213 1 514 215 216
LetBy=| b21 b2 s | p | b | p _| bos Do
1 byt by bi |72 by |73 bss  bss
| by bap bz | baa bis  bas
Thenwehave A=[ A1 | Ay | A3 ],B=[ B1 | B2 | Bs ], and
ai+bn ap+bin ap+b a4 + by a5 + b5 aie + big

Ay + by axp+byn axp+by Arg + by azs + bys Az + bog

Al +By = Ay + By = Az + B3 =
! ! az + by asm +by apm+by |02 2 A3q +bay |73 3 azs + bzs Az + bzg
Ay +by aw +ba a3+ b Aaq + bys g5 + bas a6 + bag

SOA+B:[ A1+Bl ‘A2+B2‘A3+B3 ]indeed.



€11 Ci2 C13 Ci4

€1 Cp (23 C24

_ | C31 C32 C33 Caq

(b) LetC = C41 Cap C43 Ca4
C51 Csp (53 Cs4

C61 Ce2 Co3 Co4

€11 C12 13 Cua

Cs1 Csp Cs3 C
LetCy = [ €1 C» €3 Co4 ], Co=[cn co i3 cu],Cy= [ o Co el ]
(31 C3 (33 (34

G
Then C = [ C, }
G

Acin Aciz Aciz Acg
For each number A, we have ACy = | Acoy Acoy Acz Acos |, AC, = [ Acss Acgr Acgs Acy ], AC3 =
Acz1 Aczr Acsz Acu

Acst Acsy  Acsz Acsa
Acer  Acey Acez  Acea |

ACy
So AC = [ AC, ]
AC3
(c) Let Aq1, A1, Ax, Az, B11, B12, Bo1, B2y be matrices.

Suppose that:—

e the number of rows of A11,A1», B11, B12 are the same,

e the number of rows of Ay, Ay, Bo1, By, are the same,

e the number of columns of A1, A1, B11, Bo1 are the same, and
e the number of column of A1», A»y, B1p, By, are the same.

DeﬁneA:[A“ A ] B:[ Bi | Bz ]
21 2 | 21 | b [

_[ Au+Bi | A+ B ]
ThenA+B_[A21+B21 Ap+ By |
O(All (XA12 ]

Moreover, for each a« € R, oA =
A | @A



